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Abstract—In this paper, we report on our experience with
formally specifying and verifying an industrial software module,
provided to us by a company from the heavy-vehicle industry.
We start with a set of 32 informally stated requirements,
also provided by the company. We discuss at length the for-
malization process of informally stated requirements for the
purposes of their subsequent formal verification. Depending on
the nature of each requirement, one of three languages was
used: ACSL contracts, LTL or MITL. We use the Frama-C
deductive verification framework to verify the source code of the
module against the formalized requirements, with the outcome
that 21 requirements are successfully verified while 6 are not.
The remaining 5 requirements could not be verified for the
module itself, as they specify behavior outside it. We illustrate
what steps we took to convert LTL and MITL formulas into
ACSL contracts to enable their verification in Frama-C. Finally,
we discuss conclusions we drew from our work, notably that
formal-verification-driven development of modules and verified
breakdown of system requirements could likely remedy some
problems we encountered.

Index Terms—Industrial requirements, requirements formal-
ization, formal verification

I. INTRODUCTION

In the automotive industry, software plays an increasingly

important role, serving a wide range of functions such as

engine control and braking systems, but also more advanced

features such as autonomous and highly automated driving.

Automotive software is often of a safety-critical nature, where

a high level of confidence in its correct behavior is demanded

by the stakeholders. This is regulated by standards such as the

automotive functional safety standard ISO 26262 [25].

Testing is currently the prevalent method for ensuring

software correctness in the automotive industry. However, it

is both time-consuming and inexhaustive. Formal verification

This work has been partially funded by the FFI Programme of the Swedish
Governmental Agency for Innovation Systems (VINNOVA) as the AVerT2
project 2021-02519.

is an exhaustive method that can reduce substantially the need

for testing. Unlike testing, however, it requires the existence

of formal specifications against which to verify the code.

There is evidence that formal verification of software is

most effectively done in a process where code and formal

specifications such as contracts are developed together, incre-

mentally [8], [31], [34], [37], [38]. But until such workflows

are adopted by industry, most of the effort to formally verify

automotive software is expended post-hoc, i.e., after the code

base has been developed. And typically, formal specifications

are not provided to the team that performs the verification,

which then has the freedom to formulate them from scratch.

In this paper, we report on our experience from a scenario

in which both the code and the requirements were provided

by the company (in this case SCANIA, a heavy vehicle man-

ufacturer), but the requirements were only stated informally.

This scenario gives rise to certain additional challenges, such

as understanding, disambiguating, and finally formalizing the

requirements in a way that they can be formally verified.

Our experience is based on a concrete embedded, safety-

critical software module written in C, controlling the sec-

ondary power steering unit of heavy vehicles, together with a

requirements document. The document describes 32 require-

ments stated in plain English, with some additional pseudo-

code, without any attached formal semantics.

We chose deductive verification as the technique for formal

software verification [1], [27], since we deemed it to be

the most scalable and mature technique that operates at the

source code level (i.e., does not require the construction of

abstract models of the software), and the Frama-C verification

framework as a mature, state-of-the-art tool that supports this

technique for C programs [27].

The main novelty of our work is presented by the specifics

of the type of software we consider here, namely control

software of an embedded system, implemented as a scheduler
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that periodically invokes a list of terminating C functions, each

computing actuator outputs from sensor inputs. These specifics

of the software allowed us to use deductive verification to

verify not only requirements that specify the state transforma-

tion resulting from a single invocation of a function, but also

requirements of a (real-time) temporal nature related to the

periodic invocation of the function.

The main contribution of this paper is the experience report

itself, describing and discussing how we use Frama-C to verify

the given piece of industrial code. Since the requirements were

given in natural language, far from the formal representation

required by Frama-C, we proceeded using a three step ap-

proach, and the reported experience is therefore also divided

into these three steps:

1) We classify requirements into categories that allow their

formalization in a suitable specification language, which

we propose for each category.

2) Many of the requirements are not at the module level but

at the vehicle level. This requires their projection down

to the module level. We show how this can be achieved

by means of assume-guarantee style reasoning [11].

3) Some of the requirements are of a temporal nature, and

others even of a real-time nature. We show how such

requirements can be translated to transformational ones,

and be verified by means of deductive verification.

Because of their methodological nature, we believe that our

experiences can be useful for embedded-software developers

from the automotive industry, when confronted with a similar

scenario. Our case study is exhaustive, in the sense that

we considered all requirements in the provided document,

regardless of how problematic they were to formalize or verify.

The paper is structured as follows. We begin by reviewing

the related work in Section II. Section III presents some

background on the logics we used to formalize the require-

ments. Section IV then describes our case study, the STEER-

ING module. In Section V we present our categorization of

requirements, while Section VI and Section VII describe our

approach to their formalization and verification, respectively.

In Section VIII, we discuss our experiences and the obstacles

we met, and we conclude with Section IX.

II. RELATED WORK

The case study software module used in the present paper

was also used in previous work [20], in which the focus

was to investigate the viability of deductive verification in an

industrial setting. The paper considered only a small subset of

the requirements as the basis for evaluation, corresponding to

a subset of the requirements categorized as transformational
in the present paper. In particular, requirements that needed

to take into account other software than the module under

verification were excluded. The paper modeled the require-

ments as a combinational logic circuit, and found verification

to be feasible, but asserted, among other things, the need for

a formal language and tool support for writing requirements.

In another industrial case study [14], post-hoc verification

is applied to safety-critical avionics software. Also there,

existing natural language requirements were formalized using

ACSL [6] and verified with Frama-C [12]. The paper suggests

that a pattern-based approach could possibly mitigate the

difficulties arising in such a setting.

Categorization of specifications has been studied since the

1990s, when Dwyer et al. introduced property specification
patterns [15]. More recently, Grunske et al. have published

work in this direction. In one paper [4], they present a unified
pattern catalog for qualitative, real-time, and probabilistic

properties, and provide a tool for helping engineers disam-

biguate high-level natural language requirements, and mapping

them to LTL, CTL, MTL, TCTL, CSL, and PLTL formulas.

In another work [36], they present a specification pattern

catalog for qualitative and real-time properties expressible in

UPPAAL [9], and present an automatic generator of concrete

formulas from user-specified pattern-based property descrip-

tions. The catalog is evaluated on three real-time systems,

where they found that it can express the properties of interest

and automatically generate corresponding observer automata

and formulas, such that they could be verified in UPPAAL.

