
How to Shuffle in Public

Ben Adida1,� and Douglas Wikström2

1 MIT, Computer Science and Artificial Intelligence Laboratory
ben@mit.edu

2 ETH Zürich, Department of Computer Science
douglas@inf.ethz.ch

Abstract. We show how to obfuscate a secret shuffle of ciphertexts:
shuffling becomes a public operation. Given a trusted party that samples
and obfuscates a shuffle before any ciphertexts are received, this reduces
the problem of constructing a mix-net to verifiable joint decryption.

We construct public-key obfuscations of a decryption shuffle based on
the Boneh-Goh-Nissim (BGN) cryptosystem and a re-encryption shuf-
fle based on the Paillier cryptosystem. Both allow efficient distributed
verifiable decryption.

Finally, we give a distributed protocol for sampling and obfuscating
each of the above shuffles and show how it can be used in a trivial way
to construct a universally composable mix-net. Our constructions are
practical when the number of senders N is small, yet large enough to
handle a number of practical cases, e.g. N = 350 in the BGN case and
N = 2000 in the Paillier case.

1 Introduction

Suppose a set of senders P1, . . . , PN , each with input mi, want to compute
the sorted list (mπ(1), . . . , mπ(N)) of messages while keeping the permutation π
secret. A trusted party can provide this service. First, it collects all messages.
Then, it sorts the inputs and outputs the result. A protocol, i.e., a list of machines
M1, . . . , Mk, that emulates the service of this trusted party is called a mix-net,
and the parties M1, . . . , Mk are referred to as mix servers. The notion of a
mix-net was introduced by Chaum [9] and the main application of mix-nets is
to perform electronic elections.

Program obfuscation is the process of “muddling” a program’s instructions to
prevent reverse-engineering while preserving proper function. Barak et al. [2] first
formalized obfuscation as simulatability from black-box access. Goldwasser and
Tauman-Kalai [15] extended this definition to consider auxiliary inputs. Some
simple programs have been successfully obfuscated [8,26]. However, generalized
program obfuscation, though it would be fantastically useful in practice, has
been proven impossible in even the weakest of settings for both models (by their
respective authors). Ostrovsky and Skeith [21] consider a weaker model, public-
key obfuscation, where the obfuscated program’s output is encrypted. In this
model, they achieve the more complex application of private stream searching.
� with support from the Caltech/MIT Voting Technology Project and the Knight

Foundation.

S.P. Vadhan (Ed.): TCC 2007, LNCS 4392, pp. 555–574, 2007.
c© International Association for Cryptologic Research 2007

556 B. Adida and D. Wikström

1.1 Our Contributions

We show how to obfuscate the shuffle phase of a mix-net: shuffling becomes a
public operation, leaving only verifiable decryption to be performed privately.
We show how any homomorphic cryptosystem can provide obfuscated mixing,
though the resulting mix-net becomes inefficient. We show how special and dis-
tinct properties of the Boneh-Goh-Nissim [7] and Paillier [22] cryptosystems
enable obfuscated mixing efficient enough to be practical in some settings.

We formalize our constructions in the public-key obfuscation model of Ostro-
vsky and Skeith, whose indistinguishability property closely matches the security
requirements of a mix-net. Of course, in a mix-net setting, one cannot expect a
single party to generate a complete and correct obfuscated shuffle: we describe
an efficient zero-knowledge proof of the correct obfuscation of a shuffle and a pro-
tocol that allows a set of parties to jointly and robustly generate an obfuscated
randomly chosen shuffle. Our shuffles require considerably more exponentiations,
roughly quadratic in the number of senders instead of linear, than private mix-
net techniques, yet they remain reasonably practical for precinct-based elections,
where voters are anonymized in smaller batches and all correctness proofs can
be carried out in advance.

1.2 Previous Work

Most mix-nets in the literature are based on homomorphic cryptosystems and
use the re-encryption-permutation paradigm introduced by Park et al. [23] and
made universally verifiable by Sako and Kilian [24]. Each mix server in turn re-
encrypts and permutes the ciphertexts. The first efficient zero-knowledge shuf-
fle proofs were given independently by Neff [20] and Furukawa and Sako [14].
Groth [17] generalized Neff’s approach and improved its efficiency. A third, dif-
ferent, approach was given recently by Wikström [28]. The first definition of
security of a mix-net was given by Abe and Imai [1] and the first proof of se-
curity of a mix-net as a whole was given by Wikström [27,28]. Wikström and
Groth [30] give the first adaptively secure mix-net.

Multi-candidate election schemes where the set of candidates is predetermined
have been proposed using homomorphic encryption schemes, initially by Benaloh
[6,5] and subsequently by others to handle multiple races and multiple candi-
dates per race [10,25,11,13,3,17]. Homomorphic tallying is similar to obfuscated
shuffles in that, on and after election day, only public computation is required
for the anonymization process. However, homomorphic tallying cannot recover
the individual input plaintexts, which is required by the election laws in some
countries and in the case of write-in votes.

Ostrovsky and Skeith define the notion of public-key obfuscation to describe
and analyze their work on streaming-data search using homomorphic
encryption [21]. In their definition, an obfuscated program is run on plaintext
inputs and provides the outputs of the original program in encrypted form. We
use a variation of this definition, where the inputs are encrypted and the unob-
fuscated program may depend on the public key of the cryptosystem.

How to Shuffle in Public 557

1.3 Overview of Techniques

The protocols presented in this work use homomorphic multiplication with a
permutation matrix. Roughly, the semantic security of the encryption scheme
hides the permutation.

Generic Construction. Consider two semantically secure cryptosystems, CS =
(G, E , D) and CS′ = (G′, E ′, D′), where CS′ is additively homomorphic and the
plaintext space of CS′ can accommodate any ciphertext from CS. Note the in-
teresting properties:

E ′
pk′ (1)Epk(m) = E ′

pk′ (Epk(m)) , E ′
pk′ (0)Epk(m) = E ′

pk′(0) , and

E ′
pk′ (0)E ′

pk′(Epk(m)) = E ′
pk′(Epk(m)) .

