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Abstract. We present a proof system for verifying CCS processes in the
modal µ-calculus. Its novelty lies in the generality of the proof judge-
ments allowing parametric and compositional reasoning in this complex
setting. This is achieved, in part, by the use of explicit fixed point ordinal
approximations, and in part by a complete separation, following an ap-
proach by Simpson, of rules concerning the logic from the rules encoding
the operational semantics of the process language.

1 Introduction

In a number of recent papers [1,2,3,4,9] proof-theoretical frameworks for com-
positional verification have been put forward based on Gentzen-style sequents
of the shape Γ ` ∆, where the components of Γ and ∆ are correctness asser-
tions P : φ. Several programming or modelling languages have been considered,
including CCS [3], the π-calculus [2], CHOCS [1], general GSOS-definable lan-
guages [9], and even a significant core fragment of a real programming language,
Erlang [4]. An important precursor to the above papers is [10] which used ternary
sequents to build compositional proof systems for CCS and SCCS vs. Hennessy-
Milner logic [6].

A key idea is that the use of a general sequent format allows correctness
properties P : φ to be stated and proved in a parametric fashion. That is, cor-
rectness statements φ of a composite program P (Q1, Q2), say, can be relativized
to correctness statements of the components, Q1, Q2. A general rule of subterm
cut

Γ ` Q : ψ,∆ Γ, x : ψ ` P : φ,∆
Γ ` P [Q/x] : φ,∆

(1)

allows such subterm assumptions to be introduced and used for compositional
verification.

It is, however, difficult to support temporal properties within such a frame-
work. As is well known [12], logics like LTL, CTL, or CTL∗ are poorly equipped
for compositional reasoning without resort to devices like history or prophecy
variables. For this reason, our investigations have tended to focus on logics based,
in some form, on the modal µ-calculus in which the recursive properties needed
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for property decomposition can more adequately be expressed. In [3] the first
author showed one way of realizing a proof system using the subterm cut rule,
and built, for the first time, a compositional proof system capable of handling
general CCS terms, including those that create new processes dynamically. In [4]
we used a similar, though considerably improved, approach to address Erlang.

The approach of [3] suffered from two main shortcomings, however:

1. Though systematic, the embedding of the CCS operational semantics into
the proof system was indirect, and allowed only rather weak completeness
results to be obtained.

2. The handling of recursive formulas was very syntactic and hedged by com-
plicated side conditions, hiding the essence of our proof-theoretical approach
from view.

In this paper both these issues are addressed. First, following an idea by Simp-
son [9] we fully separate the embedding of the transitional semantics for P from
the general handling of the logic by employing process variables and transition
assertions of the shape P α→ Q. These assertions provide a semantically explicit
bridge between the transitions of P and the one-step modalities of the logic. A
similar approach is used to handle the second complication. The essential diffi-
culty is that, to be sound, rates of progress for fixed point formulas appearing
in different places in a sequent must be related. To achieve this in a simple and
semantically explicit way we employ fixed point approximations using ordinal
variables, and ordinal constraints of the shape κ1 < κ2.

In the paper we first introduce the modal µ-calculus with explicit ordinal
approximations, and we introduce the basic form of judgment used in the proof
system. In the absence of process structure such as CCS, models are just standard
Kripke models. Correspondingly, the proof system in this case can be seen to
provide an account of Gentzen-style logical entailment. The novelty, in this case,
lies in the use of ordinal approximations. This fragment of the proof system
is introduced in Sect. 3. The key ingredient to release the power of this proof
system is a rule of discharge, or termination, which recognizes proofs by well-
founded induction. In another paper [5] we introduce a game which embodies
such a rule, and show completeness of the resulting proof system by reduction to
Kozen’s well-known axiomatization [7]. A practical rule of discharge, however,
must be local which the game condition of [5] is not. Here, instead, we introduce
a local version of the discharge rule which is, we believe, a simple and intuitive
approximation of the complete global condition. This local discharge rule is
introduced (summarily, in this abstract) in Section 4. A full instantiation of our
approach to CCS requires in addition an embedding of the CCS operational
semantics into the present Gentzen-style format (following Simpson [9]) plus the
subterm cut rule (1). This extension is shown in Section 5, and then in Section
6 we give a rough sketch of a correctness proof of a simple infinite state CCS
process.
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2 Logic

Formulas φ are generated by the following grammar, where κ ranges over a set
of ordinal variables, α over a set of actions, and X over a set of propositional
variables.

