
Sound Control-Flow Graph Extraction

for Java Programs with Exceptions

Afshin Amighi1, Pedro de C. Gomes2, Dilian Gurov2, and Marieke Huisman1

1 University of Twente, Enschede, The Netherlands
2 KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. We present an algorithm to extract control-flow graphs from
Java bytecode, considering exceptional flows. We then establish its cor-
rectness: the behavior of the extracted graphs is shown to be a sound
over-approximation of the behavior of the original programs. Thus, any
temporal safety property that holds for the extracted control-flow graph
also holds for the original program. This makes the extracted graphs suit-
able for performing various static analyses, in particular model checking.
The extraction proceeds in two phases. First, we translate Java bytecode
into BIR, a stack-less intermediate representation. The BIR transforma-
tion is developed as a module of Sawja, a novel static analysis framework
for Java bytecode. Besides Sawja’s efficiency, the resulting intermediate
representation is more compact than the original bytecode and provides
an explicit representation of exceptions. These features make BIR a nat-
ural starting point for sound control-flow graph extraction. Next, we for-
mally define the transformation from BIR to control-flow graphs, which
(among other features) considers the propagation of uncaught excep-
tions within method calls. We prove the correctness of the two-phase
extraction by suitably combining the properties of the two transforma-
tions with those of an idealized control-flow graph extraction algorithm,
whose correctness has been proved directly. The control-flow graph ex-
traction algorithm is implemented in the ConFlEx tool. A number of
test-cases show the efficiency and the utility of the implementation.

1 Introduction

Over the last decade, there has been a steadily increasing demand for software
quality and reliability. Different formal techniques have been deployed to reach
this goal, such as various static analyses, model checking and (automated) the-
orem proving. A major obstacle for the application of formal techniques is that
the state space of software is typically infinite. Appropriate abstractions are thus
necessary in order to make the formal analyses tractable. Further, it is important
that such abstractions are sound w.r.t. the original program: if a property holds
over the abstract model, it should also be a property of the original program.

A common approach is to generate an abstract model from the code, only
preserving the information that is relevant for the class of properties of interest.
In particular, control-flow graphs (CFGs) are a widely used abstraction, where

G. Eleftherakis, M. Hinchey, and M. Holcombe (Eds.): SEFM 2012, LNCS 7504, pp. 33–47, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

34 A. Amighi et al.

only the control-flow information is kept, and all program data is abstracted away
(see e.g. [6,19,16]). In a CFG, nodes represent the control points of the program,
while edges represent the instructions that move control between control points.

Numerous techniques have been proposed to extract automatically control-
flow graphs from program code (see e.g. [15,8,16]). Typically, however, these are
not accompanied by a formal soundness argument. The present paper attempts
to fill this gap: we define a control-flow graph extraction algorithm for sequential
Java bytecode (JBC), and show that the extraction algorithm is sound w.r.t. the
behavior (i.e., executions) of the program. The extraction algorithm considers
all the typical intricacies of Java, such as virtual method call resolution, the
differences between dynamic and static object types, and exception handling. In
particular, it includes explicitly thrown instructions, and a significant subset of
run-time exceptions. The sound analysis of exceptional flows is particularly chal-
lenging for two reasons. First, the stack-based nature of the Java Virtual Machine
(JVM) makes it hard to statically determine the type of explicitly thrown ex-
ceptions, thus making it difficult to decide to which handler (if any) control will
be transferred. Second, the JVM can raise (implicit) run-time exceptions, such
as NullPointerException and IndexOutOfBoundsException, and to keep track of
where such exceptions can be raised requires much care.

We present a two-phase extraction algorithm using the Bytecode Intermediate
Representation (BIR) language [9], developed by Demange et al. The use of BIR
has several advantages. First of all, BIR provides a stack-less representation of
JBC. Thus, all instructions (including the explicit athrow) are directly connected
with their operands. This allows to determine the static type of explicitly thrown
exceptions. In addition, the representation of a program in BIR is smaller, since
operations are not stack-based, but represented as expression trees. Second, BIR
supports the analysis of implicitly thrown exceptions by generating assertions
that indicate when the next instruction might raise a run-time exception, fol-
lowing the approach proposed for the Jalapeño compiler [7]. Finally, Demange
et al. present formal translation rules from JBC, and define an operational se-
mantics for BIR. They show that the resulting program is semantics-preserving
with respect to observable events, such as raising exceptions, and sequences of
method invocations. This result increases the reliability of the correctness of the
BIR transformation, and in consequence, also of our CFG extraction algorithm.

Our two-phase extraction algorithm first uses the transformation from JBC
to BIR from Sawja [11], a library for static analysis of Java bytecode, and then
it extracts CFGs from BIR. It is implemented as the tool ConFlEx. Sawja
provides only intra-procedural support for exceptions. Thus, to obtain a sound
extraction tool, on top of this we implemented a fixed-point computation of
exceptional flow caused by uncaught exceptions.

