Interface Abstraction for Compositional Verification

Dilian Gurov Marieke Huisman
Royal Institute of Technology INRIA Sophia Antipolis
Kista, Sweden Sophia Antipolis, France
dilian@imit.kth.se marieke.huisman@inria.fr
Abstract need. To enable this, efficient verification techniques are

needed for checking, prior to loading a new applet, whether

To support dynamic loading of applications on portable it could break the security of the device. In earlier work,
devices, one needs compositional reasoning techniques tave developed a control-flow based compositional verifica-
ensure that newly loaded applications cannot break the tion technique supporting post—issuance loading of applet
overall security of a device. In earlier work, we developed and showed its feasibility by means of an industrial case
an algorithmic verification technique for control flow based study [7, 12]. The technique is based on a program model
safety properties of smart card applications, which allows suggested by Jensen and others (see [8]), and addresses
global system properties to be inferred from the properties safety properties of inter—procedural control flow. Thase a
of the components. Application of the technique requires either structuralj.e. properties of the control—flow graph,
knowledge of the names of all methods implemented byor behaviourali.e. applet interaction properties describing
these components. In a truly compositional setting, how- safe sequences of method invocations. In our set—up, global
ever, one only knows thgublic interfaceof the new applet properties are structural or behavioural, while local grep
and does not have access to any implementation details. Tdies are structural Following our technique, compositional
compositionally verify interface properties of appletago verification includes the following steps:
therefore has to combine our verification technique with an
abstractiorwhich preserves thimterface behaviouand re- 1. Specify a global property that should hold of the
duces the set of implemented methods to the set of public ~ composed system.
methods. In this paper, we develop such an abstraction tech-
nigue: we formally define the notion of interface behaviour,
and propose aiinlining transformatiorwhich we prove to
preserve the interface properties expressible in our $peci
cation language. In addition, we show on a concrete case
study how the reduction in the number of methods resulting
from the interface abstraction drastically improves the-pe
formance of the computationally most expensive step of the
compositional verification technique.

2. For each apple#d;, specify a structural local prop-
ertyou,;.

3. Verify the correctness of the property decomposition
(i.e. that the local properties guarantee the global one)
by computing, for each applet;, its maximal model
Mazx(o4,), and by checking that their composition
satisfiesp, i.e. Maz(o4,) W ... W Max(oa,) E ¢.

4. Whenever the implementation of appléf becomes
available, verify that4; = o 4, prior to loading it on
1 Introduction the device.

With the emergence of small and mobile personal de- Notice that the approach also allows a different scenario,

vices, such as smart cards and mobile phones, security ha\g/here a new applet comes with its own local property, and

become a major concern. Typically, such personal devices>eP 3isrepeated (possibly on—device) to ensure thaothis |

contain privacy—sensitive informatioe,g. financial data, cal property is sufficient to ensure the security of the whole
health care information or electronic identities. Thusg, fo sys_lfﬁm. imal model i ; 3is th

the widespread acceptance of the use of such devices, secu- € maximal mode COﬂStI’UCtIF)n 0 ste_p_ IS the centre-
rity of private information needs to be guaranteed. piece of the technique; the remaining verification tasks are
. Ideglly, a smart de_ViC.e user should have the flexibil- = 1pealing with local behavioural properties would requirstrieting the

ity to install new applications (usually callebplety by logic and a non-standard maximal model construction.

standard model checking problems for finite state machinesnal applet either. Completeness, however, does not hold in
(step 4) resp. pushdown automata (step 3). It is inspired bygeneral, since the abstraction transformation can intedu

a similar construction due to Grumberg and Long (see [6]), new observable behaviours.

forming the basis of an automatic modular verificationtech- Using the abstraction techniques described in this paper,
nique. Our construction takes a structural property and aour improved scenario for secure post-issuance loading be-
set of method names, and returns an applet which satisfiecomes:

the property and implements the set of methods, and which

in addition is maximal, in the sense that it simulates, both 1. ldentify the set of public methodt used for interac-
structurally and behaviourally, all other such appletsr- Fu tion between appletd,, ..., A,.

thermore, properties are preserved by simulation, and sim-

ulation is preserved by composition. So, by composing the 2. Specify a public global propertyover/ that should

. . . . hold of the composed system.
respective maximal models and by checking that their com-
position satisfies the global property, one can show thatany 3. For each appletl;, specify a structural local property
applet implementations satisfying the respective strattu o4, which only mentions (public) methods it .
properties and implementing the respective sets of meth- _ _
ods, when put together will satisfy the given global prop- 4. Compute, for each appletl;, its maximal model

erty. Notice, however, that the maximal model construction

needs the names of all methods implemented by the given
applets. The correctness of a property decomposition can

thus only be established for applets with a known interface.
This is a limitation of the proposed technique, since in a
truly compositional setting one only knows the public inter

Mazx(o4,), and check that their composition satis-
fiesg,i.e. Max(oa,) W ... Maz(oa,) FE ¢.

5. Whenever the implementation of applét becomes
available, compute the abstractiaf, (A4;), and verify
thatay, (A:) E o4, .

face of yet unavailable applets and one does not know thein, ,ygition, we show that specifying structural properties
implementation details. Component properties can hencefor an inlined applet allows some natural properties to be ex

only be specified at the public level. Moreover, the lack of
a mechanism for abstraction from private methods causes
blowup in the size of the formulae and hence of the max-

imal models used for the verifications, since these are pa-

rameterized on the interface considered. For example, in

q{;‘ressed which are not expressible as properties of the orig-

al applet. For instance, reachability properties of tak c
graph can only be expressed as structural properties of the
inlined applet, since there are no explicit inter-metholll ca
arcs in our program model.

the industrial case study we considered an electronic purse The present paper shows that all verifications can be

applet which implemented 367 methods, of which only 4
were public, all others were private.

To be able to abstract from internal, private behaviour
and apply our compositional verification method to inter-
face properties of applets, one therefore needstestrac-
tion techniquewhich (i) preserves the interface behaviour
of applets, while (ii) reducing their set of methods to thie se
of public methods. The latter requirement comes from the
maximal model construction. In this paper we propose an
abstraction based anlining of private methods. We define
the notion ofinterface behavioyrand show the abstraction
to be sound with respect to public interface properties: ev-
ery property that holds for the interface behaviour of the in
lined applet (which coincides with its behaviour since isha
no private behaviour) also holds for the interface behaviou
of the original applet. Moreover, in case the concrete imple
mentation is last-call recursive (that is, recursive calis
not followed in the control flow graph by any other method
call®), the abstraction technique is also complete with re-
spect to public interface properties: if such a propertysdoe
not hold of the inlined applet it does not hold of the origi-

2This notion is a generalization of the notion of tail recuitgi where
recursive calls are the last statements of their methods.

done efficiently. In particular, Section 7 reconsiders th&ec
study [7].

