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We consider relations with no order on their attributes as inDatabase Theory. An independent par-
tition of the set of attributes S of a finite relationR is any partitionX of S such that the join of
the projections ofR over the elements ofX yields R. Identifying independent partitions has many
applications and corresponds conceptually to revealing orthogonality between sets of dimensions in
multidimensional point spaces. A subset of S is termed self-correlated if there is a value of each
of its attributes such that no tuple ofR contains all those values. This paper uncovers a connection
between independence and self-correlation, showing that the maximum independent partition is the
least fixed point of a certain inflationary transformerα that operates on the finite lattice of partitions
of S. α is defined via the minimal self-correlated subsets of S. We use some additional properties
of α to show the said fixed point is still the limit of the standard approximation sequence, just as in
Kleene’s well-known fixed point theorem for continuous functions.

1 Introduction

The problem of discovering independence between sets of points in a multidimensional space is a fun-
damental problem in science. It arises naturally in many areas of Computer Science. For instance, with
respect to relational data, discovering such independenceallows exponential gains in storage space and
processing of information [11], [1], and can facilitate theproblem of machine learning [13]. With respect
to problem clusterisation of multidimensional relationaldata, finding independence helps finding the de-
sired clusters [5], [8]. Decomposing data into smaller units that are independent except at their interfaces
has been known to be essential for understanding large legacy systems [17]. Independence has also been
the subject of recent works in logic, giving rise to so-called logics of dependence and independence [4].

The concrete motivation for the present work derives from the area ofsoftware product line engi-
neering, a discipline that aims at planning for and developing afamily of products through managed
reuse in order to decrease time to market and improve software quality [12]. A software family can be
modelled as a relation whose attributes are the software’s functionalities. The various implementations
of each functionality in the form of software artefacts are the attributes’values. The individual products
of a family are thus modelled as the tuples of that relation over the attributes. In previous works [6, 15]
we considered a restricted class of software families called simple families(later on we changed the term
“families” to the more abstract term “relations”), where discovery of independence and a compositional
model checking technique are utilised to derive adivide-and-conquer verification strategy. Simple rela-
tions constitute the least class that contains the single-attribute, single-value relations and is closed under
join of relations with disjoint attribute sets and unions ofrelations over the same set of attribute names
but with disjoint value sets. In the present work we generalise these previous results to discovering in-
dependence in arbitrary relations. We investigate decompositions of a relationR with disjoint attributes
such thatRequals the join of the component relations. Every decomposition is represented by a partition
of the set of attributes ofR. Such partitions are termedindependent partitions.

http://dx.doi.org/10.4204/EPTCS.191.7
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The problem of computing a maximum decomposition of this kind has previously been studied
in [10], where it is referred to asprime factorisation, and an efficient algorithmic solution is proposed. In
this paper we investigate an alternative approach that works purely on the level of the attributes ofRand
is based on the concept ofcorrelation between attributes. We have discovered a nontrivial connection
between independence and correlation and the major goal of this paper is to demonstrate that connection.

A first observation is that the decomposition problem cannotbe solved purely based on analysis
of pairs of attributes. In the aforementioned work [6] we compute dependence (or independence) in
simple relations by computing correlation between pairs ofattributes. That approach does not generalise
for arbitrary relations as we show in this paper. Our solution is to introduceself-correlationof sets
(of arbitrary cardinality) of attributes. In other words, the current notion of correlation is a hypergraph
whose hyperedges are the self-correlated sets, rather thanan ordinary graph as were the case with the
simple relations. Since self-correlated sets are upward closed under set inclusion (Proposition 2), the
minimal self-correlated sets, or themincors(Definition 4), are the foundation of our analysis. A second
observation is that mincors do not cross independent partitions (Lemma 5), hence one can safely merge
overlapping mincors to compute the maximum independent partition. In the case of simple relations
that merger indeed yields the maximum independent partition [6] but in arbitrary relations merging the
mincorsdoes notnecessarily output an independent partition, as the example on page 67 shows. We
overcome this hindrance with the help of a final important insight. LetX be the partition of the set of
attributes that results from merging overlapping mincors.The relation can be factored onX, producing a
quotient relation. In other words, the elements ofX are considered atomic now; the subsets ofX may or
may not be self-correlated in their turn, and the said quotient relation is defined via those new mincors.
We show that the procedure of identifying mincors and merging overlapping ones can be repeated on this
quotient relation and this can be iterated until stabilisation, yielding the desired maximum independent
partition.

The above insights suggest that relational decomposition can be presented in terms of a transformer
over the finite lattice of quotient relations, or conceptually even simpler, overthe lattice of the partitions
ordered by refinement, inducing the former lattice. The transformerα on partitions introduced here
essentially corresponds to identifying the mincors of the quotient relation induced by a partition, merging
the overlapping ones, and extracting from the result the corresponding partition (Definition 5). We prove
that the independent partitions correspond exactly to the fixed points ofα (Theorem 1).

If α is monotone, one can utilise two well-known fixed point theorems on complete lattices (having
in mind that monotone functions over finite lattices are continuous). First, by Tarski’s fixed point theorem
for complete lattices [16], the set of fixed points forms a lattice itself with respect to the same ordering,
hence there is a uniqueleast fixed point(LFP), which in our case would be precisely the maximum
independent partitioning that we are after. And second, onecan utilise Kleene’s fixed point theorem [7],
to the effect that the LFP can be computediteratively, starting from the bottom of the lattice,i.e. the
partition into singletons, and applyingα until stabilisation,i.e., until the fixed point is reached. It turns
out, however, thatα in general isnot monotoneas demonstrated by the example on page 70 and therefore
the above reasoning is not applicable.

