Reducing Behavioural to Structural Control flow-based Properties of Sequential Programs with Procedures

Dilian Gurov

KTH Stockholm, Sweden

Joint work with:

Marieke Huisman

University of Twente, The Netherlands

VMCAI 2009, Savannah, GA

20 January 2009

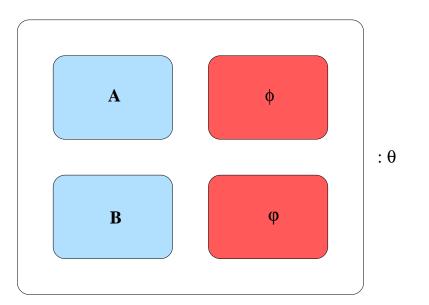
Overview

- 1. A Framework for Algorithmic Compositional Verification
 - (a) General Framework based on Maximal Models
 - (b) Program Model: Flow Graphs and Flow Graph Behaviour
 - (c) Maximal Flow Graphs for Structural and Behavioural Properties
- 2. Property Translation
 - (a) Example and Applications
 - (b) Tableau Construction
 - (c) Correctness
- 3. Conclusions and Future Work

1. Framework for Model Checking Open Systems

Open system: some components are only given by a specification:

abstract components



General Method [Grumberg-Long-94]: replace every abstract component by a concrete representative: maximal model

Refinement Preorder:

 $\mathcal{M}_1 \preceq \mathcal{M}_2 \stackrel{\text{def}}{\iff} \forall \phi. (\mathcal{M}_2 \models \phi \Rightarrow \mathcal{M}_1 \models \phi)$ (simulation)

Framework Conditions:

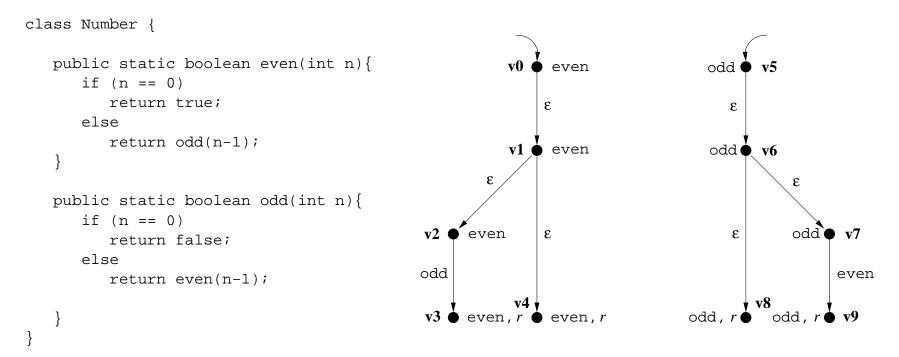
- 1. for any formula ψ , the set of models for ψ has a greatest element $Max(\psi)$ w.r.t. the preorder: maximal model
- 2. preorder preserved by model composition

Our Set-up:

- Models: Labelled Transition Systems with Valuations
- Logic: $\phi ::= p \mid \neg p \mid X \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid [a] \phi \mid \nu X.\phi$

Program Model

Control Flow Structure: Flow Graphs

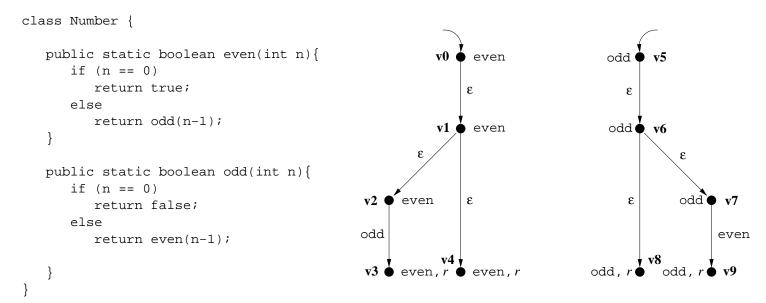


Flow graph composition: (disjoint) union of graphs

Flow Graph Behaviour

- flow graph induces pushdown automaton (PDA):
 - \circ configurations (v, σ) are pairs of control point v and call stack σ
 - productions induced by:
 - non-call edges
 - call edges
 - return nodes
- flow graph behaviour is behaviour of induced PDA

Example Flow Graph:



