
An Abstraction Technique for Describing
Concurrent Program Behaviour

Wytse Oortwijn1, Stefan Blom1, Dilian Gurov2, Marieke Huisman1(B),
and Marina Zaharieva-Stojanovski1

1 University of Twente, Enschede, The Netherlands
{w.h.m.oortwijn,s.c.c.blom,m.huisman,m.zaharieva}@utwente.nl

2 KTH Royal Institute of Technology, Stockholm, Sweden
dilian@csc.kth.se

Abstract. This paper presents a technique to reason about functional
properties of shared-memory concurrent software by means of abstrac-
tion. The abstract behaviour of the program is described using process
algebras. In the program we indicate which concrete atomic steps cor-
respond to the actions that are used in the process algebra term. Each
action comes with a specification that describes its effect on the shared
state. Program logics are used to show that the concrete program steps
adhere to this specification. Separately, we also use program logics to
prove that the program behaves as described by the process algebra term.
Finally, via process algebraic reasoning we derive properties that hold for
the program from its abstraction. This technique allows reasoning about
the behaviour of highly concurrent, non-deterministic and possibly non-
terminating programs. The paper discusses various verification examples
to illustrate our approach. The verification technique is implemented as
part of the VerCors toolset. We demonstrate that our technique is capa-
ble of verifying data- and control-flow properties that are hard to verify
with alternative approaches, especially with mechanised tool support.

1 Introduction

The major challenge when reasoning about concurrent or distributed software
is to come up with an appropriate abstraction that provides sufficient detail
to capture the intended properties, while at the same time making verifica-
tion manageable. This paper presents a new powerful abstraction approach that
enables reasoning about the intended properties of the program in a purely non-
deterministic setting, and can abstract code at different levels of granularity.
The presentation of the abstraction technique in this paper focuses on shared-
memory concurrent programs and safety properties, but many extensions may
be explored, for example for distributed programs or progress properties, as
sketched in the paragraph on future work. The paper illustrates our approach
by discussing multiple verification examples in which we verify various data-
and control-flow properties. We demonstrate that the proposed technique can

c© Springer International Publishing AG 2017
A. Paskevich and T. Wies (Eds.): VSTTE 2017, LNCS 10712, pp. 191–209, 2017.
https://doi.org/10.1007/978-3-319-72308-2_12

192 W. Oortwijn et al.

1 int x, y;
2

3 void threadx() {
4 bool stop := false;
5 while ¬stop do {
6 acquire lock;
7 if (x > y) { x := x − y; }
8 stop := x = y;
9 release lock;

10 }
11 }
12

13 void thready() {
14 bool stop := false;
15 while ¬stop do {
16 acquire lock;

17 if (y > x) { y := y − x; }
18 stop := x = y;
19 release lock;
20 }
21 }
22

23 int startgcd(int a, int b) {
24 x := a; y := b;
25 init lock;
26 handle t1 := fork threadx();
27 handle t2 := fork thready();
28 join t1;
29 join t2;
30 destroy lock;
31 return x;
32 }

Fig. 1. A parallel implementation of the Euclidean algorithm for finding the greatest
common divisor of two (positive) integers x and y.

be used to verify program properties that are hard to verify with alternative
approaches, especially in a practical manner via mechanised tools.

To motivate our approach, consider the program shown in Fig. 1. The figure
shows a parallel version of the classical Euclidean algorithm for finding a greatest
common divisor, gcd(x, y), of two given positive integers x and y. This is done by
forking two concurrent threads: one thread to decrement the value of x whenever
possible, and one thread to decrement the value of y.

We are interested in verifying deductively that this program indeed computes
the greatest common divisor of x and y. To accomplish this in a scalable fashion
requires that our technique be modular, or more precisely procedure-modular
and thread-modular, to allow the individual functions and threads to be analysed
independently of one another. The main challenge in achieving this lies in finding
a suitable way of capturing the effect of function calls and threads on the shared
memory in a way that is independent of the other functions and threads. Our
proposal is to capture these effects as sequences of exclusive accesses (in this
example increments and decrements) to shared memory (in this example the
variables x and y). We abstract such accesses into so-called actions, and their
sequences into process algebraic terms.

In our example above we abstract the assignments x := x − y and y := y − x
needed to decrease the values of x and y into actions decrx and decry, respectively.
Action behaviour is specified by means of contracts consisting of a guard and an
effect; the explanation of the details of this are deferred to Sect. 3. Using these
actions, we can specify the effects of the two threads by means of the process
algebra terms tx and ty, respectively, which are defined as follows:

process tx() := decrx · tx() + done process ty() := decry · ty() + done

An Abstraction Technique for Describing Concurrent Program Behaviour 193

Here the action done indicates termination of a process. The functional
behaviour of the program can then be specified by the process pargcd defined
as the term tx() ‖ ty(). Standard process algebraic reasoning can be applied to
show that executing pargcd results in calculating the correct gcd.

Therefore, by proving that the implementation executes as prescribed by
pargcd, we simultaneously establish its functional property of producing the cor-
rect result. The pargcd process thus describes the program behaviour.

Once the program has been specified, the access exclusiveness of the actions
is verified by a suitable extension of separation logic with permission account-
ing [5,19]. On top of it, we develop rules that allow to prove, in a thread-local
fashion, that the program indeed follows its prescribed process. The details of
our technique applied to the above program are presented in Sect. 3.

In previous work [4,27] we developed an approach that records the actions
of a concurrent program as the program executes. Reasoning with this app-
roach is only suitable for terminating programs, and occurs at the end of its
execution, requiring the identification of repeating patterns. In contrast, the
current approach requires a process algebra term upfront that describes the pat-
terns of atomic concurrent actions, which allows the specification of functional
behaviour of reactive, non-terminating programs. For instance, we can verify
properties such as “the values of the shared variables x and y will be equal
infinitely often”, expressed in LTL by the formula �♦(x = y), of a program that
forks separate threads to modify x and y, similarly to the above parallel GCD
program.