Consider the element-wise encryption of a permutation matrix under E ′, and
consider inputs to the shuffle as ciphertexts under E . Homomorphic matrix mul-
tiplication can be performed using the properties above for multiplication and
addition. The result is a list of doubly encrypted messages, E ′

pk′(Epk(mi)), that
must then be decrypted verifiably. Unfortunately, a proof of double decryption
is particularly inefficient because revealing any intermediate ciphertext Epk(mi)
is not an option, as it would immediately leak the permutation.

BGN Construction. The BGN cryptosystem is additively homomorphic and has
two encryption algorithms and two decryption algorithms that can be used with
the same keys. Both additive and multiplicative homomorphisms are provided
in the following sense:

Epk(m1) ⊗ Epk(m2) = E ′
pk(m1m2) , Epk(m1)Epk(m2) = Epk(m1 + m2) ,

and E ′
pk(m1)E ′

pk(m2) = E ′
pk(m1 + m2) .

Thus, both the matrix and the inputs can be encrypted using the same en-
cryption algorithm E and public key, and the matrix multiplication uses both
homomorphisms. The result is a list of singly encrypted ciphertexts under E ′,
which lends itself to efficient, provable decryption.

Paillier Construction. The Paillier cryptosystem is additively homomorphic and
supports layered encryption, where a ciphertext can be encrypted again using
the same public key. The homomorphic properties are preserved in the inner
layer; in addition to the generic layered homomorphic properties we have the
special relation

E ′
pk(Epk(0, r))Epk(m,s) = E ′

pk(Epk(0, r)Epk(m, s)) = E ′
pk(Epk(m, r + s)) .

Thus, we can use E ′ encryption for the permutation matrix, and E encryption
for the inputs. When representing the permutation matrix under E ′, instead
of E ′

pk(1) to represent a one we use E ′
pk(Epk(0, r)) with a random r. During the

matrix multiplication, the “inner” Epk(0, r) performs re-encryption on the inputs,
which allows the decryption process to reveal the intermediate ciphertext without
leaking the permutation, making the decryption proof much more efficient.

558 B. Adida and D. Wikström

2 Preliminaries

2.1 Notation

We denote by κ the main security parameter and say that a function ε(·) is neg-
ligible if for every constant c there exists a constant κ0 such that ε(κ) < κ−c for
κ > κ0. We denote by κc and κr additional security parameters such that 2−κc

and 2−κr are negligible, which determines the bit-size of challenges and random
paddings in our protocols. We denote by PT, PPT, and PT∗, the set of uni-
form polynomial time, probabilistic uniform polynomial time, and non-uniform
polynomial time Turing machines respectively. In interactive protocols we de-
note by P the prover and V the verifier. We understand a proof of knowledge to
mean a complete proof of knowledge with overwhelming soundness and negligi-
ble knowledge error. We denote by ΣN the set of permutations of N elements,
and we write Λπ = (λπ

ij) for the permutation matrix of π ∈ ΣN . We denote by
Mpk, Rpk, and Cpk, the plaintext space, the randomizer space, and the ciphertext
space induced by the public key pk of some cryptosystem.

2.2 Homomorphic Cryptosystems

In the following definition we mean by abelian group a specific representation
of an abelian group for which there exists a polynomial time algorithm for com-
puting the binary operator and inversion.

Definition 1 (Homomorphic). A cryptosystem CS = (G, E , D) is homomor-
phic if for every key pair (pk, sk) ∈ G(1κ)

1. The message space Mpk is a subset of an abelian group G(Mpk) written ad-
ditively.

2. The randomizer space Rpk is an abelian group written additively.
3. The ciphertext space Cpk is a abelian group written multiplicatively.
4. For every m, m′ ∈ Mpk and r, r′ ∈ Rpk we have Epk(m, r)Epk(m′, r′) =

Epk(m + m′, r + r′).

Furthermore, if Mpk = G(Mpk) it is called fully homomorphic, and if G(Mpk) =
Zn for some integer n > 0 it is called additive.

For an additively homomorphic cryptosystem, REpk(c, r) = cEpk(0, r) is called
a re-encryption algorithm.

2.3 Functionalities

Definition 2 (Functionality). A functionality is a family F = {Fκ}κ∈N of
sets of circuits such that there exists a polynomial s(·) such that |F | ≤ s(κ) for
every F ∈ Fκ.

How to Shuffle in Public 559

Specifics of the Model. In the original Ostrovsky and Skeith definition [21], plain-
text inputs are processed by an obfuscated program into ciphertext outputs. In
our setting, inputs are already encrypted. Thus, the original functionality and
the obfuscator depend on the same public key (and possibly the secret key).
The security of the obfuscation—i.e. the indistinguishability property—is then
defined separately, following the pattern of Ostrovsky and Skeith.

In addition, as this is a public-key obfuscator, the output of the obfuscated
program requires a decryption. We call the reader’s attention to the difference be-
tween the encryption layers : though they may use the same public key, the
obfuscation-related encryption and the inputs’ encryption have distinct purposes.

Definition 3 (Public-Key Obfuscator). An algorithm O ∈ PPT is a public-
key obfuscator for a functionality F with respect to a cryptosystem CS = (G, E , D)
if there exists a decryption algorithm D′ ∈ PT and a polynomial s(·) such that
for every κ ∈ N, F ∈ Fκ, (pk, sk) ∈ G(1κ), and x ∈ {0, 1}∗,

1. Correctness. D′
sk(O(1κ, pk, sk, F)(x)) = F (pk, sk, x).

2. Polynomial blow-up. |O(1κ, pk, sk, F)| ≤ s(|F |).

Example 1. Suppose CS is additively homomorphic, (pk, sk) ∈ G(1κ), a ∈ Mpk,
and define Fa(pk, sk, x) = ax, where x ∈ Mpk. An obfuscated circuit for func-
tionality F of such circuits can be defined as a circuit with Epk(a) hardcoded
which, on input x ∈ Mpk, outputs Epk(a)x = Epk(ax).

We extend the definition of polynomial indistinguishability (known as IND-CPA
security for public-key cryptosystems) to our public-key obfuscator.