Proving correctness of the two-phase extraction algorithm directly (e.g., by
means of behavioral simulation) is cumbersome. Instead, we use the correctness
of an idealized direct extraction algorithm by Amighi [2,3] to simplify the overall
correctness argument. We connect the CFGs that are extracted by the idealized
algorithm and by the two-phase algorithm via a (structural) simulation relation,

Sound Control-Flow Graph Extraction for Java Programs with Exceptions 35

and use a previous result (see [10, Th. 36]) to infer behavioral simulation. From
this, one can conclude that all behaviors of the CFG generated by the indirect al-
gorithm (BIR) are a sound over-approximation of the original program behavior.
Thus, the extraction algorithm produces control-flow graphs that are sound for
the verification of temporal safety properties. We outline the correctness proof
in Section 4; the details can be found in an accompanying technical report [3].

Organization. The remainder of this paper is organized as follows. Section 2
provides the necessary definitions for the algorithm and its correctness proof.
Section 3 presents the two-phase extraction algorithm, its implementation, and
experimental evaluation. In Section 4 we discuss the correctness of the algorithm.
Finally, in Section 5 we discuss related work, and conclude with Section 6.

2 Preliminaries

Control-flow graphs (CFGs) provide an abstract model of programs. Method
graphs are the basic building blocks of CFGs. LetMeth and Excp be two count-
ably infinite sets of method names and exception names, respectively. Method
graphs are defined as Kripke structures, as follows.

Definition 1 (Method Graph). A method graph for method m over given
finite sets M ⊆ Meth and E ⊆ Excp is a pair (Mm,Em), where Mm =
(Vm, Lm,→m, Am, λm) is a transition-labeled Kripke structure, and Em ⊆ VM

is a non-empty set of entry points of m. Vm is the set of control points of m,
Lm = M ∪ {ε, handle} is the set of transition labels, →m ⊆ Vm × Lm × Vm is
the labeled transition relation between control points, Am = {m, r}∪E is the set
of atomic propositions, and λm : Vm → P(Am) is a valuation function such that
m ∈ λm(v) for all v ∈ Vm, and for all x, x′ ∈ E, if x, x′ ∈ λm(v) then x = x′,
i.e., each control node is valuated with the method signature it belongs to, and
with at most one exception.

A node v ∈ Vm is marked with the atomic proposition r whenever it is a return
node of the method. Internal transfer edges are labeled with ε, and the control
transfers caused by the handling of exceptions are labeled with handle. All other
edges correspond to method calls, and are labeled with the called method.

The control-flow graph of a program is simply the disjoint union of all method
graphs of methods defined in the program. Figure 1 shows an example Java
program with two methods, and a corresponding CFG. Every control-flow graph
is equipped with an interface I = (I+, I−, E′), defining the methods that are
provided to and required from the environment, denoted by I+, I− ⊆ M , and
the exceptions that may be raised by each method, but not caught, indicated as
E′ ⊆ E. If I− ⊆ I+ then I is closed.

We use a standard notion of control-flow graph behavior based on pushdown
automata, where configurations are pairs of control nodes and stacks of method
invocations. Internal transitions are labeled with τ for normal transfers, throw x
and catch x for exceptional transfers, m1 call m2 and m1 ret m2 for normal

36 A. Amighi et al.

Fig. 1. An example program and its control-flow graph

inter-procedural transfers, and m1 xret m2 for returns caused by an uncaught
exception. The formal definition is straightforward (see [12]), and its details are
not necessary to understand the correctness proof of our extraction algorithm.

3 Extracting Control-Flow Graphs from BIR

This section presents the two-phase transformation from Java bytecode into
control-flow graphs using BIR as intermediate representation. First, we briefly
present the BIR language, and its transformation function from JBC, named
BC2BIR. Next, we present how BIR is transformed into CFGs. We conclude by
describing the implementation of the algorithm as the ConFlEx tool [1], and
presenting some experimental results.

3.1 The BIR Language

The BIR language is an intermediate representation of Java bytecode. The main
difference with JBC is that BIR instructions are stack-less, in contrast to byte-
code instructions that operate over values stored on the operand stack. We give
a brief overview of BIR; for a full account we refer to [9].

Figure 2 summarizes the BIR syntax. Its instructions operate over expression
trees, i.e., arithmetic expressions composed of constants, operations, variables,
and fields of other expressions (expr.f). BIR does not have operations over strings
and booleans; these are transformed into method calls by the BC2BIR transfor-
mation. It also reconstructs expression trees, i.e., it collapses one-to-many stack-
based operations into a single expression. As a result, a program represented in
BIR typically has fewer instructions than the original JBC program.

BIR has two types of variables: var and tvar. The first are identifiers also
present in the original bytecode; the latter are new variables introduced by the
transformation. Both variables and object fields can be an assignment’s target.

