
Category Theory Framework for
Variability Models with Non-functional

Requirements

Daniel-Jesus Munoz1,2(B), Dilian Gurov3, Monica Pinto1,2,
and Lidia Fuentes1,2

1 ITIS Software, Universidad de Málaga, Málaga, Spain
2 CAOSD, Departamento LCC, Universidad de Málaga,

Andalućıa Tech, Málaga, Spain
{danimg,pinto,lff}@lcc.uma.es

3 KTH Royal Institute of Technology, Stockholm, Sweden
dilian@kth.se

Abstract. In Software Product Line (SPL) engineering one uses Vari-
ability Models (VMs) as input to automated reasoners to generate opti-
mal products according to certain Quality Attributes (QAs). Variability
models, however, and more specifically those including numerical features
(i.e., NVMs), do not natively support QAs, and consequently, neither do
automated reasoners commonly used for variability resolution. However,
those satisfiability and optimisation problems have been covered and
refined in other relational models such as databases.

Category Theory (CT) is an abstract mathematical theory typically
used to capture the common aspects of seemingly dissimilar algebraic
structures. We propose a unified relational modelling framework sub-
suming the structured objects of VMs and QAs and their relationships
into algebraic categories. This abstraction allows a combination of auto-
mated reasoners over different domains to analyse SPLs. The solutions’
optimisation can now be natively performed by a combination of auto-
mated theorem proving, hashing, balanced-trees and chasing algorithms.
We validate this approach by means of the edge computing SPL tool
HADAS.

Keywords: Numerical variability model · Feature · Non-functional
requirement · Quality attribute · Category theory

1 Introduction

Variability Models [24] (VMs) are used for the design of highly configurable
systems to represent their common and variable features, typically by means of
a rooted tree graph with a set of constraints. These models employ two types of
constraints: hierarchical (or tree) constraints, and cross-tree constraints, where
the absence or value of some features instantiates or precludes other features
c© Springer Nature Switzerland AG 2021
M. La Rosa et al. (Eds.): CAiSE 2021, LNCS 12751, pp. 397–413, 2021.
https://doi.org/10.1007/978-3-030-79382-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79382-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-79382-1_24

398 D.-J. Munoz et al.

(e.g., featureA implies/excludes featureB). Variability models are the key asset
in Software Product Lines (SPLs) [33], where valid configurations (i.e., solutions)
are generated by reasoners called solvers, such as Choco [23] and Z3 [12], that
take into account some external requirements. The most popular VMs are the
Feature Models (FMs), but our problem formulation is agnostic of the VM type,
so we will just refer generically to VMs throughout the rest of the paper.

One of the most valuable uses of VMs is the generation of optimal solu-
tions [9] based on Quality Attributes (QAs) or Non-Functional Requirements
(NFRs), e.g., to maximise performance or minimise energy consumption [29].
This becomes a difficult issue when tackling some emergent domains charac-
terised by intensive variability such as Internet of Things (IoT) or Edge Com-
puting (EC) systems [34], with variations at the hardware (e.g. sensors and
edge devices), communication network (e.g. WiFi, BLE), application (e.g. filter-
ing, mixing, collecting tasks) and infrastructure (e.g. virtualization) dimensions.
Regarding these application domains, one possible approach is to use VMs to
specify the variability dimensions and use a solver to generate optimal appli-
cation deployments in certain IoT/EC environments considering certain NFRs,
such as latency or energy consumption. However, the standard VMs do not
natively support non-functional properties, especially needed when one wants to
express a relationship between one product and a NFR measured with a qual-
ity metric represented as a measurement function [18]. For example, the feature
‘WiFi’ of an IoT device consumes more or less energy, depending on the fea-
ture ‘distance’ to the Edge or Cloud device. The same concerns the automated
reasoners for VMs that neither consider NFRs nor quality metrics as a built-in
characteristic.

This problem has been tackled in different ways in recent years. For instance,
Extended VMs [5] proposed to extend features with attached attributes, and
they are used to indicate a QA value (e.g. energy consumption, latency) of
that specific feature. For example, one can express that the ‘WiFi’ feature con-
sumes ‘x’ Joules or has a latency of ‘y’ Seconds, where Joules and Seconds
are attributes. Extended VMs cannot represent that a certain QA is measured
as a function of several features. But, QAs usually depend on several features
representing a complete running product [32]. Another approach is to have inde-
pendent VMs extended with a set of variables representing QA measurements
and cross-model constraints as part of a constraint satisfaction problem [22], but
not as part of the VM itself. This results in improper semantics, and variables
and constraints overloading. A hybrid model that rudimentary links a VM with
a QAs database is our previous work HADAS [31]. But again, the management
of two different and interconnected models as well as two independent reasoners
(i.e., Choco/database) is complex and computationally overloading.

Our goal is to extend the core definition of VMs with NFRs associated with
product solutions, so that we can reason and generate optimal solutions that fit
certain QAs. We propose Category Theory (CT) as a means to abstract and unify
dissimilar relational models. We present a CT framework aiming to represent
that: “each SPL product, defined as a set of ‘n’ features, is related to a set

Category Theory Framework for Variability Models 399

of QAs with concrete values that fulfil certain NFRs”. In our CT framework,
relational models are specified as objects and their relationships. As a result, we
unify as a category: VMs, NFRs and QA metrics as measurement functions.