Related work The inlining procedure as described in
this paper closely resembles standard inlining procedures
used in compiler optimisations, se.[9]. However, com-
piler optimisationsnustbe behaviourally equivalent, while
our verification technique only requires that all existireg b
haviours are preserved by inlining. We believe that our ap-
proach for proving property preservation is applicable to
such compiler optimisations as well.

The approach of combining property preserving abstrac-
tion with verification is standard, seeg.[3]. Usually, the
goal of applying abstraction is to obtain a smaller or simply
finite model for verification. In our case, the primary pur-
pose of applying the inlining transformation is differetd:
reduce the set of methods to the set of public methods while
preserving the interface behaviour.

Typically, the behaviour of programs with recursion is
modeled as pushdown systems,eas. in [5]. The notion
of interface behaviour presented in the present paper also
defines a pushdown system, and hence inlining is generally
not needed for the verification of behavioural propertias. |

our approach, the need for inlining comes from the require- Intuitively, one can think of as the set of entry states of
ments of the maximal model construction. the model. For specifications, we define the usual notions

Finally, we should mention the temporal logic of calls of satisfactiori= and simulatior< (where related states sat-
and returns @RET [1]. This logic allows to specify prop- isfy the same atomic propositions). This simulation refati
erties in terms of method calls and returns. A special verifi- preserves (backwards) logical properties.

cation strategy is defined, that is able to jump over internal Theorem 2.3. 5, < S, andS, |= ¢ impliesS; = ¢
computations. Our approach is in a way the opposite: we =

compute an abstract model, and use standard verificatiorProof. Corollary 2.16 in [12] O
techniques to verify properties — expressed in a standard
temporal logic — on this abstract model. Weak simulation and logic. In Section 4 we show how

private method calls can be abstracted away into internal
transitions, labelled with the distinguishsilent actione.
When abstracting in such a way from part of the concrete

ganised as follows. Sections 2 and 3 introduce the necessary . - iourof a system, one also has to abstract from the in-

background, and in particular the logic and program model . . . L ;

9 1P . 9 prog ternal behaviour, and instead consider the visible belavio
that we use. Section 4 defines the behaviour of an applet s -

. . in terms ofweaktransitions. We use the standard definition

w.r.t. a set of public methods. Next, Section 5 presents the - @y o
inlining algorithm that forms the basis of our abstraction ©f Weak transitionss = ¢ in terms of strong transitions:
technique, and proves that it is property preserving. Sec-s = t whenevers(=)*t, ands = t whenevers = 5= t,
tion 6 describes formally how the abstraction techniques ar for all ¢ # . Weak simulation<,, is then defined as sim-
used for compositional reasoning. Finally, Section 7 revis ulationw.r.t. weak transitions. Similarly, for the weak satis-
its the industrial case study, and shows the practical itnpac faction relation=,,, we interpret the box modality over the
of the abstraction techniques, while Section 8 draws moreweak transitions. As above, the weak simulation relation
general conclusions on the applicability of our method. preserves weak satisfaction of logical properties.

Theorem 2.4. 8, <, S; andS; =4, ¢ impliesS; ., ¢

Proof. Immediate consequence of Theorem 5 in [11]0J

.) o Finally, a standard transformation from weak to strong
First, we briefly recall some definitions and results that ormylae exists [13]. This transformation, which we de-
form the basis for our compositional verification method. otes. can be characterised as follows.

For a full overview, the reader is referred to [11, 12]. We use N .

a subset of the modal-calculus [10] as our specification Proposition 2.5. 8 =, ¢ iff S |= 5(¢).
language. We exploit that formulae in this subset can be

characterised by simulation, and vice versa, therefore we3 Applet Structure and Behaviour
call this logic simulation logic. Throughout, we fix a set

Overview of the paper The remainder of this paper is or-

2 Simulation and Logic

of labels L, a set of atomic propositiond, and a set of Our program model, inspired by [8], is control-flow
propositional variable¥'. based and thus over—approximates actual program be-
haviour. It defines two different views on applets: a struc-
Definition 2.1. (Simulation Logic) The formulae osimu- tyral and a behavioural view. Both views are instantiations
lation logic are inductively defined by: of the general notions of model and specification, allowing

the results presented above to be instantiated at bottslevel
Notice in particular that these instantiations yield a Gtru
pu=pl-p| X[A2 |1 Va|la]o|vX.p tural and a behavioural version of simulation and simutatio
logic. Again, we refer to [11, 12] for more detail.
wherep € A,a € LandX € V.
Applet Structure Since we abstract away from all data,
applet structure is defined as a collection of call graphs for
the methods the applet implements. Further, since smart
Definition 2.2. (Model) A modelis a structureM = cards are our primary application domain, we only consider
(S,L,—, A, \), whereS is a set of states»C S x L x S sequential methods Let Meth be a countably infinite set
a transition relation, and: S — P(A) a valuation, assign- of method names. A method specification is an instance of

Next, we define a general notion of model and specifica-
tions.

ing to each state the atomic propositions that holdin A the general notion of specification.
speC|f|c_:at|onS‘ is a pair(M, E), where M is a model and 3Wwith the possible emergence of multi-threaded smart caatfigoins
E C Sis a set of states. the techniques presented here will have to be generalizamtdiagly.

Definition 3.1. (Method specificationA method graplior (transfer)m el v V' v
m € Meth over a setM C Meth of method names is a (v,0) = (v',0)
finite model
my,my € IT v 220, U v |
Mm = (Vm;Lmy_)m;Am;/\m) (Ca”) V2 ': mao V2 € E
whereV, is the set of control nodes @i, L,, = M U {¢}, (vy,0) 222y) ol)
Ay, = {m,r}, and\,,: V;, = P(A,) is so thatm €
Am(v) for all v € V,, (i.e. each node is tagged with its my,me €IT vy Ema AT v Emy

. return
method name). The nodese V,, with r € A,,(v) are () (va, vy - 0) 22 (1),)

calledreturn points A method specificatiofor m € Meth

overM is a pair(M,,, E,), whereM,, is a method graph o

for m over M andE,, C V,, is a non—empty set antry Table 1. Applet Transition Rules
pointsof m.