Compared to many of the other modern logics to reason about concurrent
programs, such as CAP [9], CaReSL [26], Iris [17], and TaDA [7], our app-
roach does the abstraction at a different level. Our abstraction connects program
code with individual actions, while these other approaches essentially encode an
abstract state machine, describing how program steps evolve from one abstract
program state to the next abstract program state, and explicitly consider the
changes that could be made by the thread environment. As a result, in our
approach the global properties are specified in a way that is independent of the
program implementation. This makes it easier for non-experts to understand the
program specification. The main contributions of this paper are:

– An abstraction technique to specify and verify the behaviour of possibly non-
terminating, shared-memory concurrent programs, where the abstractions are
implementation-independent and may be non-deterministic;

– A number of verification examples that illustrate our approach and can
mechanically be verified via the VerCors toolset; and thus

– Tool support for our model-based reasoning approach.

The remainder of this paper is organised as follows. Section 2 provides a brief
background on separation logic and process algebras. Then, Sect. 3 illustrates
in more detail how abstract models are used in the verification of the parallel
GCD example. Section 4 elaborates on the proof rules as they are used by the
VerCors tool set. Section 5 discusses two more verification examples that apply

194 W. Oortwijn et al.

our approach: verifying a concurrent counter and verifying a locking protocol.
Finally, Sect. 6 discusses related work and Sect. 7 concludes.

2 Background

Our program logic is an extension of Concurrent Separation Logic (CSL) with
permission accounting [1,19,22]. The main difference with classical Hoare logic
is that each allocated heap location is associated with a fractional permission
π, modelled as a rational number in the range (0, 1] [5,6]. By allocating a heap
location �, the allocating thread gets full ownership over �, represented by the
�

1
↪−→ v predicate. The 1

↪−→ predicate gives writing permission to the specified heap
location, whereas π

↪−→ for π < 1 only gives reading permission. The π
↪−→ predicates

may be split and merged along π, so that �
π1↪−→ v ∗ �

π2↪−→ v ⇔ �
π1+π2↪−−−−→ v. In this

case, ⇔ can be read as “splitting” from right to left, or “merging” from left to
right. The ∗ connector is the separating conjunction; the assertion P ∗ Q means
that the heap can be split into two disjoint parts, so that one part satisfies
the assertion P and the other part satisfies Q. CSL allows (splitted) points-
to predicates that are separated via the ∗-connective to be distributed over
concurrent threads (under certain conditions), thereby allowing to reason about
race freedom and about functional behaviour of concurrent programs.

2.1 Dynamic Locking

To reason about dynamically allocated locks we use the program logic techniques
proposed by Gotsman et al. [11]. Our language includes the init L statement,
which initialises a new lock associated with the lock label L. The program logic
requires that a resource invariant is specified for each initialised lock. A resource
invariant is a predicate that expresses the ownership predicates protected by the
lock. In the program logic a Lock1(L) predicate is produced by init L, which
represents the knowledge of the existence of a lock labelled L and this predicate
is required to obtain the lock later. Obtaining a lock labelled L is done via the
acquire L statement which, on the program logic level, consumes the Lockπ(L)
predicate and exchanges it for the resource invariant that is associated to L.
Releasing a lock is done via the release L statement, which has the reverse
effect: it takes the resource invariant of L and exchanges it for Lockπ(L). The
destroy L statement destroys the lock L and thereby consumes Lock1(L) in the
program logic and gives back the resource invariant associated to L.

2.2 Process Algebra Terms

The abstract models we use to reason about programs are represented as pro-
cess algebra terms. A subset of the μCRL [12,13] language is used as a suitably
expressive process algebra with data. The basic primitives are actions, each rep-
resenting an indivisible process behaviour. Processes are defined by combining

An Abstraction Technique for Describing Concurrent Program Behaviour 195

actions and recursive process calls, which both may be parameterised by data.
Process algebra terms have the following structure:

P,Q ::= ε | δ | a(E) | p(E) | P · Q | P + Q | P ‖ Q | if B thenP elseP

where E are arithmetic expressions, B are Boolean expressions, a are action
labels, and p are process labels. With E we mean a sequence of expressions.

The empty process is denoted ε and the deadlock process by δ. The pro-
cess a(E) is an action call and p(E) a recursive process invocation, with E the
argument sequence. Two process terms P and Q may compose either sequen-
tially P · Q or alternatively P + Q. The parallel composition P ‖ Q allows the
actions of P and Q to be interleaved during execution. The conditional construct
if B thenP elseQ resembles the classical “if-then-else”; it yields either P or Q,
depending on the result of evaluating the expression B.

3 Motivating Example

This section demonstrates our approach by verifying functional correctness of the
parallel GCD verification example that was discussed in the introduction. With
functional correctness we mean verifying that, after the program terminates,
the correct value has been calculated. In this example, the correct value is the
mathematical GCD of the two (positive) values given as input to the algorithm.

Our approach uses the following steps:

(1) Actions and their associated guards and effects are defined that describe in
what ways the program is allowed to make updates to shared memory.

(2) The actions are composed into processes by using the process algebraic
connectives discussed in Sect. 2. These processes determine the desired
behaviour of (parts of) the concrete program. Notably, processes that are
composed in parallel correspond to forked threads in the program.

(3) All defined processes that have a contract are verified. Concretely, we auto-
matically verify whether the postconditions of processes can be ensured by
all traces that start from a state in which the precondition is satisfied.

(4) Finally we verify that every thread forked by the program behaves as speci-
fied by the process algebraic specification. If this is the case, the verification
results that are established from (3) can be used in the program logic.

Tool support for model-based reasoning is provided as part of the VerCors
verification tool set [2,3]. The VerCors tool set aims to verify programs under var-
ious concurrency models, notably heterogeneous and homogeneous concurrency,
written in high-level programming languages such as Java and C. Although most
of the examples presented in this paper have been worked out and verified in
PVL, the Prototypal Verification Language that we use to prototype new veri-
fication features, tool support is also provided for both Java and C.