Another work [26] presents a user study evaluating the ac-

ceptance of formal methods at Bosch. The study found it to

be difficult for engineers to understand formal notation, and

to identify, understand, and avoid inconsistencies. However,

a majority answered that formal methods could make their

systems safer.

Furia et al. propose an automated technique for reducing

MTL specifications to specifications over discrete-time mod-

els, such as LTL [17]. The work considers only a subset

of MTL and is necessarily incomplete. The evaluation on

simple examples shows that the problems of incompleteness

and computational effort for checking the resulting formulas

can, in practice, often be dealt with.

III. PRELIMINARIES

In this section, we describe the basics of deductive verifica-

tion, and the specification languages ACSL, LTL, and MITL.

A. Deductive Verification and ACSL Contracts

Deductive verification is a common method for verifying

computer programs, where one takes as input a program and

a formal specification of the program, and verifies by means

of logical reasoning, e.g., by utilizing SAT/SMT solvers, that

the program satisfies the specification [1], [27]. We illustrate

deductive verification here using the ANSI-C Specification

Language [6] (ACSL), which is a specification language for

C programs. ACSL is the language used by Frama-C [27], a

state-of-the-art tool for deductive verification of C programs.

For the verification, we use the WP plugin of Frama-C [7],

which is based on Hoare logic [21], [30] and Weakest Pre-

condition calculus [13], [22]. For more details on Frama-C

and ACSL, we refer to [6], [12], [27].

We shall specifically focus on the ACSL function contracts.

A first example of an ACSL contract is shown in Fig. 1a,

specifying a division function in C. The contract consists of
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/*@
requires y != 0;

ensures
\result == \old(x/y);

*/
int div(int x, int y);

(a) Basic contract

/*@
behavior:
assumes y != 0;
ensures
\result == \old(x/y);

*/
int div(int x, int y);

(b) Behavior contract

Fig. 1: ACSL contract examples

/*@ ghost int gh_x; */
/*@

requires \true;
ensures \result == \old(gh_x) + 1;

*/
int incr() {

static int x ;
x++;
/*@ ghost gh_x = x; */
return x;

}

Fig. 2: ACSL ghost code example

a pre-condition (signified by the requires clause) and a post-

condition (the ensures clause). Intuitively, the pre-condition

states what should hold when the function is called, and the

post-condition states what should hold upon function return.

The pre-condition may also be omitted, in which case the

post-condition should hold, regardless of the context from

which the function is called (this is equivalent to setting the

pre-condition to \true). A function satisfies a contract if,

whenever the function is called and the pre-condition holds,

the post-condition holds upon function return. In Fig. 1a, the

pre-condition is used to avoid a division-by-zero error, and

the post-condition states the desired function output. \result

represents the return value of the function. Also, \old is used

in the post-condition to refer to the value of the expression

x/y before the execution of the function.

To verify that a function satisfies its contract, we use WP

to verify two properties: that the function div is never called

from a state where the pre-condition does not hold, and that

the post-condition holds after execution of div terminates.

Contracts can also contain behaviors, as shown in Fig. 1b.

Behaviors are similar to contracts, but uses assumes instead

of requires. When verifying a behavior, WP verifies only the

second property. Thus, it is not verified that the assumes clause

holds at each function invocation. This allows for combining

several behaviors for the same function, and one may also

combine behaviors with requires clauses.

Another important aspect of our work is the usage of

ACSL ghost variables and ghost code [16]. Ghost variables

are non-program variables that are added to the program for

verification purposes, and can only be read from or written

to by ghost code. Ghost code can be added anywhere in a

program; it may read from any variable, but can only write to

ghost variables. One use-case for ghost code is when writing

contracts for functions with local static variables. In short,

local static variables are local variables whose values are

stored between function invocations. An example is provided

in Fig. 2, where the function incr simply increments the local

static variable x. When specifying this function with a contract,

it appears natural to refer to the value of x; however, as it is a

local variable, it is not in the name scope of the ACSL contract.

As a workaround, one can add a global ghost variable, gh_x,

and a ghost code statement at the end of the function, which

assigns to the ghost variable the value of the local variable.

B. Linear-time Temporal Logic

Linear-time Temporal Logic (LTL) is a logic that allows

specifying properties of systems that evolve in discrete time,

i.e., of systems whose executions can be represented as count-

able sequences of states [33]. The syntax for the subset of LTL

used in this paper is the following:

φ ∶∶= p ∣ ¬φ ∣ φ ∨ φ ∣ φ ∧ φ ∣ φ→ φ ∣ □φ ∣ φW φ ∣ ⊖φ

where φ ranges over LTL formulas, and p over a given set

of atomic propositions. We use LTL to specify executions of

a control software inside an ECU, where states correspond to

valuations of program variables at a point in time.

Temporal operators in LTL formulas can refer to future
states, i.e., forward from the current time, or they can refer to

past states, backwards in time [18]. We consider two future-

time temporal operators, □ (“always”) and W (“weak until”),

and one past-time temporal operator, ⊖ (“previous“). We

proceed with an informal description of their semantics; for

further details, we refer to [22]. Given a state s in a sequence

representing a system execution, we say that □φ holds in s if

φ holds in every future state, φ1 W φ2 holds in s if φ1 holds

always, or until φ2 holds, and ⊖φ holds in s if φ held in the

previous state. For example, the formula □ (x ≥ 0) specifies

that the value of the variable x should always be non-negative.

C. Metric Interval Temporal Logic

Metric Interval Temporal Logic (MITL) [2] is a logic

that allows specifying properties of systems that evolve in

continuous time, as long as system executions can be described

as countable sequences of successive moments where program

states (valuations of variables) are known. The syntax for the

subset of MITL we use in this paper is the following:

Ψ ∶∶= p ∣ ¬Ψ ∣ Ψ ∨Ψ ∣ Ψ ∧Ψ ∣ Ψ→ Ψ ∣ □IΨ ∣ ⊟IΨ ∣ ⟠IΨ

where Ψ ranges over MITL formulas and I over real-time

intervals. Intervals are typically bounded and then consist of a

pair of start and end points [a, b] such that a ≤ b, where a, b ∈
N. Intervals may also be unbounded, e.g., [0,∞) contains

every non-negative real number.