Applet Behaviour Next we instantiate specifications on

We write A\veth (v) to denote the function returning the k
the behavioural level.

name of the method to whiahbelongs.

Next we define the notion of applet interface. For each pefinition 3.4. (Behaviour)Let A = (M, E) : I be a
applet, we distinguish aimplementation interfacejefin- closed applet whera{ = (V, L, —, A, \). Thebehaviour
ing all methods provided and required by the applet, and aof 4 is described by the specificatiditid) = (M, Es),
public interfacedefining all methods that are visible to and where M, = (S, Ly, =, As, o) is such thatS, = V x
used from other applets V'*, i.e. states are pairs of control points and stadks,—
{my kmy | k € {call,ret}, my,my € IT} U {e}, = is
defined by the rules of Table 3, = A, andy((v,0)) =
A(v).

The set of initial state&, is defined byE, = E x {¢},
wheree denotes the empty sequence over

Definition 3.2. (Applet interface)An applet interfacds a
pairl = (I*,I7), wherel*, I~ C Meth are finite sets
of names ofprovidedand required methods, respectively.
Thecompositiorof two interfaced; = (Ifr,I;) andl, =
(L5, 1) isdefined byl UL = (I;7 UL, I UL).

Note that applet behaviour defines a pushdown automa-
ton. We exploit this by using a model checker for PDAs to
verify behavioural properties (see.g, [2] for a survey of
verification techniques for infinite process structures).

Also on the behavioural level, we instantiate the defini-
tions of simulation<, and satisfactiof=,. Any two applets
Definition 3.3. (Applet)An applet.A with implementation that are relatgd by s_tructural simulatiqn, are also related
interfacel, written A : I, is defined inductively by behavioural simulation (Theorem 3.9 in [12]), but the con-

verse is not true (since behavioural simulation only resgiir

o (M, Ep) : ({m}, M) if (M,,,Ey,) is a method reachable states to be related).

To formally define the notiompplet with implementa-
tion interface we use the notion of disjoint union of spec-
ificationsS; W Sy, where each state is tagged withor 2,
respectively, ands, i) %s,vs, (t,4), fori € {1,2},ifand
onlyif s &, t.

specification forn € Meth over M, and For convenience, below we will often write the states of
) the behavioural model as a simple sequence of stiates;
e AiW Ay : UL If Ay : [andAs : . o, instead of(v, o). We use reverse indexing to denote the

i*" element from the back of a sequence, so that) | =
v (where|o| denotes the length of a sequende and use
last(o) to denotery.

An applet isclosedif - C IT, i.e.it does not require
any external methods.

The public interfaceof an appletA: I is characterised
by a set of methoda/ such thatV/ C IT: the set of meth-
ods publicly provided by the applet i, while the set of 4 Interface Behaviour
publicly required methods i~ — (It — M); thus applet
A: I has public interfac¢M, I~ — (It — M)). The left- The next section defines an inlining algorithm that trans-
hand column of Figure 1 on page 6 is an example of a closedforms a concrete applet implementation into an applet that
applet with one public methoeh and two private methods contains only method calls to public methods. We want to
a andb. prove that for any closed applet, every behaviour of the con-

Simulation and satisfaction, instantiated to this particu crete applet is also a behaviour of the inlined applet. How-
lar type of models are called structural simulatiop, and ever, for this to hold, we have to abstract the concrete be-
structural satisfactiop-, respectively. haviour to the level of public methods. Therefore, we intro-

duce the notion ointerface behaviouof an appletv.r.t. a We define behavioural interface simulatign< B as

set of public method3/. M (A) < bM(B), and weak behavioural interface simu-
First we define théop public methodw.r.t. A, which for lation A <p’ B asb(A) <, bM(B). Notice thatA
a given callstack is the first public method to which anode andB need not have the same interfaces — we only require
in the call stack belongs. M C I'j andM C I;. Similarly, for any formulap in sim-
ulation logic overL™and AM, we define behavioural inter-
top_indexM (¢) = Maz({i|0<i<|o|A face satisfactiond = ¢ asbM(A) E ¢, and weak be-
AMeth (07) € M}) havioural interface satisfactiod |=)", ¢ asb™ (A) k., ¢
topM (0) = AMeth (Utop_indexM(a))

5 The Inlining Transformation
Using these definitions, we can define a relabellify

of transition labels to the public level. Labels for callslan Next we define an inlining algorithm,; that, given a
returns between public methods are left unchanged. A callggt of public methods$/, transforms an applet graph by
from a private to a public method is relabelled as a call from jn|ining all private calls. Recursive calls to private meth
the top public method in the pending call stack. A return oqs are not inlined, but create loops in the resulting graph.
from a public to a private method is relabelled as a return to \ye prove that the interface behaviour of the original ap-
thetop pu_blic method. All other transitions get labelled as plet A is simulated by the behaviour of the inlined applet
silent actions. s (A), thus (by Theorem 2.3) all propertigsof the lat-
ter, i.e. apr(A) =y ¢, are also properties of the former,
i.e. A EM ¢. Moreover, we prove that if the applet is
last-call recursive, the two behaviours are weak simutatio
equivalent — thus both applets satisfy exactly the same ob-
servable properties at the public interface level.

Notice that the inlining algorithm does not require the

(¢ if £ =mq{call/ret}ma A
my,mo € M
topM (v - o) callmy if £ = my callmy A
my € M,my € M

m; ret top™ (o) if £ = mq retmy A :
my € M,ms & M applet to be closed and treats all external methods as public
€ otherwise

\

The Inlining Algorithm. The algorithm is applied to
Now we are ready to define the interface behaviour of €ach public method and (recursively) inlines all calls tie pr
appletA4 w.r.t. a set of public methoda. vate methods. Intuitively, constructing the transformed (
inlined) graph for a public methogh corresponds to exe-
Definition 4.1. (Interface behaviour)Let A : I beaclosed cuting the interface behaviour ef, where method calls to
applet with behavioub(A) = ((S,L,—,A,\),E). Let public methods are skipped and recursion is replaced by it-
M C I" be a set of public methods. Tleterface be- eration. The nodes of the inlined applet can thus be seen

haviour of A w.rt. M is defined a$™ (A) = ((S, LM, M as states of the (interface) behaviour of the original apple
,AM \MY EM), where modulo an abstraction function which replaces recursion by
iteration.
o IM={e}u{mikmy]| my,mye MA During the inlining, each edge that represents internal
k € {call,ret}} transfer or a call to a public method is left unchanged. Each
" edge that represents a call to a private method is replaced by
o =»¥={ ((v,0),4(,0')]|3a€L. two internal edges: one from the calling point to the entry
(v,0) = (v, 0") A pM((v,0),a) =L} point of the method; and another from the return point of
" the method to the destination of the calling etigehe pri-
o AM =M U{r} vate method is inlined recursively. Each node is replaced by

a sequence denoting the fragment of the call stack from the
activation of the public method up to the current node (ex-
cept for the case of a recursive call). Since we keep track
of the pending call stack, we can recognise recursive calls
to private methods. In that case, the appropriate initagfr

h.ment of the call stack is used to decide the exact new edges.