On the other hand, we show thatα is inflationary (Proposition 4). The existence of a LFP is estab-
lished by showing that there exists a fixed point and the set ofall fixed points is closed under intersection
(Lemma 6). Furthermore, the downward closure of LFP,i.e., the set of all partitions refining it, is closed
underα (Lemma 8). Since the lattice is finite, these results give rise to a modified version of Kleene’s
fixed point theorem—formulated in terms of inflationary transformers rather than monotone ones (The-
orem 2)—justifying the same iterative fixed point computation procedure (Corollary 3). The proposed
characterisation reduces relational decomposition to theproblem of identifying the mincors of a relation.
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Organisation The paper is organised as follows. Section 2 recalls some known notions and results
about sets and families, partitions, lattices, fixed points, relations, attributes, and relation schemes, quo-
tient relations, and defines independent partitions of the attributes set. Section 3 develops the theory of
self-correlated sets in quotient relations and how they relate w.r.t. partition abstraction. Section 4 presents
many useful lemmas that concern independence. Section 5 defines the transformerα and contains our
main result, Theorem 2. Section 6 discusses what we currently know about the area of decomposition of
relations, also called factorisation of relations, and compares the approach and the results of this paper
with similar works. The final Section 7 draws some conclusions and outlines directions for future work.

2 Background

In this section we recall some standard set-theoretical notions and notation needed for our theoretical
developments.

2.1 Sets, covers, and partitions

In this work we consider only finite sets. The powerset of a setA is denoted byPOW(A) andP+(A) denotes
POW(A) \{ /0}. Ground setsare nonempty sets over which we construct the families that are our subject
of research.

Let A be a ground set.A family over Ais any nonempty subset ofP+(A). A family F is Sperner
family if ∀X,Y ∈ F : X 6⊆ Y. F is connectedif ∀X,Z ∈ F: X ∩Z 6= /0 or F has elementsY1, Y2, . . . ,Yk

for somek ≥ 1, such thatX ∩Y1 6= /0, Yi ∩Yi+1 6= /0 for 1≤ i ≤ k− 1, andYk ∩Z 6= /0. A connected
component of a familyis any maximal connected subfamily in it. We useCC(F) to denote the family
{∪B |B is a connected component of F}. A superfamily over Ais any nonempty subset ofP+(P+(A)).

SupposeA is a set. A cover of Ais any family F overA such that∪F = A. The set of all covers
of A is denoted byK(A). If X ∈ K(A) andY∩Z = /0 for all distinctY,Z ∈ X, we sayX is a partition
of A. If |X|= 1 the partition istrivial and if |X|= |A| the partition ispartition into singletons. Note that
CC(F) defined above is a partition of the ground set. We denote byY ⋐ X the fact that for someB⊆ A,
Y is a family overB such that every element ofY is a subset of precisely one element ofX and every
element ofX is a superset of at most one element ofY. For example, ifA= {a,b,c,d,e, f ,g,h,k} then
{{b},{c},{d,g}} ⋐ {{a,b},{c},{d,e, f ,g},{h,k}}.

The set of all partitions ofA is denoted byΠ(A). For anyP1,P2 ∈ Π(A), P1 refines P2, which we
denote byP1⊑ P2, if

∀X ∈ P1 ∃Y ∈ P2 : X ⊆Y

Conversely, we say thatP2 abstracts P1. If P1⊑ P2 andP1 6= P2 we writeP1 ⊏ P2.

2.2 Partial orders, lattices, and chains

We denote generic partial orders by “4”. If (A,4) is a poset,a least elementof A is anyx∈ A such that
∀y∈ A : x4 y anda greatest elementof A is anyx∈ A such that∀y∈ A : y4 x. A least element may not
exist but if it exists it is unique; the same holds for a greatest element. The least element is calledbottom
and is denoted by⊥. The greatest element is calledtopand is denoted by⊤. A chainin a poset(A,4) is
anyB⊆ A such that∀x,y∈ B : x4 y∨y4 x.

A lattice is a poset(A,4), shortlyA when4 is understood, such that for anyx,y ∈ A there exists a
(unique) greatest lower bound inA calledmeetand denoted byx⊓ y and a (unique) least upper bound
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in A called join and denoted byx⊔ y. Collectively,⊓ and⊔ are the lattice operations of A. They are
commutative and associative [2, pp. 8]. We generalise the lattice operations on subsets ofA in the obvious
way. A complete latticeis a lattice such that everyB⊆ A has a meet⊓B and a join⊔B. In particular,
A has a meet⊓A=⊥ and a join⊔A=⊤. Every finite lattice is complete [3, pp. 46], therefore fromnow
on by lattice we mean complete lattice. For anyx ∈ A, the sets{y ∈ A|y4 x} and{y ∈ A|x 4 y} are
calleddown-xandup-xand are denoted by↑x and↓x, respectively [3, pp. 20].

It is well-known that(Π(A),⊑) is a lattice. Furthermore,⊥ is the partition into singletons,⊤ is
the trivial partition, and for anyP1,P2 ∈ Π(A), P1⊓P2 = {X ∩Y |X ∈ P1,Y ∈ P2} \ { /0} andP1⊔P2 =
CC(P1∪P2) (see [2, pp. 15]). We extend the “⊓” notation to subsets of partitions: for anyX,Y ∈ Π(A),
for any nonemptyX′ ⊆ X and any nonemptyY′ ⊆ Y such thatX′ ∩Y′ 6= /0, X′ ⊓Y′ denotes the set
{B∩C|B∈ X′,C∈Y′}\{ /0}.

2.3 Functions and fixed points

SupposeA is a set andf : A→ A is a function. For everyx ∈ A: f 0(x)
def
= x and for everyn ∈ N+,

f n(x)
def
= f ◦ f n−1(x). For everyn∈N, f n(x) is the n-th iterate of f. A fixed pointof f is everyx∈ A such

that f (x) = x. Let (A,4) be a poset. A functionf : A→A is monotoneif ∀x,y∈ A : x4 y→ f (x)4 f (y)
and f is inflationary if ∀x∈ A : x4 f (x) [14, pp. 263].

A well-known fixed point theorem is Tarski’s fixed point theorem for continuous functions over
complete lattices [16], stating that the set of fixed points is non-empty and forms a lattice itself with
respect to the same ordering, and hence the function has a uniqueleast fixed point(LFP). Another well-
known theorem due to Kleene states the existence of an LFP forcontinuous functions on chain-complete
partial orders [7], and that the LFP can be computediteratively, starting from the bottom of the lattice
and applying the function until stabilisation.