Many of the BIR instructions have an equivalent JBC counterpart, e.g., nop,
goto and if. A return expr ends the execution of a method with return value

Sound Control-Flow Graph Extraction for Java Programs with Exceptions 37

expr ::= c | null (constants)
| expr ⊕ expr (arithmetic)
| tvar | lvar (variables)
| expr.f (field access)

lvar ::= l | l1 | l2 | . . . (local var.)
this

tvar ::= t | t1 | t2 | . . . (temp. var.)

target ::= lvar
| tvar
| expr.f

Assignment ::= target := expr
Return ::= return expr | return

MethodCall ::= expr.ns(expr,..., expr)
| target := expr.ns(expr,...,expr)

NewObject ::= target := new C(expr,...,expr)
Assertion ::= notnull expr | notzero expr

instr ::= nop | if expr pc | goto pc

| throw expr | mayinit C

| Assignment | Return
| MethodCall | NewObject
| Assertion

Fig. 2. Expressions and Instructions of BIR

Assertion Exception

[notnull] NullPointerException
[checkbound] IndexOutOfBoundsException

[notneg] NegativeArraySizeException

Assertion Exception

[notzero] ArithmeticException
[checkcast] ClassCastException
[checkstore] ArrayStoreException

Fig. 3. Implicit exceptions supported by BIR, and associated assertions

expr, while return ends a void method. The throw instruction explicitly trans-
fers control flow to the exception handling mechanism. Method call instructions
are represented by their method signature. For non-void methods, the instruc-
tion assigns the result value to a variable.

In contrast to JBC, object allocation and initialization are done in a single
step, during execution of the new instruction. Java also has class initialization,
i.e., the one-time initialization of a class’s static fields. BIR has the special in-
struction mayinit to indicate that at that point a class may be initialized for
the first time. Otherwise, it behaves exactly as nop.

BIR’s support of implicit exceptions follows the approach proposed for the
Jalapeño compiler [7]. It inserts special assertions before the instructions that can
potentially raise an exception, as defined by the JVM. Figure 3 shows all implicit
exceptions that are currently supported by the BC2BIR transformation [5], and
the associated assertion. For example, the transformation inserts a [notnull]

assertion before any instruction that might raise a NullPointerException, such
as an access to a reference. If the assertion holds, it behaves as a [nop], and
control-flow passes to the next instruction. If the assertion fails, control-flow is
passed to the exception handling mechanism. In the transformation from BIR to
CFG, we use a function χ to obtain the exception associated with an instruction
(as presented in Figure 3). Notice that our translation from BIR to CFG can
easily be adapted to other implicit exceptions, provided appropriate assertions
are generated for them.

A BIR program is organized in exactly the same way as a Java bytecode
program. A program is a set of classes, ordered by a class hierarchy. Every
class consists of a name, methods and fields. Methods have code, stored in an

38 A. Amighi et al.

Input Output

pop ∅
push c ∅
dup ∅
load x ∅
add ∅

Input Output

nop [nop]

if p [if e pc’]

goto p [goto pc’]

return [return]

vreturn [return e]

Input Output

div [notzero e2]

athrow [throw e]

new C [mayinit C]

getfield f [notnull e]

Input Output

store x [x:=e] or [t0pc:=x;x:=e]

putfield f [notnull e;FSave(pc,f,as);e.f:=e′]
invokevirtual ns [notnull e;HSave(pc,as);t0pc:=e.ns(e

′
1...e

′
n)]

invokespecial ns [notnull e;HSave(pc,as);t0pc:=e.ns(e
′
1...e

′
n)] or

[HSave(pc,as);t0pc:=new C(e′1...e
′
n)]

Fig. 4. Rules for BC2BIRinstr

instruction array, with indexing starting with 0 for the entry control point.
However, in contrast to JBC, in BIR the indexes in the instruction array are
sequential.

3.2 Transformation from Java Bytecode into BIR

Next we briefly describe the BC2BIR transformation. It translates a complete
JBC program into BIR by symbolically executing the bytecode using an ab-
stract stack. This stack is used to reconstruct expression trees, and to connect
instructions to its operands. As we are only interested in the set of BIR instruc-
tions that can be produced, we do not discuss all details of this transformation.
For the complete algorithm, we refer to [9].

The symbolic execution of the individual instructions is defined by a function
BC2BIRinstr that, given a program counter, a JBC instruction and an abstract
stack, outputs a sequence of BIR instructions and a modified abstract stack. In
case there is no match for a pair of bytecode instruction and stack, the function
returns the Fail element, and the BC2BIR algorithm aborts.

Definition 2 (BIR Transformation Function). Let AbsStack ∈ expr∗. The
rules defining the instruction-wise transformation BC2BIRinstr : N× instrJBC ×
AbsStack → ((instrBIR)

∗ ×AbsStack)∪ {Fail} from Java bytecode into BIR are
given in Figure 4.

As a convention, we use brackets to distinguish BIR instructions from their JBC
counterparts. Variables tipc are new, introduced by the transformation.

JBC instructions if, goto, return and vreturn are transformed into corre-
sponding BIR instructions. The new instruction is distinct from [new C()] in
BIR, and produces a [mayinit]. The getfield f instruction reads a field from
the object reference at the top of the stack. This might raise a NullPointerEx-
ception, therefore the transformation inserts a [notnull] assertion.