Experiment 1 (Indistinguishability, Expoind−b
F ,CS,O,A(κ))

(pk, sk) ← G(1κ)
(F0, F1, state) ← A(choose, pk),

d ← A(O(1κ, pk, sk, Fb), state)

If F0, F1 ∈ Fκ return d, otherwise 0.

Definition 4 (Indistinguishability). A public-key obfuscator O for a func-
tionality F with respect to a cryptosystem CS = (G, E , D) is polynomially indis-
tinguishable if | Pr[Expoind−0

F ,CS,O,A(κ) = 1] − Pr[Expoind−1
F ,CS,O,A(κ) = 1]| is negligible.

The obfuscator in Example 1 is polynomially indistinguishable if CS is polyno-
mially indistinguishable (IND-CPA secure.)

2.4 Shuffles

The most basic form of a shuffle is the decryption shuffle. It simply takes a list of
ciphertexts, decrypts them and outputs the plaintexts in sorted order. In some
sense this is equivalent to a mix-net.

560 B. Adida and D. Wikström

Definition 5 (Decryption Shuffle). A CS-decryption shuffle, for a cryptosys-
tem CS = (G, E , D) is a functionality DSN = {DSN(κ),κ}κ∈N, where N(κ) is a
polynomially bounded and polynomially computable function, such that for ev-
ery κ ∈ N, DSN(κ),κ = {DSπ}π∈ΣN(κ), and for every (pk, sk) ∈ G(1κ), and
c1, . . . , cN(κ) ∈ Cpk the circuit DSπ is defined by

DSπ(pk, sk, (c1, . . . , cN(κ))) = (Dsk(cπ(1)), . . . , Dsk(cπ(N(κ)))) .

Another way to implement a mix-net is to use the re-encryption-permutation
paradigm of Park et al. [23]. Using this approach the ciphertexts are first re-
encrypted and permuted in a joint way and then decrypted. The re-encryption
shuffle below captures the joint re-encryption and permutation phase. Both types
of shuffles are illustrated, in their obfuscated form, in Figure 1.

Definition 6 (Re-encryption Shuffle). A CS-re-encryption shuffle, for a ho-
momorphic cryptosystem CS is a functionality RSN = {RSN(κ),κ}κ∈N, where
N(κ) is a polynomially bounded and polynomially computable function, such
that for every κ ∈ N, RSN(κ),κ = {RSπ,r}π∈ΣN(κ),r∈({0,1}∗)N(κ) , and for every
(pk, sk) ∈ G(1κ), and c1, . . . , cN(κ) ∈ Cpk the circuit RSπ,r is defined by

RSπ(pk, sk, (c1, . . . , cN(κ))) = (REpk(cπ(1), r1), . . . , REpk(cπ(N(κ)), rN(κ))) .

��

��
mi

��

��

��

��

��

��� �

��

�

�

�

�
� �

�� decryption shufflemi mi

re-encryption shuffle

D′
sk

mi

O(1κ, pk, sk, F)

mimi

Fig. 1. The obfuscation of two types of shuffles. The circle denotes the encryption
scheme under which inputs are encrypted. The square denotes the encryption scheme
used by the obfuscator, which may depend on the circle encryption scheme and its
keypair. The left-most inputs and right-most outputs do not include the square-layer
encryption, which is only used by the public-key obfuscation process. An obfuscated
decryption shuffle “swaps” one encryption scheme for the other, while an obfuscated
re-encryption shuffle “layers” the two encryption schemes. The dashed circle denotes a
re-encryption of the original ciphertext.

3 A Generic Decryption Shuffle

We show that, in principle, all that is needed is an additively homomorphic
cryptosystem. Consider two semantically secure cryptosystems, CS = (G, E , D)
and CS′ = (G′, E ′, D′), with CS′ being additively homomorphic. Suppose that
ciphertexts from CS can be encrypted under CS′ for all (pk, sk) ∈ G(1κ) and
(pk′, sk′) ∈ G′(1κ), i.e., Cpk ⊆ M′

pk′ . The following operations are then possible

How to Shuffle in Public 561

and, more interestingly, indistinguishable thanks to the semantic security of the
first cryptosystem:

E ′
pk′(1)Epk(m) = E ′

pk′(Epk(m)) and E ′
pk′(0)Epk(m) = E ′

pk′(0) .

3.1 The Obfuscator

Consider a permutation matrix Λπ = (λπ
ij) corresponding to a permutation

π. Consider its element-wise encryption under CS ′ with public key pk′ and a
corresponding matrix of random factors (rij) ∈ R′N2

pk′ , i.e., Cπ = (E ′
pk′ (λπ

ij , rij)).
Then given d = (d1, d2, . . . , dN) ∈ CN

pk it is possible to perform homomorphic
matrix multiplication as

d � Cπ =

(
N∏

i=1

(cπ
ij)

di

)
giving Dsk(D′

sk′ (d � Cπ)) = (mπ(i))N
i=1 .

Definition 7 (Obfuscator). The obfuscator O for the decryption shuffle DSN

takes input (1κ, (pk, pk′), (sk, sk′), DSπ), where (pk, sk) ∈ G(1κ), (pk′, sk′) ∈
G′(1κ) and DSπ ∈ DSN(κ),κ, computes Cπ = E ′

pk′ (Λπ), and outputs a circuit
that hardcodes Cπ, and on input d = (d1, . . . , dN(κ)) computes d′ = d � Cπ as
outlined above and outputs d′.

Technically, this is a decryption shuffle of a new cryptosystem CS′′ = (G′′, E , D),
where CS′′ executes the original key generators and outputs ((pk, pk′), (sk, sk′))
and the original algorithms E and D simply ignore (pk′, sk′). We give a reduction
without any loss in security for the following straight-forward proposition. We
also note that O does not use (sk, sk′): obfuscation only requires the public key.

Proposition 1. If CS′ is polynomially indistinguishable then O is polynomially
indistinguishable.

The construction can be generalized to the case where the plaintext space of
CS′ does not contain the ciphertext space of CS. Each inner ciphertext di is
split into pieces (di1, . . . , dit) each fitting in the plaintext space of CS′ and then
each list (d1,l, . . . , dN,l) is applied to the encrypted permutation matrix as be-
fore. This gives lists (d′1,l, . . . , d

′
N,l) from which the output ((d′1,l)l, . . . , (d′N,l)l)

is constructed.