As in LTL, MITL formulas may refer to future time or to

past time. Given an interval I , we say that □I Ψ holds now if Ψ
continuously holds throughout the entire future time interval I ,

⊟I Ψ holds now if Ψ has held throughout the entire past time

interval I , and ⟠I Ψ holds now if Ψ has held at some point in

the past time interval I . Note that there is no MITL notion of a

“previous” operator, due to the denseness of the time domain.
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Fig. 3: System architecture as relating to STEERING

IV. THE STEERING MODULE

The STEERING module is a piece of software aimed at

controlling the secondary power steering unit of a heavy

vehicle, which should take over control of the power steering

in case the primary power steering unit malfunctions. The

STEERING module is thus safety-critical, since loss of sec-

ondary power steering could mean complete loss of power

steering capabilities.

The source code of STEERING is proprietary and cannot be

shared. Instead, we describe all relevant aspects. STEERING is

written in C [23], and is developed according to internal coding

guidelines largely identical to those of MISRA-C [29]. It is

executed on one of several Electronic Control Units (ECUs) in

the embedded system. The source code file consists of roughly

1400 lines of code, not counting lines imported through

the header (e.g., type definitions, macros), and contains 10

functions. One of these acts as a top-level, or main function,

to be repeatedly called by the scheduling software, once every

10 ms. The other 9 functions are internal, and serve to manage

the complexity of the module by dividing its functionality. The

control flow is simple, containing no recursion or loops. The

module (in isolation) is strictly sequential, although as part of

the larger system it is not.

Other than the scheduler, STEERING communicates directly

with two other infrastructure modules in the ECU: a diagnos-

tics module, and a real-time database (RTDB) module which

facilitates communication between the different application

level modules, and through CAN [24] also other ECUs. This

architecture can be seen in Fig. 3, where the letters “r” and

“w” denote reads and writes, respectively, and SW/HW means

software/hardware. The implementation is generally structured

as follows: when the main function is called, all inputs from

the system are read by calling functions in RTDB, then several

computations are made using these inputs and static variables

within the module, before finally writing all outputs to RTDB.

Reads and writes to the diagnostics module occur throughout

computing results, and may be part of, or the result of, those

computations. For brevity, and when it is clear from context,

we simply use STEERING to refer to the main function of

STEERING.

STEERING is accompanied by a document specifying 32

safety requirements on the module. The requirements are given

in a combination of natural language and pseudo-code, exam-

ples of which are provided throughout Section V. Furthermore,

the document specifies the interface (inputs and outputs)

of STEERING, e.g., which CAN signals or sensors that the

module can read from or write to. These are all communicated

through RTDB. It also defines so-called requirement variables.

While the interface inputs and outputs also exist as program
variables in the source code, the requirement variables do not.

It is, however, possible to map each requirement variable either

directly to a specific program variable, or to some relation

between several program variables. In some cases, requirement

variables are used to store values between executions of

STEERING, thus acting as both input and output.

The source code and requirements presently analyzed are

taken from a development repository.

V. CATEGORIZATION OF REQUIREMENTS

In this section, we categorize the 32 requirements on

STEERING into three categories: transformational, discrete-
time temporal, and real-time temporal requirements. More

concretely, 18 requirements are classified as transformational,

3 as discrete-time temporal, and 6 as real-time temporal. The

remaining 5 requirements describe runtime configuration and

error handling outside STEERING, which is out of scope of

this paper. Each category is described in further detail below,

and is illustrated with examples. We present each requirement

exactly as it was written in the requirements document. The

requirements are reviewed holistically, i.e. both the natural

language description and the pseudo-code are considered to

be part of the requirement, where the latter might refine the

requirement with specific parameter values. Some time related

variables are specified outside of the requirements, and will be

stated separately.

A. Transformational Requirements

We consider requirements transformational when they spec-

ify how individual, terminating executions of the main function

of STEERING change the state of the system.

Req. 1 is an example of a transformational requirement.

The requirement states that, if the module has concluded that

the secondary steering should be activated, and the parking

brake is not activated, then the electric motor, which powers

the secondary steering, should be activated. Observe that

the requirement is stated first as natural language, and then

restated in pseudo-code.

Requirement 1

When the secondary steering circuit handles steering the electric mo-
tor providing flow to the circuit shall be activated whenever steering
might be needed. In this function, steering is defined as needed when
the parking brake is not set.

While Secondary Circuit Handles Steering == True
If ParkingBrakeSwitch == ParkingBrakeNotSet

ElectricMotor = On

This requirement is transformational in the sense that

it defines a relationship between one interface input

(ParkingBrakeSwitch), one requirement input variable

(SecondaryCircuitHandlesSteering), and one interface output

(ElectricMotor) of the STEERING main function.
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Another transformational requirement is Req. 2. The re-

quirement is, on its own, quite straightforward, but its for-

malization (in Section VI) manifests some noteworthy aspects.

The requirement states that, if the dual steering function is not

enabled (not equal to zero), then the two CAN-signals shall

be emitted as not available, and the electrical motor shall be

turned off.

Requirement 2

If UP_DUAL_STEERING_E == 0
FailureInSteeringCircuit1 = NotAvailable
FailureInSteeringCircuit2 = NotAvailable
ElectricMotor = Off

B. Discrete-time Temporal Requirements

Discrete-time temporal requirements are considered those

that specify some behavior over time, but do not mention

any specific real-time duration or threshold, and thus can be

interpreted over discrete time steps. A common example are

requirements on how to treat signals that go into an error state.

A concrete example for such a signal is Req. 3.

Requirement 3

If VehicleSpeed has the status Error or NotAvailable and the
vehicle variable ”Vehicle is moving” was false before the status went
to Error or NotAvailable the variable ”Vehicle is moving” shall be false.

Else If VehicleSpeed has the status Error or NotAvailable and the
vehicle variable ”Vehicle is moving” was ”True” before the status went
to Error or NotAvailable the variable ”Vehicle Is Moving” shall be
”True” until ParkingBrakeSwitch has the value ”ParkingBrakeSet”. If
the parking ”ParkingBrakeSwitch” also goes to Error or NotAvailable
the variable ”Vehicle is moving” shall be ”True” until the COO falls
asleep.

The requirement describes the expected behavior in the case

when the VehicleSpeed signal starts reporting error (or not

available). If the vehicle was not moving before this occurred,

it should continue to be considered as not moving. If the

vehicle was moving, it should continue to be considered as

moving until the parking brake is applied, or, if also the

parking brake signal goes to an error state, until the main

ECU (COO) shuts down.