Instruction store x produces one or two assignments, depending on the state
of the abstract stack. Instruction putfield f outputs a set of BIR instruc-
tions: [notnull e] guards if e is a valid reference; the auxiliary function FSave

Sound Control-Flow Graph Extraction for Java Programs with Exceptions 39

0: iload 0

1: ifne 6 0: if (n != 0) goto 2

4: iconst 0

5: ireturn 1: return 0

6: aload 0

7: iconst 1

8: isub 2: mayinit Number

9: invokestatic Number.even(int) 3: t03 := Number.even(n - 1)

12: ireturn 4: return t03

Fig. 5. Comparison between instructions in method odd() in JBC and BIR

generates a sequence of assignments to temporary variables; followed by the
assignment to the field e.f. Similarly, invokevirtual generates a [notnull]

assertion, followed by a set of assignments to temporary variables – represented
as the auxiliary function HSave – and the call instruction itself. The transforma-
tion of invokespecial can produce two different sequences of BIR instructions.
The first case is the same as for invokevirtual. In the second case, there are
assignments to temporary variables (HSave), followed by the instruction [new

C], which denotes a call to the constructor.
Figure 5 shows the JBC and BIR versions of method odd() from Figure 1. The

different colors show the collapsing of JBC instructions by the transformation;
the underlined instructions are the ones that produce BIR instructions. The BIR
method has a local variable (n) and a newly introduced variable (t03). Notice that
the argument for the method invocation and the operand to the [if] instruction
are reconstructed expression trees. The [mayinit] instruction shows that class
Number may be initialized in that program point.

3.3 Transformation from BIR into Control-Flow Graphs

The extraction algorithm that generates a CFG from BIR iterates over the in-
structions of a method. It uses the transformation function bG, that takes as
input a program counter and instruction from a BIR method, plus its exception
table. Each iteration outputs a set of edges.

To define bG, we introduce auxiliary definitions. First, let Et be the set of all
exception tables. H ∈ Et is the exception table for the given method, contain-
ing the same entries as the JBC table, but with control points relating to BIR
instructions. The function hH(pc, x) searches for the first handler for the excep-
tion x (or a subtype) at position pc. The function Hpc

x returns one edge after
querying hH : if there was an exception handler, it returns an edge to a normal
control node; otherwise, it returns an edge to an exceptional return node.

The extraction is parametrized by a virtual method call resolution algo-
rithm α. The function resα(ns) uses α to return a safe over-approximation of
the possible receivers to a virtual method call with signature ns, or the single
receiver if the signature is from a non-virtual method (e.g. a static method).

40 A. Amighi et al.

Hpc
x =

{{ (•pc,xm , handle, ◦pc’m) } if hH(pc, x) = pc’ �= 0
{ (•pc,xm , handle, •pc,x,rm) } if hH(pc, x) = 0

bG(ipc, H) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(◦pcm, ε, ◦pc+1m)} if i ∈ Assignment ∪
{[nop],[mayinit]}

{(◦pcm, ε, ◦pc+1m), (◦pcm, ε, ◦pc’m)} if i = [if expr pc’]

{(◦pcm, ε, ◦pc’m)} if i = [goto pc’]

{(◦pcm, ε, ◦pc,rm)} if i ∈ Return⋃
x∈X{(◦pcm, ε, •pc,xm)} ∪ Hpc

x if i = [throw X]

{(◦pcm, ε, ◦pc+1m), (◦pcm, ε, •pc,χ(i)
m)} ∪ Hpc

χ(i) if i ∈ Assertion

{(◦pcm, C, ◦pc+1m), (◦pcm, ε, •pc,�Nm)} ∪ Hpc

�N ∪N pc
C if i ∈ NewObject⋃

n∈resα(ns){(◦pcm, n, ◦pc+1m)} ∪ N pc
n if i ∈ MethodCall

N pc
n =

⋃
•pc’,x,r
n ∈bG(n)

{(◦pcm, handle, •pc,xm)} ∪ Hpc
x

Fig. 6. Extraction rules for control-flow graphs from BIR

We divide the definition of bG into two parts. The intra-procedural analysis ex-
tracts for every method an initial CFG, based solely on its instruction array, and
its exception table. Based on these CFGs, the inter-procedural analysis computes
the functions N pc

n , which return exceptional edges for exceptions propagated by
calls to method n. The functions for inter-dependent methods are thus mutually
recursive, and are computed in a fixed-point manner.

Definition 3 (Control Flow Graph Extraction). The control-flow graph
extraction function bG : (Instr×N)×Et → P(V ×Lm×V) is defined by the rules
in Figure 6. Given method m, with ArInstrm as its instruction array, the control-
flow graph for m is defined as bG(m) =

⋃
ipc∈ArInstrm

bG(ipc, Hm), where ipc
denotes the instruction with array index pc. Given a closed BIR program ΓB,
its control-flow graph is bG(ΓB) =

⋃
m∈ΓB

bG(m).

First, we describe the rules for the intra-procedural analysis. Assignments, [nop]
and [mayinit] add a single edge to the next normal control node. The condi-
tional jump [if expr pc’] produces a branch in the CFG: control can go either
to the next control point, or to the branch point pc’. The unconditional jump
goto pc’ adds a single edge to control point pc’. The [return] and [return

expr] instructions generate an internal edge to a return node, i.e., a node with
the atomic proposition r. Notice that, although both nodes are tagged with
the same pc, they are different, because their sets of atomic propositions are
different.

The [throw X] instruction, similarly to virtual method call resolution, de-
pends on a static analysis to find out the possible exceptions that can be thrown.
The BIR transformation only provides the static type X of the thrown exception.
Let X also denote the set containing the static type, and all its subtypes. The
transformation produces an exceptional edge for each element x of X , followed
by the appropriate edge derived from the exception table.