For the formal definition of the inlining algorithm, we

need some new notions. Ldt: I be an appletand/ C I+

o MW =(v,0)—~ {topM(w-0o)}U
if(v € M Av |=r)then{r}else&

e EM =1y |v € E A Aven(v) € M}.

The interface behaviour of an applet also defines a pus
down automaton.

. . . 4
Eropgsmon.4.2. The_mt?rfaceJr behaviour ol w.r.t. I is 4lf a method has several entry or return points, severalnatezdges
identical to its behaviour,e. b! " (A) = b(A). are created.

m
m a b Y
R R R ; Y v4.v3.vl
vO v2 v4 ! vO
a a 3 v6.v3.vl
a b v5 v6 i
! m
m ! vl
! v7.v3.vl
bd :
Q I

Figure 1. Example applet before and after inlining

be a set of public methods. Al -frameis a sequence of let M be a set of public methods, such thdt C I+. Let
nodeso of which only Ayetn(00) is in M. An M-frame M' be the seff U (I~ — I'"). We define thénlined applet
is callednormal if all nodes in the frame belong to dif- a(A) = ((V', L', =", A", \), E"), where

ferent methods. We choose to represent the nodes of the

inlined applet by normal\/-frames derived from the be-

haviour of the original applet. The abstraction function
mentioned above (replacing recursion by iteration) is for-
malised by means of the (normalising) conditional rewrite

o V'={we V" |wisanormall-frame},
o L' = M'U{e},

o —='=U,car X(m,€) where

ruleo-v-o'-v' 0" < o-v-0" if AMeth(v) = Ametn (V')
ando’ - v' - ¢ is a normalM -frame. Letv(o) denote the
normal form ofo w.r.t. the rule. Note that itr is an M-
frame, therv (o) is a normal) -frame. Moreover, for any
(normal) M -frameo we havetop™ (o) = Awetn (00)-

Further, we defin€nt, Pub andPriv, denoting the sets
of internal, public and private edges of a metlvadt. a set
of public methods\/, respectively.

x(m, o) =
{(v-0,0,v"-0) | (v,£,v") € Int(m) U Pubpr(m)} U

U¢(a, (v,m’, "))

¢(o, (v,m',v")) =
{(v-o,e,v(e-v-0))|eEm' Ne€ E}U
{w(rt-v'-0),e,v" -0) | rt =(m' Ar)}U
if -3i.(0<i<|o| A (v -0); Em')

Int(m) = {(v,e,v)|v—onpv AvlE-r} then x(m',v' - o)
Pubyr(m) = {(v,m',0") |v 25, v A else @
viE-r Am e M}
’ [
Privyy(m) = {(v,m',v") |v 25, v' A o A'=MU{r}

U|:_|7"/\mI€M} e N=0r {)\Meth(UO)}U

The definition of the inlining algorithm uses auxiliary func if (jo] =1 A oo =) then {r} else &

tionsyy and¢. The functiony considers all edges related to
a method: it returns internal and public edges with renamed
nodes — using the pending call stack, and calls funcfion

o E' ={v € E| Avetn(v) € M}.

on private edges. Functighadds edges to the entry point, Exa_lmple Be_fore dlscuss_mg properties of the inlining al-
gorithm, we first show a simple example. Suppose we have

and from the return point of the private method, using the an applet as depicted in the left-hand column of Figure 1.

pending call stack argument, and if necessary normalising,™,. . . .)
the result (this uses the fact that the pending call stack is_Inllnlng this applc_et W'th the pgbhc method sin } res_ults
always a normalised/-frame). Then it checks if the pri- in the applet depicted in the right-hand column of Figure 1.

vate call is non-recursive, in which case the private methodNE_tlIce t_haE[all n:tt]er(?al ﬁmd publ|c| edges zi\rNe prgserye:i,
is inlined recursively. while private method calls are replaced by two edges: to

the entry and from the return point of the called method,

Definition 5.1. (Inlined applet)Let A : I be an applet, and respectively.

Properties We state several useful properties of the inlin- Notice that in general we do not have behavioural sim-
ing algorithm. First of all, the inlining algorithm compste ulation equivalence. The inlining construction introdsice
an applet having as interface the public interface of thg-ori transfer edges for calls to and returns from private methods
inal applet. Because of the latter, the behaviour of the inlined applet ca
- contain a silent transition corresponding to a return from a
Proposition 5.2. Let A : I be anappletand/ C I aset prjyate method (in the original applet), even when the in-
of public methods. The inlined applef; (A) has interface jined applet has not yet followed a silent transition corre-

Iaj\r/[(.A) = (M,I7 = (IT = M)),ie.an(A) : (M,I7 - sponding to a call to this private method (in the original ap-
(I — M)). plet). The inlining thus introduces new behaviours. Notice

however, that these new behaviours are only observable in
applets which are not last-call recursive.
WM (aups (A)) = blag (A)) A set of methods isecursiveif every method in the set
contains a (reachable) call edge to some method in the set.
Since the inlining transformatiam,; only inlines methods A call edge is recursive if the calling and the called meth-

By Proposition 4.2 we thus get:

notin M, ay+ is the identity operation. ods belong to some minimal (and thus, mutually) recursive
method set. A program is calldast-call recursiveif from

Proposition 5.3. Let A : I be an applet. Then;+(A) = any destination node of any recursive call edge, only trans-

A. fer edges are reachable. In addition, we shall assume that a

return node is reachable from every such destination node.

For last-call recursive applets, we prove the reverse cor-
respondence for observable behaviours.

Finally, the inlining algorithm enjoys the following dis-
tributivity property.