All verification examples presented in this paper have been verified with the
VerCors tool set. Moreover, all example programs are accessible via an online
interface to VerCors, available at http://utwente.nl/vercors.

http://utwente.nl/vercors

196 W. Oortwijn et al.

1 int x, y;
2

3 guard x > 0 ∧ y > x
4 effect x = old(x) ∧ y = old(y) − old(x)
5 action decrx;
6

7 guard y > 0 ∧ x > y
8 effect x = old(x) − old(y) ∧ y = old(y)
9 action decry;

10

11 guard x = y
12 action done;
13

14 process tx() := decrx · tx() + done;
15 process ty() := decry · ty() + done;
16

17 requires x > 0 ∧ y > 0
18 ensures x = y
19 ensures x = gcd(old(x), old(y))
20 process pargcd() := tx() ‖ ty();

Fig. 2. The processes used for the parallel GCD verification example. Three actions
are used: decrx, decry, and done; the first two actions capture modifications made to
the (shared) variables x and y, and done indicates termination.

Parallel GCD. We demonstrate our model-based reasoning approach by cap-
turing the functional behaviour of a parallel GCD algorithm. The parallel GCD
verification problem is taken from the VerifyThis challenge held at ETAPS 20151

and considers a parallel version of the classical Euclidean algorithm.
The standard Euclidean algorithm is defined as a function gcd such that,

given two positive integers x and y, gcd(x, x) = x, gcd(x, y) = gcd(x − y, y)
if x > y, and gcd(x, y) = gcd(x, y − x) if y > x. The parallel version of this
algorithm uses two concurrent threads: the first thread continuously decrements
the value of x when x > y, the second thread continuously decrements the value
of y when y > x, and this process continues until x and y converge to the gcd
of the two original input values. Model-based reasoning is used to describe the
interleaving of the concurrent threads and to prove functional correctness of the
parallel algorithm in an elegant way. Figure 2 presents the setup of the pargcd
process, which models the behaviour of a parallel GCD algorithm with respect to
the two global variables x and y. The pargcd process uses three different actions,
named: decrx, decry, and done. Performing the action decrx captures the effect
of decreasing x, provided that x > y before the action is performed. Likewise,
performing decry captures the effect of decreasing y. Finally, the done action may
be performed when x = y and is used to indicate termination of the algorithm.

The pargcd process is defined as the parallel composition of two processes;
the process tx() describes the behaviour of the thread that decreases x, and
ty() describes the behaviour of the thread that decreases y. The pargcd process
requires that the shared variables x and y are both positive, and ensures that
both x and y contain the gcd of the original values of x and y. Proving that pargcd
satisfies its contract is done via standard process algebraic reasoning: first pargcd
is converted to a linear process (i.e. a process without parallel constructs), which
is then analysed (e.g. via model checking) to show that every thread interleaving
leads to a correct answer, in this case gcd(old(x), old(y)).

1 See also http://etaps2015.verifythis.org.

http://etaps2015.verifythis.org

An Abstraction Technique for Describing Concurrent Program Behaviour 197

1 resource lock := ∃v1, v2 : v1 > 0 ∗
2 v2 > 0 ∗ x

1
↪−→p v1 ∗ y

1
↪−→p v2;

3

4 requires a > 0 ∧ b > 0
5 ensures x = y ∧ x = gcd(a, b)
6 void startgcd(int a, int b) {
7 x := a; y := b;
8 model m := init pargcd() over x, y;

9 init lock;
10 handle t1 := fork threadx(m);
11 handle t2 := fork thready(m);
12 join t1;
13 join t2;
14 destroy lock;
15 finish m;
16 }

Fig. 3. The entry point of the parallel GCD algorithm. Two threads are forked and
continuously decrement either x or y until x = y, which is when the threads converge.
The functional property of actually producing a gcd is proven by analysing the process.

Verifying Program Correctness. Figure 3 shows the startgcd function,
which is the entry point of the parallel GCD algorithm. According to startgcd’s
contract, two positive integers must be given as input and permission is required
to write to x and y. On line 8 a model is initialised and named m, which describes
that all further program executions behave as specified by the pargcd process.
Since pargcd is defined as the parallel composition of the processes tx and ty,
its definition may be matched in the program code by forking two concurrent
threads and giving each thread one of the components of tx() ‖ ty(). In this case,
the thread executing threadx() continues from the process tx() and the thread
executing thready() continues from ty(). By later joining the two threads and
finishing the model by using the ghost statement finish (which is only possible
if pargcd has been fully executed), we may establish that startgcd satisfies its
contract. However, we still have to show that the threads executing threadx and
thready behave as described by the model m.

Figure 4 shows the implementation of threadx and thready. Both procedures
require a Lockπ(lock) predicate, which gives the knowledge that a lock with
resource invariant labelled lock has been initialised, and gives the possibility to
acquire this lock and therewith the associated resource invariant. Moreover, both
procedures require one half of the splitted Proc1(m, tx() ‖ ty()) predicate that is
established in Fig. 3 as result of initialising the model on line 8.

The connection between the process and program code is made via the action
(ghost) statements. To illustrate, in the function threadx the decrement of x on
line 13 is performed in the context of an action block, thereby forcing the tx()
process in the Proc1/2 predicate to perform the decrx action. The guard of decrx
specifies the condition under which decrx can be executed, and the effect clause
describes the effect on the (shared) state as result of executing decrx. Eventually,
both threads execute the done action to indicate their termination.

The VerCors tool set can automatically verify the parallel GCD verification
example discussed above, including the analysis of the processes.

