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Abstract

In this note we discuss upper and lower bound for the ruin probabil-
ity in an insurance model with very heavy-tailed claims and interarrival
times.
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1 Backgrounds

The framework of our study is set by a given Bernoulli point process (Bpp)
N = {(Tk, Xk) : k ≥ 1} on the time-state space S = (0,∞) × (0,∞). By
definition (cf. Balkema and Pancheva 1996) N is simple in time (Tk �=Tj a.s.
for k �= j), its mean measure is finite on compact subsets of S and all restrictions
of N to slices over disjoint time intervals are independent. We assume that:
a) the sequences {Tk} and {Xk} are independent and defined on the same
probability space;
b) the state points {Xk} are independent and identically distributed random
variables (iid rv’s) on (0,∞) with common distribution function (df) F which
is asymptotically continuous at infinity;
c) the time points {Tk} are increasing to infinity, i.e. 0 < T1 < T2 < ..., Tk → ∞
a.s.

The main problem in the Extreme Value Theory is the asymptotic of the

extremal process {∨
k
Xk : Tk ≤ t} =

N(t)∨
k=1

Xk, associated with N , for t → ∞.

Here the maximum operation between rv’s is denoted by ” ∨ ” and N(t) :=
max{k : Tk ≤ t} is the counting process of N . The method usually used
is to choose proper time-space changes ζn = (τn(t), un(x)) of S (i.e. strictly
increasing and continuous in both components) such that for n→ ∞ and t > 0
the weak convergence

Ỹn(t) := {∨
k
u−1

n (Xk) : τ−1
n (Tk) ≤ t} =⇒ Ỹ (t) (1)

to a non-degenerate extremal process holds. (For weak convergence of extremal
processes consult e.g. Balkema and Pancheva 1996.)

In fact, the classical Extreme Value Theory deals with Bpp’s {(tk, Xk) :
k ≥ 1} with deterministic time points tk, 0 < t1 < t2 < ..., tk → ∞. One
investigates the weak convergence to a non-degenerate extremal process

Yn(t) := {∨
k
u−1

n (Xk) : tk ≤ τn(t)} =⇒ Y (t) (2)

under the assumption that the norming sequence {ζn} is regular. The later
means that for all s > 0 and for n→ ∞ there exist point-wise

lim
n→∞ u−1

n ◦ u[ns](x) = Us(x)

lim
n→∞ τ−1

n ◦ τ[ns](t) = σs(t)

and (σs(t), Us(x)) is a time-space change. As usual ”◦” means the composition
and [s] the integer part of s. The family L = {(σs(t), Us(x)) : s > 0} forms a
continuous one-parameter group w.r.t. composition.

Let us denote the (deterministic) counting function k(t) = max{k : tk ≤ t},
and put kn(t) := k(τn(t)), kn := kn(1). The df of the limit extremal process
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in (2) we denote by g(t, x) := P(Y (t) < x), and set G(x) := g(1, x). Then
necessary and sufficient conditions for convergence (2) are the following
1. F kn(un(x)) w−→G(x), n→ ∞
2. kn(t)

kn
−→ λ(t), n→ ∞, t > 0.

The regularity of the norming sequence {ζn} has some important conse-
quences (cf. Pancheva 1998). First of all, the limit extremal process Y (t) is
self-similar w.r.t. L, i.e.

Us ◦ Y (t) d= Y ◦ σs(t), ∀s > 0 .

Furthermore:
0. k[ns]

kn
−→ sa, n→ ∞, for some a > 0 and all s > 0;

1’. the limit df G is max-stable in the sense that

Gs(x) = G(L−1
s (x)) ∀s > 0, Ls := U a

√
s; (3)

2’. the intensity function λ(t) is continuous.
Thus, under conditions 1. and 2. and the regularity of the norming se-

quence, the limit extremal process Y (t) is stochastically continuous with df
g(t, x) = Gλ(t)(x) and the process Y ◦ λ−1(t) is max-stable in the sense of (3).

Let us come back to the point process N with the random time points Tk.
The Functional Transfer Theorem (FTT) in this framework gives conditions on
N for the weak convergence (1) and determines the explicit form of the limit
df f(t, x) := P(Ỹ (t) < x). In other words, the weak convergence (2) in the
framework with non-random time points can be transfer to the framework of
N if some additional condition on the point process N is met. In our case this
is condition d) below.

Denote by M([0,∞)) the space of all strictly increasing, cadlac functions
y : [0,∞) → [0,∞), y(0) = 0, y(t) → ∞ as t → ∞. We assume additionally to
a) - c) the following condition

d) θn(s) := τ−1
n (T[skn]) =⇒ T (s)

where T : [0,∞) → [0,∞) is a random time change, i.e. stochastically con-
tinuous process with sample paths in M([0,∞)). Let us set Nn(t) := N(τn(t)).
In view of condition d) the sequence

Λn(t) :=
Nn(t)
kn

=
1
kn

max{k : Tk ≤ τn(t)}
= sup{s > 0 : τ−1

n (T[skn]) ≤ t}
= sup{s > 0 : θn(s) ≤ t}

is weakly convergent to the inverse process of T (s). Let us denote it by Λ and
let Qt(s) = P (Λ(t) < s).
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Now we are ready to state a general FTT for maxima of iid rv’s on (0,∞).