Sound Control-Flow Graph Extraction for Java Programs with Exceptions 41

The rule for assertion instructions produces a normal edge, for the case that
the implicit exception is not raised, and an edge to the exceptional node tagged
with the exception type (as defined in Figure 3), together with the appropriate
edge derived from the exception table.

The extraction rule for a constructor call ([new C]) produces a single normal
edge, since there is only one possible receiver for the call. In addition, we also
produce an exceptional edge, because of a possible NullPointerException. The
rule for the other method invocations adds a single normal edge for each possible
receiver n returned by resα.

Next, we describe the inter-procedural analysis. In all program points where
there is a method invocation, the function N pc

n adds exceptional edges, relative
to the exceptions that are propagated by method calls. It checks if the CFG
of an invoked method n contains an exceptional return node. If it does, then
function Hpc

x verifies whether the exception is caught upon return. If so, it adds
an edge to the handler. Otherwise it adds an edge to an exceptional return node.
In the latter case, propagation of the exception continues until it is caught by a
caller method, or there are no more methods to handle it. This is similar to the
process described by Jo and Chang [16], who also present a fixed-point algorithm
to compute the propagation edges. It checks the pre-computed call-graph which
are the callers to a method propagating a given exception, and at which control-
points. If there is a suitable handler for that exception, it adds the respective
handling edges, and the process stop. Otherwise, the computation proceeds.

3.4 Implementation

The extraction rules from Figure 6 are implemented in our CFG extraction tool
ConFlEx. It uses Sawja for the transformation from bytecode into BIR, and
for virtual method call resolution. Sawja supports several resolution algorithms.
Experimental evaluation showed that the algorithm’s choice impacts the perfor-
mance, but does not affect significantly the precision. Table 1 shows the results
using Rapid Type Analysis [4], which presented the best balance between time
and precision [21]. The table provides statistics for the CFG extraction of sev-
eral examples with varying sizes. All experiments are done on a server with an
Intel i5 2.53 GHz processor and 4GB of RAM. Methods from the API are not
extracted; only classes that are part of the program are considered.

BIR Time is the time spent to transform JBC into BIR. For the transforma-
tion from BIR to CFG, we provide statistics for the intra-procedural and the
inter-procedural analysis.

Table 1 shows that in all cases the number of BIR instructions is less than 40%
of the JBC instructions. This indicates that the use of BIR mitigates the blow-
up of control-flow graphs, and clearly program analysis benefits from this. The
computation time for intra- and inter-procedural analysis grows proportionally
with the number of BIR instructions. The intra-procedural analysis is linear
w.r.t. to the number of instructions, and the experimental results of the inter-
procedural analysis show that it only contributes to a small part of the total
extraction time.

42 A. Amighi et al.

Table 1. Statistics for ConFlEx

Software
of # of BIR Intra-Procedural Inter-Procedural
JBC BIR time # of # of time # of # of time
instr. instr. (ms) nodes edges (ms) nodes edges (ms)

Jasmin 30930 10850 267 19152 19460 320 21651 21966 25

JFlex 53426 20414 706 38240 38826 859 42442 43072 23

Groove Ima. 193937 77620 587 159046 158593 4817 193268 192905 1849

Groove Gen. 328001 128730 926 251762 252102 13609 308164 308638 5541

Groove Sim. 427845 167882 1072 311008 311836 16067 386553 387556 6886

Soot 1345574 516404 98692 977946 976212 264690 1209823 1208358 57621

We do not provide comparative data with other extraction tools, such as
Soot [22], or Wala [14] because this would demand the implementation of similar
extraction rules from their intermediate representations. However, experimental
results from Sawja [11] show that it outperforms Soot in all tests w.r.t. the
transformation into their respective intermediate representations, and outper-
forms Wala w.r.t. virtual method call algorithms. Thus, our extraction algorithm
clearly benefits from using Sawja and BIR.

4 Correctness of CFG Extraction

This section discusses the correctness proof of the CFG extraction algorithm.
Providing a direct proof for our two-phase extraction is cumbersome. Instead,
we prove correctness indirectly, using as reference an idealized direct extraction
algorithm, denoted mG. The algorithm, defined and proved correct by Amighi [2],
is based directly on the semantics of Java bytecode, but assumes an oracle to
predict the exceptions that can be thrown by each instruction.

We exploit the idealized algorithm by proving that given a JBC program, the
CFG produced by our extraction algorithm (bG ◦BC2BIR) structurally simulates
the CFG produced by the direct extraction algorithm (mG). We then reuse an
existing result from Gurov et al. [10, Th. 36] that structural simulation implies
behavioral simulation. By transitivity of simulation we conclude that the behav-
ior induced by the CFG extracted by bG ◦ BC2BIR simulates the JVM behavior.
Figure 7 summarizes our approach.

The proof of structural simulation is too large to be presented completely in
this paper. Instead, we sketch the overall proof, and discuss one case (for the
athrow instruction) in full detail. For the remaining detailed cases, the reader
is referred to the accompanying technical report [3]. Before discussing the proof
sketch, we first introduce some terminology and relevant observations.