In the IoT/EC, it is common that some features (e.g. different message sizes)
are numerical features; different numerical values can influence the energy con-
sumption or the computation time NFRs. Therefore, our CT proposal consid-
ers to effortlessly represent and reason about Numerical VMs (NVMs), which
is not straightforward with traditional VMs [30]. This can be achieved only if
they are part of the variability tree hierarchy when generating valid products.
Contrarily to many of the existing Boolean VMs (e.g., FeatureIDE, Glencoe,
and UVL), NVMs (e.g., Clafer [2] and Z3 [12]) additionally support numerical
features and the relationships between them (i.e., variables and equations). How-
ever, the limitations of NVM solvers have prevented software developers from
actively considering modelling numerical features [30]. Our contributions are:

1. A unified CT framework to model NVMs and QAs with NFRs and their
relationships, and generate products as solutions with a sufficient quality.

2. As a proof of concept, we transform HADAS [31], a SPL to reason about
energy consumption of IoT/Edge applications, into a category. We perform
optimisation analyses with a combination of different reasoners, including
a theorem prover and relational search algorithms, each one being able to
reason at the same time about both VMs and quality metrics.

The paper is organised as follows. Section 2 describes VMs and QAs, while
Sect. 3 defines CT and presents the framework to subsume VMs and QAs into
categories. In Sect. 4 we test our approach by transforming an SPL tool into
a category, and by reasoning about an EC case study. Section 5 reviews and
discusses the pertinent related work, while Sect. 6 concludes with a summary
highlighting the contributions and next steps of this research.

2 Motivation

Our goal is to use CT to define a joint model encompassing variability and NFRs
modelling to reason about solutions that satisfy certain quality attributes. In this
section, we discuss some background on both variability and NFR modelling. The
third part of our proposal, the CT, is explained in detail in Sect. 3.

2.1 Variability Modelling

Feature-oriented Domain Analysis (FODA) was the first formalisation of vari-
ability modelling and reasoning [24] as FMs. FMs are used to model the com-
monality and variability, and external solvers are used mainly to automatically
generate the product variants. FMs are represented as a rooted tree graph – one
parent, many children, composed of features as Boolean variables, and relation-
ships (see Fig. 1). Relationships among features are specified as propositional

400 D.-J. Munoz et al.

logic, including tree (e.g., And, Or) and cross-tree constraints. Consequently, it
is possible to reason about FMs as a Boolean satisfiability (SAT) problem [7].

Several application domains, such as our IoT/EC illustrative example, require
additional constructs that traditional feature models do not include. More than
45 extensions have been proposed for different needs [8], being the NVM [30] one
of the most relevant for intensive variability domains. NVMs represent systems
that also contain numerical features along with arithmetic cross-tree relation-
ships (e.g., automated reasoner GreenScaler [10]).

Label Schema

2..*2..*

0..10..1

FeatureY1:

[FeatureY1 · 3 ≥ 9]

FeatureX: . FeatureX: .

FeatureC: . FeatureC: . FeatureA: . FeatureA: .

FeatureY2:

Legend
Name:

Domain
Feature of

Domain

Name:
Domain
QA of a
Metric

x..yx..y
[x,..,y]

Cardinality
Mandatory

Relationship
Cross-Tree
Constraint

Metrics
Mapping

Performance: Seconds
Energy Consumption: Joules
...

Solution 1
Solution N

[Performance < 10]
[…]

Optional
Relationship

Labelled Numerical
Variability Model

Quality Attributes
Model

FeatureB: . FeatureB: .

T1

Label
T2

T3*
LabelT3 Label

Sub-Tree
Labels

Fig. 1. Example: relationship of NVM solutions with QAs

NVMs consider both Boolean (B) and discrete numerical domains such as
Integers (Z)1. As depicts in the rooted tree graph of top-Figure 1, an NVM sup-
ports the variables and operations of those domains together, allowing mixing
B conditions and arithmetic (e.g., FeatureZY1 ∗ 3 ≥ 9 → FeatureAB). Another
extension to FODA that we also consider in this work (see Fig. 1) is the specifi-
cation of the exact number of children features (i.e. feature cardinality [11]). One
more extension required by variability intensive systems is the sub-tree labelling
presented in top-Figure 1, which allows: (1) variability tree composition of lay-
ered NVMs [31], (2) partial instances [2], (3) cloneables like T3 [16], and (4)
the intrinsic hierarchy between trees [19]. In summary, VMs cover the functional
requirements – the actions that a system must be capable of doing. However,
optimisation analyses of SPLs require NFRs - the non-behavioural aspects under

1 Real (R), and other continuous domains, are not completely supported by SPL
automated reasoners because they generate unlimited solutions.

Category Theory Framework for Variability Models 401

which the system must operate [17] and, as previously stated in the introduction,
this is not natively included as part of VMs.