We deem this to be a temporal requirement, since it appar-

ently specifies the behavior of STEERING over sequences of

time steps; in particular, the usage of the word “until” suggests

such an interpretation. And since there is no explicit reference

to time in the requirement, we consider this as a discrete
temporal requirement, and not a real-time one.

C. Real-time Temporal Requirements

Real-time temporal requirements are considered temporal

requirements that are explicit about some time duration or

threshold. A general example is to define a threshold time

for how long a vehicle can (continuously) be in a given state

before some action must be taken.

A specific example is Req. 4. The requirement specifies a

threshold (in elapsed real time) for when a flow sensor should

be treated as malfunctioning. In particular, if the sensor keeps

reporting that there is flow for a longer time than the given

threshold, even though the state of the rest of the vehicle

system indicates that the sensor should not be reporting flow,

then the sensor should be treated as malfunctioning.

As will be seen in Section VI, formalizing this requirement

is not entirely straightforward due to the presence of two

separate real-time thresholds: one threshold (5 s) for when the

electric motor shall be considered turned off, and one threshold

(1 s, i.e., time to detect a sensor malfunction) for when the

sensor shall be considered malfunctioning.

Requirement 4

If the electric motor (providing flow to the secondary steering unit)
is not running there should not be a flow in the secondary power
steering circuit. If the sensor is indicating flow a DTC should be set
and a yellow warning indicated in the instrument cluster (the latter is
handled in AER417 12).

When ElectricMotor == Off for 5 seconds
If FlowSwitch == Flow for Time To Detect A

Secondary Steering Sensor Malfunction
SensorFailureSteering2 = True

Else if FlowSwitch == NoFlow for Time To Detect A
Secondary Steering Sensor Malfunction

SensorFailureSteering2 = False

The next requirement needs some notion of an instantaneous

transition, while expressing that a signal continuously holds for

a specific time interval. In particular, the requirement states

that when the electric motor is turned on, then it may not

turn off for a certain time. As will be seen in Section VIII,

formalizing this requirement is also not straightforward.

Requirement 5

When ElectricMotor goes from Off to On
Hold ElectricMotor state until
minimum connected time

VI. FORMALIZATION

This section presents our approach to formalizing the re-

quirements in each of the categories defined in Section V. For

each category a specification language was chosen, namely

ACSL contracts for transformational requirements, LTL for

discrete-time temporal requirements, and MITL for real-time

temporal requirements. In summary, the formalization process

consisted of the following steps (but since the process was

iterative, not necessarily once, and in this order):

1) Agreeing on the correct interpretation.

2) Projecting the requirement onto the STEERING module.

3) Choosing the appropriate classification category.

4) Formalizing the requirement in the specification language

picked for the chosen category.

The first step is necessitated by the ambiguity of natural

language. In some cases, ambiguities were resolved by study-

ing the source code to be verified. This strategy can lead to

interpretations biased towards the source code, which is not

a major problem in this study since it is assumed that the

source code captures the engineers’ intention. The second step

is required as some of the requirements specified behavior

outside of the control of the STEERING module. As this work

aimed at verifying only the STEERING module, we projected
such requirements onto STEERING, and formalized only those

291

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on September 06,2024 at 08:39:27 UTC from IEEE Xplore.  Restrictions apply. 



parts that were the responsibility of STEERING. The remaining

parts were taken as assumptions on the operating environment

of STEERING. Indeed, most of the requirements were stated at

the system-level (typically an ECU combined with actuators,

sensors, and other hardware components), and thus required

projection onto STEERING. The third and fourth steps should

be self-explanatory. During the formalization process, one

may discover that the requirements are internally inconsistent,

meaning that, e.g., two requirements are contradictory. This

would necessitate that the requirements are reworked, since

internally inconsistent requirements are not realizable in a

system. When formalizing the requirements of STEERING, we

did not encounter any internal inconsistency.

A. Formalization of Transformational Requirements

We formalize transformational requirements by means of

ACSL contracts, since it is the annotation language of the

verification tool used in our work (see Section VII), and thus

our formalized contracts can be used directly in verification

without further processing. The formalization of Req. 1 is

relatively straightforward.

Formalization of Requirement 1

ensures SecondaryCircuitHandlesSteering == \true
&& \old(parkingBrakeSwitch) == ParkingBrakeNotSet
==> ElectricMotor == On;

Next is the formalization of Req. 2. The formalization of

this requirement is of interest as it requires a high degree of

projection onto STEERING. One may think that the translation

to ACSL is straightforward. However, due to the principle of

separated concerns, there exists a separate module for variant

control, as well as modules for controlling CAN and actuating

the electric motor. Therefore, the formalization of the aspects

relevant for STEERING simply asserts that the module does

not initialize or modify the state of the concerned signals.

Formalization of Requirement 2

ensures !\old(FailureSteering1Created)
&& !\old(UP_DUAL_STEERING)

==> !FailureSteering1Created;
ensures !\old(FailureSteering2Created)

&& !\old(UP_DUAL_STEERING)
==> !FailureSteering2Created;

ensures !\old(ElectricMotor1Created)
&& !\old(UP_DUAL_STEERING)

==> !ElectricMotor1Created;

B. Formalization of Discrete-time Temporal Requirements

To formalize the discrete-time temporal requirements, we

chose LTL. The underlying assumption for all formalizations

is that executions can be treated as discrete time-step traces.

To illustrate this, recall Req. 3, which states what should

happen when VehicleSpeed goes from a non-error value to

error. Note that the requirement consists of two cases specify-

ing what should happen if, before the switch, VehiceIsMoving

was true or false, respectively. For better presentation of the

formula, we first define a switch pattern as syntactic sugar for

expressing states in which a formula becomes true:

Sw(φ) ∶= φ ∧ (⊖¬φ)

Our formalization of Req. 3 is then the following formula.

Formalization of Requirement 3

□ (((Sw(VehicleSpeedErrorOrNA) ∧⊖¬VehicleIsMoving)→

(¬VehicleIsMovingW ¬VehicleSpeedErrorOrNA)) ∧

((Sw(VehicleSpeedErrorOrNA) ∧⊖VehicleIsMoving)→

(VehicleIsMovingW
((ParkingBrakeSet ∧ ¬ParkingBrakeErrorOrNA) ∨

(ParkingBrakeErrorOrNA ∧ COOIsShutDown) ∨

¬VehicleSpeedErrorOrNA))))

Note that the variables VehicleSpeedErrorOrNA and

ParkingBrakeErrorOrNA capture when the respective

corresponding signal either goes into an error state, or

becomes not available. Since the verification is agnostic to

these cases being treated individually, we merge them, for

brevity, already in the formalization.