198 W. Oortwijn et al.

1 requires Lockπ(lock)
2 requires Proc1/2(m, tx())
3 ensures Lockπ(lock)
4 ensures Proc1/2(m, ε)
5 void threadx(model m) {
6 bool stop := false;
7 loop-inv Lockπ(lock);
8 loop-inv ¬stop ⇒ Proc1/2(m, tx());
9 loop-inv stop ⇒ Proc1/2(m, ε);

10 while ¬stop do {
11 acquire lock;
12 if (x > y) {
13 action m.decrx() {
14 x := x − y;
15 }
16 }
17 if (x = y) {
18 action m.done() {
19 stop := true;
20 }
21 }
22 release lock;
23 }
24 }

1 requires Lockπ(lock)
2 requires Proc1/2(m, ty())
3 ensures Lockπ(lock)
4 ensures Proc1/2(m, ε)
5 void thready(model m) {
6 bool stop := false;
7 loop-inv Lockπ(lock);
8 loop-inv ¬stop ⇒ Proc1/2(m, ty());
9 loop-inv stop ⇒ Proc1/2(m, ε);

10 while ¬stop do {
11 acquire lock;
12 if (y > x) {
13 action m.decry() {
14 y := y − x;
15 }
16 }
17 if (x = y) {
18 action m.done() {
19 stop := true;
20 }
21 }
22 release lock;
23 }
24 }

Fig. 4. The implementation of the procedures used by the two threads to calculate the
gcd of x and y. The procedure threadx decrements x and thready decrements y.

4 Program Logic

This section shortly elaborates on the assertion language and the proof rules
of our approach, as used internally by the VerCors tool set to reason about
abstractions. We do not present a full formalisation, for full details we refer
to [27]. Only the proof rules related to model-based reasoning are discussed.

4.1 Assertion Language

Our program logic builds on standard CSL with permission accounting [6] and
lock predicates [11]. The following grammar defines its assertion language:

P,Q ::= B | ∀x.P | ∃x.P | P ∧ Q | P ∗ Q | Lockπ(L) | Lockedπ(L) | · · ·
| E

π
↪−→n E | E

π
↪−→p E | E

π
↪−→a E | Procπ(E, p, P)

where E are arithmetic expressions, B are Boolean expressions, x are variables,
π are fractional permissions, L are lock labels, and p are process labels. Note
that the specification language implemented in VerCors supports more assertion
constructs; we only highlight a subset to elaborate on our approach.

An Abstraction Technique for Describing Concurrent Program Behaviour 199

Instead of using a single points-to ownership predicate, like in standard CSL,
our extensions require three different points-to predicates:

– The E
π

↪−→n E′ predicate is the standard points-to predicate from CSL. It
gives write permission to the heap location expressed by E in case π = 1,
and gives read access in case π ∈ (0, 1]. This predicate also represents the
knowledge that the heap contains the value expressed by E′ at location E.

– The process points-to predicate E
π

↪−→p E′ is similar to π
↪−→n, but indicates that

the heap location at E is bound by an abstract model. Since all changes to
this heap location must be captured by the model, the π

↪−→p predicate only
gives read permission to E, even when π = 1.

– The action points-to predicate E
π

↪−→a E′ gives read- or write access to the heap
location E in the context of an action block. As a precondition, action blocks
require π

↪−→p predicates for all heap locations that are accessed in their body.
These predicates are then converted to π

↪−→a predicates, which give reading
permission if π ∈ (0, 1], and writing permission if π = 1.

All three points-to ownership predicates can be split and merged along the
associated fractional permission, to be distributed among concurrent threads:

E
π1+π2↪−−−−→t E′ ⇔ E

π1↪−→t E′ ∗ E
π2↪−→t E′ for t ∈ {n, p, a}

Essentially, three different predicates are needed to ensure soundness of the
verification approach. When a heap location � becomes bound by an abstract
model, its �

π
↪−→ E predicate is converted to an �

π
↪−→p E predicate in the program

logic. As an effect, the value at � cannot just be changed, since the π
↪−→p predicate

does not permit writing to � (even when π = 1). However, the value at � can be
changed in the context of an action block, as the rule for action blocks in our
program logic converts all affected π

↪−→p predicates to π
↪−→a predicates, and π

↪−→a

again allows heap writes. The intuition is that, by converting �
π

↪−→p E predicates
to �

π
↪−→a E predicates, all changes to � must occur in the context of action

blocks, and this allows us to describe all changes to � as process algebra terms.
Consequently, by reasoning over these process algebra terms, we may reason
about all possible changes to �, and our verification approach allows to use the
result of this reasoning in the proof system.

The second main extension our program logic makes to standard CSL is the
Procπ(E, p, P) predicate, which represents the knowledge of the existence of an
abstract model that: (i) is identified by the expression E, (ii) was initialised by
invoking the process labelled p, and (iii) is described by the process term P .
For brevity we omitted p from the annotations in all example programs, since
this component is constant (it cannot be changed in the proof system). The
third component P is the remaining process term that is to be “executed” (or
“matched”) by the program. The Procπ predicates may be split and merged
along the fractional permission and the process term, similar to the points-to
ownership predicates:

Procπ1+π2(E, p, P1 ‖ P2) ⇔ Procπ1(E, p, P1) ∗ Procπ2(E, p, P2)

200 W. Oortwijn et al.

4.2 Proof System

Figure 5 shows the proof rules for our model-based reasoning approach. For pre-
sentational purposes these rules are somewhat simplified: the rules [init], [fin],
and [act] require some extra side conditions that deal with process- and action
arguments. We also omitted handing process arguments in [init]. More details
on these proof rules can be found in [27].