2.2 Non-functional Requirements Modelling

For this work, we define a QA model (QAM) as any model that specifies and hosts
QAs being name-domain-metric with NFRs. Quality models [1] are a broader
type of models not used in this work. QAs whose values can be quantified, such as
Performance and EnergyConsumption of bottom-Figure 1, can be modelled as a
set of measurements. To reason about the quality of a certain VM solution, these
measurements need to be somehow linked to the variability model. In bottom-
Figure 1 there is an example of a user NFR “Performance < 10 s” for the defined
QA (e.g., performance measured as execution time). To clarify, the QAM in the
example potentially encodes the total performance and energy consumption of
each possible valid solution (i.e., product).

There is no consensus on how QAs measurements should be linked to features
in a VM, existing two main approaches. One in which measurements are linked
to individual features (i.e., each feature contributes individually to the system
QA). Another, which is in line with our approach, considers that the set of
measurements of a QAM should be univocally linked to a VM valid solution.

The first specific SPL solution for QAs is Extended Variability Model [5]
already cited in Sect. 1, where the concept of feature in FODA is extended with
attributes. Attributes have a name and a domain, and they are linked to indi-
vidual features. This is useful if we consider that a feature can be assessed by a
single quality measurement (e.g., an encryption code consumes 1.3 J). But, the
quality of certain features usually cannot be assessed using a single feature. For
example, to adequately assess the energy consumption of an encryption code,
we need to specify several features, modelling the different key sizes, modes
and paddings [27]. Therefore, we cannot model the energy consumption of an
encryption code with an attribute, we need a way to link a complete solution,
for example, composed by the features: AES algorithm, Mode CBC, NoPadding,
key size = 256, to an energy measurement. Another argument is that with this
approach, we can only assess the overall quality of the system as a simple direct
addition of individual QAs; first, not even linear equations adjust real-world QA
metrics, and second, the process of adjusting a function to a set of measurements
is computationally costly, mutable, and inaccurate in average [35].

Another common approach to model QAs in SPLs is a balanced tree graph
alike hierarchical activity/data models describing metrics in a top-down app-
roach [17]. However, hierarchical trees cause extreme repetition, as each solution
must be intrinsically modelled in order to connect them to their NFRs [19].
To overcome this limitation, multi-NVMs interconnected with a bunch of cross-
model constraints have been proposed [22]. However: (1) hierarchical trees are
useless to optimisation-type metrics (e.g., energy consumption constraining run-
time metrics), and (2) so many cross-model constraints complicate the model
while decreasing reasoning performance. Nonetheless, most of these solutions
are not directly compatible with automated reasoners.

402 D.-J. Munoz et al.

We use the HADAS tool [31] as a running example, where an NVM defines
systems components, and an entity-relationship schema defines the QAM.
Clafer [2] and the database reasoners are embedded as Solution-to-QAs map-
ping procedures, allowing hybrid automatic reasoning. Databases functionality,
as querying in batches or random sampling, offers potential advantages for SPL
analyses. However, the drawback of maintaining two individual but different
models, the computational overhead of two co-existing reasoners, and their in-
between resulting models transformations, diminish the scabalibity for very large
NVMs [29]. Hence, SPL reasoning lack of a unified model that appropriately sup-
ports Boolean and numerical variability with non-functional metrics.

Every alternative contains a high degree of interlocking relationships – we are
dealing with relational models. While originally, they dealt with different prob-
lems developing different methods, there are overlaps – different methods to solve
the same problem. But yet, there are specific limitations of each alternative [21].
Contrarily to these approaches, we propose to abstract SPLs systems into a sin-
gle relational modelling framework, where a unified semantics can jointly define
seemingly dissimilar structures and the connections between them.

3 Category Theory for Software Product Lines

In this section, we give a light-weight description of Category Theory (CT) and
the way we use it as a unifying modelling and reasoning framework. For a deeper
introduction to CT, we refer the interested reader to, e.g., [3].

Category Theory is a general mathematical theory of algebraic structures
that allows the common aspects of different structures to be captured and
related, while abstracting from their individual specifics. Informally speaking,
a category C is any collection of objects representing spaces that can be related
to each other via arrows (i.e., morphisms). Two standard examples are the cat-
egories Vec where the objects are vector spaces and the arrows are linear maps,
and Set where objects are sets and arrows are functions from one set to another.

Category Theory is built from the following main concepts:

– Object: a structured class X ∈ Ob(C), graphically depicted as a node •X .
– Arrow: a structure-preserving function a ∈ Arr(C) with source and target

objects X = src(a) and Y = tgt(a), respectively, depicted
X• a−→ Y•.

• Identity: for all X ∈ Ob(C), we have
X• identity−−−−−→ X• .

• Composition: if
X• a1−→ Y• and

Y• a2−→ Z•, then
X• a1 ◦ a2−−−−−→ Z•.

It is associative, i.e., a1 ◦ (a2 ◦ a3) = (a1 ◦ a2) ◦ a3.
– Category: consists of Ob(C) and Arr(C). It is depicted as a directed graph.
– Functor: a mapping F between categories C = src(F) and D = tgt(F),

depicted
C• F−→ D• , which preserves identity and function composition.

In addition, we shall need the following concepts and terminology, borrowed
from a CT framework for algebraic data integration [6]:

Category Theory Framework for Variability Models 403

– Path: a concrete sequence of composed arrows:
X0• a1−→ X1• · · ·

Xn−1• an−−→ Xn• .
– Generalised Element: for X ∈ Ob(C), a generalised element of X is a

morphism
U• element−−−−−→ X• , where U is a select “unit” object.