Proposition 5.4. Let. A : I 4 andB : I3 be applets)M 4 C
I and Mg C I} be disjoint, and let ; — I} C Mp and Theorem 5.6. Let A : I be a closed last-call recursive ap-
I; — Ij; C M4 Then plet, and letM C IT. Thenb(a s (A)) <, bM(A).

amumg (AW B) = an, (A) Wang (B) Proof. Consider a state(w,v) in b(aam(A)), where
AMeth (hd(w)) ¢ M andhd(w) k= r. For last-call recursive
applets, the inlining transformatiom,; has the property

Simulation Results. As already mentioned, the interface
that for any suchw, the nodes’ such thav(hd(w) -w') =

behaviour of the original applet is preserved by the intinin ; X
algorithm, i.e. every execution of the interface behaviour ¥ PUthd(w) -w' # w and which are structurally reachable

of A is an execution of the behaviour afi;(A). This is rom w in axr(A) form (together withw) a strongly con-
due to the close correspondence between the interface bdl€cted component and are equivalerit. structural simu-

haviour of A and the structure of;;(.4). We provide an lation. As a consequence, it (A)), all states(w’, 7)
“inlining” transformationa’;, on the states ob™ (A) by for a given+y also form a strongly connected component
definingaly, (v, 0) = (hd(y), tl(7)), wherey = B (v - o) and are weak simulation equivalent. Modulo such “return”

and where3,; (o) denotes the sequence of normalised equivalence classes, we show by co-mduc}t\l/[on thgy)
frames. Notice that we always haké(hd(v)) = hd(v- o). is a weak simulation betweeiia; (A)) andb™(A). More
We show thatt, is a simulation relating the original inter- ~ €Xactly, we show that (1) the valuations @f, (v, o) and
face behaviour with the inlined behaviour. (v,0) agree, and (2) ity (v, o) 4 (w',v') is a transi-
tion in b(an(A)) other than a (silent) transition within a
Theorem 5.5. Let A : I be a closed applet, and &7 C return equivalence class, then o) A (W', o) in bM (A)

+ M
. Thenb™(A) < bla (A)). for somev’'and ¢’ such thata),(v',¢') = (w',v') (in
Proof. We show by co-induction that/;, is a simula- most cases we even show the corresponding strong transi-
tion betweenb™ (4) and b(aa(A)), i.e.l,wwe show that tion). The result then follows since’,, maps entry states

(1) the valuations of(v,o) in b™(A) and oy, (v,0) in OLb(?(MfEA))htO ef;tfy states OEM(vf‘l)- ﬁ\gain' itfish eashy to
. . check that the valuations agree; for the proof that the tran-
b(aar(A)) agree, and (2) ifv,0) S(',0") in YM(A),

. sitions are simulated, we refer to Appendix B. O
thena)y, (v,0) = oy (v',0') in blap(A)). The result

then follows sincey), maps the entry states 6#/(A) to Since weak simulation contains simulation we have the
entry states ob(cx;(A)) (in fact, the entry states coincide, ~following.

anda’y, maps every entry state to itself). It is easy to check _

that the valuations agree; for the proof that the transition Corollary 5.7. Let A : I be %closed last-call recursive
are simulated, we refer to Appendix A. O applet,andletV/ C I'T. Thenb™ (A) =, b(anr(A)).

6 Interface Abstraction and Compositional with interfacel4 that simulates all other applets with this
Reasoning interface satisfying property.
Observe that the maximal model construction can only
Using the results obtained above, we can state severaP® applied if the complete interfack, of applet.A is

verification principles that can be used to prove propertiesknown. The correctness of a property decomposition can
of applet interface behaviour. We first present two abstrac-thus only be established for applets with a known inter-
tion principles, and then show how these can be combinedface, and knowledge of the public interface only is hence
with our compositional verification principle from [12] to NOt sufficient. To allow compositional verification of publi
support the improved scenario for secure post—issuancénterface properties, we combine the above rule with the ab-

loading of applets on smart devices presented in the Intro-Straction principlgabstract) to obtain the following abstract
duction. compositional verification principl@bstract-compos):

Interface Abstraction. Let.A : I be a closed applet, and o, (A) Es o Mazr, (OVWBE Y A- I

let M C IT. With the results established above, we can T - _ gt

=) ! o MU Ig —IgCM
justify the following abstraction principl@bstract), where AYB =, =

1) is a behavioural interface formula.

Theorem 6.3. Rule(abstract-compos) is sound.
ay (A) Fb ¥
Al Y
Theorem 6.1. Rule(abstract) is sound.

Proof. Follows from the abstraction and the compositional
verification principle, plus Propositions 5.3 and 5.4. [0

The improved scenario for secure post—issuance loading

Proof. Follows from the definition of behavioural satisfac- Of applets presented in the Introduction is based on the ver-

tion, Theorem A.1, Theorem 2.3, and the definition of be- ification principle embodied by this rule. Notice that the
havioural interface satisfaction. O interface of required methods that is used for the maximal

model construction uses;, — Ij. Typically, this will cor-
respond to the public interface &f, and for each imple-
mentation of4 it should be checked whether it respects this
public interface of5.

When A has last-call recursion, we can even provide a
faithful abstraction principléweak-abstract) for properties
of the observable behaviour by using transformadiérom

Section 2.) L . o
Finally, similarly as for the abstraction principle, we can
an(A) Eb 6(1) state a faithful composition_al verification princim_ﬁeak-
AEM Y abstract-compos) for properties of the observable interface

behaviour of applets which are last-call recursive.
Theorem 6.2. Rule(weak-abstract) is sound and complete.

Proof. Follows from the definition of behavioural satisfac- ,,,(4) |z, o Mazr, (o) WBE,6() 4.1,

tion, Proposition 2.5, Corollary 5.7, Theorem 2.4, and the zﬂéuﬁ - I,+ c M
definition of weak behavioural interface satisfaction,dll AwB |:b7w B B B =
which are equivalences.

