
USENIX Association

Proceedings of the
5th Smart Card Research and Advanced

Application Conference

San Jose, California, USA
November 21–22, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Model Checking of Multi-Applet JavaCard Applications∗

Gennady Chugunov1 Lars-Åke Fredlund1 Dilian Gurov2

1Swedish Institute of Computer Science

2Department of Microelectronics and Information Technology,
Royal Institute of Technology (KTH)

Abstract

The paper describes a framework for model checking
JavaCard applets on the bytecode level. From a set
of JavaCard applets we extract their method call
graphs using a static analysis tool. The resulting
structure is translated into a pushdown system for
which the model checking problem for Linear Tem-
poral Logic (LTL) is decidable, and for which there
are efficient model checking tools available. The
model checking approach of the paper is tailored to
the analysis of inter applet (intra card) communi-
cations and we demonstrate it using a prototypical
example of a purse applet and a set of loyalty ap-
plets.

1 Introduction

Smart cards have come to play an ever increasing
role in our lives. We use them in electronic bank-
ing, to keep health care data, for mobile telephony,
and in many other applications. The most impor-
tant aspect of smartcards is their security; users and
card issuers have to agree that the level of security
provided by a smartcard platform is enough to pre-
vent malicious agents from abusing their trust in a
card application.

Since the number of smartcard applications is grow-
ing rapidly, it is natural to provide smartcards with
the possibility of accommodating multiple applica-
tions, and the possibility to delete or add new appli-
cations after the card has been issued. Furthermore,

∗The research has been conducted within the VerifiCard
project with financial support from the IST programme of
the European Union.

such multi-application smartcards allow partner ap-
plications to cooperate and exchange data. Popular
applications of multi-application cards are partner
loyalty programs, mobile telephone to banking part-
nership programs, etc. The JavaCard platform [12]
is one platform for building such multi-application
smartcards. It is based on a subset of Java tailored
to the task of embedding on a smartcard. The cur-
rent standard omits many of the features of Java
such as concurrency through threads, garbage col-
lection, and many API functions but has a notion
of applets to support multiple applications.

One important aspect which distinguishes multi-
applet JavaCards from single-applet ones is the sup-
port for inter-applet communication via method
calls. Communication naturally comes at a price:
applets must guard against illicit invocations of
their public methods from unwarranted applets, and
from leakage of data to third parties. Even if a
multi-applet application were to be proved safe,
there still exists the possibility of new unsafe ap-
plets being loaded onto the card post–verification.
The JavaCard platform provides features to par-
tially address these security concerns. Apart from
a Java-style byte code verifier, which in the cur-
rent generation of JavaCard smartcards is typically
located off–card, there is a concept of a communica-
tion firewall that by default prohibits applets from
communicating with each other. To enable commu-
nication to flow between applets, a recipient applet
has to explicitly permit calls from the caller applet.

Such checks as above are static in nature, e.g.,
method calls are always allowed, or they are never
allowed. The work reported here in contrast permits
to begin to characterise the temporal restrictions
of inter-applet communications. In the formulation
of such restrictions we consider a situation when a
set of applets have been loaded onto a smartcard,

and formulate properties in Linear Temporal Logic
(LTL) regarding inter–applet communications (in
addition to properties about intra–applet method
calls and API usage).

To provide a semantic bridge between multi-applet
programs and the temporal logic specification lan-
guage, we use the abstract notion of a program
graph, capturing the control flow of programs with
procedures/methods, and which can be efficiently
computed. The behaviour of such program graphs
is defined through the notion of pushdown systems,
which provide a natural execution model for pro-
grams with methods (and possibly recursion), and
for which completely automatic model checkers for
LTL exist.

In more detail the model checking proceeds as fol-
lows. First the method call graphs of a set of JavaC-
ard applets are obtained using a Java byte code
analysis tool [13] developed at INRIA Rennes, which
we have adapted for JavaCard. The analysis is per-
formed on a class basis. As a consequence individ-
ual applet instances cannot be reasoned about; cor-
rectness properties concern activation of methods of
classes extending the JavaCard Applet class, rather
than activation of methods of an applet instance.
Further details and limitations of this static analy-
sis procedure are discussed in Section 2.

The resulting method call graphs are translated into
pushdown systems, a natural execution model for
programs with recursion. Essentially a pushdown
system is a pair of a control location with a stack
of stack symbols. In our encoding we use a single
control location and let the stack symbols represent
the program points of the underlying JavaCard ap-
plets. The details of the translation are elaborated
in Section 3.1.