– Instance: a set-valued functor that assigns values to elements.

In the following subsections, we illustrate intuitive examples of how to rep-
resent NVMs and QAMs as related categories. In summary, each model will be
represented as a category with objects variability trees (for NVMs) and metrics
sets (for QAMs), and relationships will be represented as arrows. This will allow
us to generate joint solution spaces (i.e., SPL products with their QAs) with any
automated reasoner for any type of model.

3.1 Category of Numerical Variability Models (NVM)

DataType
Object

Structured
Object

DataType
Arrow

Object
Arrow

(RelaƟonship)

NVM Objects:

Tree1: T1

Tree2: T2

Tree3: T3

Tree3 Clone: T3*
Integer Set:

Character Set: String
Boolean Set:

NVM Category Example

T3T3

T1
Child

Parent T2T2

Child

Parent T3*T3*
Child Parent

T1
Child

Parent T2

Child

Parent T3*
Child Parent

String x

String xString x

Boolean
Features

Numerical
Features

Numerical
Features

Cross-Object
Constraints

Legend:

Cross
Product X

Fig. 2. NVM category: 4 composing variability trees (T3 cloned), and 2 domains

The NVM from Fig. 1 is transformed into the category NVM, depicted in Fig. 2.
Since the NVM is a composition of trees, Ob(NVM) is a set of four variabil-
ity trees: T1 and T2 having numerical features, and T3 and its clone T3∗ having
Boolean features. Arr(NVM) is the set of relationships in NVMs: hierarchy (i.e.,
Parent/Child), cardinality, and Boolean and arithmetic cross-tree constraints. A
tree trace is an NVM path, and an instance is populating NVM-features with
values. The basic datatype objects are programming languages library types.
Here, arrow composition allows, for example, to access the Boolean value of
an element (i.e., arrow) in T1, which was required by a parent relationship

404 D.-J. Munoz et al.

(i.e., arrow) in T3. These two arrows are of a different nature in NVMs, but
not in NVM. In summary, the NVM category is Ob(NVM) ∪ Arr(NVM).
While the example objects are mono-type, multi-type is also supported.

3.2 Category of Quality Attributes Model (QAM)

The QAM from Fig. 1 is transformed into the category QAM depicted in Fig. 3.
As QAM is a set of valued-QAs and NFRs, Ob(QAM) consists of the Measured
QAs (MS) and datatype objects. Consequently, Arr(QAM) consists of NFRs
and datatype arrows. Elements as measurement ∈ MS are of name-domain-
metric, where the arrow is measurement metric−−−−→ String × Z × String.

DataType
Object

Structured
Object

DataType or
NFR Arrow

QAM Objects:

Metric Set: MS

Integer Set:

Character Set: String

QAM Category Example

MS
Non Functional

Requirement (NFR)
[Performance < 10 seconds]

Legend:

String x x StringString x x String Cross
Product X

Fig. 3. QAM category: a metrics set object (MS) with a structured domain element

Abstract Components:

Numerical Variability Model Category: NVM
Measured NVM Sub-Category: MNVM

Quality Attributes Model Category: QAM
Complete Solution Object: CS
Measurements Set Object: MS

NVM
QAM

MNVM

CS1CS1

CS2CS2 CS4CS4

CS3CS3

CS6CS6

MS1MS1

MS2MS2

MS3MS3

MS4MS4

cs/ms

CS5CS5

cs/ms

cs/ms

cs/ms

Legend

Schema
Solution Space Instances Object Arrow

(Relationship)

Isomorphic Functor ‘F’
Between Solution Spaces

MNVM< > QAMF

Fig. 4. Measured NVM and QAM solution space isomorphism

Category Theory Framework for Variability Models 405

3.3 Solution Space Categories Isomorphism

Now that we have unified the models, we shall describe how to connect a spe-
cific set of features with its specific set of QAs and values. NVM and QAM
are solution-space related categories as illustrated in Fig. 4. Each solution space
structure is defined as a results object, similarly to the resulting table of a
database query. In the case of NVM, the Complete Solution object CS com-
prises Sets of elements (CSx) forming a unique solution according to Arr(NVM)
– i.e., the satisfiable products of the SPL. Similarly, in QAM the object MS
comprises the QA Measurements Sets MSx according to Arr(QAM). The basic
automated reasoners for categories are mathematical theorem provers; however,
they are typically supported by other optimisation engines for specific tasks (e.g.,
Knuth-Bendix completion prover with a Chase searching algorithm [6]).

Some CSx solutions do not correspond to MSx measurements (Fig. 4). The
reason is that we need to consider that not every system has been measured.
Hence, MNVM is the sub-category of measured NVM, where the CS object
has a bijective (i.e., one-to-one) arrow cs/ml to the ML object of QAM. Con-
sequently, there is an isomorphic functor2 [20] between MNVM and QAM.