Example Run:

Property Specification

Logic:

- fragment of μ -calculus: safety properties
- instantiated to structure and behaviour

Example structural property:

• program is tail-recursive: νX . [even] $r \wedge [odd] r \wedge [\varepsilon] X$

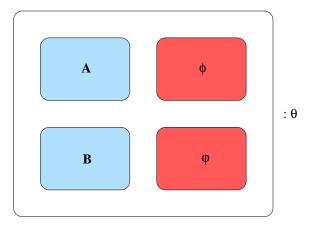
Example behavioural property:

• first call of **even** is not to itself: even $\Rightarrow \nu X$. [even call even] ff $\wedge [\tau] X$

Model Checking Closed Systems

- Extract flow graph from program code
- For structural properties:
 - 1. cast flow graph as finite automaton
 - 2. apply standard, finite-state model checking
- For behavioural properties:
 - 1. cast flow graph as pushdown automaton
 - 2. apply PDA model checking

Model Checking Open Systems



Idea: replace every abstract component by a flow graph

Structural Properties: unique maximal flow graph for given sets of provided and required methods: flow graph interface, part of the specification

Behavioural Properties: more problematic

Problem

- in general: maximal flow graphs for behavioural properties not unique
- example: $\begin{bmatrix} a & call & b \end{bmatrix} r$ gives rise to two maximal flow graphs
- question: how can we compute these?

Proposed Approach: via property translation (present contribution)

- characterise behavioural property through set of structural ones:
 - structural property: $a \Rightarrow [b]$ ff
 - structural property: $b \Rightarrow r$
- eliminate subsumed properties (optional)
- construct the maximal flow graphs for the structural properties

Verification Method for Open Systems:

- 1. for concrete components:
 - extract flow graphs
- 2. for abstract components, from specification:
 - if structural, construct maximal flow graph
 - if behavioural,
 - (a) translate to equivalent set of structural properties
 - (b) construct maximal flow graphs
- 3. for all compositions of extracted with constructed flow graphs:
 - model check system flow graph against system property

2. Property Translation

Example for programs with methods a and b only

- Behavioural property:
 - "method *a* never calls method *b*" $\nu X. [a \text{ call } b] \text{ ff} \land [\tau] X \land [a \text{ call } a] X \land [a \text{ ret } a] X$
- is characterised by the structural properties:
 - "in the text of method a there is no call-to-b instruction" $a \Rightarrow \nu X. [b] \text{ ff} \land [\varepsilon] X \land [a] X$
 - "in the text of method *a* every return instruction and every call-to-*b* instruction is preceded by some call-to-*a* instruction" $a \Rightarrow \nu X. \neg r \land [b] \text{ ff} \land [\varepsilon] X$

Applications of Translation

- Maximal flow graphs for
 - compositional verification of behavioural properties
 - synthesis of program skeletons from behavioural specifications
- Foundational value: structure ↔ behaviour in terms of temporal logic
- Enforcing behavioural properties through structure
- Reducing infinite—state behavioural model checking to finite—state structural model checking

The Translation

Idea

- symbolic execution of behavioural formula
- accumulating structural constraints on the way
- by means of history stack: $(m,F)\cdot H$

For modal fragment

• simple mapping π_H

defined inductively on the structure of the formula

• presented at: FESCA 2007

Modal Fragment: Mapping π_H

$$\begin{split} \pi_{(i,F) \cdot H}(p) &= \{i \Rightarrow [F] \, p\} \cup \{i' \Rightarrow [F'] \, \mathrm{ff} \mid (i',F') \in H\} \\ \pi_{(i,F) \cdot H}(\neg p) &= \{i \Rightarrow [F] \, \neg p\} \cup \{i' \Rightarrow [F'] \, \mathrm{ff} \mid (i',F') \in H\} \\ \pi_{(i,F) \cdot H}(\phi_1 \wedge \phi_2) &= \{\sigma_1 \wedge \sigma_2 \mid \sigma_1 \in \pi_{(i,F) \cdot H}(\phi_1), \sigma_2 \in \pi_{(i,F) \cdot H}(\phi_2)\} \\ \pi_{(i,F) \cdot H}(\phi_1 \vee \phi_2) &= \pi_{(i,F) \cdot H}(\phi_1) \cup \pi_{(i,F) \cdot H}(\phi_2) \\ \pi_{(i,F) \cdot H}([\tau] \phi) &= \pi_{(i,F \cdot \varepsilon) \cdot H}(\phi) \\ \pi_{(i,F) \cdot H}([a \, \text{call} \, b] \phi) &= \begin{cases} \{\text{tt}\} & \text{if } i \neq a \\ \pi_{(b,\epsilon) \cdot (i,F \cdot b) \cdot H}(\phi) & \text{if } i = a \end{cases} \\ \pi_{(i,F) \cdot H}([a \, \text{ret} \, b] \phi) &= \begin{cases} \{\text{tt}\} & \text{if } i \neq a \lor \dots \\ \{i \Rightarrow [F] \, \neg r\} \cup \pi_H(\phi) & \text{if } i = a \land \dots \end{cases} \end{split}$$