For pushdown systems the model checking proce-
dure for Linear Temporal Logic (LTL) is decidable
and of polynomial complexity in the size of the sys-
tem [3, 9, 7]. The atomic predicates of the logic,
tailored to JavaCard, are the program points them-
selves and predicates expressing class and package
membership of program points. The Moped model
checker [8] is used to check LTL properties of push-
down systems. Sections 3.2,3.3 and 3.4 describes
the logic and our use of the Moped tool in further
detail.

To motivate and demonstrate our approach we have
selected a prototypical JavaCard example: a purse

applet stores money, and interacts with loyalty ap-
plets on receiving a purchase order. A loyalty ap-
plet can have agreements with other applets, and
can thus in turn communicate with another applet
on receiving information about a purse transaction.
In Section 4 we demonstrate the effectiveness of our
approach in analysing such inter-applet communi-
cation patterns.

There exists by now a growing number of related
work concerning model checking Java (or JavaC-
ard), or more general formal analysis of JavaCard
applications; below we will mention a few of them.

The Compaq Extended Static Checker for Java
(ESC/Java) [14], developed at the Compaq Sys-
tems Research Center (SRC), is a programming tool
for finding errors in Java programs. ESC/Java in-
cludes an annotation language with which program-
mers can express design decisions using light-weight
specifications. Checking is neither sound nor com-
plete, but can yield informative warning messages1.
A case study in the context of JavaCard, based on
the Gemplus purse applet, is presented in [5].

The first version of the Java PathFinder [10], JPF,
was a translator from a subset of Java 1.0 to
PROMELA, the programming language of the Spin
model checker. A similar translator tool from Java
to PROMELA (actually the variant of PROMELA
for the dSpin tool) is reported in [11]. The Java
Pathfinder tool is especially suited for analyzing
multi-threaded Java applications, where normal
testing usually falls short. The tool can find dead-
locks and violations of boolean assertions stated by
the programmer in a special assertion language. A
second version of the tool reportedly works directly
on bytecode and has support for garbage collection2.

The Bandera Project [6] aims to develop tech-
niques and tools for automated reasoning about
Java based software system behavior, and to ap-
ply these tools to construct high-confidence mission-
critical software. Automated reasoning is achieved
by (1) mechanically creating high-level models of
software systems using abstract interpretation and
partial evaluation technologies, and then (2) em-
ploying model-checking techniques to automatically
verify that software specifications are satisfied by
the model3.

1http://research.compaq.com/SRC/esc/
2http://ase.arc.nasa.gov/jpf/
3http://www.cis.ksu.edu/santos/bandera/

In [2] an approach is presented for checking proper-
ties of multi-applet interactions of JavaCards based
on associating security levels to applets and applet
data, and to thus detect illegal flow of information
between applets. Technically the approach requires
building abstract models by hand from byte code,
and then to check them automatically using the
SMV model checker.

Our work is related to the program verification ap-
proach of [13] which is based on method call graphs.
The operational semantics of the graphs, however,
is given there directly through a set of transition
rules (rather than through pushdown systems), and
security properties are expressed as call-stack invari-
ants. Following a similar program representation, a
compositional account is given in [1], where a com-
positional proof system for inferring temporal prop-
erties of a multi-applet program from the properties
of the individual applets is presented.

2 Constructing Method Call Graphs

We use an external static analysis tool, developed
for a Java verification framework [13], to generate
call graphs which abstract from everything (such
as data variables, and parameters to method calls)
but the presence and order of method calls inside
method bodies. The analysis tool performs a safe
over-approximation (with regards to preservation of
LTL safety properties) in the sense that call edges
may be present in the result call graph even if
they cannot be invoked at runtime, but the oppo-
site does not hold. For instance, when the static
analysis cannot determine which class method is
invoked in a method call, typically due to sub-
typing, then a call edge is generated to a target
method in every possible class, thus increasing the
nondeterminism in the generated call graph. The
static analysis tool generates graphs with informa-
tion about exceptional behaviours. In this work ex-
ceptional edges, and nodes, are translated into non-
deterministic constructs thus effectively increasing
the non-determinism in program behaviour in a con-
servative fashion.