The [ass] rule allows reading from the heap, which can be done with any
points-to permission predicate (that is, π

↪−→t for any permission type t). Writing
to shared memory is only allowed by [mut] with a full permission predicate that
is not of type p; if the targeted heap location is bound by an abstract model,
then all changes must be done in an action block (see the [act] rule). [init]
handles the initialisation of a model, which on the specification level converts
all affected 1

↪−→n predicates to 1
↪−→p and produces a full Proc1 predicate. [fin]

handles model finalisation: it requires a fully executed Proc1 predicate (holding
the process ε) and converts all affected 1

↪−→p predicates back to 1
↪−→n. Finally,

[act] handles action blocks. If a proof can be derived for the body S of the
action block that: (i) respects the guard and effect of the action, and (ii) with
the 1

↪−→p predicates of all heap locations accessed in S converted to 1
↪−→a, then a

similar proof can be established for the entire action block. Observe that [act]
requires and consumes the matching action call in the process term.

x �∈ fv(E, E′)

 {P[x/E′] ∧ E

π
↪−→t E′} x := [E] {P ∧ E

π
↪−→t E′} [ass]

t �= p

 {E
1

↪−→t −} [E] := E′ {E
1

↪−→t E′} [mut]

B = precondition(p) P = body(p)

 {∗i=0..nEi

1
↪−→n E′

i ∗ B}
model m := init p() over E0, . . . , En

{∗i=0..nEi
1

↪−→p E′
i ∗ Proc1(m, p, P)}

[init]

locations(m) = (E0, . . . , En) B = postcondition(p)

 {∗i=0..nEi

1
↪−→p E′

i ∗ Proc1(m, p, ε)}finish m {∗i=0..nEi
1

↪−→n E′
i ∗ B} [fin]

accessedlocs(S) = (E0, . . . , En) B1 = guard(a) B2 = effect(a)

 {∗i=0..nEi

1
↪−→a E′

i ∗ B1} S {∗i=0..nEi
1

↪−→a E′′
i ∗ B2}

 {∗i=0..nEi
1

↪−→p E′
i ∗ Procπ(m, p, a(E) · P) ∗ B1}

action m.a(E) { S }
{∗i=0..nEi

1
↪−→p E′′

i ∗ Procπ(m, p, P) ∗ B2}

[act]

Fig. 5. The simplified proof rules of all model-related specification constructs.

An Abstraction Technique for Describing Concurrent Program Behaviour 201

5 Applications of the Logic

In this section we apply our approach on two more verification problems: (i) a
concurrent program in which multiple threads increase a shared counter by one
(see Sect. 5.1); and (ii) verifying control-flow properties of a fine-grained lock
implementation (see Sect. 5.2). Also some interesting variants on these problems
are discussed. For example (i) we verify the functional property that, after the
program terminates, the correct value has been calculated. For (ii) we verify
that clients of the lock adhere to the intended locking protocol and thereby
avoid misusing the lock.

5.1 Concurrent Counting

Our second example considers a concurrent counter : a program where two
threads concurrently increment a common shared integer. The basic algorithm is
given in Fig. 6. The goal is to verify that program increments the original value
of counter by two, given that it terminates. However, providing a specification
for worker can be difficult, since no guarantees to the value of counter can be
given after termination of worker, as it is used in a concurrent environment.

Existing verification approaches for this particular example [8] mostly require
auxiliary state, a form of rely/guarantee reasoning, or, more recently, concurrent
abstract predicates, which may blow-up the amount of required specifications
and are not always easy to use. We show how to verify the program of Fig. 6 via
our model-based abstraction approach. Later, we show how our techniques may
be used on the same program but generalised to n threads.

Our approach is to protect all changes to counter by a process that we name
parincr. The parincr process is defined as the parallel composition incr ‖ incr of
two processes that both execute the incr action once. Performing incr has the
effect of incrementing counter by one. From a process algebraic point of view
it is easy to see that parincr satisfies its contract: every possible trace of parincr
indeed has the effect of increasing counter by two, and this can automatically be
verified. We use this result in the verification of program by using model-based
reasoning. In particular, we may instantiate parincr as a model m, split along its

1 int counter;
2

3 void worker() {
4 atomic {
5 counter := counter + 1;
6 }
7 }

8 void program(int n) {
9 counter := n;

10 handle t1 = fork worker();
11 handle t2 = fork worker();
12 join t1;
13 join t2;
14 }

Fig. 6. The concurrent counting example program, where two threads forked by
program increment the shared integer counter.

202 W. Oortwijn et al.

1 int counter;
2

3 effect counter = old(counter) + 1;
4 action incr;
5

6 ensures counter = old(counter) + 2;
7 process parincr() := incr ‖ incr;
8

9 requires Procπ(m, incr);
10 ensures Procπ(m, ε);
11 void worker(model m) {
12 atomic {
13 action m.incr {
14 counter := counter + 1;

15 }
16 }
17 }
18

19 ensures counter = c + 2;
20 void program(int c) {
21 counter := c;
22 model m := parincr();
23 handle t1 := fork worker(m);
24 handle t2 := fork worker(m);
25 join t1;
26 join t2;
27 finish m;
28 }

Fig. 7. Definition of the parincr process that models two concurrent threads performing
an atomic incr action, and the required annotations for worker and program.

parallel composition, and give each forked thread a fraction of the splitted Proc
predicate. The interface specification of the worker procedure thus becomes:

{Procπ(m, incr)} worker(m) {Procπ(m, ε)}

An annotated version of the concurrent counting program is presented in
Fig. 7. The atomic statement is used as a construct for statically-scoped locking;
for simplicity we assume that writing permissions for counter are maintained
by its resource invariant. Indeed, by showing that both threads execute the incr
action, the established result of incrementing counter by 2 can be concluded.

Generalised Concurrent Counting. The interface specification of worker is
generic enough to allow a generalisation to n threads. Instead of the parincr
process as presented in Fig. 7 one could consider the following process, which
essentially encodes the process “incr ‖ · · · ‖ incr” (n times) via recursion:

requires n ≥ 0;
ensures counter = old(counter) + n;
process parincr(int n) := if n > 0 then incr ‖ parincr(n − 1) else ε;

Figure 8 shows the generalised version of the concurrent counting program,
in which we reuse the incr action and the worker procedure from Fig. 7. Here
program takes an extra parameter n that determines the number of threads to
be spawned. The spawn procedure has been added to spawn the n threads. This
procedure is recursive to match the recursive definition of the parincr(n) process.
Again, each thread executes the worker procedure. We verify that after running
program the value of counter has increased by n.