φ ::= φ ∨ φ ¬φ 〈α〉φ X µX.φ (µX.φ)κ

An occurrence of a subformula ψ in φ is positive, if ψ appears in the scope of
an even number of negation symbols. Otherwise the occurrence is negative. The
formation of least fixed point formulas of one of the shapes µX.φ or (µX.φ)κ

is subject to the usual formal monotonicity condition that occurrences of X in
φ are positive. We use the symbols U and V to range over (unindexed) fixed
point formulas µX.φ. A formula φ is propositionally closed if φ does not have
free ocurrences of propositional variables. Standard abbreviations apply:

false = µX.X,

true = ¬false,
φ ∧ ψ = ¬(¬φ ∨ ¬ψ),
[α]φ = ¬〈α〉¬φ,
νX.φ = ¬µX.¬(φ[¬X/X ])

We assume the standard modal µ-calculus semantics [7]:

‖φ ∨ ψ‖ρ = ‖φ‖ρ ∪ ‖ψ‖ρ
‖¬φ‖ρ = S\‖φ‖ρ

‖〈α〉φ‖ρ = {P | ∃Q ∈ ‖φ‖ρ.P α→ Q}
‖X‖ρ = ρ(X)

‖µX.φ‖ρ =
⋂
{S | S ⊆ ‖φ‖ρ[S/X ]}

augmented by the clause:

‖(µX.φ)κ‖ρ =



∅ if ρ(κ) = 0
‖φ‖ρ[‖(µX.φ)κ‖ρ/X, β/κ] if ρ(κ) = β + 1⋃{‖(µX.φ)κ‖ρ[β/κ] | β < ρ(κ)} if ρ(κ) is a limit ordinal

where ρ is an interpretation function (environment), mapping ordinal variables
to ordinals, and propositional variables to sets of closed process terms, or states,
from a domain S ranged over by P .

The use of ordinal approximation hinges on the following results (of which
(1) is the well-known Knaster-Tarski fixed point theorem).

Theorem 1.

1. ‖µX.φ‖ρ =
⋃

β ‖(µX.φ)κ‖ρ[β/κ]
2. ‖(µX.φ)κ‖ρ =

⋃
β<ρ(κ) ‖φ‖ρ[‖(µX.φ)κ‖ρ/X, β/κ]
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Observe how this casts the properties U and Uκ as existential properties:
This is useful to motivate the proof rules for fixed point formulas given below.
Observe also that, for countable models, quantification over countable ordinals
in Theorem 1 suffices. In the definition below, we extend interpretation functions
ρ to map process variables x to closed process terms (states).

Definition 1 (Assertions, Judgements).

1. An assertion is an expression of one of the forms E : φ, κ < κ′, or E α→ F ,
where E,F are a process terms and φ is a propositionally closed formula.

2. The assertion E : φ is valid for an interpretation function ρ (written E |=ρ

φ), if Eρ ∈ ‖φ‖ρ. The assertion κ < κ′ is valid for ρ, if ρ(κ) < ρ(κ′). The
assertion E

α→ F is valid for ρ, if Eρ α→ Fρ is a valid transition.
3. A sequent is an expression of the form Γ ` ∆, where Γ and ∆ are sets of

assertions.
4. The sequent Γ ` ∆ is valid (written Γ |= ∆), if for all interpretation func-

tions ρ, all assertions in Γ are valid for ρ only if some assertion in ∆ is
valid for ρ as well.

An assertion of the shape E : φ is called a property assertion, an assertion of
the shape κ < κ′ is called an ordinal constraint, and an assertion of the shape
E

α→ F is called a transition assertion.

3 Proof System: Logical Entailment

We first consider the problem of logical entailment. In this case, process terms
E in assertions of the shape E : φ are variables.

Structural Rules. We assume the axiom rule, the rule of cut, and weakening:

Ax
·

Γ,A ` A,∆

Cut
Γ ` A,∆ Γ,A ` ∆

Γ ` ∆

W-L
Γ ` ∆
Γ,A ` ∆ W-R

Γ ` ∆
Γ ` A,∆

As in [9], in the axiom rule assertion A needs only be instantiated to transition
assertions, and then ∆ can be assumed to be empty. Since Γ and ∆ are sets,
structural rules like permutation and contraction are vacuous. We conjecture
that both cut and the weakening rules are admissible.
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Logical Rules. In the following listing we assume that U = µX.φ.

¬-L
Γ ` E : φ,∆
Γ,E : ¬φ ` ∆ ¬-R

Γ,E : φ ` ∆
Γ ` E : ¬φ,∆

∨-L
Γ,E : φ ` ∆ Γ,E : ψ ` ∆

Γ,E : φ ∨ ψ ` ∆ ∨-R
Γ ` E : φ,E : ψ,∆
Γ ` E : φ ∨ ψ,∆

〈α〉-L Γ,E
α→ x, x : φ ` ∆

Γ,E : 〈α〉φ ` ∆ fresh(x)

〈α〉-R Γ ` E α→ E′, ∆ Γ ` E′ : φ,∆
Γ ` E : 〈α〉φ,∆

U-L
Γ,E : Uκ ` ∆
Γ,E : U ` ∆ fresh(κ) U-R

Γ ` E : φ[U/X ], ∆
Γ ` E : U,∆

Uκ-L Γ, κ′ < κ,E : φ[Uκ′
/X ] ` ∆

Γ,E : Uκ ` ∆ fresh(κ′)

Uκ-R Γ ` κ′ < κ,∆ Γ ` E : φ[Uκ′
/X ], ∆

Γ ` E : Uκ, ∆

The side condition fresh(x) (fresh(κ)) is intended to mean that x (κ) does not
appear freely in the conclusion of the rule.