The call graph generation is also conservative with
respect to the JavaCard firewall mechanism, which
is not considered during static analysis. That is,
a method call that at runtime will fail the security
checks of the JavaCard runtime environment will

nevertheless invariably be included in the method
call graphs.

Analysis starts from a set of JavaCard classes, which
should include the implementation of all on-card ap-
plets. To refine the analysis, and to permit analysis
of JavaCard API usage, the API classes of SUN’s
Java Card Development Kit (version 2.1.2) are in-
cluded in the method call generation. The result of
analysis is a set of method call graphs.

2.0.1 Method Call Graphs

The methods M are partitioned into classes C,
which are themselves partitioned into packages
P . We assume the usual Java naming conven-
tions with fully qualified names, i.e., a class has a
name Package.identifier and a method has a name
Class.identifier .

Definition 1 (Method Graph, adapted
from [13]). A method graph is a tuple

m
∆= (Vm,→m, λm, µm)

such that:

(i) Vm are the program points of m,

(ii) →m⊆ Vm×Vm are the transfer edges of m, and

(iii) λm : Vm → T designates to each program point
of m a program point type from the set T ∆=
{entry, seq, call, return}.

(iv) µm : Vm → ℘(M) designates to each program
point of type call of m a non-empty set of meth-
ods.

We assume the program point sets Vm to be pairwise
disjoint. The program points of the program is the
set V ∆=

⋃
m∈M Vm.

The program point type indicates whether (entry)
a node is the entry point of a method, (seq) a
node in which no method call or return takes place,
(call) a node from which a method call takes place,
or (return) a node in which the execution of the
method finishes and control flow returns to the call-
ing method.

For convenience, we introduce the predicates

v : t ∆= λm(v) = t for t ∈ T
v : locm

∆= v ∈ Vm

v : entry m
∆= v : entry ∧ v : locm

v : return m
∆= v : return ∧ v : locm

v : class c
∆= ∃m. v : locm ∧ m ∈ c

v : package p
∆= ∃c. v : class c ∧ c ∈ p

We further define a predicate v : api, which holds if
the program point v occurs in a method in a JavaC-
ard API package (for standard JavaCard this corre-
sponds to one of java.lang, javacard.framework,
javacard.security or javacardx.crypto).

3 Model Checking Method Call
Graphs

3.1 Pushdown Systems

Pushdown systems provide a natural execution
model for programs with recursion. They form a
well-studied class of infinite-state systems for which
many important problems like equivalence checking
and model checking are decidable [4].

Definition 2 (PDS, from [7]). A pushdown sys-
tem (PDS) is a tuple

P ∆= (P,Γ,∆)

where:

(i) P is a finite set of control locations;

(ii) Γ is a finite set of stack symbols;

(iii) ∆ ⊆ (P ×Γ)× (P ×Γ?) is a finite set of rewrite
rules of the shape 〈p, γ〉 −→ 〈q, σ〉.

The set P × Γ? are the configurations of P. If
〈p, γ〉 −→ 〈q, σ〉 is a rewrite rule of P, then for each
ω ∈ Γ? the configuration 〈q, σ · ω〉 is an immediate
successor of the configuration 〈p, γ · ω〉. A run of P
is a sequence ρ = 〈p0, σ0〉 〈p1, σ1〉 〈p2, σ2〉 · · · , such
that for all i, 〈pi+1, σi+1〉 is an immediate successor
of 〈pi, σi〉.

We now define how a set of methods M induces a
PDS.

Definition 3 (Induced PDS, formalising [8]).
A set of methods M induces a PDS

P ∆= (P,Γ,∆)

as follows:

(i) P consists of the single control location p;

(ii) Γ is the set V of program points;

(iii) ∆ is the set
⋃

m∈M

⋃
v∈Vm

Prod(v), where
Prod(v) is a set of rewrite rules defined as:

{〈p, v〉 −→ 〈p, v′〉 | v →m v′}
if v : entry or v : seq

⋃
m′∈µm(v)

{
〈p, v〉 −→ 〈p, v′ · v′′〉 |
v′ : entry m′, v →m v′′

}
if v : call

{〈p, v〉 −→ 〈p, ε〉}
if v : return

The rewrite rules of the pushdown system can be
interpreted as simply manipulating the calling stack
of the program from which the PDS was obtained.
Given a configuration c ≡ 〈p, v · σ〉 let point (c) ∆=
v.