Theorem (FTT): Let N = {(Tk, Xk) : k ≥ 1} be a Bpp described by
conditions a) - c). Assume further that there is a regular norming sequence
ζn(t, x) = (τn(t), un(x)) of time-space changes of S such that for n → ∞ and
t > 0 conditions 1., 2. and d) hold. Then
i) Nn(t)

kn

d−→Λ(t)

ii) P(
Nn(t)∨
k=1

u−1
n (Xk) < x) w−→E[G(x)]Λ(t)

Indeed, we have to show only ii). Observe that for n→ ∞

Nn(t) = kn.
Nn(t)
kn

∼ kn.Λ(t) ∼ kn(λ−1 ◦ Λ(t))

In the last asymptotic relation we have used condition 2). Then by convergence
(2)

Ỹn(t) =
Nn(t)∨
k=1

u−1
n (Xk) =⇒ Y (λ−1 ◦ Λ(t))

and

P(
Nn(t)∨
k=1

u−1
n (Xk) < x) −→ f(t, x) =

∞∫
0

Gs(x)dQt(s) = E[G(x)]Λ(t)

Let us apply these results to a particular insurance risk model.

2 Application to ruin probability

The insurance model, we are dealing with here, can be described by a particular
Bpp N = {(Tk, Xk) : k ≥ 1} where

a) the claim sizes {Xk} are positive iid random variables which df F has a
regularly varying tail, i.e. 1 − F ∈ RV−α. We consider the ”very heavy tail
case” 0 < α < 1 when EX does not exist, briefly EX = ∞ ;

b) the claims occur at times {Tk} where 0 < T1 < T2 < ... < Tk → ∞
a.s. We denote the inter-arrival times by Jk = Tk − Tk−1, k ≥ 1, T0 = 0 and
assume the random variables {Jk} positive iid with df H . Suppose 1 − H ∈
RV−β , 0 < β < 1 ;

c) both sequences {Xk} and {Tk} are independent and defined on the same
probability space.

The point process N generates the following random processes we are in-
terested in.
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i) The counting process N(t) = max{k : Tk ≤ t}. It is a renewal process
with N(t)

t → 0 as t → 0 for EJ = ∞. By the Stable CLT there exists a
normalizing sequence {b(n)}, b(n) > 0, such that

∑[nt]
k=1

Jk

b(n) converges weakly
to a β- stable Levy process Sβ(t). One can choose b(n) ∼ n1/βLJ(n), where
LJ denotes a slowly varying function. Let us determine b̃(n) by the asymptotic
relation b(b̃(n)) ∼ n as n→ ∞. Now the normalized counting process N(nt)

b̃(n)
is

weakly convergent to the hitting time process E(t) = inf{s : Sβ(s) > t} of Sβ,
see Meerschaert and Scheffler (2002). As inverse of Sβ , E(t) is β-selfsimilar.

ii) The extremal claim process Y (t) = {∨Xk : Tk ≤ t} =
N(t)∨
k=1

Xk. In view

of assumption a) there exist norming constants B(n) ∼ n1/αLX(n) such that
[nt]∨
k=1

Xk

B(n) converges weakly to an extremal process Yα(t) with Frechet marginal

df, i.e. P (Yα(t) < x) = Φt
α(x) = exp−tx−α. Consequently,

Yn(t) :=
N(nt)∨
k=1

Xk

B(b̃(n))
=⇒ Yα(E(t)).

Below we use the β
α - selfsimilarity of the compound extremal process Yα(E(t))

(see e.g. Pancheva et al. 2003).
iii) The accumulated claim process S(t) =

∑N(t)
k=1 Xk. Using the same norm-

ing sequence as above we observe that

Sn(t) :=
N(nt)∑
k=1

Xk

B(b̃(n))
=⇒ Zα(E(t)).

Here Zα is an α-stable Levy process and the composition Zα(E(t)) is β
α -

selfsimilar.
iv) The risk process R(t) = c(t) − S(t). Here u := c(0) is the initial capital

and c(t) denotes the premium income up to time t, hence it is an increasing
curve. We assume c(t) right-continuous.