4 Validation and Discussion

To validate our framework, we deploy a CT prototype of a running SPL tool3

– the NVM and QAM optimisation assistant for Edge Computing HADAS [31].
Edge devices were defined in a composed Clafer NVM (left-side Fig. 5), with
two main trees: Hardware and Software. The last is composed of four trees:
Operating System (OS), Programming Language (PL), Operation and Context.
Again, the latter is composed of Libraries and Numerical Parameters trees.
All the trees have Boolean features, besides Numerical Parameters, which only
contains Integer features (e.g., Encryption Key: 64 bytes [29]). HADAS QAM is
a relational database that links NVM solution-tree leaves with QAM dynamic
identifiers.

2 A categories isomorphism is a one-to-one mapping between their sets of objects.
3 HADAS web-services: https://hadas.caosd.lcc.uma.es/.

https://hadas.caosd.lcc.uma.es/

406 D.-J. Munoz et al.

4.1 HADAS Category

Fig. 5. Transformation of HADAS NVM and QAM in a single NVM category

In Fig. 5 we can see on the left the HADAS base NVM and QAM structures,
and on the right its unified category HADAS by means of the framework pre-
sented in Sect. 3. Our framework is as flexible as CT; existing models can be
transformed into categories differently and yet perform equally. For example,
an object could be modelled as a category with a single object and vice-versa.
Our philosophy in this proof-of-concept is to keep the category simple; hence,
we applied this example combining NVM and the single object category QAM
into HADAS, where the technical implication is switching the categories func-
tor by an objects arrow. In summary, data-types, NVM trees and QAM are 12
HADAS objects, and variability trees relationships, cross-tree constraints and
NFRs are a minimum of 6 arrows. HADAS consists of the following components:

– Ob(HADAS) � String, String × B, String × Z × String, Hardware,
Software, PL, OS, Operation, Context, Libraries, Parameters, Solutions.

– Arr(HADAS) � feature, metric, parent, cardinality (e.g., [0..2]), metadata,
crosstree NFR, solution, leaves. In occasions parent is the identity (Fig. 5).

– Elements: based on Arr(HADAS), there are Boolean and integer features,
QA metrics with format name-domain-metric, QA metadata, and solution
the set of object features leaves to QAs (i.e., HADAS solution space).

4.2 Optimal Deployment

The next step in this proof-of-concept is to instantiate (i.e., populate) HADAS,
to later generate the solution space (e.g. IoT/EC deployments), and optimise its
QAs. EC and IoT systems require fast real-time processing of random amounts

Category Theory Framework for Variability Models 407

of data and have relatively strict NFRs on the performance and energy consump-
tion [34]. Hence, we propose to turn into a category the model shown in Fig. 6 on
the left, aiming to gain insights into which features and solutions are affecting
those QAs in transmitting and/or compressing operations. The NVM contains
28 Boolean features and two numerical features, while the QAM contains two
QAs – performance in Seconds and energy rate in milliWatts. Operations are
partial configurable benchmarks of the Phoronix Test Suite4.

Having a clear picture of the category base model in Fig. 5, we need to pro-
gram and deploy it. While there are libraries aiming to add CT support to SPL
reasoners (e.g., Conal Elliot libraries for Z3 [14]), the only production-ready
Integrated Development Environment (IDE) is the Categorical Query Language
(CQL) IDE: an open-source software, commercialised by Conexus AI5. It is a
canonical functional IDE that generates CT graphs as the presented figures.

On the right of Fig. 6, there is a partial code-snapshot; the CQL model can be
downloaded from the HADAS server6. There one can find the 30 NVM features
and the 2 QAs distributed in the HADAS objects shown on the right side of
Fig. 6. We did not include cross-tree constraints in the graph due to extension
limitations; however, they are arrows in HADAS.

4.3 Results and Discussion

CQL IDE reasoning is automatically performed with a combination of different
algorithms – the key of our performance. We used them as such: automated
theorem prover with Knuth-Bendix completion [28] for logic and equations, and
hashing, balanced trees and chasing for data-type and cross-object arrows.

We have obtained 162 valid solutions with their respective 324 measure-
ments in 0.1 s. If we reduce the category, the runtime is still 0.1 s. Extending
the category as a supra-category formed by a self-cross-product 3 times results
in 0.2 s. Running CQL IDE on another computer did not change the runtimes.
This suggests that CQL IDE scales linearly, and that the minimum runtime is
0.1 s independently of the computer, probably due to being a Java application
running on a Java virtual machine.

Optimisation arrows are a step further from the solution space. Maximising
performance or minimising energy rate increases the reasoning runtime by 0.1 s,
independently of the solution space size. However, we expect linear increments
for larger models (i.e., linear scalability). Regarding the interaction of features
with regards to the QAs in our EC case study, the main insights are:

4 Phoronix Test Suite details: https://openbenchmarking.org/tests/pts.
5 CQL IDE main website: https://www.categoricaldata.net/.
6 HADAS CQL CT model: https://hadas.caosd.lcc.uma.es/ctprototype.cql.

https://openbenchmarking.org/tests/pts
https://www.categoricaldata.net/
https://hadas.caosd.lcc.uma.es/ctprototype.cql

408 D.-J. Munoz et al.

Fig. 6. Transformation of HADAS for Edge Computing in CQL IDE HADAS category

– Compressing/uncompressing while sending/receiving data improves the run-
times for large batches of data, but for small ones, it is the opposite indepen-
dently of the original data size. In any case, compressing increased the energy
rate – more Joules per Second.