3.2 Limitations of the Generic Construction

The matrix Cπ requires a proof that it is the encryption of a proper permu-
tation matrix. This can be accomplished using more or less general techniques
depending on the cryptosystem, but this is prohibitively expensive in general.

Even if we prove that Cπ is correctly formed, the post-shuffle verifiable decryp-
tion of E ′

pk′(Epk(mi)) to mi is prohibitively expensive: the inner, intermediate
ciphertext Epk(mi) is exactly the input ciphertext, which means it cannot be
revealed without trivially leaking the permutation. Given this constraint, we
know of no efficient way, not even a cut-and-choose approach, to prove correct
decryption. Instead, we turn to more efficient constructions.

562 B. Adida and D. Wikström

4 Obfuscating a Boneh-Goh-Nissim Decryption Shuffle

We show how to obfuscate a decryption shuffle for the Boneh-Goh-Nissim (BGN)
cryptosystem [7] by exploiting both its additive homomorphism and its one-time
multiplicative homomorphism.

4.1 The BGN Cryptosystem

We denote the BGN cryptosystem by CSbgn = (Gbgn, Ebgn, Dbgn). It operates in
two groups G1 and G2, both of order n = q1q2, where q1 and q2 are distinct prime
integers of the same size. We use multiplicative notation in both G1 and G2, and
denote by g a generator in G1. The groups G1 and G2 exhibit a polynomial-time
computable bilinear map e : G1 × G1 → G2 such that G = e(g, g) generates G2.
Bilinearity implies that ∀u, v ∈ G1 and ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab. We refer
the reader to [7] for details on how such groups can be generated and on the
cryptosystem’s properties, which we briefly summarize here.

Key generation. On input 1κ, Gbgn generates (q1, q2, G1, g, G2, e(·, ·)) as above
such that n = q1q2 is a κ-bit integer. It chooses u ∈ G1 randomly, defines
h = uq2 , and outputs a public key pk = (n, G1, G2, e(·, ·), g, h) and secret key
sk = (pk, q1).

Encryption in G1. On input pk and m, Ebgn selects r ∈ Zn randomly and
outputs c = gmhr.

Decryption in G1. On input sk = q1 and c ∈ G1, Dbgn outputs loggq1 (cq1).

Since decryption computes a discrete logarithm, the plaintext space must be
restricted considerably. Corresponding algorithms E ′bgn and D′bgn perform en-
cryption and decryption in G2 using the generators G = e(g, g) and H = e(g, h).
The BGN cryptosystem is semantically secure under the Subgroup Decision As-
sumption, which states that no A ∈ PT∗ can distinguish between the uniform
distributions on G1 and the unique order q1 subgroup in G1 respectively.

Homomorphisms. The BGN cryptosystem is additively homomorphic. We need
this property, but we also exploit its one-time multiplicative homomorphism
implemented by the bilinear map:

e(Ebgn
pk (m0, r0), Ebgn

pk (m1, r1)) = E
′bgn
pk (m0m1, m0r1 + m1r0 + (logg u)q2r0r1)

The result is a ciphertext in G2 which cannot be efficiently converted back to
an equivalent ciphertext in G1. Thus, the multiplicative homomorphism can be
evaluated only once, after which only homomorphic additions are possible. For
clarity, we write c1 ⊗ c2

def= e(c1, c2) for ciphertexts in G1.

4.2 The Obfuscator

Our obfuscator is based on the fact that matrix multiplication only requires
an arithmetic circuit with multiplication depth 1. Thus, the BGN cryptosystem

How to Shuffle in Public 563

can be used for homomorphic matrix multiplication. Consider a N1 ×N2-matrix
C = (cij) = (Ebgn

pk (aij)) and a N2 × N3-matrix C′ = (djk) = (Ebgn
pk (bjk)), and let

A = (aij) and B = (bjk). Define homomorphic matrix multiplication by

C � C′ =

⎛
⎝ N2∏

j=1

cij ⊗ djk

⎞
⎠ giving D

′bgn
sk (C � C′) =

⎛
⎝ N2∑

j=1

aijbjk

⎞
⎠ = AB .

Definition 8 (Obfuscator). The obfuscator Obgn for the decryption shuffle
DSbgn

N takes input (1κ, pk, sk, DSbgn
π), where (pk, sk) ∈ Gbgn(1κ) and DSbgn

π ∈
DSbgn

N(κ),κ, computes Cπ = Ebgn
pk (Λπ), and outputs a circuit with Cπ hard-coded

such that, on input d = (d1, . . . , dN(κ)), it outputs d′ = d � Cπ.

Note that Obgn does not use sk.

Proposition 2. The obfuscator Obgn for DSbgn
N is polynomially indistinguish-

able if the BGN cryptosystem is polynomially indistinguishable.

Composition. Ciphertexts in G2 cannot be efficiently converted back into equiv-
alent ciphertexts in G1. In addition, we do not know how to select groups G1
and G2 such that G2 exhibits a new bilinear map into a third group. Thus, the
BGN-based shuffle construction we propose here is not composable: we can only
mix once. In Section 7, we explain how to achieve the distributed generation of
a BGN-based shuffle.

5 Obfuscating a Paillier Re-encryption Shuffle

We show how to obfuscate a re-encryption shuffle for the Paillier cryptosys-
tem [22] by exploiting its additive homomorphism and its generalization intro-
duced by Damg̊ard et al. [12]. We expose a previously unnoticed homomorphic
property of this generalized Paillier construction.

5.1 The Paillier Cryptosystem

We denote the Paillier cryptosystem CSpai = (Gpai, Epai, Dpai), defined as:

Key Generation. On input 1κ, Gpai chooses safe κ-bit primes p = 2p′ + 1 and
q = 2q′ + 1 randomly, defines a modulus n = pq, defines global parameter
v = n + 1 and outputs a public key pk = n and a secret key sk = p.

Encryption. On input pk and m ∈ Zn, Epai selects r ∈ Z
∗
n randomly and

outputs vmrn mod n2.
Decryption. On input sk and c, given e such that e = 1 mod n and e =

0 mod φ(n), Dpai outputs (ce − 1)/n.