An Abstraction Technique for Describing Concurrent Program Behaviour 203

1 requires n ≥ 0;
2 requires Procπ(m, parincr(n));
3 ensures Procπ(m, ε);
4 void spawn(model m, int n) {
5 if (n > 0) {
6 handle t := fork worker(m);
7 spawn(m, n − 1);
8 join t;
9 }

10 }

11

12 requires n ≥ 0;
13 ensures counter = c + n;
14 void program(int c, int n) {
15 counter := c;
16 model m := parincr(n);
17 spawn(m, n);
18 finish m;
19 }

Fig. 8. Generalisation of the concurrent counting verification problem, where program

forks n threads using the recursive spawn procedure. Each thread executes the worker

procedure and therewith increments the value of counter by one.

On the level of processes we may automatically verify that each trace of the
process parincr(n) is a sequence of n consecutive incr actions. As a consequence,
from the effects of incr we can verify that parincr(n) increases counter by n.
On the program level we may verify that spawn(m,n) fully executes according
to the parincr(n) process. To clarify, on line 6 the definition of parincr(n) can
be unfolded to incr ‖ parincr(n − 1) and can then be split along its parallel
composition. Then the forked thread receives incr and the recursive call to spawn
receives parincr(n − 1). After calling join on line 8, both the call to worker and
the recursive call to spawn have ensured completing the process they received,
thereby leaving the (merged) process ε ‖ ε, which can be rewritten to ε to satisfy
the postcondition of spawn. As a result, after calling finish on line 18 we can
successfully verify that counter has indeed been increased by n.

Unequal Concurrent Counting. One could consider an interesting variant
on the two-threaded concurrent counting problem: one thread performing the
assignment “counter = counter + v” for some integer value v, and the other
thread concurrently performing “counter = counter ∗ v”. Starting from a state
where counter = c holds for some c, the challenge is to verify that after running
the program we either have counter = (c + v) ∗ v or counter = (c ∗ v) + v.

This program can be verified using our model-based approach (without
requiring for example auxiliary state) by defining corresponding actions for
the two different assignments. The global model is described as the process
count(int n) := plus(n) ‖ mult(n), where the action plus(n) has the effect of
incrementing counter by n and mult(n) has the effect of multiplying counter by
n. The required program annotations are then similar to the ones used in Fig. 7.

All three variants on the concurrent counting problem can be automatically
verified using the VerCors toolset.

204 W. Oortwijn et al.

5.2 Lock Specification

The third example demonstrates how our approach can be used to verify control-
flow properties of programs, in this case the compare-and-swap lock implemen-
tation that is presented in the Concurrent Abstract Predicates (CAP) paper [9].
The implementation is given in Fig. 9. The cas(x, c, v) operation is the compare-
and-swap instruction, which atomically updates the value of x by v if the old
value at x is equal to c, otherwise the value at x is not changed. A Boolean result
is returned indicating whether the update to x was successful.

In particular, model-based reasoning is used to verify that the clients of this
lock adhere to the intended locking protocol: clients may only successfully acquire
the lock when the lock was unlocked and vice versa. Stated differently, we verify
that clients may not acquire (nor release) the same lock successively.

The process algebraic description of the locking protocol is a composition of
two actions, named acq and rel, that model the process of acquiring and releasing
the lock, respectively. A third action named done is used to indicate that the
lock is no longer used and can thus be destroyed. We use this process as a model
to protect changes to the shared variable flag, so that all changes to flag must
either happen as an acq or as a rel action. The acq action may be performed
only if flag is currently false and has the effect of setting flag to true. The rel
action simply has the effect of setting flag to false, whatever the current value
of flag (therefore rel does not need a guard). The locking protocol is defined by
the processes Locked() := rel ·Unlocked() and Unlocked() := acq ·Locked()+done.
This allows us to use the following interface specifications for the acquire and
release procedures (with m a global identifier of an initialised model):

{Procπ(m,Unlocked())} acquire() {Procπ(m, Locked())}
{Procπ(m, Locked())} release() {Procπ(m,Unlocked())}

Specification-wise, clients of the lock may only perform acquire when they
have a corresponding process predicate that is in an “Unlocked” state (and the
same holds for release and “Locked”), thereby enforcing the locking protocol
(i.e. the process only allows traces of the form: acq, rel, acq, rel, · · ·). The acquire
procedure performs the acq action via the cas operation: one may define cas
to update flag as an acq action. Moreover, since cas is an atomic operation,

1 bool flag := false;
2

3 void acquire() {
4 bool b := false;
5 while ¬b {
6 b := cas(flag, false, true);

7 }
8 }
9

10 void release() {
11 atomic { flag := false; }
12 }

Fig. 9. Implementation of a simple locking system.

An Abstraction Technique for Describing Concurrent Program Behaviour 205

1 bool flag;
2 model m;
3

4 resource inv := flag
1

↪−→p −;
5

6 guard ¬flag; effect flag; action acq;
7 effect ¬flag; action rel;
8

9 process Unlocked() := acq · Locked();
10 process Locked() :=
11 rel · Unlocked() + done;
12

13 requires Procπ(m, Unlocked());
14 ensures Procπ(m, Locked());
15 void acquire() {
16 bool b := false;
17 loop-inv ¬b ⇒
18 Procπ(m, acq · Locked());
19 loop-inv b ⇒ Procπ(m, Locked());
20 while ¬b {
21 b := cas(flag, false, true);
22 }
23 }
24

25 requires Procπ(m, Locked());
26 ensures Procπ(m, Unlocked());
27 void release() {
28 atomic inv {
29 action m.rel { flag := false; }
30 }
31 }
32

33 requires flag
1

↪−→n −;
34 ensures Proc1(m, Unlocked());
35 void init() {
36 flag := false;
37 m := model Unlocked();
38 init inv;
39 }
40

41 requires Proc1(m, Unlocked());
42 ensures flag

1
↪−→n −;

43 void destroy() {
44 action m.done { }
45 destroy inv;
46 finish m;
47 }

Fig. 10. The annotated implementation of the simple fine-grained locking system.

it can get all necessary ownership predicates from the resource invariant inv.
Furthermore, calling destroy() corresponds to performing the done action on
the process algebra level, which may only be done in the “Unlocked” state.