3.2 Specification Language

Our specification language is linear temporal logic
(LTL), with program point predicates p as atomic
propositions but omitting the type predicate v : t.
The choice of linear temporal logic as the specifi-
cation language, instead of for instance the modal
µ-calculus for which the model checking problem
for our encoding into pushdown systems is also ef-
ficiently decidable, was solely motivated by the ex-
istence of the efficient model checker Moped [8] for
LTL.

The operators of the logic are the standard ones. If
φ and ψ are formulas then so are ¬φ, φ∧ψ, φ∨ψ, Xφ
and φ U ψ. The meaning of formulas is defined with
respect to runs of infinite length r ≡ c0c1c2 We
let ri denote the suffix of r starting in configuration
ci. Then satisfaction r |= φ of a formula φ by a run
r is defined as:

r |= p iff point (c0) : p
r |= ¬φ iff not r |= φ

r |= φ ∧ ψ iff r |= φ and r |= ψ
r |= φ ∨ ψ iff r |= φ or r |= ψ
r |= X φ iff r1 |= φ

r |= φ U ψ iff there is an i ≥ 0 such that
ri |= ψ and rj |= φ
for all 0 ≤ j < i

Henceforth let false abbreviate p ∧ ¬p for some
atomic predicate p, true abbreviate ¬false, φ ⇒
ψ abbreviate ¬φ ∨ ψ, and next φ abbreviate
X φ and φ until ψ abbreviate φ U ψ. Fur-
ther define eventually φ

∆= true U φ and
always φ

∆= ¬ (eventually ¬φ). The weak until oper-
ator φ weakuntil ψ abbreviates φ until ψ ∨ always φ.
Finally let never φ

∆= always ¬φ.

Given a PDS pds let the notation m ` φ express
the judgement that all runs starting in the entry
program point of the method m satisfy φ. More
formally:

Definition 4 (Model Checking a Method
Call). Given a PDS pds with the single control lo-
cation p and a method m, the judgement m ` φ is
valid iff for every run r of the PDS pds ′ from the
initial configuration 〈p, v ·m loop〉, r |= φ holds,
where v is the entry program point of method m
(i.e. v : entry m), and pds ′ is the PDS pds extended
with the fresh stack symbol m loop and the single
rewrite rule 〈p,m loop〉 −→ 〈p,m loop〉 to achieve
infinite runs.

The definition of a judgement m ` φ is motivated
by the Moped tool which implements an algorithm
for checking an initial configuration against an LTL
formula.

3.3 Specification Patterns

As in the Bandera project [6] specification patterns
are used to facilitate formulating correctness prop-
erties. These specification patterns concern tempo-
ral properties of method invocations, and are either
temporal patterns or judgement patterns concerning
the invocation of a particular method. Below a set
of patterns that we have defined, and which are com-
monly used, are given.

To express that within the call of a method m the

property φ holds the judgment pattern

Within m φ
∆= m ` φ

is used. The property that a call to m1 never trig-
gers method m2 can be specified as:

m1 never triggers m2
∆= Within m1 (¬(eventually locm2))
≡ Within m1 (never locm2)

Next define the temporal patterns (formulas) (i)
m2 after m1, i.e., m2 can only be called after a call
to m1; (ii) m2 through m1, i.e., m2 can only be
called from m1; (iii) m2 from m1, i.e., m2 can only
be called directly from m1; and (iv) m1 excludes m1,
i.e., when m1 is called this excludes the possibility
that m2 will later be called; (v) p cannotCall m, i.e.,
the method m cannot be directly called from any
method in package p.

m2 after m1
∆= (never locm2) weakuntil locm1

m1 excludes m2
∆= (eventually locm1) ⇒ never locm2

m2 from m1

∆=
always (¬ (locm1 ∨ locm2) ⇒ next ¬locm2)
∧ ¬locm2

m2 through m1

∆=
¬locm2 weakuntil locm1

∧
(

always return m1 ⇒
next (¬locm2 weakuntil locm1)

)
p cannotCall m

∆= always (package p⇒ next ¬locm)

The intuitive idea of the formulation of m2 from m1

is to express that the current program point can
be in method m2 only because of a direct call from
m1, or because it was already in m2, and initially
the program point is not in m2.

The above patterns can be combined with the
Within pattern. For example,

Within m1 (m3 after m2)

expresses that during a call to m1 the method m3

will be called only after calling m2.