The Paillier cryptosystem is polynomially indistinguishable under the Deci-
sion Composite Residuosity Assumption, which states that no A ∈ PT∗ can
distinguish the uniform distribution on Z

∗
n2 from the uniform distribution on

the subgroup of nth residues in Z
∗
n2 .

564 B. Adida and D. Wikström

Generalized Paillier. Damg̊ard et al. [12] generalize this scheme, replacing com-
putations modulo n2 with computations modulo ns+1 and plaintext space Zn

with Zns . Damg̊ard et al. prove that the security of the generalized scheme
follows from the security of the original scheme for s > 0 polynomial in the secu-
rity parameter, though we only exploit the cases s = 1, 2. We write Epai

ns+1(m) =
vmrns

mod ns+1 for generalized encryption to make explicit the value of s used
in a particular encryption. Similarly we write Dpai

p,s+1(c) for the decryption al-
gorithm (see [12] for details) and we use Mns+1 and Cns+1 to denote the corre-
sponding message and ciphertext spaces.

Alternative Encryption. There are well known alternative encryption algorithms.
One can pick the random element r ∈ Z

∗
ns instead of in Z

∗
n. If hs+1 is a generator

of the group of ns+1th residues, then we may define encryption of a message
m ∈ Zns as vmhr

s+1 mod ns+1 where r is chosen randomly in [0, n2κr].

Homomorphisms. The Paillier cryptosystem is additively homomorphic. Fur-
thermore, the recursive structure of the Paillier cryptosystem allows a cipher-
text Epai

n2 (m) ∈ Cn2 = Z
∗
n2 to be viewed as a plaintext in the group Mn3 = Zn2

that can be encrypted using a generalized version of the cryptosystem, i.e., we
can compute Epai

n3

(
Epai

n2 (m)
)
. Interestingly, the nested cryptosystems preserve the

group structures over which they are defined. In other words we have

Epai
n3 (Epai

n2 (0, r))E
pai
n2 (m,s) = Epai

n3 (Epai
n2 (0, r)Epai

n2 (m, s)) = Epai
n3 (Epai

n2 (m, r + s)) .

This homomorphic operation is similar to the generic additive operation from
Section 3, with the inner “1” replaced by an encryption of 0. As a result, though
the output is also a doubly encrypted mi, a re-encryption has occurred on the
inner ciphertext. This technique extends the layered-Paillier homomorphic prop-
erty first observed by Lipmaa [18].

5.2 The Obfuscator

We use the additive homomorphism and the special homomorphic property ex-
hibited above to define a form of homomorphic matrix multiplication of matri-
ces of ciphertexts. Given an N -permutation matrix Λπ = (λπ

ij) and randomness

r, s ∈ (Z∗
n)N×N , define Cπ = (cπ

ij) =
(
Epai

n3

(
λπ

ijE
pai
n2 (0, rij), sij

))
. We define a kind

of matrix multiplication of d = (d1, . . . , dN) ∈ CN
n2 and Cπ:

d � Cπ =

(
N∏

i=1

(cπ
ij)

di

)
giving Dpai

p,2(D
pai
p,3(d � Cπ)) = (mπ(1), . . . , mπ(N)) .

In other words, we can do homomorphic matrix multiplication with a permuta-
tion matrix using layered Paillier, but we stress that the above matrix multipli-
cation does not work for all matrices. We are now ready to define the obfuscator
for the Paillier-based shuffle. Again, Opai does not use sk.

How to Shuffle in Public 565

Definition 9 (Obfuscator). The obfuscator Opai for the re-encryption shuf-
fle RSpai

N takes as input a tuple (1κ, n, sk, RSpai), where (n, p) ∈ Gpai(1κ) and
RSpai ∈ RSpai

N(κ),κ, computes Cπ = (Epai
n3 (λπ

ijE
pai
n2 (0, rij), sij)), and outputs a cir-

cuit with hardcoded Cπ that, on input d = (d1, . . . , dN(κ)), outputs d′ = d � Cπ.

Proposition 3. The obfuscator Opai for RSpai
N is polynomially indistinguishable

if the Paillier cryptosystem is polynomially indistinguishable.

Composition. It may be possible to compose Paillier re-encryption shuffles using
additional layers in the Damg̊ard et. al. Paillier generalization. However, because
an extra layer of encryption is added at each step, the re-encryption actions
are not truly composed with one another, e.g., the second stage re-encryption
acts on the first stage’s obfuscation layer, while the innermost ciphertext is re-
encrypted only on the first pass. Thus, in Section 7, we explain how to generate
and obfuscate a Paillier re-encryption shuffle in a distributed way.

6 Proving Correctness of Obfuscation

We show how to prove the correctness of a BGN or Paillier obfuscation. We
assume, for now, that a single party generates the encrypted matrix, though the
techniques described here are immediately applicable to the distributed genera-
tion and proofs in Section 7. For either cryptosystem, we start with a trivially
encrypted “identity matrix”, and we let the prover demonstrate that he correctly
shuffled the columns of this matrix.

Definition 10. Denote by Rmrp the relation consisting of pairs ((pk, C, C′), r)
such that C ∈ CN×N

pk , C′ = (REpk(ci,π(j), rij)), r ∈ RN×N
pk , and π ∈ ΣN .

In the BGN case, the starting identity matrix can be simply C = Epk(Λid, 0∗).
Recall that, where the BGN matrix contains encryptions of 1, the Paillier

matrix contains outer encryptions of different inner encryptions of zero, which
need to remain secret. Thus, in the Paillier case, we begin by generating and
proving correct a list of N double encryptions of zero. We construct a proof of
double-discrete log with 1/2-soundness that must be repeated a number of times.
This repetition remains “efficient enough” because we only need to perform a
linear number of sets of repeated proofs. We then use these N doubly encrypted
zeros as the diagonal of our identity matrix, completing it with trivial outer
encryptions of zero.

In both cases, we then take this identity matrix, shuffle and re-encrypt its
columns, and provide a zero-knowledge proof of knowledge of the permutation
and re-encryption factors. A verifier is then certain that the resulting matrix is
a permutation matrix.