2.4 Schemes, relations, and quotient relations

The following definitions are close to the ones in [9].A schemeis a nonempty set S= {A1, . . . ,An}
whose elements, calledthe attributes, are nonempty sets. For every attribute, its elements are said to be
its values. A relation over Sis a nonempty set of total functions{t1, t2, . . . , tp}, which we callthe tuples,
such that for 1≤ j ≤ p, t j : S→∪S, with the restriction thatt j(Ai) ∈ Ai, for 1≤ i ≤ n. We assume that
every value of every attribute occurs in at least one tuple.

The relations we have in mind are as in Relational Database Theory,i.e. with unordered tuples, rather
than as in Set Theory,i.e. with ordered tuples.

We further postulate that the said attributes are mutually disjoint sets. That allows a simplification of
the definition of relation: a relation over S is nonempty set of tuples, each tuple being ann-element set
with precisely one element from every attribute. To save space, we often write the tuples without commas
between their elements. For example, letn= 3, A1 = {a1,a2}, A2 = {b1,b2}, andA3 = {c1,c2,c3}. One
of the relations over the scheme{A1,A2,A3} is written as{{a1b1c1},{a1b2c2},{a2b2c3}}.

Let S1,S2, . . . ,Sk be schemes such that for 1≤ i < j ≤ k, ∀A∈ Si ∀B∈ Sj : A∩B= /0. Let Ri be a
relation over Si, for 1≤ i ≤ k. The join of R1, . . . , Rk is the relation

R1 ⋊⋉ R2 ⋊⋉ · · ·⋊⋉ Rk = {∪{x1,x2, . . . ,xk}|x1 ∈ R1,x2 ∈ R2, . . . ,xk ∈Rk}

The complete relationover S= {A1, . . . ,An} is⋊⋉n
i=1 {{x}|x∈Ai}. Clearly, its cardinality is∏n

i=1 |Ai|.
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Let S= {A1, . . . ,An} be a scheme.A subscheme ofS is any nonempty subset of S. The notationf
∣∣
Z

stands for the restriction off to Z, for any functionf : X→Y and anyZ⊆ X. Let R= {t1, t2, . . . , tp} be
a relation over S and let T be a subscheme of S.The projection of R onT is R↾ T = {t j

∣∣
T : 1≤ j ≤ p}.

Definition 1 (quotient relation) Let R be a relation over some schemeS. For anyX = {X1,X2, . . . ,
Xn} ∈Π(S), R/X⊆⋊⋉n

i=1 (R↾ X i) is the following relation:

∀{y1y2 . . .yn} ∈⋊⋉n
i=1(R↾ X i) :

{y1y2 . . .yn} ∈ R/X iff ∃t ∈ R∀i 1≤i≤n(t ↾ X i = yi)

We termR/X thequotient relation ofR relative toX. WhenX is understood we say simplythe quotient
relation ofR.

We emphasise the quotient relation is not over S but over a partition of S.

Here is an example of a quotient relation. Let S= {A,B,C,D}, let each attribute have precisely two
values, sayA= {a1,a2} and so on, letX1 = {{A,B},{C,D}}, letX2 = {{A},{B},{C},{D}}, and let

R′ = {{a1b1c1d1},{a1b1c2d2},{a1b2c1d2},{a2b2c1d1},{a2b2c2d2}} (1)

be a relation over S. Then

R′/X1 = {{{a1,b1}{c1,d1}},{{a1,b1}{c2,d2}},{{a1,b2}{c1,d2}},

{{a2,b2}{c1,d1}},{{a2,b2}{c2,d2}}} (2)

R′/X2 = {{{a1}{b1}{c1}{d1}},{{a1}{b1}{c2}{d2}},{{a1}{b2}{c1}{d2}},

{{a2}{b2}{c1}{d1}},{{a2}{b2}{c2}{d2}}} (3)

A quotient relation is but a grouping together of the tuples of the original relation into subtuples according
to the partition. It trivially follows that|R/X| = |R| for any relationR over any attribute set S and any
X ∈Π(S).

2.5 Independent partitions

For a given relationRover some schemeS, we are after decompositions ofR such thatR equals the join
of the obtained components. Each decomposition of this kindcorresponds to a certain partition ofS.

Definition 2 (independent partition) Let R be a relation over some scheme S. For anyX ∈Π(S), X is
an independent partition of S with respect toR if R= ⋊⋉

Y∈X
R ↾ Y. The set of all independent partitions

of S with respect to R is denoted byIΠR(S), or shortly IΠ(S) if R is understood. If a partition is not
independent, it isdependent.

Note that IΠ(S) is nonempty since it necessarily contains the trivial partition.

Proposition 1 For every independent partitionX, R/X is the complete relation overX.

Informally speaking, the object of the present study is the independent partition with the maximum
number of equivalence classes, provided it is unique.

3 Correlation in Relations

In this section we define correlation in relations and quotient relations. From now on assume an arbitrary
but fixed scheme S and relationRover it.
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3.1 Correlated subsets of ground sets

In this subsection, the ground sets are schemes.

Definition 3 (correlated subsets of schemes)LetS= {A1,A2, . . . ,An} and letT be some nonempty sub-
scheme{Ai1,Ai2, . . . ,Aim} where1≤ i1 < i2 < · · · < im ≤ n. T is self-correlated with respect toR, or
shortlycorrelated with respect toR, iff

∃x1 ∈ Ai1 ∃x2 ∈ Ai2 · · · ∃xm∈ Aim : {x1x2 · · ·xm} 6∈R↾ T (4)

We denote that fact by corrR(T) or corr(T) if R is understood. The opposite concept isuncorrelated. The
family{T⊆ A |corrR(T)}, in case it is nonempty, is calledthe correlation family ofR.

Note that no minimal correlated subset is a singleton. The following result re-states correlation of a
subscheme in terms of the projection of the relation on it.