Observe also that the formalization uses twice the weak

until operator W . In the second part, this corresponds straight-

forwardly to the usage of the word “until” in Req. 3. For

the first part, there is no explicit mention of the “until”-part,

but we have judged it to be an implicit assumption that the

requirement only applies as long as the signal for the vehicle

speed is error or not available.

C. Formalization of Real-time Temporal Requirements

The real-time requirements can be formalized using a

temporal logic based on a semantics suitable for real-time

signals. While many such logics exist, MITL, as described

in Section III, was chosen for this study because it is rela-

tively simple but still expressive enough for the considered

requirements. Using MITL, we formalize Req. 4 as follows:

Formalization of Requirement 4

□[0,∞) (⊟[1,6] ElectricMotorOff →

((⊟[0,1] FlowSensorFlow → SteeSensorFail) ∧

(⊟[0,1] ¬FlowSensorFlow → ¬SteeSensorFail)))

For this particular formalization, the time unit is 1 s.

However, note that we can choose different time units for

different formalizations. The logic formula asserts that, if the

electric motor has been continuously off for 5 s, then, if the

flow switch reports either flow or no flow continuously for one

second, the sensor should be marked with failure or no failure,

respectively. Note that the “timer” for the electric motor should

reach 5 s before the corresponding flow-timers start.

Note that this is only one of several reasonable interpre-

tations of the requirement. For example, it is reasonable to

choose an interpretation where the flow switch should hold its

state for 1 s whenever the motor has been turned off for 4 s,

leading to a slightly different formalization.
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Next follows the formalization of Req. 5. The formalization

is harder to grasp than Form. 4, and the problem is that MITL

lacks a natural way of expressing the notion of a next state.

Formalization of Requirement 5

□[0,∞) (ElectricMotor ∧ (⟠[0,1] ¬ElectricMotor)

→ □[0,mct−1] ElectricMotor)

In this formalization, ElectricMotor denotes that the electric

motor is on, while ¬ElectricMotor denotes that it is off.

Furthermore, mct denotes the minimum time that the electric

motor should be on. Additionally, it is assumed that mct is an

integer greater than 1. Hence, it is suitable to choose a time

unit in terms of milliseconds for this formalization.

The intuition behind the formalization is the following.

First, notice that □[0,mct−1] ElectricMotor entails ElectricMotor.

Second, since ElectricMotor and ¬ElectricMotor exclude each

other, ⟠[0,1] ¬ElectricMotor will stay true for exactly 1 time

unit after ElectricMotor becomes true. Therefore, as soon as

ElectricMotor goes from false to true, it will stay true for 1

time unit, and then for mct − 1 more time units, i.e., for a

total of mct time units.

VII. VERIFICATION

For verification of formalized requirements, we relied on

the WP plugin of Frama-C [7], with results presented in

Section VII-D. For the transformational requirements, veri-

fication was straightforward, since their formalizations were

already expressed using ACSL. For the two temporal re-

quirement categories, we develop ACSL contracts that, if

satisfied by individual executions of STEERING, entail that

the corresponding temporal specification formula holds for

executions of the whole system—under certain assumptions on

the scheduler and other parts of the environment. The results

of this development process, which was carried out in an ad-

hoc fashion, are presented below for each of the formalized

temporal requirements in Section VI.

One obstacle to verification was that program variables are

in the scope of an ACSL contract only if they exist in the

source code, as either global variables or function parameters.

This was a problem since, as mentioned in Section IV, some of

the requirement variables did not have a counterpart program

variable, or its counterpart was a (static) local variable, and

thus not in scope for the ACSL contract. Our solution to this

was to add ghost variables for such requirement variables, as

well as ghost code to ensure that the ghost variable represents

the intended value when verifying the contract.

A. Verification of Transformational Requirements

To verify the transformational requirements, we annotated

the main function of STEERING function with corresponding

ACSL contracts. Due to Frama-C modularity, we also had to

annotate helper functions (called by the main function) with

contracts. It is noteworthy that SecondaryCircuitHandlesSteering

is a local variable in the source code, wherefore we modeled it

with a ghost variable, and added ghost code to the source code,

mirroring all assignments to the local variable with equivalent

assigns to gh SecondaryCircuitHandlesSteering.

B. Verification of Discrete-time Temporal Requirements

To verify the LTL formalization of Req. 3 with Frama-C, it

must first be translated into an ACSL contract. We explain our

translation process and argue briefly why the resulting contract

captures the transformational aspects of the LTL formula. We

then present the assumptions that are needed for the contract

to entail the LTL specification at the system level.

To obtain an ACSL contract from the LTL formula, we

first simplify the latter into an invariant formula of the form

□φ, with the additional property that φ does not contain any

occurrences of temporal operators, except for ⊖. Concretely,

we replaced the occurrences of M and W , using the ⊖
operator. This resulted in the following formula, in which the

only temporal operators used are (the outer) □ and ⊖:

□ ((⊖(VehicleSpeedErrorOrNA ∧ ¬VehicleIsMoving)

→ ¬VehicleIsMoving)∧

((⊖(VehicleSpeedErrorOrNA ∧VehicleIsMoving∧

¬ParkingBrakeSet ∧ ¬ParkingBrakeErrorOrNA)

→ VehicleIsMoving)∧

(⊖ (VehicleSpeedErrorOrNA ∧VehicleIsMoving∧

ParkingBrakeErrorOrNA ∧ ¬COOIsShutDown)

→ VehicleIsMoving)))

In general, we do not obtain a logically equivalent LTL

formula using this translation. However, for the purpose of

sound verification, it suffices to establish that the translated

formula entails the original one. We do not prove entailment

formally here
1
, but give the intuition behind the argument. The

first part of the translated formula states that if the vehicle was

previously considered to be moving, then it should continue to

be considered as such (given that the vehicle speed has error

status). The outer □ operator captures that this should hold

in every state, entailing the first part of the original formula.