6.1 Proving a Shuffle of the Columns of a Ciphertext Matrix

Consider the simpler and extensively studied problem of proving that ciphertexts
have been correctly re-encrypted and permuted, a so-called “proof of shuffle.”

566 B. Adida and D. Wikström

Definition 11. Denote by Rrp the relation consisting of pairs ((pk, d, d′), r) such
that d = (dj) ∈ CN

pk and d′ = REpk((dπ(j)), r) for some r ∈ RN
pk and π ∈ ΣN .

There are several known efficient methods [20,14,17,28] for constructing a proto-
col for this relation. Although these protocols differ slightly in their properties,
they all essentially give “honest-verifier zero-knowledge proofs of knowledge.”
As our protocol can be adapted to the concrete details of these techniques, we
assume, for clarity, that there exists an honest-verifier zero-knowledge proof of
knowledge πrp for the above relation. These protocols can be extended to prove
a shuffle of lists of ciphertexts (which is what we need), but a detailed proof of
this fact has not appeared. We present a simple batch proof (see [4]) of a shuffle
to allow us to argue more concretely about the complexity of our scheme.

Protocol 1 (Matrix Re-encryption-Permutation)
Common Input. A public key pk and C, C′ ∈ CN×N

pk

Private Input. π ∈ ΣN and r ∈ RN×N
pk such that C′ = REpk((ci,π(j)), r).

1. V chooses u ∈ [0, 2κc − 1]N randomly and hands it to P.
2. They both compute d = (

∏N
i=1 cui

ij) and d′ = (
∏N

i=1(c
′
ij)

ui).
3. They run the proof of a shuffle πrp on common input (pk, d, d′) and private

input π, r′ = (
∑N

i=1 rijui).

Proposition 4. Protocol 1 is public-coin and honest-verifier zero-knowledge.
For inputs with C = Epk(Λπ) for π ∈ ΣN the error probability is negligible
and there exists a knowledge extractor.

Remark 1. When the plaintexts are known, and this is the case when C is an
encryption of the identity matrix, slightly more efficient techniques can be used.
This is sometimes called a “shuffle of known plaintexts” (see [20,17,28]).

6.2 Proving Double Re-encryption

The following relation captures the problem of proving correctness of a double
re-encryption.

Definition 12. Denote by Rpai
dr the relation consisting of pairs ((n, c, c′), (r, s)),

such that c′ = chr
1 mod n2

hs
2 mod n3 with r, s ∈ [0, N2κr].

Protocol 2 (Double Re-encryption)
Common Input. A modulus n and c, c′ ∈ Cn3

Private Input. r, s ∈ [0, n2κr] such that c′ = chr
2 mod n2

hs
3 mod n3.

1. P chooses r′ ∈ [0, n22κr] and s′ ∈ [0, n322κr] randomly, computes α =
chr′

2 mod n2
hs′

3 mod n3, and hands α to V.
2. V chooses b ∈ {0, 1} randomly and hands b to P.
3. P defines (e, f) = (r′ − br, s′ − b(he

2 mod n2)s). Then it hands (e, f) to V.
4. V checks that α = ((c′)bc1−b)he

2 mod n2
hf

3 mod n3.

How to Shuffle in Public 567

The protocol is iterated in parallel κc times to make the error probability
negligible. For proving a lists of ciphertexts, we use independent copies of the
protocol for each element, but reuse the challenges.

Proposition 5. Protocol 2 is a public-coin honest verifier zero-knowledge proof
of knowledge for Rpai

dr .

7 Distributed Generation and Obfuscation of a Shuffle

Our two constructions can be efficiently generated in a distributed fashion.
Roughly, we begin with the trivial encryption of the identity matrix. (In the
Paillier case, a sub-protocol is required to generate the inner-layer encryptions
of the 0-diagonal using successive re-encryptions by the parties.) We then let
each party in turn shuffle and re-encrypt the rows of this matrix. In the end,
the resulting permutation matrix captures the composition of the shuffles from
each party: it is as if the actions of a mix-net were captured ahead of time into
an encrypted matrix, then unleashed onto the ciphertext inputs at shuffle time.
The details of this process, including the proofs of correct shuffling and the UC
proof of security, are provided in the full version of this paper.

8 Complexity Estimates

Our constructions clearly require O(N2) exponentiations, but we give estimates
that show that the constant hidden in the ordo-notation is reasonably small
in some practical settings. For simplicity we assume that the cost of squaring
a group element equals the cost of multiplying two group elements and that
computing an exponentiation using a κe-bit integer modulo a κ-bit integer cor-
responds to κe/κ full exponentiations modulo a κ-bit integer. We optimize using
fixed-base exponentiation and simultaneous exponentiation (see [19]). We assume
that evaluating the bilinear map corresponds to computing 6 exponentiations in
the group G1 and we assume that such one such exponentiation corresponds to
8 modular exponentiations. This seems reasonable, although we are not aware
of any experimental evidence. In the Paillier case we assume that multiplication
modulo ns is s2 times as costly as multiplication modulo n. We assume that the
proof of a shuffle requires 8N exponentiations (this is conservative).

Most exponentiations when sampling and obfuscating a shuffle are fixed-base
exponentiations. The only exception is a single exponentiation each time an
element is doubly re-encrypted, but there are only N such elements. In the proof
of correct obfuscation the bit-size κc of the elements in the random vector u used
in Protocol 1 is much smaller than the security parameter, and simultaneous
exponentiation is applicable. In the Paillier case, simultaneous exponentiation is
applicable during evaluation, and precomputation lowers the on-line complexity.
Unfortunately, this does not work in the BGN case due to the bilinear map.
We refer the reader to the Scheme program in the full paper for details on our
estimates. For practical parameters we get the estimates in Fig. 2.

568 B. Adida and D. Wikström

Given a single computer, the BGN construction is only practical when N ≈
350 and the maximal number of bits in any submitted ciphertext is small. On
the other hand, the Paillier construction is practical for normal sized voting
precincts in the USA: N ≈ 2000 full length messages can be accommodated,
and, given one week of pre-computing, the obfuscated shuffle can be evaluated
overnight. Furthermore, all constructions are easily parallelized.