The full annotated lock implementation is presented in Fig. 10. The init
and destroy procedures have been added to initialise and finalise the lock and
thereby to create and destroy the corresponding model. The init consumes
write permission to flag, creates the model, and transfers the converted write
permission into the resource invariant inv. Both the atomic block (on line 28)
and the cas operation (on line 21) make use of inv to get permission to change
the value of flag in an action block. The cas operation on line 21 performs
the acq action internally, depending on the success of the compare-and-swap
(indicated by its return value). This is reflected upon in the loop invariant. The
destroy procedure has the opposite effect of init: it consumes the (full) Proc
predicate (in state “Unlocked”), destroys the model and the associated resource
invariant, and gives back the converted write permission to flag.

In the current presentation, init returns a single Proc predicate in state
Unlocked, thereby allowing only a single client. This is however not a limita-
tion: to support two clients, init could alternatively initialise and ensure the
Unlocked() ‖ Unlocked() process. Furthermore, to support n clients (or a dynamic

206 W. Oortwijn et al.

number of clients), init could apply a construction similar to the one used in
the generalised concurrent counting example (see Sect. 5.1).

Reentrant Locking. The process algebraic description of the locking protocol
can be upgraded to describe a reentrant lock : a locking system where clients
may acquire and release multiple times in succession. A reentrant lock that is
acquired n times by a client must also be released n times before it is available to
other clients. Instead of using the Locked and Unlocked processes, the reentrant
locking protocol is described by the following process (with n ≥ 0):

process Lock(int n) := acq · Lock(n + 1) + (if n > 0 then rel · Lock(n − 1))

Rather than describing the lock state as a Boolean flag, like done in the
single-entrant locking example, the state of the reentrant lock can be described
as a multiset containing thread identifiers. In that case, acq and rel protect all
changes made to the multiset in order to enforce the locking protocol described
by Lock. The interface specifications of acquire and release then become:

{Procπ(m, Lock(n))} acquire() {Procπ(m, Lock(n + 1))}
{Procπ(m, Lock(n)) ∧ n > 0} release() {Procπ(m, Lock(n − 1))}

Moreover, the Lock(n) process could be extended with a done action to allow
the reentrant lock to be destroyed. The done action should then only be allowed
when n = 0. Both the simple locking implementation and the reentrant locking
implementation have been automatically verified using the VerCors toolset.

5.3 Other Verification Examples

This section demonstrated the use of process algebraic models in three different
verification examples, as well as some interesting variants on them. We showed
how model-based reasoning can be used as a practical tool to verify different
types of properties that would otherwise be hard to verify, especially with an
automated tool. We considered data properties in the parallel GCD and the con-
current counting examples, and considered control-flow properties in the locking
examples. Moreover, we showed how to use the model-based reasoning approach
in environments with a dynamic number of concurrent threads.

Our approach can also be used to reason about non-terminating programs.
Notably, a no-send-after-read verification example is available that addresses a
commonly used security property: if confidential data is received by a secure
device, it will not be passed on. The concrete send- and receive behaviour of
the device can be abstracted by send and recv actions, respectively. Receiving
confidential information is modelled as the clear action. Essentially, we show that
after performing a clear action the device can no longer perform send’s.

An Abstraction Technique for Describing Concurrent Program Behaviour 207

6 Related Work

The abstraction technique proposed in this paper allows reasoning about func-
tional behaviour of concurrent, possibly non-terminating programs. A related
approach is (impredicative) Concurrent Abstract Predicates (CAP) [9,25], which
also builds on CSL with permissions. In the program logic of CAP, regions of
memory can be specified as being shared. Threads must have a consistent view
of all shared regions: all changes must be specified as actions and all shared
regions are equipped with a set of possible actions over their memory. Our app-
roach uses process algebraic abstractions over shared memory in contrast to the
shared regions of CAP, so that all changes to the shared memory must be cap-
tured as process algebraic actions. We mainly distinguish in the use of process
algebraic reasoning to verify properties that could otherwise be hard to verify,
and in the capability of doing this mechanically by providing tool support.

Other related approaches include TaDA [7], a program logic that builds on
CAP by adding a notion of abstract atomicity via Hoare triples for atomic oper-
ations. CaReSL [26] uses a notion of shared regions similar to CAP, but uses
tokens to denote ownership. These tokens are used to transfer ownership over
resources between threads. Iris [17,18] is a reasoning framework that aims to
provide a comprehensive and simplified solution for recent (higher-order) con-
currency logics. Sergey et al. [24] propose time-stamped histories to capture
modifications to the shared state. Our approach may both capture and model
program behaviour and benefits from extensive research on process algebraic
reasoning [12]. Moreover, the authors provide a mechanised approach to inter-
actively verify full functional correctness of concurrent programs by building on
CSL [23]. Popeea and Rybalchenko [21] combine abstraction refinement with
rely-guarantee reasoning to verify termination of multi-threaded programs.

In the context of verifying distributed systems, Session Types [15] describe
communication protocols between processes [14]. However, our approach is more
general as it allows describing any kind of behaviour, including communication
behaviour between different system components.