Lemma 1 LetT⊆ S. Then corr(T) iff R ↾ T ( ⋊⋉X∈T R↾ {X}.

Proof: First assume corr(T). By Definition 3, there is an element in every attribute from Tsuch that the
tuple of those elements does not occur inR ↾ T. On the other hand, the tuples of⋊⋉X∈T R ↾ {X} are all
possible combinations of the elements of the attributes in T. Therefore,R↾ T ( ⋊⋉X∈T R↾ {X}.

In the other direction, assume¬corr(T). The negation of expression (4) in Definition 3 is but another
way to writeR↾ T = ⋊⋉X∈T R↾ {X}. �

As the next result establishes, with respect to the poset(S,⊆), every correlated subset is upward
closed, while every uncorrelated subset is downward closed.

Proposition 2 If corr(T) for someT ⊆ S then∀ZT⊆Z⊆S : corr(Z). If ¬corr(T) for someT ⊆ S then
∀ZZ⊆T : ¬corr(Z).

It is obvious that the correlation family, if it exists, is a cover of the scheme. Furthermore, it does not
exist iff the relation is complete. The interesting part of acorrelation family is the sub-family comprising
the minimal correlated sets. However, that sub-family doesnot necessarily cover the scheme. We want
to define a family that both covers the scheme—because we are ultimately interested in a partition of the
scheme—and is a Sperner family, since the implied members ofthe family are of no interest.

Definition 4 (mincor family) A mincor of R is every minimal, self-correlated with respect to R, sub-

schemeT ⊆ S. Further, mincors(R)
def
= {T ⊆ S|T is a mincor} and singletons(R)

def
= {{A}|A ∈ S∧¬∃X ∈

mincors(R) : A∈ X}. The mincor familyof R, denoted byMF(R), is MF(R) = mincors(R)∪ singletons(R).

For example, considerR′ defined in (1) on the facing page. Clearly, corrR′({A,B}) and corrR′({C,D})
because of the lacks of botha2 andb1 in any tuple and the lack of bothc2 andd1 in any tuple, respectively.
The other four two-element subsets of S are uncorrelated. Then singletons(R′) = /0 and thereforeMF(R′) =
{{A,B},{C,D}}.

Proposition 3 With respect toSand R,MF(R) exists and is unique.

If R is complete thenMF(R) consists of singletons. Clearly,MF(R) ∈ K(S), and thusCC(MF(R)) ∈Π(S).

3.2 Correlation in quotient relations

The following result establishes an important connection between self-correlation in a partition of the
scheme and self-correlation in the scheme itself. More specifically, Lemma 2 is used to prove Lemma 3,
and the latter is used in the proof of Lemma 7 on page 71.
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Lemma 2 For anyX ∈Π(S) andX′ ⊆ X:

corrR/X(X
′)↔ corrR(∪X

′)

Proof: Assume corrR/X(X
′). LetX′ = {Y1,Y2, . . . ,Ym}. So,(R/X) ↾ X′ does not contain somem-tuple

{U1,U2, . . . ,Um} such thatUi ∈ R↾Yi for 1≤ i ≤m. ThenR↾ ∪X′ does not contain∪{U1,U2, . . . ,Um}.
In the other direction, assume corrR(∪X

′) where∪X′ is a subset S′ of S. Let S′ = {A1,A2, . . . ,An}.
That is, R ↾ S′ does not contain somen-tuple {W1,W2, . . . ,Wn} such thatWi ∈ Ai for 1≤ i ≤ n. Let
X′ = {Y1,Y2, . . . ,Ym}. Then(R/X) ↾ X′ does not contain them-tuple{U1,U2, . . . ,Um} whereUi ∈ R↾Yi

for 1≤ i ≤m. �

As an example that illustrates Lemma 2, considerR′ andX1 on page 64. Clearly,X1 = {{A,B},{C,D}} is
self-correlated with respect tõR/X1 asR̃/X1 does not contain, among others, the tuple{{a1,b1}{c1,d2}}.
That implies∪X1 = {A,B,C,D} is self-correlated with respect tõR: since{{a1,b1}{c1,d2}} is not an
element ofR̃/X1, it must be the case that{a1b1c1d2} is not element ofR̃ (and indeed it is not). In the
other direction, the fact that{a1b1c1d2} 6∈ R̃ implies{{a1,b1}{c1,d2}} 6∈ R̃/X1.

The next result establishes that for every mincor Y of a quotient relation there is a way to pick elements
from every element of Y such that the collection of those elements is a mincor of the original relationR.

Lemma 3 ∀X ∈Π(S) ∀Y ∈ mincors(R/X) ∃Z ⋐Y : |Z|= |Y|∧∪Z ∈ mincors(R).

Proof: AssumeY ∈ mincors(R/X). Clearly, there is some Z⋐Y such that∪Z is correlated with respect
to Rbecause⋐ is reflexive and∪Y is correlated with respect toRby Lemma 2. Now consider any Z′⋐Y

such that|Z′| < |Y|. There exists someY′ ⊂Y such that Z⋐Y′. But Y′ is uncorrelated with respect
to R/X becauseY is a mincor ofR/X and so every proper subset ofY is uncorrelated with respect to
R/X. Note thatY′ being uncorrelated with respect toR/X implies∪Z′ is uncorrelated with respect toR
by Lemma 2. It follows that for any Z⋐Y such that corrR(∪Z)—and we established such a Z exists—it
is the case that|Z|= |Y|.

So, there exists a Z⋐ Y such that|Z| = |Y| and∪Z is correlated with respect toR. Furthermore,
there does not exist Z⋐ Y such that|Z| < |Y| and∪Z is correlated with respect toR. Consider any
Z̃ ⋐Y such that∪Z̃ is correlated with respect toR. As |Z̃| = |Y|, every element ofY is a superset of
precisely one element of̃Z.