An alternative technique for expressing correctness
properties of behaviours of programs of stack-based
languages is to use stack inspection techniques [13].
Essentially these techniques express constraints on

the set of all possible runtime stacks. Note however
that for instance the after property above cannot di-
rectly be coded as a stack inspection property since
the calls to m1 and m2 need not be concurrent.

3.4 A Tool for Model Checking Push-
down Systems

The Moped tool [8] can check a pushdown system,
from an initial configuration, against an LTL for-
mula where the atomic predicates consists of a set
of atomic symbols that checks the identity of the
top stack symbol or the control location (i.e., sim-
ply checks name equality). In case the LTL formula
is falsified a reduced pushdown system constructed
from the original one, that also falsifies the LTL for-
mula, is presented as diagnostic information.

To represent the non-identity atomic predicates
(e.g., package, entry, . . .) as “Moped LTL formulas”
a number of options are possible. Consider for in-
stance the package atomic predicate. A direct rep-
resentation of the predicate in Moped LTL would
consist of a disjunction over all the program points
in any class in the package.

An alternative representation strategy is to enrich
the translation from a call graph to a pushdown
system. Since Moped provides boolean variables
we could represent the current package identity en-
coded in a set of boolean variables in the pushdown
system. These variables would then be updated for
every rewrite rule that crosses package boundaries.
Finally the representation of the package predicate
itself would consist of a simple boolean condition.

We have instead opted to extend the Moped tool
with atomic predicates that can match a control
location, or the top stack symbol, against a regu-
lar expression. These predicates check the syntactic
shape of the symbol being tested.

Consider the naming of program points of a method
m by the call graph construction. Its entry program
point will be named m entry , its (unique) return
program point will be named m exit , and all other
program points in m are of the form m n where n
is a natural number.

With these conventions in place the atomic pred-
icates can be represented in “regular expression

Moped” as indicated below:

locm
∆= m_.*

entry m
∆= m_entry

return m
∆= m_exit

class c
∆= c\..*_.*

package p
∆= p\..*\..*_.*

In the encoding it is assumed that the dot symbol ‘.’
has to be quoted using a backslash character inside
a regular expression to represent itself, rather than
representing any character.

So called wildcards can be used in a regular ex-
pression to achieve a limited form of quantifica-
tion over program points. The static analysis tool,
for instance, gives the name p.c.<init> to an ob-
ject constructor method p.c. Thus, whether the
current program point is in any object constructor
can be tested by the regular expression predicate
.*\..*\.<init>_.*. As a further example, the api
predicate, which recognises control points inside an
API function, can be defined
‘(java\.lang|javacard\..*|javacardx\..*).*’.

4 Example

The model checking of JavaCard applets will be il-
lustrated with an example; a modification of the
purse example from SUN’s JavaCard Development
Kit (version 2.1.2). This example is a prototypi-
cal purse and loyalty smartcard application, which
comprises around 1430 lines of JavaCard code.

To understand the example it is helpful to recall the
execution characteristics of JavaCard applets (lan-
guage version 2.1.1). An interaction with the card
(after installation of an applet, and its selection) is
initiated through calling its process method. Inter-
applet communications, crossing package borders,
are controlled by the JavaCard firewall mechanism
and take place through special interface objects.
The methods of such interface objects are indicated
in Figure 1.

The purse applet keeps a balance that is updated
upon requests from the environment. Purse trans-
actions, whether successful or not, are logged to a
transaction log. The operations of updating the bal-
ance, logging the new transaction and updating the

package purse.LoyaltyA

package purse.Purse

implements

class LoyaltyA

class Purse

interface PurseLoyalty

method bonusPointsToPurse

package purse.Loyalty

package purse.LoyaltyB

class LoyaltyB

class Loyalty

interface LoyaltyPurse

interface LoyaltyLoyalty

method grantPoints

method grantLoyaltyPoints

extends

implements

extends

Figure 1: Purse Class Diagram

transaction number are made atomic through use of
the transaction facility of JavaCard.

Upon completion of a new purse transaction the
purse applet notifies subsidiary loyalty applets via
the interface method grantPoints. These are ap-
plets that should be notified of the balance update
so that they, for example, can award loyalty points.
A concrete example is a bank smartcard with an
embedded loyalty applet for a car rental company
that awards bonus points for every car rented using
the bank card.