Theorem 6.4. Rule (weak-abstract-compos) is sound and

Compositional Reasoning. In earlier work [12] we pre- complete.

sented the following sound and complete compositional ver-

ification principle(compos): 7 Practical Impact of Inlining
AlEso Mazy, (o)W B =y As explaineq above, we are interestc_ed in studying the_
AJB, v A s abstract behaviour of applets, because in a truly composi-

. tional setting nothing is known about the different compo-
Here.A andB are applets, such thaw 3 is a closed applet. nents, except (some properties of) their interface befiavio
Further,o is a formula in simulation logic on the structural gor g newly downloaded applet we only require that it im-
level (i.e. boxes are interpreted over the edges in the call plements the shareable interface; we do not put any restric-
graph), whiley is a property at the behavioural leveFi- tions onhowit implements this shareable interface, except
nally, Maz1, (o) is a construction described in [12] yield- that the implementation should respect the global security
ing a so-callednaximal appletw.rto andl4, i.e.anapplet requirements. Studying compositional verification at the
5A similar principle exists ify is a structural property, since be- a}bstract level allows to spgc:lfy the Ipcal anq global preper
havioural simulation contains structural simulation. ties at the abstract level, without taking any implementati

| | Maz (o) | Maz(op)in[7] | Maz(op) | Maz(op)in[7] |

#nodes 8 474 8 2786
#edges 120 277 700 88 603 128
constr. time| 0.05s. 25 min. 0.05s. 13 hrs.

Table 2. Size and timing for maximal model construction

details into account. Moreover, when considering shageabl
interfaces only, the maximal models that we compute to ver-

ify the decomposition of the global property into the local Everyl\llvherefl = vZ.o N, 1712

ones are significantly reduced in size, making the verifica- M HasNoCallsTaM’ = (A, ~m) V,

tion much more efficient. _ Everywhere['] false
HasNoOutsideCalld/ = M HasNoCallsToI~ \ M)

In order to show the impact of abstraction and inlining
on a realistic case study, this section revisits the elaatro
purse case study [7], specifying an illicit interaction be-
tween applet®urseandLoyalty. In the original case study (o1)
we computed maximal applets using the implementation in-
terfaces (containing about 300 methods per applet). This
was time-consuming (25 mins. to 13 hrs.) and moreover,
the size of the outcome was so large that verification was
unfeasible. However, the public interface®(the share-
able interfaces) of these applets both provide only 4 meth-
ods. If we refer to the shareable interface$ds (methods
provided byPursefor PurseandLoyalty) andS 1y, (Loyalty
for PurseandLoyalty), respectively, we can identify the fol-
lowing public interfaces(S1p, SIp U SI}) for Purse and
(S1.,,SIp U SIy) for Loyalty.

We use the tool set described in [7], plus an implemen-
tation of the inlining algorithm in Ocaml to redo the case
study at the abstract level. For convenience we repeat th

loyalty.logFull HasNoCallsTo
(SIp U SI)/{Purse.isThereTransaction,
Purse.getTransaction}
(cp) HasNoOutsideCallfurse.is There Transaction A
HasNoOutsideCall®urse. get Transaction

These specifications refer to the inlined versions of the
applets. To exclude external calls from a method of an in-
lined applet is equivalent to excludirtgansitive external
calls made from the public method with the same name in
the original applet. Notice that such a property is not di-
rectly expressible in our logic (cf. [7]).

To redo the case study at the abstract level, we take the
following steps (wherd® and L denote implementations of
ePurseand Loyalty, respectively):

global and local specifications_, bL_Jt this time specifiedatth 4 compute Maz (st srousty) (0p) and

interface level; for further motivations we refer to [7]. Maz (s, 51,051 (o) using the Maximal Model
The global specification) says that a call to_oy- constructor [12, 7];

alty.logFull does not trigger any calls to any other loy-

alty, including indirect communications, via thRurse. e model check Max(si, srpusi)(op) W

The specification uses several abbreviations for reathabili Mazx (st s1,us1p)(0L) e (1) using a proto-

(whereA is an applet such thad : (I, 77) and M a set type implementation of a model checker for PDAS;

f methods).
of methods) e computeasy, (P) andagy, (L) using the inlining al-

Alwaysp = vZ.¢A[Ly)Z gorithm; and
Withinm ¢ = —m Vv (Alwayse) e model checkasr, (P) s op andasr, (L) s oL
CanNotCallA M = A, ci+ Apen [mcallm']false using CWB [4].
(¥) Withinloyalty.logFull Table 2 compares the Qutcome and timing for the maxi-
CanNotCallLoyalty SIj, A mgllmodel construction le{h the corresponding step in the
CanNotCallPurse SI, original case study. Checking the correctness of the decom-

position took approximately 5 seconds. The inlining algo-
For theLoyalty applet we exclude any external calls, ex- rithm took 0.6 seconds on bottoyalty and Purse Even
cept those to the method®urseisThereTransactiorand though theoretically the worst-case blowup in the number
PursegetTransactior(c,). For thePurseapplet we spec- of nodes of the inlined applets, determined by the number
ify that both these methods do not make any external callsof normal M-frames, is exponential in the number of private
(op). Again we use several abbreviations. methads, in practice this is not likely to happen. In our case

we even observed a reduction in size of the graphs, due to
the fact that the inlining focuses on interaction with other
applets, and thus any code that is executed only when the
applet is selected and receives commands from the runtime
environment, is left out by the inlining. Verifying the Idca
properties of the inlined applets bbyalty andPursetook
approximately 15 and 10 seconds, respectively.

8 Conclusions

In this paper, we propose a notion of interface behaviour
of program components which abstracts from the internal,
private behaviour. Based on this notion, behavioural prop-
erties can be specified at the public interface level without
requiring knowledge about the implementation. Focusing
on interface behaviour is significant from a methodological
software engineering point of view. In particular, it supjso
compositional verification by allowing global, program—
wide properties to be inferred from the interface propertie
of the not yet available components.

We propose a program transformation based on inlining
of private methods, and show that it preserves the interface
behaviour. The inlining transformation reduces the number
of methods of a program to the number of its public meth-
ods. This is a necessary condition for applying the max-
imal model construction from [7, 12] in a truly composi-
tional manner, and gives rise to an improved scenario for
secure post—issuance loading of applets on smart devices.
The reduction in the number of methods resulting from the
interface abstraction drastically improves the perforoean
of the maximal model construction which is of exponen-
tial worst—case complexity. Finally, we observe that some
natural structural properties are only directly exprdssils
properties of the inlined applet.

Acknowledgments

We would like to thank Gennady Chugunov for helping us

redoing the verifications, and Christoph Sprenger for nu- [10]

merous suggestions for improvement on an earlier draft.

References

[1] R. Alur, K. Etessami, and P. Madhusudan. A tempo-
ral logic for nested calls and returns. In K. Jensen
and A. Podelski, editorsJools and Algorithms for
the Analysis and Construction of Software, TACAS
04, number 2998 in LNCS, pages 467-481. Springer,
2004.