7 Conclusion

This paper addresses thread-modular verification of possibly non-terminating
concurrent programs by proposing a technique to abstract program behaviour
using process algebras. A key characteristic of our approach is that properties
about programs can be proven by analysing process algebraic program abstrac-
tions and by verifying that programs do not deviate from these abstractions. The
verification is done in a thread-modular way, using an abstraction-aware exten-
sion of CSL. This paper demonstrates how the proposed technique provides an
elegant solution to various verification problems that may be challenging for
alternative verification approaches. In addition, the paper contributes tool sup-
port and thereby allow mechanised verification of the presented examples.

208 W. Oortwijn et al.

Future Work. We are currently working on mechanising the formalisation and
the soundness proof of the proposed technique using Coq. At the moment, veri-
fication at the process algebra level is non-modular. As a next step, we plan to
achieve modularity at this level as well, by combining our approach with rely-
guarantee [16] and deny-guarantee reasoning [10]. We also plan to investigate
how to mix and interleave abstract and concrete reasoning. In the current set
up, reasoning is done completely at the level of the abstraction. If this part of
the program is used as a component in a larger program, we plan to investigate
how the verification results for the components can be used to reason about the
larger program, if reasoning about the larger program is not done at this level of
abstraction. Finally, in a different direction, we plan to extend the abstraction
technique to reason about distributed software. For example, abstractions may
be used to capture the behaviour of a single actor/agent as a process term, allow-
ing process algebraic techniques such as [20] to be used for further verification.

Acknowledgements. This work is partially supported by the ERC grant 258405 for
the VerCors project and by the NWO TOP 612.001.403 project VerDi.

References

1. Amighi, A., Haack, C., Huisman, M., Hurlin, C.: Permission-based separation logic
for multithreaded Java programs. LMCS 11(1), 1–66 (2015)

2. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1 7

3. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 127–
131. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 9

4. Blom, S., Huisman, M., Zaharieva-Stojanovski, M.: History-based verification of
functional behaviour of concurrent programs. In: Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9276, pp. 84–98. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-22969-0 6

5. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting
in separation logic. In: POPL, pp. 259–270 (2005)

6. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5 4

7. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44202-9 9

8. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: Steps in modular specifi-
cations for concurrent modules. In: MFPS, EPTCS, pp. 3–18 (2015). https://doi.
org/10.1016/j.entcs.2015.12.002

9. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol.
6183, pp. 504–528. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14107-2 24

https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-06410-9_9
https://doi.org/10.1007/978-3-319-22969-0_6
https://doi.org/10.1007/978-3-319-22969-0_6
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1016/j.entcs.2015.12.002
https://doi.org/10.1016/j.entcs.2015.12.002
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24

An Abstraction Technique for Describing Concurrent Program Behaviour 209

10. Dodds, M., Feng, X., Parkinson, M., Vafeiadis, V.: Deny-guarantee reasoning. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 363–377. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00590-9 26

11. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local reasoning for
storable locks and threads. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp.
19–37. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76637-7 3

12. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

13. Groote, J.F., Ponse, A.: The syntax and semantics of µCRL. In: Ponse, A., Verhoef,
C., van Vlijmen, S.F.M. (eds.) Algebra of Communicating Processes, pp. 26–62.
Springer, London (1995). https://doi.org/10.1007/978-1-4471-2120-6 2

14. Honda, K., Marques, E.R.B., Martins, F., Ng, N., Vasconcelos, V.T., Yoshida,
N.: Verification of MPI programs using session types. In: Träff, J.L., Benkner,
S., Dongarra, J.J. (eds.) EuroMPI 2012. LNCS, vol. 7490, pp. 291–293. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33518-1 37

15. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008)

16. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

17. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,
D.: Iris: monoids and invariants as an orthogonal basis for concurrent reasoning.
In: POPL, pp. 637–650. ACM (2015)

18. Krebbers, R., Jung, R., Bizjak, A., Jourdan, J.-H., Dreyer, D., Birkedal, L.: The
essence of higher-order concurrent separation logic. In: Yang, H. (ed.) ESOP 2017.
LNCS, vol. 10201, pp. 696–723. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54434-1 26

19. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoret. Comput. Sci.
375(1–3), 271–307 (2007)

20. Pang, J., van de Pol, J., Espada, M.: Abstraction of parallel uniform processes with
data. In: SEFM, pp. 14–23. IEEE (2004)

21. Popeea, C., Rybalchenko, A.: Compositional termination proofs for multi-threaded
programs. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp.
237–251. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-
5 17

22. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Logic in Computer Science, pp. 55–74. IEEE Computer Society (2002). https://
doi.org/10.1109/LICS.2002.1029817

23. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-
current programs. In: PLDI, pp. 77–87. ACM (2015)

24. Sergey, I., Nanevski, A., Banerjee, A.: Specifying and verifying concurrent algo-
rithms with histories and subjectivity. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol.
9032, pp. 333–358. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46669-8 14

25. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54833-8 9

26. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and hoare-style reasoning
in a logic for higher-order concurrency. In: ICFP, pp. 377–390 (2013)

27. Zaharieva-Stojanovski, M.: Closer to reliable software: verifying functional
behaviour of concurrent programs. Ph.D. thesis, University of Twente (2015).
https://doi.org/10.3990/1.9789036539241

https://doi.org/10.1007/978-3-642-00590-9_26
https://doi.org/10.1007/978-3-540-76637-7_3
https://doi.org/10.1007/978-1-4471-2120-6_2
https://doi.org/10.1007/978-3-642-33518-1_37
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-642-28756-5_17
https://doi.org/10.1007/978-3-642-28756-5_17
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.3990/1.9789036539241

	An Abstraction Technique for Describing Concurrent Program Behaviour
	1 Introduction
	2 Background
	2.1 Dynamic Locking
	2.2 Process Algebra Terms

	3 Motivating Example
	4 Program Logic
	4.1 Assertion Language
	4.2 Proof System

	5 Applications of the Logic
	5.1 Concurrent Counting
	5.2 Lock Specification
	5.3 Other Verification Examples

	6 Related Work
	7 Conclusion
	References