Modal Fragment: Examples

Example1

$$\pi_{(a,\epsilon)}([a \operatorname{call} b] r) = \pi_{(b,\epsilon)\cdot(a,b)}(r)$$
$$= \{b \Rightarrow r, a \Rightarrow [b] \operatorname{ff}\}$$

Example2

$$\pi_{(a,\epsilon)}([a \operatorname{call} b] [a \operatorname{call} b] r) = \pi_{(b,\epsilon) \cdot (a,b)}([a \operatorname{call} b] r)$$
$$= \{\operatorname{tt}\}$$

Full Logic

Dealing with fixed points: much more involved

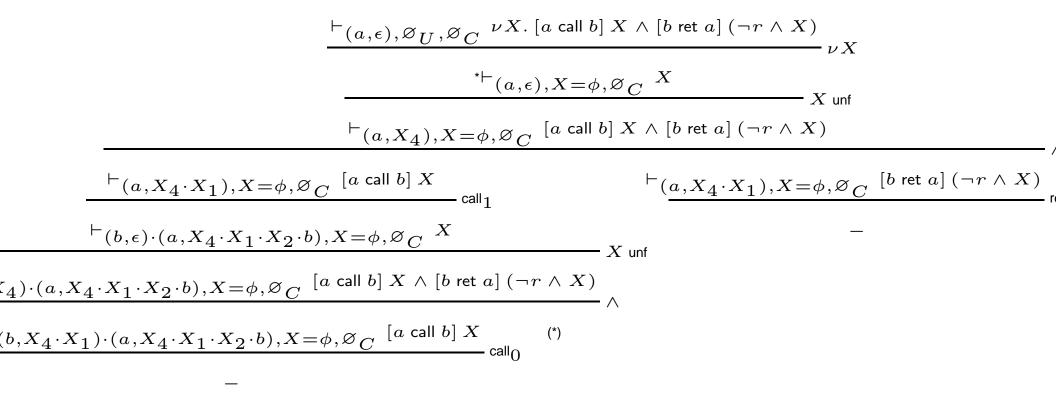
- we need to identify termination conditions that guarantee:
 - structural constraints can be "folded" into fixed-point formulae
 - no new structural constraints will emerge

Approach

- in the frames, record also current formula
- use tableau construction, define global repeat conditions
 - allows correctness proof by viewing tableaux as proofs!
- from leaves, extract accumulated constraints

Tableau Construction

Tableau for behavioural formula: νX . $[a \text{ call } b] X \wedge [b \text{ ret } a] (\neg r \wedge X)$



Extracted structural formulae

- $a \Rightarrow \nu X. [b] (\neg r \land X)$
- $b \Rightarrow \neg r$

Correctness of Tableau Construction

Idea

- view tableau rules as proof rules for proving that a set of structural properties χ entails a behavioural property ϕ
- a tableau for ϕ inducing χ converts to a proof that χ entails ϕ

Results

- soundness for full logic
- completeness for logic without disjunction

3. Conclusions

Achieved

- translation from behavioural to structural properties of program control flow
- implementation of translation, web-based interface
- application to compositional verification

Current limitations

- disjunction is over-approximated
- construction defined for closed interfaces

Future Work

We need to

- study disjunction: is there a complete translation?
- generalize construction to open interfaces, richer program models etc.
- study complexity of translation:
 - o how many formulae?
 - of what size?
- study optimizations, subsumption checking etc.