[2] O. Burkart, D. Caucal, F. Moller, and B. Steffen.
Verification on infinite structures. In J.A. Bergstra,

10

A. Ponse, and S.A. Smolka, editorandbook of Pro-

cess Algebrapages 545—-623. North Holland, 2000.
[3] E.M. Clarke, O. Grumberg, and D.E. Long. Model
checking and abstractio®dCM Transactions on Pro-
gramming Languages and Systeh8(5):1512-1542,
1994,

R. Cleaveland, J. Parrow, and B. Steffen. A seman-
tics based verification tool for finite state systems. In
Proc. 9th IFIP Symp. Protocol Specification, Verifica-

tion and Testing1989.

(4]

[5] J.Esparza, D. Hansel, P. Rossmanith, and S. Schwoon.
Efficient algorithms for model checking pushdown
systems. InComputer Aided Verification (CAV '00)
number 1855 in LNCS, pages 232-247. Springer,
2000.

[6] O. Grumberg and D. Long. Model checking and mod-

ular verification.ACM Trans. on Prog. Lang. & Syst.

16(3):843-871,1994.

[7] M. Huisman, D. Gurov, C. Sprenger, and

G. Chugunov. Checking absence of illicit applet

interactions: a case study. In M. Wermelinger and

T. Margaria, editors,Fundamental Approaches to

Software Engineering, FASE 200dumber 2984 in

LNCS, pages 84-98. Springer, 2004.

[8] T. Jensen, D. Le Métayer, and T. Thorn. Verification
of control flow based security policies. IREE Sym-
posium on Research in Security and Privapages
89-103. IEEE Computer Society Press, 1999.

[9] O. Kaser and C.R. Ramakrishnan. Evaluating inlining
techniques. Journal of Computer Languages (JGL)
24(2):55-72,1998.

D. Kozen. Results on the propositionaicalculus.
TCS 27:333-354, 1983.

[11] C. Sprenger, D. Gurov, and M. Huisman. Simulation

logic, applets and compositional verification. Techni-
cal Report RR-4890, INRIA, 2003.

[12] C. Sprenger, D. Gurov, and M. Huisman. Composi-

tional verification for secure loading of smart card ap-
plets. InFormal Methods and Models for Co-Design
(Memocode 2004pages 211-222. IEEE, 2004.

[13] C. stirling. Modal and Temporal Logics of Processes

Springer, 2001.

A Full Proof of Theorem A.1

Theorem A.1. Let A : I be a closed applet, and léif C
I, We have™ (A) < b(ap(A)).

Proof. We show by co-induction that), is a simula-
tion betweenb™ (A) and b(aps(A)), i.e, we show that
(1) the valuations of(v,o) in b (A) and o), (v,0) in
b(ap(A)) agree, and (2) ifv, o) i>(v’,cr’) in bM(A),
thenay, (v,0) LN ahyy (v',0") in b(ap(A)). The result
then follows sincen/,, maps the entry states 6/ (A) to
entry states ob(a s (A)) (in fact, the entry states coincide,
anda’,, maps every entry state to itself).

Let (v,0) be a configuration 06* (A), and hence also
of b(A). Leta)y, (v,0) = (w,7); w is a normal)M -frame
of A, and thus a node afy;(A). Note thathd(w) = v. It
is easy to check that valuations @ o) and(w, y) agree,

so we focus on the second goal. We consider the differ-

ent cases leading to transitions from configuraftieyv) in

b(A), as induced by the transition rules for closed applets

given in Table 1. Notice that in the constructioncaf; (A)
the auxiliary functiony initially is invoked with arguments

wg ande, and that eventually this results in a recursive call

of x with argumentgid(w) andtl(w).

(transfer) Let v —,, o andv = -r. Then
(v,0) =(v',0) in b(A), and hence also ih™ (A).
Then, by definition otvy, (edge in sefnty, (m)) and
Ay W —reop () ' - H(w) is an edge inuas(A),
andw = -r. Therefore(w,y) = -tl(w),7)
in b(ap(A)). By definition of o), o, (v',0) =
(v' - tl(w),v), and hence’), (v,0) = oy, (v',0).

(call) Letv =%, v/, v |= -, v2 | my anduvy € E.

m1 callms

Then(v,0) ——= (v2,v’ - o) in b(A). We con-

sider three cases, as induced by the renaming scheme

of pM.

1.m; € M andmy € M. Then(v,0) i callme,
(va,v" - o) in ¥ (A) as well. Notice that in this case
tl(w) = €, and thusw = v. By definition ofa,, (edge
in setPubys(my)) andaly,, v 225, v in aar(A),
wherev |: -r, Us |: msy anduvy € EOzM(.A)' There-
fore (v,y) “2m2 (4, o' - y) in b(a (A)). By
definition ofay,, &'y, (v2,v" - 0) = (v2,v" - 7).

2.mi ¢ M andm, € M. Then(v,o) 2™z,
(v2," - o) in M (A), wherem = topM (v - o). By
definition of (normal)M-framesm = top™ (w), and
by definition of ap; anday,, w LT tl(w) in
an(A) (sincev 22, v'is an edge iPuby; (m1)),
so thatw |= —r, vo | my andvy € Eu,a)-

11

Therefore (w,7) 2272, (4, (v - t(w)) -7) in
b(aa(A)). By definition of o'y, oy, (vs,0' - o) =

(v2, (v" - th(w)) - 7).

3.my ¢ M. Then (v,0) 5 (vz,0v'-0) in
bM(A). By definition of aps anday,, w —pn(u)
v(vg -0 - tl(w)) in apr(A) (first setin¢) andw =
-r. Therefore(w,y) = (v(vs-v' -tl(w)),7) in
b(aar(A)). By definition of), oy, (vs, ' - o) =
(v (v - 0" - tl(w)) , 7).

(return) Letv |= ma Ar, 0 # e andhd(o) = m;.
Then(v, o) 225%™ (hd(q), ti(o)) in b(A). Again,
we consider three cases, as induced by the renaming
scheme op™.

mo retmi
e

1.my € M andms € M. Then (v,0)
(hd(o),tl(c)) in bM(A) as well. Notice that in this
casetl(w) = e, thusw = v, v = By (0), v # €
and hd(hd(y)) = m,. Therefore(v,y) 22,
(hd(y),t(y)) in blay(A)). By definition of o'y,
)y (hd(0),tl(0)) = (hd(7), tl(7)).