Preliminaries for the Correctness Proof. The BC2BIR transformation may col-
lapse several bytecode instructions into a single BIR instruction. Therefore, we
divide bytecode instructions as producer instructions, i.e., those that produce at
least one BIR instruction in function BC2BIRinstr, and auxiliary ones, i.e., those
that produce none. This division can be deduced from Figure 4 (on page 38).

Sound Control-Flow Graph Extraction for Java Programs with Exceptions 43

Structure

BIR

CFG
structure

CFG
structure

CFG
behavior

JBCJVM

Behavior

In
di

re
ct

 A
lg

or
ith

m

D
ire

ct
 A

lg
or

ith
m

induce

transform

simulate

si
m
ul
at
e

execute

consequence

Fig. 7. Schema for CFG extraction and correctness proof

For example, store and invokevirtual are producer instructions, while add

and push are auxiliary.
We partition the bytecode instruction array into bytecode segments. These are

subsequences delimited by producer instructions. Thus each bytecode segment
contains zero or more contiguous auxiliary instructions, followed by a single
producer instruction. Such a partitioning exists for all bytecode programs that
comply to the Java bytecode Verifier. All methods in such a program must
terminate with return, or athrow, which are producer instructions. Therefore,
there can not be a set of contiguous instructions that is not delimited by a
producer instruction.

A BIR segment is the result of applying BC2BIR on a bytecode segment. Thus
there exists a one-to-one, order-preserving mapping between bytecode segments
and BIR segments, and we can associate each JBC or BIR instruction to the
unique index of its corresponding bytecode segment.

Figure 5 (on page 39) illustrates the partitioning of instructions into segments.
Method odd has four bytecode (and BIR) segments, as indicated by the coloring.
Producer instructions are underlined.

In the definition of the direct extraction algorithm [3], one can observe that all
auxiliary instructions give rise to an internal transfer edge only. This implies that
the sub-graphs for any segment extracted in the direct algorithm will start with
a path of internal transfer edges with the same size as the number of auxiliary
instructions, followed by the edges generated for the producer instruction.

Proof Sketch. Based on observations above, our main theorem states that the
method graph extracted using the indirect algorithm weakly simulates (cf. [17])
the method graph using the direct algorithm. In the proof, we do not consider
the abstract stacks, since only the instructions are relevant to produce the edges.

Theorem 1 (Structural Simulation of Method Graphs). Let Γ be a well-
formed Java bytecode program, and let Γ [m] be the implementation of method m.
Then (bG ◦ BC2BIR)(Γ [m]) weakly simulates mG(Γ [m]).

Proof. (Sketch) Let p range over indices in the bytecode instructions array,
pc over indices in the BIR instructions array, ◦p,x,ym over control nodes in

44 A. Amighi et al.

mG(Γ [m]), and ◦pc,x,ym over control nodes in (bG ◦ BC2BIR)(Γ [m]). The control
nodes are valuated with two optional atomic propositions: x, which is an ex-
ception type, and y, which is the atomic proposition r denoting a return point.
Further, let segJBC (m, p) and segBIR(m, pc) be two auxiliary functions that
return the segment number that a bytecode, or a BIR instruction belongs to,
respectively, and let function min(s, x, y) return the least index pc in the BIR
segment s resulting in a node valuated with x and y.

We define a binary relation R as follows:

R
def
= { (◦p,x,ym , ◦pc,x,ym) |

segJBC (m, p) = segBIR(m, pc) ∧ pc = min(segBIR(m, pc), x, y) }
and show the relation to be a weak simulation in the standard fashion: for every
pair of nodes in R, we match every strong transition from the first node by a
corresponding weak transition from the second node, so that the target nodes are
again related by R. It is easy to establish that the entry nodes of the sub-graphs
produced by the two algorithms for the same bytecode segment are related by R,
and hence the result.

The proof proceeds by case analysis on the type of the producer instruction
of the bytecode segment segJBC (m, p). We present one interesting case in full
detail; the other cases proceed similarly [3].

Case athrow Let X be the set containing the static type of the exception being
thrown, and all of its sub-types. This set is the same for the direct and indirect
extraction algorithms. Let x ∈ X .

The direct extraction for the athrow instruction produces two edges, with the
target node of the second edge depending on whether the exception x is caught
within the same method it was raised or not (see [3]):

mG((p, athrow), H) =

{
{ ◦pm ε→ •p,xm , •p,xm

handle→ ◦qm } if has handler

{ ◦pm ε→ •p,xm , •p,xm
handle→ •p,x,rm } otherwise

The transformation BC2BIRinstr returns a single instruction. Then, similarly
to mG, the bG function produces two edges (see Figure 6):