Construction Sample & Obfuscate Prove Precompute Evaluate
BGN with N = 350 14 (0.5h) 3 (0.1h) NA 588 (19.6h)
Paillier with N = 2000 556 (18.5h) 290 (9.7h) 3800 (127h) 533 (17.8h)

Fig. 2. The table gives the complexity of the operations in terms of 104 modular κ-bit
exponentiations and in parenthesis the estimated running time in hours assuming that
κ = 1024, κc = κr = 50, and that one exponentiation takes 12 msec to compute (a
1024-bit exponentiation using GMP [16] takes 12 msec on our 3 GHz PC)

9 Conclusion

It is surprising that a functionality as powerful as a shuffle can be public-key
obfuscated in any useful way. It is even more surprising that this can be achieved
using the Paillier cryptosystem which, in contrast to the BGN cryptosystem, was
not specifically designed to have the kind of “homomorphic” properties we ex-
ploit. One intriguing question is whether other useful “homomorphic” properties
have been overlooked in existing cryptosystems.

From a practical point of view we stress that, although the performance of our
mix-net is much worse than that of known constructions, it exhibits a property
which no previous construction has: a relatively small group of mix servers can
prepare obfuscated shuffles for voting precincts. The precincts can compute the
shuffling without any private key and produce ciphertexts ready for decryption.

Acknowledgments

We thank Ronald L. Rivest, Susan Hohenberger, Rafael Pass, Shafi Goldwasser,
and Guy Rothblum for productive and insightful discussions.

References

1. M. Abe and H. Imai. Flaws in some robust optimistic mix-nets. In Australasian
Conference on Information Security and Privacy – ACISP 2003, volume 2727 of
Lecture Notes in Computer Science, pages 39–50. Springer Verlag, 2003.

2. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In Advances in Cryptology
– Crypto 2001, volume 2139 of Lecture Notes in Computer Science, pages 1–18.
Springer Verlag, 2001.

How to Shuffle in Public 569

3. O. Baudron, P.-A. Fouque, D. Pointcheval, J. Stern, and G. Poupard. Practical
multi-candidate election system. In 20th ACM Symposium on Principles of Dis-
tributed Computing – PODC, pages 274–283. ACM Press, 2001.

4. M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for modular ex-
ponentiation and digital signatures. In Advances in Cryptology – Eurocrypt ’98,
pages 236–250. Springer Verlag, 1998.

5. J. Benaloh and M. Yung. Distributing the power of a government to enhance the
privacy of voters. In 5th ACM Symposium on Principles of Distributed Computing
– PODC, pages 52–62. ACM Press, 1986.

6. J. Cohen (Benaloh) and M. Fischer. A robust and verifiable cryptographically
secure election scheme. In 28th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 372–382. IEEE Computer Society Press, 1985.

7. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
In 2nd Theory of Cryptography Conference (TCC), volume 3378 of Lecture Notes
in Computer Science, pages 325–342. Springer Verlag, 2005.

8. R. Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In Advances in Cryptology – Crypto 1997, volume 1294 of Lecture
Notes in Computer Science, pages 455–469. Springer Verlag, 1997.

9. D. Chaum. Untraceable electronic mail, return addresses and digital pseudo-nyms.
Communications of the ACM, 24(2):84–88, 1981.

10. R. Cramer, M. Franklin, L. A.M. Schoenmakers, and M. Yung. Multi-authority
secret-ballot elections with linear work. Technical report, CWI (Centre for Math-
ematics and Computer Science), Amsterdam, The Netherlands, 1995.

11. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient
multi-authority election scheme. In Advances in Cryptology – Eurocrypt ’97, volume
1233 of Lecture Notes in Computer Science, pages 103–118. Springer Verlag, 1997.

12. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. In Public Key Cryptography – PKC
2001, volume 1992 of Lecture Notes in Computer Science, pages 119–136. Springer
Verlag, 2001.

13. P.-A. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of
voting or lotteries. In Financial Cryptography 2000, volume 2339 of Lecture Notes
in Computer Science, pages 90–104, London, UK, 2001. Springer-Verlag.

14. J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In Advances
in Cryptology – Crypto 2001, volume 2139 of Lecture Notes in Computer Science,
pages 368–387. Springer Verlag, 2001.

15. S. Goldwasser and Y. Tauman Kalai. On the impossibility of obfuscation with
auxiliary input. In 46th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 553–562. IEEE Computer Society Press, 2005.

16. T. Granlund. Gnu multiple precision arithmetic library (GMP). Software available
at http://swox.com/gmp, March 2005.

17. J. Groth. A verifiable secret shuffle of homomorphic encryptions. In Public Key
Cryptography – PKC 2003, volume 2567 of Lecture Notes in Computer Science,
pages 145–160. Springer Verlag, 2003.

18. Helger Lipmaa. An oblivious transfer protocol with log-squared communication.
In Information Security – ISC 2005, volume 3650 of Lecture Notes in Computer
Science, pages 314–328. Springer Verlag, 2005.

19. A. Menezes, P. Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

http://swox.com/gmp

570 B. Adida and D. Wikström

20. A. Neff. A verifiable secret shuffle and its application to e-voting. In 8th ACM
Conference on Computer and Communications Security (CCS), pages 116–125.
ACM Press, 2001.

21. R. Ostrovsky and W. E. Skeith III. Private searching on streaming data. Cryptol-
ogy ePrint Archive, Report 2005/242, 2005. http://eprint.iacr.org/.

22. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology – Eurocrypt ’99, volume 1592 of Lecture Notes in Com-
puter Science, pages 223–238. Springer Verlag, 1999.

23. C. Park, K. Itoh, and K. Kurosawa. Efficient anonymous channel and all/nothing
election scheme. In Advances in Cryptology – Eurocrypt ’93, volume 765 of Lecture
Notes in Computer Science, pages 248–259. Springer Verlag, 1994.

24. K. Sako and J. Kilian. Reciept-free mix-type voting scheme. In Advances in
Cryptology – Eurocrypt ’95, volume 921 of Lecture Notes in Computer Science,
pages 393–403. Springer Verlag, 1995.