– The more powerful the CPU is, the lesser is the compressing time, and the
higher the energy rate; the maximum energy rate of Snapdragon 855 was
3.4 W, of A53 was 3.7 W, and of M5Y71 was 11.8 W. In the case of commu-
nication without compression, CPUs barely affected QAs.

– Communication peripherals affected equally the QAs. WiFi and Bluetooth
channels performed equally for small batches of data. WiFi has tends to be
faster above 300 MB, while the Bluetooth energy-rate is substantially lower
(with an average of 0.5 W) than these 300 MB.

As internal validity, we tested our proposal by first transforming an SPL
tool into a category, and second, by modelling an EC case study in a category.
Additionally, we implemented that category in CQL IDE, performing reasoning
to generate the solution space, and also performing an optimal search to obtain
quality insights from the EC category. To mitigate scalability assumptions, we
ran CQL IDE with different solution spaces in different computers.

As external validity, we identified two threats. First, we have not tested
our approach on large models with other IDEs, since our aim was a proof-of-
concept. Second, as it is the first CT NVM/QAM framework to the best of our
knowledge, we cannot compare it with other CT alternatives.

Category Theory Framework for Variability Models 409

5 Related Work

Table 1. Characteristics of abstraction alternatives for a unified NVM/QAM

→Model

↓Entity
NVM

Category

Theory

Set

Theory
FODA

Codd

Algebra
HOL

Arith-

metic

Structured

Model

Labelled

NVM
Category

Finite

Set

Labelled

FM

Data

Schema

Logic

Formula
Plane

Entities

Sub-

tree,

Feature,

Solution

Sub-

Category

, Object,

Instance

Sub-Set,

Element

Sub-tree,

Feature,

Configu

-ration

Table

,Cell

Partial

Formula,

Variable

Sub-

System,

Equation

,Variable

Boolean

Type

B

Feature
B B Feature B B

Pseudo-

B: [0,1]

Numerical

Type

N, Z, R

Feature
N, Z, R

N, Z

Finite

Sets

Un-

supported
N, Z, R

Un-

supported
N, Z, R

Requi-

rements

Cross-

tree

Equation

Categories

Functor
Predicate

Cross-tree

Constraint

σ

Constraint
Formula Equation

Selection Assert Δ ∈ Require π[Column] True =

Exclusion Not −Δ � Exclude −π[Column] False �=

Con-

nectives

&&, ‖‖,
[x..y],

⇒, ≡

∑
[Functor]

∏
[Functor]

, X

∧, ∨, ⊕,

If, ⇒, ≡

And, Or,

xOR, ⇒
, ≡

Foreign

Key,
⋂

,
⋃
,

⊎
,

Joins[X]

∧, ∨, ⊕,

If, ⇒, ≡
∀, ∃, !

Equation

Systems

Equalities
=, �=, >,

≥, <, ≤
=, �=, >,

≥, <, ≤ =, �= =, �= =, �=, >,

≥, <, ≤ =, �= =, �=, >,

≥, <, ≤
Mathe-

matics

+, -, *,

÷, %. . .

+, -, *,

÷, %. . .

Pre/Suc

-cessor

Un-

supported

Un-

supported

Un-

supported

+, -, *,

÷, %. . .

Having already presented the relevant publications for the foundations of this
paper, we now discuss further related work. Firstly, while we have discussed
the advantages of CT, one could argue that more simple structures could be
used instead to unify NVMs with QAMs. In Table 1 there is a summary of the
alternatives, where we highlight first the needs of NVMs, and second what CT
provided as a reference. Whether we are talking about NVMs with or without
QAMs, we need a complete Boolean and numerical domain. FODA, the first VM
formalisation [24], has already been discussed and discarded due to its lack of
support for numerical features and constraints necessary in EC analyses. In fact,
as identified in Table 1, most of the alternatives lack numerical support. One of
them is Set Theory (ST), which, similarly to CT, is a branch of mathematical
logic that studies sets, which informally are collections of objects [15]. ST lacks
support for numerical equations, inequalities, and infinite data-types. Similarly,
Higher-Order Logic(HOL) deals just with declarative propositions, predicates

410 D.-J. Munoz et al.

and quantification (e.g., ∀x) [26]. Codd Theory is the first and only formalisation
of relational algebra, which uses algebraic structures with well-founded semantics
for modelling data and defining queries on it. While databases support a wide
range of numerical components as datatypes, counting, grouping, arithmetic,
etc., they are programming workarounds outside of Codd Theory. In other words,
it is not yet clear that Codd relational algebra should be extended above a
pure Boolean domain [25]. Pseudo-Boolean (i.e. [0,1]) reasoners are based on
Arithmetic [25] – the study of numbers and their operations. While they are
promising, if not considering the complexity and overload of model-transforming
HOL, their performance in current SAT competitions is often quite poor [13]. It
should be pointed out that all of the above-mentioned theories (ST, HOL, Codd
Algebra) are well-formalised categories in CT.