For the second part, the argument is similar, but we split the

disjunction in the right-hand side of the W expression into

two distinct cases, and add, for each case, the negation of the

right-hand side to the left-hand side of the implication.

Next, from the translated LTL formula, we obtain an ACSL

contract as follows. First, we remove the □ operator and

change all occurrences of ⊖ to \old. Then, we let the resulting

formula be the post-condition, with the pre-condition being

empty. Changing ⊖ into \old can be justified rather easily, as

both relate a previous state with the current one. Removing

the outer □ operator is justified by further assumptions on

the operating environment (see assumption 1 in the list of

assumptions presented below).

However, the resulting contract was not possible to verify

for the STEERING implementation. In particular, the second

part of the post-condition could not be verified, since the

implementation seemingly makes additional assumptions on

1
Our pen-and-paper proof uses the fixed-point characterization of LTL and

the contrapositive law of propositional logic.
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the relationship between the variables. To enable verification,

we therefore encoded those additional assumptions using

ACSL behaviors. The final ACSL contract is the following:

ensures part1:
\old(VehicleSpeedErrorOrNA && !gh_VehicleIsMoving)

==> gh_VehicleIsMoving == \false;
behavior part2a:
assumes COOISShutDown ==> parkingBrakeErrorOrNA &&

parkingBrakeErrorOrNA ==> !parkingBrakeSet;
ensures:

\old(VehicleSpeedErrorOrNA && gh_VehicleIsMoving
&& !parkingBrakeSet && !parkingBrakeErrorOrNA)

==> gh_VehicleIsMoving == \true;
behavior part2b:
assumes parkingBrakeErrorOrNA ==> !parkingBrakeSet;
ensures:

\old(VehicleSpeedErrorOrNA && gh_VehicleIsMoving
&& parkingBrakeErrorOrNA && COOISShutDown)

==> gh_VehicleIsMoving == \true;

Observe that since VehicleIsMoving is a local variable in

STEERING, we converted it into a ghost variable called

gh_VehicleIsMoving and added corresponding ghost code,

similarly to when we verified transformational requirements.

Besides the correctness of the transformations described

above, the verification also relies on several important assump-
tions on both STEERING and its operating environment. In

particular, we make the following three assumptions:

1) The scheduler operates in an infinite loop, and calls

STEERING in each iteration of the loop.

2) The value of VehicleIsMoving is not altered by other

modules between calls to STEERING.

3) A single execution of STEERING can be considered

atomic (e.g., interface inputs do not change values be-

tween start of execution and reading them).

The first two assumptions are dependent on the environment

in which STEERING operates, i.e., on the scheduler and other

modules called by the scheduler, as well as the behavior

of, e.g., CAN signals. The third assumption depends on the

relation between the requirement and the implementation.

These three assumptions are all necessary for bridging the

semantic gap between ACSL contracts and LTL formulas
2
.

After obtaining the contract and encoding assumptions, ver-

ification proceeded as for the transformational requirements.

C. Verification of Real-time Temporal Requirements

We exemplify how MITL formulas were translated to ACSL

contracts using Form. 4. As with the LTL formula, we first

present the translation, and then state the assumptions needed

to relate the ACSL contract with the MITL formula.

The contract obtained from Form. 4 represents the transfor-

mational aspects of the requirement. We do not show the entire

ACSL contract for Req. 4, but briefly explain its structure.

For each occurrence of ⟠, there must exist a corresponding

timer variable in the source code. If, for example, the motor

is turned on, then its timer is set to 0, otherwise the timer

is incremented by 10 (ms). Whenever the timer has reached

2
A formal connection could be made, as is done, e.g., in [3], using the

TLA framework [28]

its target, then the inner formula must be implied. This

pattern is nested within the inner formula for the flow sensor

timers. The following partial contract illustrates the structure:

ensures \old(ELECTRIC_MOTOR_ACT) ==>
ti_electricMotorOff == 0;

ensures !\old(ELECTRIC_MOTOR_ACT)
==> (ti_electricMotorOff
== \old (ti_electricMotorOff) + 10
|| ti_electricMotorOff == STEE_TI_ELMOTOR_OFF
|| ti_electricMotorOff == 0

);
// ...

We verify the ACSL contract under the following assump-

tions on STEERING and its operating environment:

1) The scheduler operates in an infinite loop, iterating with a

frequency of 10 ms, and calling STEERING once in each

iteration.

2) If the electric motor is set to off during execution of

STEERING, then it remains so until the next execution.

3) If the actual flow is low in two subsequent executions

of STEERING, it is continuously low in-between those

executions.

4) As in 3), but for the flow being high.

One may note here that the conceptual gap between MITL and

ACSL can be seen as wider than the gap between LTL and

ACSL, as the former requires moving from a continuous-time

domain to a discrete one. The first assumption is largely the

same as in the LTL case, but with the added assumption that

STEERING is called every 10 ms. This addition is important

because of the latter assumptions. The next three assumptions

are needed on the environment to ensure that signals will not

oscillate between consecutive executions of STEERING. The

timing aspect in the first assumption is therefore needed to

ensure that the last two assumptions are satisfiable.

D. Verification Results

The 27 requirements applicable to STEERING could be

formalized with the methods used in Section VI. All verifi-

cation was carried out using Frama-C and its WP plugin. The

transformational requirements were straightforward to verify,

since they were formalized using ACSL contracts.

During the verification stage, 21 out of 27 extracted ACSL

contracts were successfully verified. The 6 requirements that

could not be verified were all real-time temporal. However,

these requirements could be verified by slightly modifying the

code.

The verification time was 475 s of CPU time with an Intel

Core i7-9859H. There were around 1.5k lines of annotations,

including contracts for infrastructure software. Both Alt-ergo

and Z3 were used as backend solvers for WP.

Each requirement was treated individually, but similarly to

the translation process described in Req. 3 and Req. 4 in gen-

eral. As also illustrated above, the verification process typically

relied on some further assumptions on the environment that

STEERING operates in. These assumptions typically include

assumptions on the diagnosis system, RTDB, and signal status

validation code. Some requirements could not be verified
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directly despite having a formalization. The reason is that we

have additional code that is specified in another requirements

document. Since the other requirements document was out of

scope of this study, we had to add additional assumptions on

some ACSL contracts. After the assumptions were added, the

contracts could be verified.

VIII. DISCUSSION

Below we discuss the main obstacles we met in this work.