In addition to these functionalities there are meth-
ods, accessible through the process method of the
applet, for modifying most of the parameters of the
purse applet, including adding knowledge about new
loyalty applets that should be notified when card
transactions occur.

The loyalty applets of the Development Kit purse
application do not attempt to communicate with
other applets. We have extended the example
loyalty applet with two new functionalities: (i)
A loyalty applet can have agreements with other
loyalty applets to share bonus points; to achieve
this we introduce direct loyalty applet to loyalty
applet communication using the interface method
grantLoyaltyPoints. (ii) loyalty applets can have
an agreement with the purse to transfer, according
to same fixed rate, part of the bonus points back to
the purse. This is achieved through calling the in-
terface method bonusPointsToPurse of the purse.

The modified purse and loyalties example is a re-
warding example to study using our model checking
approach as many key applet correctness properties
can be phrased as properties of inter-applet commu-
nications.

4.1 Example Properties

Below we list a number of properties of the purse
and loyalty applets, formulated using our judgement
patterns. We introduce the following abbreviations
of the applet class names:

purse
∆= purse.Purse.Purse

loyaltyA
∆= purse.LoyaltyA.LoyaltyA

loyaltyB
∆= purse.LoyaltyB.LoyaltyB

Property 1: there are no calls to both grant-
Points and grantLoyaltyPoints for the same
applet. For all loyalty applets L it is the case
that a call to L.grantPoints never triggers a call to
L.grantLoyaltyPoints.

φ1.1
∆= loyaltyA.grantPoints never triggers

loyaltyA.grantLoyaltyPoints

φ1.2
∆= loyaltyB.grantPoints never triggers

loyaltyB.grantLoyaltyPoints

Property 2: grantPoints is not transitive.
For all loyalty applets L and L′ it is the case
that a call to L.grantPoints never triggers a call to
L′.grantPoints. That is, the grantPoints method is
neither transitive nor recursive.

φ2.1
∆= loyaltyA.grantPoints never triggers

loyaltyA.grantPoints

φ2.2
∆= loyaltyA.grantPoints never triggers

loyaltyB.grantPoints

φ2.3
∆= loyaltyB.grantPoints never triggers

loyaltyA.grantPoints

φ2.4
∆= loyaltyB.grantPoints never triggers

loyaltyB.grantPoints

Property 3: grantLoyaltyPoints is not
transitive. The same as Property 2, but for
grantLoyaltyPoints.

Property 4: grantLoyaltyPoints is called only
through grantPoints. That is, within all purse
methods m accessible from outside the card, the
method L.grantLoyaltyPoints of a loyalty applet L
is called only through a call to L′.grantPoints of an-
other loyalty applet L′ and never directly by the
purse applet.

φ4.1
∆=

Within m
loyaltyA.grantLoyaltyPoints through
loyaltyB.grantPoints

φ4.2
∆=

Within m
loyaltyB.grantLoyaltyPoints through
loyaltyA.grantPoints

Property 5: Bonus point are awarded at most
once within a transaction. Transfer of bonus
points from a loyalty to the purse does not cause
further bonus points to be awarded.

φ5
∆=

Within purse.bonusPointsToPurse
package purse.Purse ∨ api

That is, calls to the bonusPointsToPurse method
does not cause a context switch to any other applet
package (but possibly to the JavaCard Runtime En-
vironment – JCRE).

The previous correctness properties were specific to
certain applications whereas the following express
properties that can be beneficial for any JavaCard
applet.

Property 6: no constructors called. For all
applets A it is the case that no constructor method
is called within a call to A.process. This can be
a crucial property for applets due to the absence
of garbage collection in standard JavaCards. Let
constructor express the regular expression predicate
.*\..*\.<init>_.* which tests whether the cur-
rent location is in a constructor method.

φ6.1
∆= Within purse.process ¬constructor

φ6.2
∆= Within loyaltyA.process ¬constructor

φ6.3
∆= Within loyaltyB.process ¬constructor

This property holds of the loyalty applets, but not
of the purse applet which can create a new object
during a call to the process method (without bad
consequences, due to conditions involving data).

Property 7: recursion freeness. For all non-
API methods m it is the case that a call to m never
triggers another call to m.

φ7
∆= m never triggers m

The elapsed time to construct the set of call graphs
from the example classes was approximately 16 sec-
onds on a Linux workstation with a Pentium III
1.9 GHz CPU and 256 MB of memory. The re-
sulting call graphs, which includes API program
points, consists of 2034 nodes and 3747 edges. The
pushdown system generated from these call graphs
has approximately 1200 production rules. To check
the pushdown system against each of the formulas
above, given an initial configuration, took less than
one second on the same computer hardware as used
for call graph generation.