First assume all elements ofZ̃ are singletons. In this case no proper subset of∪Z̃ is correlated with
respect toR. Suppose the contrary, namely that some W⊂∪Z̃ is correlated with respect toRand deduce
there is some Z′′ ⋐Y such that W= ∪Z′′, thus|Z′′|< |Y|, such that∪Z′′ is correlated with respect toR.
Since no proper subset of∪Z̃ is correlated with respect toR, ∪Z̃ is a mincor with respect toRand we are
done with the proof.

Now assume not all elements ofZ̃ are singletons. It trivially follows there exists a minimal setẐ ⋐ Z̃
such that|Ẑ|= |Z̃| (thus|Ẑ|= |Y|) such that∪Z̃ is correlated with respect toR. �

4 Results on Independent Partitions

This section provides important auxiliary results concerning independent partitions. In subsection 4.1
we investigate the connection between independence and self-correlation. In subsection 4.2 we prove the
meet of independent partitions is an independent partition.
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4.1 Independence and the mincor family

The following lemma establishes that partition independence is preserved under removal of attributes.

Lemma 4 ∀Y ∈ IΠ(S) ∀X⋐Y : X ∈ IΠR↾∪X(∪X).

Proof: Let Q = R ↾ ∪X. We prove thatQ = ⋊⋉
Z∈X

(Q ↾ Z). In one direction,Q⊆ ⋊⋉
Z∈X

(Q ↾ Z) follows

immediately from the definitions of relation join and projection. In the other direction, consider any
tuple t in ⋊⋉

Z∈X
(Q ↾ Z). Let v be any tuple in ⋊⋉

Z∈Y
(R ↾ Z) such thatt = v

∣∣
∪X

. But v ∈ R becauseY is

independent and thusR= ⋊⋉
Z∈Y

(R↾ Z). As v∈ R, it follows thatv
∣∣
∪X
∈Q. But v

∣∣
∪X

is t, thereforet ∈Q,

and so ⋊⋉
Z∈X

(Q ↾ Z)⊆Q. �

The next lemma is pivotal. It shows that the mincors respect independent partitions, in the sense that no
mincor can intersect more than one element of an independentpartition.

Lemma 5 ∀Y ∈ IΠ(S) ∀W ∈ mincors(R) ∃Y ∈Y : W⊆ Y.

Proof: Assume the contrary. Then there is a mincor W that has nonempty intersection with more than
one set fromY. Suppose W has nonempty intersection with preciselyt sets fromY for somet such that
2≤ t ≤ q. Let Y1, Y2, . . . , Yt be precisely those sets fromY that have nonempty intersection with W.
Let Wi = W∩Y i, for 1≤ i ≤ t. Clearly,

⋃t
i=1Wi = W. By Lemma 4:

R↾ W = ⋊⋉
1≤i≤t

R↾ Wi

Every Wi is a proper subset of W. But W is a minimal correlated set. Thatimplies ¬corr(Wi), for
1≤ i ≤ t. Apply Lemma 1 to conclude thatR↾ Wi = ⋊⋉

x∈Wi

R↾ {x}. Then,

R↾ W = ⋊⋉
1≤i≤t

⋊⋉
x∈Wi

R↾ {x}

Obviously, ⋊⋉
1≤i≤t

⋊⋉
x∈Wi

R ↾ {x} = ⋊⋉
x∈W

R ↾ {x}. Then,R ↾ W = ⋊⋉
x∈W

R ↾ {x}. By Lemma 1 that implies

¬corr(W). �

Furthermore, merging mincors also yields sets that respectindependent partitions.

Corollary 1 ∀Y ∈ IΠ(S) : CC(MF(R))⊑Y.

Proof: Assume the contrary. Then for someR on S andY ∈ IΠ(S):

∃X ∈ CC(MF(R)) ∀Y ∈Y ∃A∈ X : A 6∈ Y

First note that X is not a singleton, otherwise X would be contained in some set fromY. So,|X| ≥ 2 and
according to Definition 4, X is the union of one or more mincors, each of size≥ 2, and X is connected.
But by assumption X is not a subset of any set fromY and so there has to be some mincor W∈ X that
has nonempty intersection with at least two sets fromY . However, that contradicts Lemma 5. �

Note thatCC(MF(R)) is not necessarily an independent partition. For example, considerR′ defined in (1)
on page 64. As explained on page 65,MF(R′) = {{A,B},{C,D}} and thusCC(MF(R′)) = {{A,B},{C,D}},
too. But{{A,B},{C,D}} is not an independent partition with respect toR′. In fact, there is no indepen-
dent partition of S except for the trivial partition as|R′| is a prime number.
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Now consider another relationR′′ on the same scheme:

R′′ = {{a1b1c1d1},{a1b1c1d2},{a1b1c2d2},{a1b2c1d1},{a1b2c1d2},{a1b2c2d2},

{a2b2c1d1},{a2b2c1d2},{a2b2c2d2}}

But MF(R′′) = {{A,B},{C,D}} = CC(MF(R′′)) just as in the case ofR′. Now {{A,B},{C,D}} is an inde-
pendent partition with respect toR′′ becauseR′′ = R′′ ↾ {A,B}⋊⋉R′′ ↾ {C,D}.

So, in the case ofR′′, the connected components of the mincor family constitute an independent
partition, while that is not true forR′, although the mincor families of both relations are the same. We
conclude that computing the mincor family does not suffice toobtain an independent partition. Therefore,
we use a more involved approach in which the computation of the mincor family is but the first step
towards the computation of the maximum independent partition.

4.2 The meet of independent partitions

The following lemma allows us to define the maximum independent partition as the meet of all indepen-
dent partitions.

Lemma 6 ∀X,Y ∈ IΠ(S) : X⊓Y ∈ IΠ(S).