A. Ambiguity of Requirements

A major obstacle has been the ambiguity of the original

requirements. Considerable time was spent trying to under-

stand and interpret the intention behind each requirement.

Furthermore, many requirements were given in two versions;

one version in natural language, and one version in pseudo

code. In most cases, it was not obvious whether those two

versions were equivalent, or even consistent with each other.

In order to resolve the ambiguity, and in accordance with the

post-hoc approach, we studied the source code, and assumed

that source code and requirements match. In this way, most

of the ambiguity could be resolved. There were, however, two

situations that presented an obstacle for the disambiguation;

the first, when requirements did not match the code, as

discussed below in Section VIII-D, and the second, when, due

to the complexity of the code, it was not possible to understand

the implemented behavior.

In the context of this work, but also more generally, as

reported in [31], we suggest that there are three underlying

sources of ambiguity in requirements. Firstly, the engineers

writing requirements lack proper training and knowledge in

how to write unambiguous requirements. Secondly, due to the

ambiguous nature of natural language, writing unambiguous

requirements using natural language is intrinsically impossible.

Thirdly, the industrial context does not provide sufficient

incentive to write unambiguous requirements; rather, there

is only an incentive to write sufficiently good requirements

for their intended use, which is mainly test case generation,

documentation, and compliance with process standards. In

these use cases, ambiguous requirements might be acceptable,

since they are combined with other informal explanations and

clarifications given, e.g., in e-mails or orally.

If the goal is pre-hoc formal verification (as opposed to

post-hoc), ambiguous requirements would not be acceptable.

Then, the engineering process would need to be adapted to

also produce unambiguous requirements.

B. Incompleteness of Requirements

An important aspect of formal verification is completeness
of the set of requirements. In the present context, completeness

means that the set of requirements on the software module

(here, STEERING) semantically entails a given set of (higher-

level) requirements on the system (here, the vehicle). In our

case, such higher-level requirements were available; however,

for a formal analysis of completeness all requirements need a

formal representation, including the higher-level ones.

In order to analyze completeness formally, we have iden-

tified three challenges. The first is requirement ambiguity,

as discussed in Section VIII-A. Second, to formalize re-

quirements on different levels, and for different parts of

the system architecture, different specification languages are

required (e.g., ACSL contracts and temporal logics). A formal

treatment would require a unified framework for the logics

used, which, to the best of our knowledge, does not exist.

The third challenge is that entailment is typically defined

so that falsehood entails any formula, meaning that a set of

inconsistent requirements would be complete w.r.t. to any other

requirement. Thus, the concept of completeness of require-
ments needs a careful formal definition, to match the industrial

interpretation. For a possible solution to this, see [32].

C. Wrong Scope of Requirements

The term scope of a requirement here refers to the technical

component, signals, and variables the requirement refers to.

Related to this, three kinds of issues were observed. The first

is that some of the requirements do not refer to the STEERING

module. In fact, and as reported in Section VII-D, out of the 32

requirements, 3 requirements are about configuration handling,

and 2 about error handling, which are both implemented

completely outside the STEERING module.

The second issue is that, although the requirement expresses

an intended function of STEERING, some requirements refer

to signals or variables outside the STEERING module. As

explained in Section VII, this was handled by projecting

down the requirement onto STEERING. That is, we created

a breakdown to a set of requirements, where one is the

requirement on STEERING. To avoid the second issue, one

option is to ensure that the scope matches exactly the interface

of the software module.

Another option is to formulate the requirements using

assume-guarantee style contracts [11], where both the as-

sumptions and guarantees are allowed to refer to signals and

variables outside of the interface. For example, a requirement

stating “the output shall equal the unsigned vehicle speed” for

a module that only takes a vehicle speed estimate, vehSpeedEst,

as an interface input, can be formulated as a contract with the

assumption vehSpeedEst = vehSpeed, where vehSpeed is out-

side of the interface. With the guarantee output = ∣vehSpeed∣,
the module can satisfy the contract by using the assumption

and computing ∣vehSpeedEst∣. An ACSL contract can then be

defined, in which vehSpeed is represented by a ghost variable.

The third issue is that requirements refer to local variables

of the STEERING module. This was handled by introducing

ghost variables in the ACSL contracts, while ensuring that

all requirements referencing the same variable are formalized

with an ACSL contract using the same ghost variable.

D. Mismatch Between Requirements and Code

Out of the 27 requirements applicable to STEERING, 6

could not be verified even after matching the formalization of

the requirements against the code. Note that, while Frama-C

could not conclude that the code satisfies these 6 contracts,
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it could also not conclude that the code does not satisfy

them. Rather, the verification result was inconclusive (time-

out). This is the typical behavior of Frama-C, and deductive

verification tools in general, when the code does not satisfy

a contract. However, following the verification results, we

performed a code analysis, from which we could judge the

code to be incorrect w.r.t. the 6 requirements. To further

convince ourselves, we re-implemented some parts of the code,

so that the new code did satisfy the contracts.

Based upon discussions with engineers and results from

testing, we judge the source of the mismatch to lie in the 6 re-

quirements, i.e., we assume that the code is correct w.r.t. to the

engineers’ intention. We suggest two explanations as to why

the 6 requirements are incorrect. Firstly, as mentioned above,

engineers are in general not sufficiently trained to formulate

correct requirements w.r.t. the intended behavior. Secondly, the

requirements were not used directly for any formal part of the

development. The only connection to a formal activity, that

could potentially indirectly detect the incorrectness, has been

their use as input when writing test cases, which have then

been applied to STEERING. Interestingly, we found no reports

of failed tests, so the test cases must have matched the code

even though the 6 requirements did not.

E. Difficulty of Formalizing the Original Requirements

The work of formalizing the original informal requirements,

all the way to ACSL contracts, presented a number of chal-

lenges. As explained above, the ambiguity and scope issues

in particular caused problems. However, even after these were

resolved, there were additional challenges.

To formalize the original requirements, we had to identify

suitable requirement specification languages. We aimed for

formal notations that are (1) sufficiently expressive to exactly

match the interpretations of the requirement, (2) reasonably

easy to use, (3) supported by the tool(s) used, i.e. Frama-C, and

(4) are as few as possible to allow various analyses involving

multiple requirements, such as consistency checks. During the

work, we investigated the following languages: LTL, MTL,

MITL, STL, TCTL, MFOTL, ACSL, timed automata, and

hybrid automata. No single language met all four criteria, and

so, balancing the four, we opted for LTL, MITL, and ACSL.