Note, the extremal claim process Y (t) and the accumulated claim process
S(t) need the same time-space changes ζn(t, x) = (nt, x

B(b̃(n))
) to achieve weak

convergence to a proper limiting process. In fact, {ζn} makes the claim sizes
smaller and compensates this by increasing their number in the interval [0, t].
Both processes Yn(t) and Sn(t) are generated by the point process Nn =
{(Tk

n ,
Xk

B(b̃(n))
) : k ≥ 1}. With the latter we also associate the sequence of

risk processes Rn(t) = c(nt)

B(b̃(n))
− Sn(t). Let us assume additionally to a) - c)

the condition

d) c(nt)

B(b̃(n))

w→ c0(t), c0 increasing curve with c0(0) > 0.
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Under conditions a) - d) the sequence Rn converges weakly to the risk
process (cf Furrer et al. 1997) Rα,β(t) = c0(t) − Zα(E(t)) with initial capital
u0 = c0(0). Using the Rα,β - approximation of the initial risk process R(t),
when time and initial capital increase with n, we next obtain upper (ψ̄) and
lower(ψ) bound for the ruin probability Ψ(c, t) := P (inf0≤s≤t R(s) < 0). Let
Zα(1) and E(1) have df’s Gα and Q, resp. Then we have :

ψ(c0, t) := P ( inf
0≤s≤t

Rα,β(s) < 0)

≤ P ( sup
0≤s≤t

Zα(E(s)) > u0)

≤ P (Zα(E(t)) > u0)

=
∫ ∞

0

Q̄(
(
u0

xt
β
α

)α

)dGα(x) =: ψ̄(c0, t)

Here Q̄ = 1 −Q. On the other hand

ψ(c0, t) ≥ P (Yα(E(t)) > c0(t))

=
∫ ∞

0

Q̄(
(
c0(t)

xt
β
α

)α

)dΦα(x) =: ψ(c0, t)

Here we have used the self-similarity of the processes Zα, Yα and E. Thus,
finally we get

ψ(c0, t) ≤ ψ(c0, t) ≤ ψ̄(c0, t)

Remember, our initial insurance model was described by the point process N
with the associated risk process R(t). We have denoted the corresponding ruin
probability by Ψ(c, t) with u = c(0). Then

Ψ(c, t) = P ( inf
0≤s≤t

{c(s) −
N(s)∑
k=1

Xk} < 0)

= P ( inf
0≤s≤ t

n

{ c(ns)
B(b̃(n))

−
N(ns)∑
k=1

Xk

B(b̃(n))
} < 0)

Now let initial capital u and time t increase with n → ∞ in such a way that
u

B(b̃(n))
= u0,

t
n = t0. We observe that under conditions a) - d) we may

approximate
Ψ(c, t) ≈ ψ(c0, t0)

and consequently for u and t ”large enough”

ψ(c0, t0) ≤ Ψ(c, t) ≤ ψ̄(c0, t0) (4)

6



3 Examples

Assume that our model is characterized by α = 0.5, i.e. the df of Zα(1)

is the Levy df Gα(x) = 2(1 − Φ(
√

1
x )). Here Φ is the standard normal df.

We suppose also that the random variable E(1) is Exp(1)-distributed, namely
Q(s) = 1 − e−s, s ≥ 0. Further, let us take the income curve c0 to be of the
special form c0(t) = u0 + t

β
α c, c positive constant, that agrees with the self-

similarity of the process Zα(E(t)). Now the upper bound depends on (u0, t0, β)
and the lower bound depends on (u0, t0, β, c). We calculate the bounds ψ and
ψ̄ in two cases α > β = 0.25 and α < β = 0.75 by using MATLAB7. The
results of the calculations show clearly that in case β > α, when ”large” claims
arrive ”often”, the bounds of the ruin probability are larger than in the case
β < α, even in small time interval.

Note, if we choose the income curve in the above special form, we may
calculate the ruin probability ψ(c0, t0) in the approximating model exactly,
namely

ψ(c0, t0) = P ( inf
0≤s≤t0

{u0 + s
β
α c− Zα(E(s))} < 0)

= P ( inf
0≤s≤t0

{s β
α (c− Zα(E(1)))} < −u0)

= P ( inf
0≤s≤t0

{s β
α (c− Zα(E(1)))} < −u0, c− Zα(E(1)) < 0)

= P (t
β
α
0 (c− Zα(E(1))) < −u0, c− Zα(E(1)) < 0)

= P (Zα(E(1)) > c+
u0

t
β
α
0

)

=
∫ ∞

0

Q̄(

(
c0(t0)

xt
β
α
0

)α

)dGα(x)

Below we give graphical results related to the computation of ψ(c0, t0) ,
ψ(c0, t0) and ψ̄(c0, t0) in the 6 cases: c=0.1, c=1, c=10 when α = 0.5 and
β = 0.25 β = 0.75.
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4 Graphics of ψ(c0, t0), ψ(c0, t0) and ψ̄(c0, t0)

0.5
1

1.5
2

2
4

6
8

10
0.1

0.2

0.3

0.4

0.5

0.6

time rangemoney in begin

Figure 1: α = 0.5, β = 0.25, c = 0.1
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Figure 2: α = 0.5, β = 0.25, c = 0.5
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Figure 3: α = 0.5, β = 0.25, c = 1.0
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Figure 4: α = 0.5, β = 0.75, c = 0.1
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Figure 5: α = 0.5, β = 0.75, c = 0.5
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Figure 6: α = 0.5, β = 0.75, c = 1.0
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