A computational design framework based solely on objects and arrows is
proposed in [4], where Model Driven Engineering meets (Boolean) SPLs. This
approach was extended with explicit use of CT in [36], where VMs and Domain
Models are unified. In Clafer SPL suite, VMs are modelled as abstract classes,
literally an idea borrowed from CT [2]. A generic CT approach for different data
domains integration is formalised in [6], where as a case study entity-relational
models (i.e., database models) are transformed into a category in which tables
are objects, columns are elements, and foreign keys are arrows.

6 Conclusions and Future Work

In this paper, we identify the lack of automated tools to model and optimise
SPLs defined as an NVM related to sets of QAs with values. To address this,
we define a unified model supporting: (1) Boolean and numerical domains in
the form of features and their relationships, and (2) a map between the solution
spaces of NVMs and QAMs. For that, we propose a CT framework with two
categories. The first one is NVM where variability trees and data-types are
objects, and hierarchical and cross-tree constraints are arrows. The second one
is QAM where the sets of QAs and their data-types are objects, and NFRs are
arrows. Finally, we establish a functorial relationship between measured products
of NVM with QAs sets of QAM. As a proof-of-concept, we transformed the SPL
HADAS into the category HADAS. Then, we have implemented and deployed
it in the CQL IDE and performed a brief EC case study using a combination
of theorem provers and database algorithms as automated reasoners. As future
work, we plan to improve the framework to support other proposed extended
functionalities of NVMs, as well as integrate quality models. Currently, we are
in the process of evaluating this approach with large SPLs.

Acknowledgements. Munoz, Pinto and Fuentes work is supported by the European
Union’s H2020 research and innovation programme under grant agreement DAEMON
101017109, by the projects co-financed by FEDER funds LEIA UMA18-FEDERJA-
15, MEDEA RTI2018-099213-B-I00 and Rhea P18-FR-1081 and the PRE2019-087496
grant from the Ministerio de Ciencia e Innovación.

Category Theory Framework for Variability Models 411

References

1. Al-Qutaish, R.E.: Quality models in software engineering literature: an analytical
and comparative study. J. Am. Sci. 6(3), 166–175 (2010)

2. B ↪ak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., W ↪asowski, A.: Clafer: unifying
class and feature modeling. Softw. Syst. Model. 15(3), 811–845 (2014). https://
doi.org/10.1007/s10270-014-0441-1

3. Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall, New
York (1990)

4. Batory, D., Azanza, M., Saraiva, J.: The objects and arrows of computational
design. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MOD-
ELS 2008. LNCS, vol. 5301, pp. 1–20. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87875-9 1

5. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature mod-
els. In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp.
491–503. Springer, Heidelberg (2005). https://doi.org/10.1007/11431855 34

6. Brown, K.S., Spivak, D.I., Wisnesky, R.: Categorical data integration for compu-
tational science. Comput. Mater. Sci. 164, 127–132 (2019)

7. Budiardjo, E.K., Zamzami, E.M., et al.: Feature modeling and variability modeling
syntactic notation comparison and mapping. Comput. Commun. 2, 101–108 (2014)

8. Chen, L., Ali Babar, M., Ali, N.: Variability management in software product lines:
a systematic review. In: Proceedings of the 13th International Software Product
Line Conference, SPLC 2009, pp. 81–90. Carnegie Mellon University, USA (2009)

9. Chohan, A.Z., Bibi, A., Motla, Y.H.: Optimized software product line architecture
and feature modeling in improvement of SPL. In: 2017 International Conference
on Frontiers of Information Technology (FIT), pp. 167–172. IEEE (2017)

10. Chowdhury, S., Borle, S., Romansky, S., Hindle, A.: Greenscaler: training software
energy models with automatic test generation. Empir. Softw. Eng. 24(4), 1649–
1692 (2019). https://doi.org/10.1007/s10664-018-9640-7

11. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. Softw. Process 10(1), 7–29 (2005)

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

13. Elffers, J., Giráldez-Cru, J., Nordström, J., Vinyals, M.: Using combinatorial
benchmarks to probe the reasoning power of pseudo-Boolean solvers. In: Bey-
ersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 75–93.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8 5

14. Elliott, C.: Compiling to categories. In: Proceedings of the ACM on Programming
Languages, vol. 1, issue number (ICFP), pp. 1–27 (2017)

15. Fraenkel, A.A., Bar-Hillel, Y., Levy, A.: Foundations of Set Theory. Elsevier,
Burlington (1973)

16. Gamez, N., Fuentes, L.: Software product line evolution with cardinality-based
feature models. In: Schmid, K. (ed.) ICSR 2011. LNCS, vol. 6727, pp. 102–118.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21347-2 9

17. Glinz, M.: On non-functional requirements. In: 15th IEEE International Require-
ments Engineering Conference (RE 2007), pp. 21–26. IEEE (2007)

18. González-Huerta, J., Insfran, E., Abrahão, S., McGregor, J.D.: Non-functional
requirements in model-driven software product line engineering. In: Proceedings of
the Fourth International Workshop on Nonfunctional System Properties in Domain
Specific Modeling Languages, NFPinDSML 2012, NY, USA (2012)

https://doi.org/10.1007/s10270-014-0441-1
https://doi.org/10.1007/s10270-014-0441-1
https://doi.org/10.1007/978-3-540-87875-9_1
https://doi.org/10.1007/978-3-540-87875-9_1
https://doi.org/10.1007/11431855_34
https://doi.org/10.1007/s10664-018-9640-7
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-94144-8_5
https://doi.org/10.1007/978-3-642-21347-2_9