BC2BIRinstr(p, athrow) = [throw x]

bG([throw x]pc, H) =

{
{ ◦pcm ε→ •pc,xm , •pc,xm

handle→ ◦pc’m } if has handler

{ ◦pcm ε→ •pc,xm , •pc,xm
handle→ •pc,x,rm } otherwise

We have that (◦pm, ◦pcm) ∈ R. The transition ◦pm ε→ •p,xm , is matched by the corre-
sponding weak transition ◦pcm =⇒ •pc,xm . Thus obviously also (•p,xm , •pc,xm) ∈ R.
Next, there are two possibilities for the remaining transitions, depending on
whether there is an exception handler for x in p and pc. If there is a handler,

then we get •p,xm
handle→ ◦qm, •pc,xm

handle
=⇒ ◦pc’m , and clearly also (◦qm, ◦pc’m) ∈ R. If

there is no exception handler for x, we get •p,xm
handle→ •p,x,rm , •pc,xm

handle
=⇒ •pc,x,rm ,

and also (•p,x,rm , •pc,x,rm) ∈ R. This concludes the case. �

Sound Control-Flow Graph Extraction for Java Programs with Exceptions 45

5 Related Work

Java bytecode has several aspects of an object-oriented language that make the
extraction of control-flow graphs complex, such as inheritance, exceptions, and
virtual method calls. Therefore, in this section we discuss the work related to ex-
tracting CFGs from object-oriented languages. To the best of our knowledge, for
none of the existing extraction algorithms a correctness proof has been provided.

Sinha et al. [18,19] propose a control-flow graph extraction algorithm for both
Java source and bytecode, which takes into account explicit exceptions only.
The algorithm performs first an intra-procedural analysis, computing the excep-
tional return nodes caused by uncaught exceptions. Next, it executes an inter-
procedural analysis to compute exception propagation paths. This division is
similar to how our algorithm analyses exceptional flows, using a slightly differ-
ent inter-procedural analysis. However, the authors do not discuss how the static
type of explicit exceptions is determined by the bytecode analysis, whereas we
get this information from the BIR transformation. Moreover, the use of BIR
allows us to also support (a subset of the) implicit exceptions.

Jiang et al. [15] extend the work of Sinha et al. to C++ source code. C++ has
the same scheme of try-catch and exception propagation as Java, but with-
out the finally blocks, or implicit exceptions. This work does not consider the
exceptions types. Thus, it heavily over-approximates the possible flows by con-
necting the control points with explicit throw within a try block to all its catch
blocks, and considering that any called method containing a throw may termi-
nate exceptionally. Our work consider the exceptions types. Thus, it produces
more refined CFGs, and also tells which exceptions can be raised, or propagated
from method invocations.

Choi et al. [8] use an intermediate representation from the Jalapeño com-
piler [7] to extract CFGs with exceptional flows. The authors introduce a stack-
less representation, using assertions to mark the possibility of an instruction
raising an exception. This approach was followed by Demange et al. when defin-
ing BIR, and proving the correctness of the transformation from bytecode. As a
result, our extraction algorithm, via BIR, is very similar to that of Choi. We differ
by defining formal extraction rules, and proving its correctness w.r.t. behavior.

Finally, Jo and Chang [16] construct CFGs from Java source code by comput-
ing normal and exceptional flows separately. An iterative fixed-point computa-
tion is then used to merge the exceptional and the normal control-flow graphs.
Our exception propagation computation follows their approach; however, the
authors do not discuss how the exception type is determined. Also, only ex-
plicit exceptions are supported; in contrast, we determine the exception type
and support implicit exceptions by using the BIR transformation.

6 Conclusion

This paper presents an efficient and sound control-flow graph extraction algo-
rithm from Java bytecode that takes into account exceptional control flow. The

46 A. Amighi et al.

extracted CFGs can be used for various control-flow analyses, in particular model
checking. The algorithm is precise because it is based on BIR, an intermediate
stack-less bytecode representation, which provides precise information about ex-
ceptional control-flow, and the result is more compact than the original bytecode.

The algorithm is presented formally as an extraction function. We state and
prove its soundness: the behavior of the extracted graphs is shown to over-
approximate the behavior of the original programs. To the best of our knowledge,
this is the first CFG extraction algorithm that has been proved correct. The
proof is non-trivial, relying on several results to obtain a relatively economic
correctness argument phrased in terms of structural simulation. We believe that
the proposed proof strategy, with the level of detail we provide, paves the ground
for a mechanized proof using a standard theorem prover.

The extraction algorithm is implemented as the ConFlEx tool. The experi-
mental results confirm that the algorithm is efficient, and that it produces com-
pact CFGs.

Future Work. The extraction algorithm has been designed with modularity in
mind. Currently, we investigate how to relativize the algorithm on interface
specifications of programmodules in order to support modular control-flow graph
extraction. In particular, we target CVPP (see e.g. [20,13]), a framework and
tool set for compositional verification of control-flow safety properties. In this
setting, one typically wishes to produce CFGs from incomplete programs.

In addition, we will study how to adapt the algorithm to various generaliza-
tions of the program model, including data and multi-threading [12], and how to
customize it for other types of instructions (besides method calls and exceptions).

Acknowledgments. We thank the Celtique team at INRIA Rennes for their
clarifications about BIR and Sawja. Amighi and Huisman are partially supported
by ERC grant 258405 for the VerCors project.

References

1. ConFlEx, http://www.csc.kth.se/~pedrodcg/conflex
2. Amighi, A.: Flow Graph Extraction for Modular Verification of Java Programs.