Proof: (sketch) Let X,Y ∈ IΠ(S). We assumeX⊔Y is connected. There is no true loss of generality
in that because the proof below can be done componentwise ifX⊔Y is not connected. Relative to an
arbitrary element ofX, sayX1, we define the familyZ= {Z0,Z1, . . . ,Zk} over S as follows.Z is a partition
of S and its elements are constructed in an ascending order ofthe index according to the following rule:

Zi =





X1, if i = 0
⋃
{A\Zi−1 |A∈Y∧A∩Zi−1 6= /0}, if i is odd

⋃
{A\Zi−1 |A∈ X∧A∩Zi−1 6= /0}, if i is even andi > 0

Let us defineBi =
{⋃i

j=0 Z j
}
⊓X⊓Y for 0≤ i ≤ k. Clearly,B0 = {X1}⊓Y, Bi = Bi−1∪ ({Zi}⊓X⊓Y)

for 1≤ i ≤ k andBk = X⊓Y. Furthermore,∪Bk = S and thusR↾ ∪Bk = R. We prove by induction oni
that for all i such that 0≤ i ≤ k:

R↾ ∪Bi = ⋊⋉
C∈Bi

R↾C (5)

and hence the result follows.

Basis. Let i = 0. Let the elements ofY that have nonempty intersection withX1 be calledY1, . . . ,Yj .
Obviously, there is at least one of them. The claim is thatR ↾ X1 = ⋊⋉

j
i=1R ↾ (X1∩Yi). That follows

immediately from Lemma 4.

Inductive Step.Assume the claim holds for someBi−1 such that 0≤ i−1< k and considerBi. As already
mentioned,Bi = Bi−1∪ ({Zi}⊓X⊓Y).

Without loss of generality, assumei is odd. Very informally speaking,Zi is the union of some
elements ofY that overlap with some elements (fromX) in Bi−1, minus the overlap. Therefore, we can
write Bi = Bi−1∪ ({Zi}⊓X) because under the current assumption, it isX rather thanY that dictates the
grouping together of the elements ofZi in Bi. More specifically, sincei 6= k, there are elements fromX
whose elements do not appear in the currentBi; those elements ofX dictate the aforementioned grouping.
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So,Bi is the union of two disjoint sets whose elements are fromX⊓Y, namelyBi−1 and{Zi}⊓X.
By the inductive hypothesis,R↾ ∪Bi−1 = ⋊⋉

C∈Bi−1

R↾C.

Consider{Zi}⊓X and call its elements,T1, . . . , Tm. Without loss of generality, considerT1. Our
immediate goal is to prove thatR ↾ ((∪Bi−1) ∪T1) = ⋊⋉

C∈Bi−1∪{T1}
R ↾C. Note thatT1 is a subset of some

Y′ ∈Y such thatY′ has nonempty intersection with∪Bi−1, T1 itself being disjoint withBi−1. Furthermore,
T1 is the intersection ofY′ with someX′ ∈ X. X′ is disjoint with∪Bi−1, otherwise the elements ofT1

would be part of∪Bi−1. Furthermore, every element ofBi−1 is a subset of some element ofX that is not
X′. Let the elements ofX that have subsets-elements ofBi−1 beX1, . . . , Xp. Note thatX1∪ ·· · ∪Xp =
∪Bi−1. By Lemma 4, it is the case that

R↾ (X1∪ ·· ·∪Xp∪T1) = R↾ X1⋊⋉ · · ·⋊⋉R↾ Xp⋊⋉R↾ T1 (6)

sinceT1 is a subset ofX′ andX′ is none ofX1, . . . ,Xp. However,X1∪·· ·∪Xp∪T1 = (∪Bi−1) ∪T1 by an
earlier observation andR↾ X1⋊⋉ · · ·⋊⋉R↾ Xp = ⋊⋉

C∈Bi−1

R↾C. Substitute that in equation 6 to obtain

R↾ (∪Bi−1∪T1) =

(
⋊⋉

C∈Bi−1

R↾C

)
⋊⋉R↾ T1 = ⋊⋉

C∈Bi−1∪{T1}
R↾C (7)

which is what we wanted to prove with respect toT1.

We can use (7) as the basis of a nested induction. More specifically, we prove that

R↾ ((∪Bi−1) ∪T1∪ ·· ·∪Tk) =

(
⋊⋉

C∈Bi−1

R↾C

)
⋊⋉R↾ T1⋊⋉ · · ·⋊⋉R↾ Tk

implies

R↾ ((∪Bi−1) ∪T1∪ ·· ·∪Tk+1) =

(
⋊⋉

C∈Bi−1

R↾C

)
⋊⋉R↾ T1⋊⋉ · · ·⋊⋉R↾ Tk+1

for anyk∈ {1,2, . . . ,m−1}. The nested induction can be proved in a straightforward manner, having in
mind the proof of (7). That implies the desired:

R↾ ((∪Bi−1) ∪T1∪ ·· ·∪Tm) =

(
⋊⋉

C∈Bi−1

R↾C

)
⋊⋉R↾ T1⋊⋉ · · ·⋊⋉R↾ Tm

And that concludes the proof because∪Bi = ∪Bi−1∪T1∪ ·· ·∪Tm. �

The proof of Lemma 6 relies on the fact that all sets we consider are finite.

As a corollary of Lemma 6, the maximum independent partition, which is the object of our study, is
well-defined:⊓ IΠ(S) exists, it is unique, and is an element of IΠ(S). For notational convenience we
introduce another term for that object. We say that⊓ IΠR(S) is thefocusof R and denote it byfoc(R). A
trivial observation is that IΠR(S) coincides with↑foc(R).

5 A Fixed Point Characterisation of the Maximum IndependentPartition

In this section we identify the object of our study as the least fixed point ofα , whereα is a transformer on
the lattice of all partitions ofS. Furthermore, we present an iterative fixed point approximation procedure
for computing the maximum independent partition.
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5.1 Functionα

First we introduce a helper function. LetA be a ground set. The functionξ maps superfamilies overA to
families overA as follows. For any superfamilyF:

ξ (F) def
=

{
∪Z|Z ∈ F

}

Syntactically speaking,ξ removes the innermost pairs of parentheses. For instance, supposeA= {a,b,c,d}
andF= {{{a},{b,c}},{{d}}}. Thenξ (F) = {{a,b,c},{d}}.

We now define the central function of the present study. It takes a partition ofS, identifies the mincors
of the corresponding quotient relation, merges the overlapping mincors, and usesξ to map the result back
to a partition ofS.