The rules for unindexed and indexed fixed point formulas are directly moti-
vated by Theorem 1. The lack of symmetry between rules U-L and U-R is not
accidental; their symmetric counterparts are in fact admissable.

Ordinal Constraints. Finally, we need to provide rules for reasoning about ordi-
nal constraints.

OrdTr
Γ, κ′ < κ ` κ′′ < κ′, ∆
Γ, κ′ < κ ` κ′′ < κ,∆

This rule is sufficient provided ordinal variables and constraints are only being
introduced during the proof, i.e., do not appear in the root sequent.

Theorem 2 (Local Soundness). All rules for logical entailment are individ-
ually sound: Each rule’s conclusion is valid whenever its premises are valid.

4 Proof System: Rule of Discharge

Processes and formulas can be recursive, allowing for proof trees to grow un-
boundedly. Intuitively, one would like to terminate an open branch whenever
a “repeating” sequent is reached, i.e. a sequent which is an instance, up to
some substitution σ, of one of its ancestors, its “companion”, in the proof tree.
A proof structure, all leaf nodes of which are either axioms or such repeating
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nodes, serves as the basis for well-founded ordinal induction arguments. A global
discharge condition is a sufficient condition for such an argument to be valid. In
case a global discharge condition applies all leaves which are not axioms can be
considered induction hypothesis instances in some, possibly deeply nested, proof
by well-founded induction.

The use of ordinal variables and constraints allows global discharge conditions
to be phrased in a clear and semantically transparent way. The most general view
of discharge is presented in game-based terms elsewhere [5]. In essence, global
discharge guarantees well-foundedness of proofs: That along every infinite path
in the infinitely unfolded proof tree, ordinal constraints grow downwards in an
unbounded manner.

Here we present a discharge condition which is, in contrast to the global
condition of [5], more local, and easier to understand and apply. Moreover, even
though it is in general incomplete, it is, in our experience, adequate in a great
many situations. In particular it is powerful enough to handle the example con-
sidered below.

First a single piece of terminology: Two repeat nodes are called related if they
are in the same strongly connected component in the directed graph obtained
from the proof structure by identifying the repeat nodes with their companions.

Definition 2 (Rule of Discharge). A node labelled Γ ` ∆ can be discharged
with Uκ and substitution σ against an ancestor node labelled Γ ′ ` ∆′ if:

(i) Uκ occurs as subformula in Γ ′ or ∆′;
(ii) φσ ∈ Γ whenever φ ∈ Γ ′, and φσ ∈ ∆ whenever φ ∈ ∆′;
(iii) Γ ` κσ < κ is derivable;
(iv) assuming the related discharge nodes labelled Γ1 ` ∆1 . . .Γn ` ∆n have been

discharged with Uκ1
1 . . .Uκn

n and σ1 . . .σn against Γ ′1 ` ∆′
1 . . .Γ ′n ` ∆′

n,
there is a linear ordering ≺ on these discharge nodes including the present
node, such that whenever i ≺ j: (a) Uκi

i occurs as subformula in Γ ′j or ∆′
j,

and (b) either κiσj = κi, or Γj ` κiσj < κi is derivable.

In clause (iv), the linear ordering can be chosen differently each time the rule is
applied (and a new node is added to the corresponding class of related discharge
nodes). The purpose of the clause is to guarantee that along every infinite path
in the infinitely unfolded proof tree, ordinal constraints grow downwards in an
unbounded manner.

Theorem 3 (Soundness). The proof system including the rules for logical en-
tailment and the rule of discharge is sound: All sequents derivable in the proof
system are valid.

For finite state labelled transition systems the above proof system reduces to
an ordinary model checker like the one presented in [11], and is hence complete
for such systems. In general, however, due to undecidability of the model checking
problem addressed here, the system is necessarily incomplete.
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5 Proof System: Operational Semantics

Having transition assertions allows the transitional semantics of a process lan-
guage to be embedded directly into the proof system as a separate set of proof
rules. This can be done in a straightforward manner for any GSOS-definable
language [9]. Here we illustrate this approach on a well-known process language,
Milner’s Calculus of Communicating Systems [8].

We assume that CCS process terms E are generated by the following gram-
mar, where l ranges over a given set of labels, L over subsets of this set of labels,
α over actions of the shape τ , l or l, and x over a set of process variables.