5 Conclusions and Future Work

The paper proposes a framework for automatic
model checking of temporal constraints on inter–
applet communications in multi–applet JavaCards.

The framework has been realised by combining a
class–based static analysis tool with an automatic
model checker for pushdown system and linear tem-
poral logic.

In the future we will refine the static analysis to
permit the analysis of communication capabilities of
single applets thus connecting to the work on com-
positional proof systems for JavaCard applets sug-
gested in [1]. This will permit us to analyse whether
an applet can operate safely on a smart card even
when the knowledge about other applets on the card
is imperfect.

Further information regarding the model
checking framework and the availabil-
ity of the tool components and exam-
ples can be obtained at the web location
http://www.sics.se/fdt/projects/VeriCode/.

6 Acknowledgment

We would like to thank Mads Dam for his insightful
comments on the verification of JavaCard applets,
and Florimond Ployette of INRIA Rennes for his
help with modifying the Java based static analysis
tool for JavaCard. Thanks are due also to Stefan
Schwoon from Technische Universität München for
his assistance with the use of the Moped tool, and
to the anonymous referees for their valuable remarks
on the submitted version of this paper.

References

[1] G. Barthe, D. Gurov, and M. Huisman. Com-
positional verification of secure applet interac-
tions. In Proc. FASE’02, volume 2306 of Lec-
ture Notes in Computer Science, pages 15–32.
Springer, 2002.

[2] P. Bieber, J. Cazin, P. Girard, J.-L. Lanet,
V. Wiels, and G. Zanon. Checking secure in-
teractions of smart card applets. In ESORICS,
pages 1–16, 2000.

[3] A. Bouajjani, J. Esparza, and O. Maler. Reach-
ability analysis of pushdown automata: Ap-
plication to model-checking. In Proc. CON-
CUR’97, volume 1243 of Lecture Notes in Com-
puter Science, pages 135–150. Springer, 1997.

[4] O. Burkart, D. Caucal, F. Moller, and B. Stef-
fen. Verification on infinite structures. In J.A.
Bergstra, A. Ponse, and S.A. Smolka, editors,
Handbook of Process Algebra, pages 545–623.
North Holland, 2000.

[5] N. Cataño and M. Huisman. Formal specifi-
cation of Gemplus’ electronic purse case study.
In Proc. FME’02, Lecture Notes in Computer
Science. Springer, 2002. To appear.

[6] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach,
C. Pasareanu, and H. Zheng. Bandera: extract-
ing finite-state models from Java source code.
In International Conference on Software Engi-
neering, pages 439–448, 2000.

[7] J. Esparza, D. Hansel, P. Rossmanith, and
S. Schwoon. Efficient algorithms for model
checking pushdown systems. In Proc. CAV’00,
volume 1855 of Lecture Notes in Computer Sci-
ence, pages 232–247. Springer, 2000.

[8] J. Esparza and S. Schwoon. A BDD-based
model checker for recursive programs. In Proc.
CAV’01, volume 2102 of Lecture Notes in Com-
puter Science, pages 324–336. Springer, 2001.

[9] A. Finkel, B. Willems, and P. Wolper. A direct
symbolic approach to model checking push-
down systems. In Electronic Notes in Theo-
retical Computer Science, volume 9, 1997.

[10] K. Havelund and T. Pressburger. Model check-
ing Java programs using Java pathfinder. In-
ternational Journal on Software Tools for Tech-
nology Transfer, 2(4):366–381, 2000.

[11] R. Iosif, C. Demartini, and R. Sisto. Modeling
and validation of Java multithreading applica-
tions using spin, 1998.

[12] JavaCard 2.1.1 Documentation. Tech-
nical report, Sun Microsystems, May 2000.
http://java.sun.com/products/javacard/-
specs.html#211.

[13] T. Jensen, D. Le Metayer, and T. Thorn. Verifi-
cation of control flow based security properties.
In IEEE Symposium on Security and Privacy,
pages 89–103, 1999.

[14] R. Leino, G. Nelson, and J. Saxe. ESC/Java
User’s Manual. Technical Report 2000–004,
Compaq Systems Research Center, October
2002.