It should be noted that in total, the formalization task

required a significant amount of work. Most of the work was

performed in meetings with a mix of engineers, PhD students,

and faculty. Each meeting was attended by 2-5 persons, and

in total, we used around 40 hours of meeting time. During the

meetings, only a few of the requirements within each category

(see Section V) were typically discussed, since the remaining

ones were conceptually similar.

One issue discussed in the meetings was how to represent

temporal properties in the logics used. Another issue was,

as described in Section VII, the need for ghost variables to

represent requirement variables. Moreover, in some cases one

requirement variable could refer to either the old value, or a

new value calculated during execution of STEERING, making

it difficult to relate requirements in a coherent way.

It can be noted that we did not systematically use require-
ments patterns [5]. The reasons are that, either the given

requirement was easy to formalize, so there was no need to

get help from a pattern, or alternatively, the requirement was

so difficult that patterns did not help. That is, for the difficult

requirements, there was typically no matching pattern. Further-

more, the language ACSL is, to the best of our knowledge,

not supported by any pattern catalogue.

F. Requirements Breakdown Not Verified

As explained in Section VIII-C, many requirements have

a wider scope than the STEERING module, and have to

be projected onto STEERING. This step includes creating a

breakdown from the formalized requirement down to a set

of requirements in which one is an ACSL contract for the

STEERING module. In general, it is important that such a

breakdown is correct, and thus needs to be formally verified.

This was not done because of three reasons. Firstly, the focus

of the work was verification of the STEERING module, mean-

ing that in the breakdown, the only requirement formalized in

addition to the original requirement, was the ACSL contract

for the STEERING module. Therefore, the requirements for

the neighboring components were only implicit. Secondly and

thirdly, in accordance with the discussion in Section VIII-B

about completeness, for a formal analysis of the breakdown,

we need a unified logical framework and working formal

definition of breakdown.

G. Excluded Verification of Library Functions

As stated in Section I, the goal of the work was to verify

the code contained in one module (i.e., source-code file). This

code has a number of calls to functions defined in other files,

referred to as library functions. Verification of these library

functions was consequently not considered, i.e., we did not aim

to verify the complete translation unit. To make the verification

task possible, we specified ACSL function contracts for each

library function. This was a significant challenge due to a lack

of respecting modularity in the software design.

A consequence of adding contracts for the library functions

is that the verification of STEERING is conditional on the

correctness and implementation of those contracts. Thus, what

we actually verify is that STEERING implements a contract in

a wider sense, i.e., a contract with the assumption being the

ACSL contracts for the library functions, and the guarantee

being the main ACSL contract for STEERING. In accordance

with established definitions of contracts [10], [32], [35], the se-

mantics is that for any set of software modules, implementing

the ACSL library function contracts (the assumption), these

software modules integrated with the STEERING module shall

implement the ACSL contract of STEERING (the guarantee).

H. Verification With Frama-C was Time Consuming

The formalization process resulted in a set of requirements

on the main function of STEERING. Since our aim was to

verify the entire STEERING source code, there was also a

need to break down the requirements on the helper functions,
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i.e., the non-library functions called by the STEERING main

function. Additional manual work was needed to annotate the

library functions, and add ghost annotations. All combined, we

estimate this effort to have taken several hundreds of person-

hours by research engineers and PhD students.

IX. CONCLUSION

As an experience report, this paper has presented observa-

tions, insights, and lessons learned from an endeavor of using

Frama-C to formally verify a piece of real industrial code, i.e.

the STEE module. To summarize the work, it is relevant to ask:

after performing the formal verification, can we conclude that

the STEERING module was correctly implemented? In spite of

the significant effort, our answer is unfortunately “no”. Based

upon the discussion in Section VIII, the reasons for this are

the following:

1) Of the 27 ACSL contracts that were produced, 6 could

not be verified by Frama-C.

2) It is not known whether the set of requirements is

complete or not.

3) Due to their ambiguity, it is not known whether the

requirements were correctly formalized or not.

4) Due to the too wide scope of the requirements, it is

not known whether the ACSL contracts are a correct

projection of the requirement onto the STEERING module.

5) The functionality of STEERING depends on library func-

tions that were not formally verified.

However, it should immediately be added that, even though

we could not formally conclude that the code is correct, we

could also not conclude that the code is incorrect, i.e., it is

fully possible that the code meets all intended expectations.

To address the problems listed above, we suggest the

following general remedies:

• Exploit formal-verification-driven development, i.e., as in

test-driven development, create the formal requirements

before or together with the development of the software,

to allow an iterative formal verification of the software

w.r.t. the formal requirements. This would solve (or at

least alleviate) problems 1, 3, and 4.

• Formally verify the breakdown of system-level require-

ments. This would solve problem 2. However, this would

require also the system-level requirements to be formal-

ized. Furthermore, as discussed in Section VIII, how to

formally verify breakdowns is also an area where more

research is needed, e.g., to support multiple requirements

languages in the analysis.

• Problem 5, i.e., to formally verify the library functions,

could be solved using Frama-C in much the same way

as we verified the code of the STEERING module. Al-

ternatively, an informal approach, such as testing, can

be applied. However, to support formal reasoning using

a combination of results from testing and formal ver-

ification, there is a need for a formal framework that

underpins such a combination. Such frameworks have

been investigated previously, e.g. see [19], but, to the best

of our knowledge, not in the context of ASCL contracts.

In addition to the three suggestions above, which all aim to

enable formal verification, the problem posed by the significant

effort, time, and competence required for the formalization

of the original requirements needs to be addressed. Possible

solutions are the use of assistance from generative AI, and the

design of alternative formal specification languages that are

easier to use and understand, even for practitioners.

In summary, in order to reach a mature technology for

formal verification of industrial software, there are still chal-

lenges remaining. It should be noted, however, that, based

on the experiences reported in the present paper, the core

of the verification method itself, namely the use of Frama-

C to verify industrial code against ACSL contracts, can be

deemed to be sufficiently useful. We believe that the remaining

challenges can be solved, thus making formal verification

technically viable in industry. What would then be left to

answer is whether this technology is sufficiently cost-efficient

as compared to informal techniques, which are the state-of-

practice today. The answer to this question will surely depend

on the level of criticality of the software at hand.
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