E ::= 0 α.E E + E E|E E\L x fix x.E

The set of states S used in Section 2 is the set of all closed process terms. The
operational semantics of CCS is given as a closure relation on processes through
a set of transition rules [8]: the transitions that a CCS process can perform
are exactly those derivable by these rules. Hence, the transition rules can be
included directly as right introduction rules into our proof system, while the
left introduction rules (stating what transitions are not possible), come from the
closure assumption.

We present only the most significant of the resulting rules, and in particular
the ones used in the Example to follow.

0-L
·

Γ, 0 α→ x ` ∆ α-R
·

Γ ` α.E α→ E,∆

α-L-1
Γ [E/x] ` ∆[E/x]
Γ, α.E

α→ x ` ∆ α-L-2
·

Γ, α.E
β→ x ` ∆ α 6= β

+-L
Γ [y/x], E α→ y ` ∆[y/x] Γ [z/x], F α→ z ` ∆[z/x]

Γ,E + F
α→ x ` ∆

+-R
Γ ` E α→ E′, ∆

Γ ` E + F
α→ E′, ∆

|-R-1
Γ ` E α→ E′, ∆

Γ ` E|F α→ E′|F,∆ |-R-2 Γ ` E l→ E′ Γ ` F l→ F ′, ∆
Γ ` E|F τ→ E′|F ′, ∆

|-L-1
Γ [y|F/x], E l→ y ` ∆[y|F/x] Γ [E|z/x], F l→ z ` ∆[E|z/x]

Γ,E|F l→ x ` ∆

|-L-2

Γ [y1|F/x], E τ→ y1 ` ∆[y1|F/x]
Γ [E|y2/x], F τ→ y2 ` ∆[E|y2/x]

Γ [z1|z2/x], l1 = l2, E
l1→ z1, F

l2→ z2 ` ∆[z1|z2/x]
Γ,E|F τ→ x ` ∆
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fix-L
Γ,E[f ix x.E/x] α→ y ` ∆
Γ, f ix x.E α→ y ` ∆ fix-R

Γ ` E[f ix x.E/x] α→ E′, ∆
Γ ` f ix x.E α→ E′, ∆

In addition to these rules, a subterm cut rule is needed to allow for parametric
and compositional reasoning:

SubtermCut-R
Γ ` F : ψ,∆ Γ, x : ψ ` E : φ,∆

Γ ` E[F/x] : φ,∆
fresh(x)

6 Example

Consider a process
Counter = fixx. up. (x | down.x)

which can alternatingly engage in up and down actions, generating a new copy
of itself after each up action. Clearly, in any point in time, regardless how many
counters have already been spawned, this system can engage in finite sequences
of consecutive down actions only. This propery can be formalised as the negation
of the following formula:

φ = µX.¬µY.¬ (〈up〉X ∨ 〈down〉¬Y )

So, we want to prove validity of the sequent

` Counter : ¬φ
We perform the proof backwards, from this goal sequent towards the axioms,
guided by the shape of the formulas and process terms involved. After eliminating
the negation and approximating φ one obtains

Counter : φκ ` (2)

Continuing in the same straightforward manner we soon arrive at the following
two sequents:

κ′ < κ, up. (Counter | down.Counter) down→ x ` x : ψ

κ′ < κ,Counter | down.Counter : φκ′ `
the first of which is an axiom. The second sequent is similar to sequent (2), with
the important difference of a new down.Counter component having appeared.
This is the point where one would like to perform an inductive argument on the
system structure, and this can be done using subterm cut. The most important
question is what the property of the component being cut is that yields the overall
system property being verified. A convenient case is when it is the same property,
i.e., when the property being verified composes nicely. This is the case in our
example, partly because there is no communication between the components.
So, after two applications of subterm cut we obtain the following three sequents:
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κ′ < κ,Counter : φκ′ `
κ′ < κ, down.Counter : φκ′ ` x : φκ′

κ′ < κ, x | y : φκ′ ` x : φκ′
, y : φκ′

the first of which can be discharged with φκ and substitution [κ 7→ κ′] against (2).
Notice that this node has no related discharge nodes (so far), so only clauses (i)−
(iii) of the Rule of Discharge have to be checked in this case. The second sequent
is easily reduced to an axiom and a discharge node. Handling the remaining
sequent is only slightly more involved.

7 Conclusion

We presented a proof system for verifying CCS processes in the modal µ-calculus.
Its novelty lies in the generality of the proof judgements allowing parametric and
compositional reasoning, in the complex setting of this powerful logic. This is
achieved, in part, by the use of explicit fixed point ordinal approximations, and in
part by a complete separation, following Simpson [9], in the proof system of the
rules concerning the logic from the rules encoding the operational semantics of
the process language (here CCS). This makes the proof system easily adaptable
to other languages with a clean transitional semantics.
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