Definition 5 (function α) αR : Π(S)→ Π(S), shortlyα when R is understood, is defined as follows for
anyX ∈Π(S):

αR(X)
def
= ξ (CC(MF(R/X)))

Notably, α is not monotonein general as demonstrated by the following example. LetS̃= {A,B,
C,D,E} and let each attribute have precisely two values, sayA = {a1,a2} and so on. LetQ be the
relation obtained from the complete relation overS̃ after deleting all tuples containinga1b1c1, all tuples
containingd2e2, and the tuples{a2b1c1d2e1},{a2b2c1d2e1}. In other words,

Q={{a1b1c2d1e1},{a1b1c2d1e2},{a1b1c2d2e1},{a1b2c1d1e1},{a1b2c1d1e2},{a1b2c1d2e1}

{a1b2c2d1e1},{a1b2c2d1e2},{a1b2c2d2e1},{a2b1c1d1e1},{a2b1c1d1e2},{a2b1c2d1e1}

{a2b1c2d1e2},{a2b1c2d2e1},{a2b2c1d1e1},{a2b2c1d1e2},{a2b2c2d1e1},{a2b2c2d1e2},{a2b2c2d2e1}}

Let us see which sets of attributes are self-correlated withrespect toQ. The only two-element
subset of̃S that is self-correlated is{D,E}. Further,{A,B,C} is self-correlated. It followsMF(Q) =
{{A,B,C},{D,E}}. Consider the following two partitions of̃S: X1 = {{A},{B},{C},{D},{E}} and
X2 = {{A},{B,D},{C,E}}. Obviously,X1 ⊑ X2. It is clear thatα(X1) = {{A,B,C},{D,E}}. Con-
sider α(X2). The set{{B,D},{C,E}} is self-correlated because of the lack of{b1,d2} and{c1,e2}
in any tuple, which in its turn is due to the fact thatd2 ande2 do not occur in any tuple ofR. The sets
{{A},{B,D}} and{{A},{C,E}} are uncorrelated. It follows thatα(X2) = {{A},{B,C,D,E}}, and thus
α(X1) 6⊑ α(X2).

However, we have the following property ofα that shall later be exploited.

Proposition 4 α is an inflationary function on(Π(S),⊑).

5.2 Independence and functionα

The following central result establishes that the independent partitions are precisely the fixed points ofα .

Theorem 1 ∀X ∈Π(S) : X ∈ IΠ(S)↔ α(X) = X.

Proof: In one direction, assumeX ∈ IΠ(S). R/X is complete by Proposition 1. By definition, that is
R/X = "Y∈XY. By the definition of⊲⊳, (R/X) ↾ X = ⋊⋉Y∈X(R/X) ↾ {Y}. It follows that¬corr(X) by
Lemma 1. So,mincors(R/X) = /0 andMF(R/X) = singletons(R/X) by Definition 4. ThenCC(MF(R/X)) =
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{{A}|A ∈ X}. Therefore,ξ (CC(MF(R/X))) = {A|A∈ X} = X. But ξ (CC(MF(R/X))) is α(X) by defini-
tion. Therefore,α(X) = X.

In the other direction, assumeα(X) = X. That is,ξ (CC(MF(R/X))) = X, which in its turn implies
CC(MF(R/X)) = {{A}|A∈X} becauseCC(MF(R/X)) is a superfamily such that every element from S is in
precisely one element of precisely one element of it. The remainder of the proof mirrors the above one.
�

Having in mind the observation on page 69 that IΠR(S) coincides with↑foc(R), we derive the follow-
ing corollary of Theorem 1.

Corollary 2 ↑foc(R) is closed with respect toα .

The following lemma says that the mincors of a quotient relation respect the focus of the relation in the
sense that for every mincor ofR/X, the union of its elements is a subset of some element of the focus.

Lemma 7 ∀X ∈ ↓foc(R) ∀T ∈ mincors(R/X) ∃Y ∈ foc(R) : ∪T ⊆ Y.

Proof: Assume the contrary. That is, for some partitionX that refines the focus there is a mincorT
of R/X such that∪T has nonempty intersection with at least two subsets, call them Y1 and Y2, of the
focus. Use Lemma 3 to conclude there is some Z⋐ T such that|Z| = |T| and∪Z ∈ mincors(R). Since
|Z| = |T|, it must be the case that∪Z has nonempty intersection with both Y1 and Y2. But the focus is
an independent partition. We derived that a mincor ofR, namely∪Z, intersects two distinct elements of
an independent partition. That contradicts Lemma 5 directly. �

We already established (see Proposition 4) thatα is an inflationary function. The next lemma, however,
establishes a certain restriction: the application ofα on a dependent partition can yield another dependent
partition or at most the focus, and never an independent partition “above” the focus.

Lemma 8 ↓foc(R) is closed with respect toα .

Proof: We prove that∀X ∈ ↓foc(R) : α(X)⊑ foc(R). Recall thatα(X) is a partition of S and it abstracts
X. Assume the claim is false. Then there is a partitionX such thatX⊑ ↓foc(R) butα(X) 6⊑ ↓foc(R). Then
there is some P∈ α(X) such that P has nonempty intersection with at least two elements, call them Y1
and Y2, of foc(R). However, P isξ (C) for someC that is a connected component—relative to the ground
setX—of the mincor family ofR/X. ConsiderC. It is the union of one or more mincors ofR/X, those
mincors being subsets ofX.

SinceX ⊑ foc(R), no element ofX can intersect both Y1 and Y2. It follows that at least one mincor
M ∈C is such that∪M intersects both Y1 and Y2. But that contradicts Lemma 7. �

The next and final central result allows us to compute the focus of R by an iterative application ofα ,
starting with the partition into singletons.

Theorem 2 For some m such that1≤m≤ |S|, αm(⊥) = foc(R).

Proof: Consider the sequence:

C=⊥, α(⊥), α2(⊥), . . .