412 D.-J. Munoz et al.

19. Gurov, D., Østvold, B.M., Schaefer, I.: A hierarchical variability model for software
product lines. In: Hähnle, R., Knoop, J., Margaria, T., Schreiner, D., Steffen, B.
(eds.) ISoLA 2011. CCIS, pp. 181–199. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-34781-8 15

20. Gurrola-Ramos, L., Maćıas, S., Maćıas-Dı́az, J.: On the isomorphism of injective
objects in Grothendieck categories. Quaest. Math. 40(5), 617–622 (2017)

21. Hellendoorn, V.J., Sutton, C., Singh, R., Maniatis, P., Bieber, D.: Global relational
models of source code. In: International Conference on Learning Representations
(2019)

22. Horcas, J.M., Pinto, M., Fuentes, L.: An automatic process for weaving functional
quality attributes using a software product line approach. J. Syst. Softw. 112,
78–95 (2016)

23. Jussien, N., Rochart, G., Lorca, X.: Choco: an open source java constraint pro-
gramming library. In: HAL Archives Ouvertes (2008)

24. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Carnegie-Mellon University Pittsburgh Pa
Software Engineering Institute, Technical report (1990)

25. Kızıltoprak, A., Köse, N.Y.: Relational thinking: the bridge between arithmetic
and algebra. Int. J. Elem. Educ. 10(1), 131–145 (2017)

26. Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic, vol. 7.
Cambridge University Press, Cambridge (1988)

27. Montenegro, J.A., Pinto, M., Fuentes, L.: What do software developers need to
know to build secure energy-efficient android applications? IEEE Access 6, 1428–
1450 (2018)

28. Mueller, J.: Theopogles–a theorem prover based on first-order polynomials and
a special Knuth-Bendix procedure. GWAI-87 11th German Workshop on Artifi-
cal Intelligence. Informatik-Fachberichte (Subreihe Küstliche Intelligenz), vol. 152.
Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-73005-4 26

29. Munoz, D.J., Montenegro, J.A., Pinto, M., Fuentes, L.: Energy-aware environments
for the development of green applications for cyber-physical systems. Future Gener.
Compu. Syst. 91, 536–554 (2019)

30. Munoz, D.J., Oh, J., Pinto, M., Fuentes, L., Batory, D.: Uniform random sampling
product configurations of feature models that have numerical features. In: Pro-
ceedings of the 23rd International Systems and Software Product Line Conference
- Volume A, pp. 289–301. Association for Computing Machinery, NY, USA (2019)

31. Munoz, D.J., Pinto, M., Fuentes, L.: Hadas: analysing quality attributes of software
configurations. In: Proceedings of the 23rd International Systems and Software
Product Line Conference-Volume B, pp. 13–16 (2019)

32. Olaechea, R., Stewart, S., Czarnecki, K., Rayside, D.: Modelling and multi-
objective optimization of quality attributes in variability-rich software. In: Proceed-
ings of the Fourth International Workshop on Nonfunctional System Properties in
Domain Specific Modeling Languages, pp. 1–6 (2012)

33. Pohl, K., Böckle, G., van Der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer Science & Business Media, Hei-
delberg (2005). https://doi.org/10.1007/3-540-28901-1

34. Ren, J., Wang, H., Hou, T., Zheng, S., Tang, C.: Federated learning-based com-
putation offloading optimization in edge computing-supported internet of things.
IEEE Access 7, 69194–69201 (2019)

https://doi.org/10.1007/978-3-642-34781-8_15
https://doi.org/10.1007/978-3-642-34781-8_15
https://doi.org/10.1007/978-3-642-73005-4_26
https://doi.org/10.1007/3-540-28901-1

Category Theory Framework for Variability Models 413

35. Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., Apel, S., Saake,
G.: SPL conqueror: toward optimization of non-functional properties in software
product lines. Softw. Qual. J. 20(3–4), 487–517 (2012). https://doi.org/10.1007/
s11219-011-9152-9

36. Taentzer, G., Salay, R., Strüber, D., Chechik, M.: Transformations of software
product lines: a generalizing framework based on category theory. In: 20th Inter-
national Conference on Model Driven Engineering Languages and Systems (MOD-
ELS) (2017)

https://doi.org/10.1007/s11219-011-9152-9
https://doi.org/10.1007/s11219-011-9152-9

	Category Theory Framework for Variability Models with Non-functional Requirements
	1 Introduction
	2 Motivation
	2.1 Variability Modelling
	2.2 Non-functional Requirements Modelling

	3 Category Theory for Software Product Lines
	3.1 Category of Numerical Variability Models (NVM)
	3.2 Category of Quality Attributes Model (QAM)
	3.3 Solution Space Categories Isomorphism

	4 Validation and Discussion
	4.1 HADAS Category
	4.2 Optimal Deployment
	4.3 Results and Discussion

	5 Related Work
	6 Conclusions and Future Work
	References