2.m; ¢ M andmy, € M. Then(v,o) 227,
(hd(o),tl(c)) in b (A), wherem = top™ (7). Also
in this casetl(w) = ¢, thusw = v, v = Bu(0o),
v # €, andhd(hd(vy)) E m,. By definition ofa;, and

oy m = topM (hd(v)); therefore(v,y) 227,
(hd(y),tl(v)) in b(arm(A)). By definition of oy,

ayr (hd(0),tl(0)) = (hd(7), (7).

3. my € M. Then(v,0) = (hd(o),tl(c)) in bM (A).
We make a case distinction on whethet(tl(w)) =
hd(o), i.e. whether the edge that we use to simulate
the return was created for a non-recursive call, or not.

e Casehd(tl(w)) = hd(c). By definition of ap, and
Ay W —opM () H(w) N ap(A), andw | —r.
Therefore(w, v) = (tl(w),v) in b(ap (A)). By defi-
nition of oy, oy, (hd(0), tl(0)) = (tl(w),).

e Otherwise there must be a nodé in a;/(A) such
thatv(v - w') = w andhd(o) = hd(w"). By definition
of ap; anday, there must be an edge —qpm (y)

w' in ap(A), andw | —r. Therefore(w,y) =
(o' - tl(w),v) in blam(A)). By definition of o,
)y (hd(o), tl(0)) = (0" - tl(w), 7).

This concludes the proof. O

B Full Proof of Theorem B.1

Theorem B.1. Let A : I be a closed last-call recursive
applet, and let/ C I't. Thenb(aps(A)) < bM (A).

Proof. Consider a state(w,vy) in b(ap(A)), where
AMeth (hd(w)) ¢ M andhd(w) [r. For last-call recursive
applets, the inlining transformation,, has the property
that for any suchw, the nodesv’ such thav (hd(w) -w') =

w buthd(w) - w' # w, and which are structurally reachable

from w in ay, (A) form (together withw) a strongly con-
nected component and are equivahemntt. structural simu-
lation. As a consequence, b (A)), all states(w’,)

for a given~ also form a strongly connected component
and are weak simulation equivalent. Modulo such “return”

equivalence classes, we show by co-induction thg}) —*

is a weak simulation betweeia, (A)) andb™ (A). More
exactly, we show that (1) the valuations @f,(v,o) and
(v,0) agree, and (2) ity (v,0) 4 (w',~") is a transi-
tion in b(an (A)) other than a (silent) transition within a
return equivalence class, thén o) = (v',0’) in b™(A)
for somev'and ¢’ such thata),(v',¢') = (w',v') (in

most cases we even show the corresponding strong transi-

tion). The result then follows sine€,, maps entry states of
b(aar(A)) to entry states o™ (A).

Let (v,0) be a configuration ofv™(A), and let
ahyy (v,0) = (w,v). Note thathd(w) = v, and thaty
is invoked with argumentayen (hd(w)) andtl(w) in the
construction ofays (A). It is easy to check that the valu-

ations agree, so we focus on the transitions. We conside

the different cases leading to transitions from configorati

(w,~y) in b(apm(A)), as induced by the transition rules for

closed applets given in Table 1.

(transfer) Letm € M, w —,, w' andw | —r. Then
(w,y) =(w',7) in b(ay(A)). By definition ofayy,

there are three possible cases for the transfer edge

w —p, w' to appear inaps(A), which we consider
in turn.

1w = v -tl(w) andv —,, o' for somev’ and
m =)\Meth(v) =)\Meth(U,), andv ': -r. Then
(v,0) =(v',0) in b(A), and hence also i (A). By
the definition of,, o)y, (v',) = (w', 7).

2. (internal callw’ = v(e-v'-tl(w)), e = m' ande € E,

m' ¢ M, there is a call edge =, v' in A for

somem”, v |= —r. Then(v, o) m callm, (e,v' - 0)

in b(A), and hencév, o) = (e,v' - o) in b (A). By
definition ofay;, oy, (e, v’ - o) = (w', 7).

3. (internal return)v = v(v - w'),v Em' Ar,m' ¢ M

and there is a call edgé s, v" in A forv" =
hd(w'") and somen” andv’ such that' = —r. We
consider three sub-cases.

* hd(0) = v". Then(v, o) Z—=2 metmT (hd(o), (o)) in
!

b(A), and hencdv,o) = (hd(o),tl(0)) in bM(A)
By tdefinition ofay,, oy, (hd(0), tl(0)) = (w', 7).

12

e hd(o) # v andw = v - w'. Then we are dealing

with a return from a recursive call it.A), and there
must be a decompositiart - v’ - ¢” of ¢ such that
AMeth(09) = m' and no node ob’ is in M. Since

A is last-call recursive, all nodes uf are either re-
turn nodes or nodes leading to return nodes via trans-
fer paths only. Therefor@, o) = (v, ¢") in bM (A).

By the definition of;, oy, (v", ") = (w', 7).

hd(o) # v" andw # v - w'. Then(w,) and(w',~)
are in the same return equivalence class (see above), so
we do not have to consider this case.

(call) Letmy,my € M, w 25, w',w = —r,w" | ms

andw” € E. Then(w,) “2™M2 (" w' - 4) in

b(an (A)). By definition of s, we must havey’ =
v’ - tl(w) for somev’ such that, ind, v =%, v’ and
v = —r for some private methodh of m,. By defini-
tion of oy, w" = v" for somev” such thav” |= m»

m call mo

andv’ € E. Then(v,0) ——— (11 v o) in
b(A), and since by definition of,,, top™ (v - o) =
m1, we have(v, o) m calma, (", 0" - o) in bM(A).
By definition ofa)y,, a/y, (v", 0" - o) = (w", W' - 7).

l(return) Letmiy,my € M, w |= ma A7, v # € and

hd(y) | my. Then(w,y) "= (hd(y), t(7))
in ¥ (ap(A)). By definition of ay, and oy, we
must havew = v andv = ma A r. AlSO, o0 # ¢
and hencduv, o) I rem, (hd(0),tl(o)) in b(A) for
m = Amewh (hd(0)). By definition ofa/y,, top™ (o) =
my and hence(v,o) 22y (hd(g),t (o)) in
bM(A). By definition of oy, oy, (hd(o), tl(0)) =
(hd(7), tl(7))-

This concludes the proof. O