It is a chain in the lattice(Π(S),⊑), asα(X) abstractsX for all X (see Proposition 4), therefore all those
elements are comparable with respect to⊑. C has only a finite number of distinct elements as the said
lattice is finite.

First note that every element ofC is in ↓foc(R). Indeed, assuming the opposite immediately contra-
dicts Lemma 8.



72 Self-Correlation and Maximum Independence

Then note that for everyX ∈ ↓foc(R)\{foc(R)}, it is the case thatα(X) 6= X. Assuming the opposite
impliesX is a fixed point ofα , contradicting Corollary 2. Proposition 4 implies a stronger fact: for every
X ∈ ↓foc(R)\{foc(R)}, it is the case thatX⊏ α(X). But ↓foc(R) is a finite lattice. It follows immediately
that for some valuemnot greater than|S|, αm(⊥) equals the top of↓foc(R), viz. foc(R). �

We thus obtain Kleene’s iterative least fixed point approximation procedure [7], however for inflationary
functions instead of monotone ones.

Corollary 3 The following algorithm:

X←⊥

while X 6= α(X)

X← α(X)

return X

computes the least fixed point ofα , i.e., the maximum independent partition ofS with respect to R. �

Here is a small example illustrating the work of that algorithm. Consider S andR′ defined in (1) on
page 64.⊥ is {{A},{B},{C},{D}}. Let us computeα(⊥), that is,ξ (CC

(
MF

(
R′/⊥

))
). R′/⊥ is the same

asR′/X2 on page 64, namely:

R′/⊥= {{{a1}{b1}{c1}{d1}},{{a1}{b1}{c2}{d2}},{{a1}{b2}{c1}{d2}},

{{a2}{b2}{c1}{d1}},{{a2}{b2}{c2}{d2}}}

Let us computeCC
(
MF

(
R′/⊥

))
. Having in mind thatMF(R′) = {{A,B},{C,D}} as explained on page 65,

conclude thatCC
(
MF

(
R′/⊥

))
= {{{A,B}},{{C,D}}}. Therefore,ξ (CC

(
MF

(
R′/⊥

))
) = {{A,B},{C,D}}.

That differs from⊥ and thewhile loop is executed again.R′/α(⊥) is the same asR′/X1 on page 64,
namely:

R′/α(⊥) = {{{a1b1}{c1d1}},{{a1b1}{c2d2}},{{a1b2}{c1d2}},

{{a2b2}{c1d1}},{{a2b2}{c2d2}}}

Let us computeCC
(
MF

(
R′/α(⊥)

))
. To that end, note thatα(⊥) = {{A,B},{C,D}} is self-correlated

with respect toR′/{{A,B},{C,D}} because of the lack of, for instance, both{a1,b2} and{c1,d1} in
any tuple ofR′/α(⊥). It follows thatCC

(
MF

(
R′/α(⊥)

))
= {{{A,B},{C,D}}} and, therefore,α2(⊥) =

ξ (CC
(
MF

(
R′/α(⊥)

))
) = {{A,B,C,D}}. That differs fromα(⊥) and thewhile loop is executed once

more. At the end of that execution, it turns out thatα3(⊥) equalsα2(⊥) and the algorithm terminates,
returning as the result{{A,B,C,D}}, the trivial partition.

6 Related Work

An algorithm that factorizes a given relation into prime factors is proposed in [10, algorithm PRIME

FACTORIZATION]. It runs in timeO(mnlgn) wherem is the number of tuples andn is the number of
attributes. Sincemn is the input size, that time complexity is very close to the optimum. The theoretical
foundation of PRIME FACTORIZATION is a theorem (see [10, Proposition 10]) that says a given relation
Shas a factorF iff, with respect to any attributeA and any valuev of its domain,F is a factor of bothQ
andR whereQ andR are relations such thatQ∪R= SandQ consists precisely of the tuples in which
the value ofA is v. In other words, the approach of [10] to the problem of computing the prime factors
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is “horizontal splitting” of the given relation using the selection operation from relational algebra. The
approach of this paper to that same problem is quite different. We utilise “vertical splitting”, using the
projection operation of relational algebra. The theoretical foundation of our approach is based on the
concept of self-correlation of a subset of the attributes; that concept has no analogue in [10].

An excellent exposition of the benefits of the factorisationof relational data is [11]. The factorised
representation both saves space, where the gain can potentially be as good as exponential, and time,
speeding up the processing of information whose un-factorised representation is too big. [1] proposes a
way of decomposing relational data that is incomplete and [13] proposes factorisation of relational data
that facilitates machine learning.

Clusterisation of multidimensional data into non-intersecting classes called clusters is an important,
hard and computationally demanding problem. [5] investigates clustering in high-dimensional data by
detection of orthogonality in the latter. [8] proposes so called community discovering, which is a sort of
clusterisation, in media social networks by utilising factorisation of a relational hypergraph.

The foundation of this paper is the work of Gurovet al. [6] that investigates relational factorisation
of a restricted class of relations called there simple families. [6] introduces the concept of correlation
between the attributes and proposes a fast and practical algorithm that computes the optimum factorisa-
tion of a simple family by using a subroutine for correlation. The fundamental approach of this paper is
an extension of that, however now correlation is considerately more involved, being not a binary relation
between attributes but a relation of arbitrary arity (this is the only place where “relation” means relation
in the Set Theory sense, that is, a set of ordered tuples).

7 Conclusion

This paper illustrates the utility of fixed points to formally express maximum independence in relations
by means of minimum correlated sets of attributes. By using minimum correlated sets, we define an
inflationary transformer over a finite lattice and show the maximum independent partition is the least
fixed point of this transformer. Then we prove the downward closure of that least fixed point is closed
under the transformer. Hence, the least fixed point can be computed by applying the transformer itera-
tively from the bottom element of the lattice until stabilization. This iterative construction is the same as
Kleene’s construction, but does not rely on monotonicity ofthe transformer to guarantee that it computes
the least fixed point.

A topic for future work is to introduce a quantitative measure for the degree of independence between
sets of attributes and investigate approximate relationalfactorisation.
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