Master’s thesis, KTH Royal Institute of Technology, Stockholm, Sweden (February
2011),
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/

2011/rapporter11/amighi afshin 11038.pdf, Ref.: TRITA-CSC-E 2011:038
3. Amighi, A., de Carvalho Gomes, P., Gurov, D., Huisman, M.: Provably correct

control-flow graphs from Java programs with exceptions. Tech. rep., KTH Royal
Institute of Technology (2012),
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-61188

4. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual function calls. In:
OOPSLA, pp. 324–341 (1996)

5. Barre, N., Demange, D., Hubert, L., Monfort, V., Pichardie, D.: SAWJA API
documentation (June 2011),
http://javalib.gforge.inria.fr/doc/

sawja-api/sawja-1.3-doc/api/index.html

http://www.csc.kth.se/~pedrodcg/conflex
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2011/rapporter11/amighi_afshin_11038.pdf
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2011/rapporter11/amighi_afshin_11038.pdf
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-61188
http://javalib.gforge.inria.fr/doc/sawja-api/sawja-1.3-doc/api/index.html
http://javalib.gforge.inria.fr/doc/sawja-api/sawja-1.3-doc/api/index.html

Sound Control-Flow Graph Extraction for Java Programs with Exceptions 47

6. Besson, F., Jensen, T., Le Métayer, D., Thorn, T.: Model checking security prop-
erties of control flow graphs. J. of Computer Security 9(3), 217–250 (2001)

7. Burke, M.G., Choi, J.D., Fink, S., Grove, D., Hind, M., Sarkar, V., Serrano, M.J.,
Sreedhar, V.C., Srinivasan, H., Whaley, J.: The Jalapeño dynamic optimizing com-
piler for Java. In: Proceedings of the ACM 1999 conference on Java Grande, JAVA
1999, pp. 129–141. ACM, New York (1999)

8. Choi, J.D., Grove, D., Hind, M., Sarkar, V.: Efficient and precise modeling of
exceptions for the analysis of Java programs. SIGSOFT Softw. Eng. Notes 24,
21–31 (1999)

9. Demange, D., Jensen, T., Pichardie, D.: A provably correct stackless interme-
diate representation for Java bytecode. Tech. Rep. 7021, Inria Rennes (2009),
http://www.irisa.fr/celtique/demange/bir/rr7021-3.pdf , version 3 (Novem-
ber 2010)

10. Gurov, D., Huisman, M., Sprenger, C.: Compositional verification of sequential
programs with procedures. Information and Computation 206(7), 840–868 (2008)

11. Hubert, L., Barré, N., Besson, F., Demange, D., Jensen, T., Monfort, V., Pichardie,
D., Turpin, T.: Sawja: Static Analysis Workshop for Java. In: Beckert, B., Marché,
C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 92–106. Springer, Heidelberg (2011)

12. Huisman, M., Aktug, I., Gurov, D.: Program Models for Compositional Verifica-
tion. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 147–166.
Springer, Heidelberg (2008)

13. Huisman, M., Gurov, D.: CVPP: A Tool Set for Compositional Verification of
Control–Flow Safety Properties. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010.
LNCS, vol. 6528, pp. 107–121. Springer, Heidelberg (2011)

14. IBM: T.J. Watson Libraries for Analysis (Wala).
http://wala.sourceforge.net/

15. Jiang, S., Jiang, Y.: An analysis approach for testing exception handling programs.
SIGPLAN Not. 42, 3–8 (2007)

16. Jo, J.-W., Chang, B.-M.: Constructing Control Flow Graph for Java by Decoupling
Exception Flow from Normal Flow. In: Laganá, A., Gavrilova, M.L., Kumar, V.,
Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3043, pp. 106–
113. Springer, Heidelberg (2004)

17. Milner, R.: Communicating and mobile systems: the π-calculus, ch. 6, pp. 52–53.
Cambridge University Press, New York (1999)

18. Sinha, S., Harrold, M.J.: Criteria for testing exception-handling constructs in Java
programs. In: Proceedings of the IEEE International Conference on Software Main-
tenance, ICSM 1999, pp. 265–276. IEEE Computer Society (1999)

19. Sinha, S., Harrold, M.J.: Analysis and testing of programs with exception handling
constructs. IEEE Trans. Softw. Eng. 26, 849–871 (2000)

20. Soleimanifard, S., Gurov, D., Huisman, M.: ProMoVer: Modular Verification of
Temporal Safety Properties. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM
2011. LNCS, vol. 7041, pp. 366–381. Springer, Heidelberg (2011)

21. Sundaresan, V., Hendren, L., Razafimahefa, C., Vallée-Rai, R., Lam, P., Gagnon,
E., Godin, C.: Practical virtual method call resolution for java. In: Proceedings of
the 15th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2000, pp. 264–280. ACM, New York (2000),
http://doi.acm.org/10.1145/353171.353189

22. Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot -
a Java Optimization Framework. In: CASCON 1999, pp. 125–135 (1999),
http://www.sable.mcgill.ca/soot/

http://www.irisa.fr/celtique/demange/bir/rr7021-3.pdf
http://wala.sourceforge.net/
http://doi.acm.org/10.1145/353171.353189
http://www.sable.mcgill.ca/soot/

	Sound Control-Flow Graph Extraction for Java Programs with Exceptions
	Introduction
	Preliminaries
	Extracting Control-Flow Graphs from BIR
	The BIR Language
	Transformation from Java Bytecode into BIR
	Transformation from BIR into Control-Flow Graphs
	Implementation

	Correctness of CFG Extraction
	Related Work
	Conclusion
	References