25. B. Schoenmakers. A simple publicly verifiable secret sharing scheme and its ap-
plication to electronic. In Advances in Cryptology – Crypto ’99, volume 3027 of
Lecture Notes in Computer Science, pages 148–164. Springer Verlag, 1999.

26. H. Wee. On obfuscating point functions. In 37th ACM Symposium on the Theory
of Computing (STOC), pages 523–532. ACM Press, 2005.

27. D. Wikström. A universally composable mix-net. In 1st Theory of Cryptography
Conference (TCC), volume 2951 of Lecture Notes in Computer Science, pages 315–
335. Springer Verlag, 2004.

28. D. Wikström. A sender verifiable mix-net and a new proof of a shuffle. In Advances
in Cryptology – Asiacrypt 2005, volume 3788 of Lecture Notes in Computer Science,
pages 273–292. Springer Verlag, 2005. (Full version [29]).

29. D. Wikström. A sender verifiable mix-net and a new proof of a shuffle. Cryptology
ePrint Archive, Report 2004/137, 2005. http://eprint.iacr.org/.

30. D. Wikström and J. Groth. An adaptively secure mix-net without erasures. In 33rd
International Colloquium on Automata, Languages and Programming (ICALP),
volume 4052 of Lecture Notes in Computer Science, pages 276–287. Springer Verlag,
2006.

A Proofs

Proof (Proposition 1 and Proposition 2). We only detail the first proof, since
the second follows by a trivial modification. Denote by A an arbitrary adversary
in the polynomial indistinguishability experiment run with the obfuscator O.
Denote by A′ an adversary to the polynomial indistinguishability experiment
Expind−b

CS′,A′(κ) with the cryptosystem CS′ defined as follows. It accepts a public
key pk as input and forwards it to A. When A returns (DSπ0 , DSπ1), A′ out-
puts the two messages 0 and 1. Then it is given an encryption c(b) = E ′

pk(b).
Denote by Λπ0 and Λπ1 the two permutation matrices corresponding to DSπ0

and DSπ1 respectively. The adversary A′ defines a matrix Cπb = (cπ
ij), by setting

cπ
ij = E ′

pk(λπ0
ij) if λπ0

ij = λπ1
ij and cπ

ij to a reencryption of c(b) if λπ0
ij = 0, or to

a reencryption of c(1−b) if λπ0
ij = 1. Note that c(1−b) can be computed homo-

morphically from c(b). Then A′ continues the simulation using Cπb to compute
the obfuscated circuit, and when A outputs a bit it gives it as its output. By
construction Pr[Expind−b

CS′,A(κ) = 1] = Pr[Expoind−b
DSN ,CS′,O,A(κ) = 1].

http://eprint.iacr.org/
http://eprint.iacr.org/

How to Shuffle in Public 571

Proof (Proposition 3). Let A be any adversary in the polynomial indistinguisha-
bility experiment run with the obfuscator Opai. Denote by Aind the polynomial
indistinguishability adversary that takes a public key pk as input and then sim-
ulates this protocol to A. When A outputs two challenge circuits (RSpai

0 , RSpai
1)

with corresponding matrices (M0, M1), i.e., the matrices are permutation ma-
trices with the ones replaced by re-encryption factors, Aind outputs (M0, M1).
When the experiment returns Epai

pk (Mb) it forms the obfuscated circuit and hands
it to A. Then Aind outputs the output of A. It follows that the advantage of
Aind in the polynomial indistinguishability experiment with the Paillier cryp-
tosystem and using polynomial length list of ciphertexts is identical to the ad-
vantage of A in the polynomial indistinguishability experiment with Opai. It
now follows from a standard hybrid argument that the polynomial indistin-
guishability of the Paillier cryptosystem is broken if Opai is not polynomially
indistinguishable.

Proof (Proposition 4). Completeness and the fact that the protocol is public-coin
follow by inspection. We now concentrate on the more interesting properties.

Zero-Knowledge. The honest-verifier zero-knowledge simulator simply picks u
randomly as in the protocol and then invokes the honest-verifier zero-knowledge
simulator of the subprotocol πrp. It follows that the simulated view is indistin-
guishable from the real view of the verifier.

Negligible Error Probability. Consider the following intuitively appealing lemma.

Lemma 1. Let η be a product of κ/2-bit primes and let N be polynomially
bounded in κ. Let Λ = (λij) be an N ×N -matrix over Zη and let u ∈ [0, 2κc −1]N

be randomly chosen. Then if Λ is not a permutation matrix Pru[∃π ∈ ΣN :
uΛπ = uΛ] is negligible.

Proof. Follows by elementary linear algebra (see [29]).

By assumption C = Epk(Λπ) for some π ∈ ΣN . Write Λ = Dpk(C′). Then the
lemma and the soundness of the proof of a shuffle πrp implies the soundness of
the protocol.

Knowledge Extraction. For knowledge extraction we may now assume that C′

can be formed from C by permuting and re-encrypting its columns. Before we
start we state a useful lemma.

Lemma 2. Let η be a product of κ/2-bit primes, let N be polynomially bounded
in κ, and let u1, . . . , ul−1 ∈ Z

N such that ujj = 1 mod η and uji = 0 mod η for
1 ≤ i, j ≤ l − 1 < N and i �= j. Let ul ∈ [0, 2κc − 1]N be randomly chosen, where
2−κc is negligible. Then the probability that there exists a1, . . . , al ∈ Z such that
if we define u′

l =
∑l

j=1 ajuj mod η, then u′
l,l = 1 mod η, and u′

l,i = 0 mod η for
i < l is overwhelming in κ.

572 B. Adida and D. Wikström

Proof. Note that b = ul,l −
∑l−1

j=1 ul,juj,l is invertible with overwhelming prob-
ability, and when it is we view its inverse b−1 as an integer and define aj =
−b−1ul,j for j < l and al = b−1. For i < l this gives ul,i =

∑l
j=1 ajuj,i =

b−1(1 − aiuii) = 0 mod η and for i = l this gives ul,l =
∑l

j=1 ajuj,l = b−1(ul,l −∑l−1
j=1 ul,juj,l) = 1 mod η.

It remains to exhibit a knowledge extractor. By assumption there exists a poly-
nomial t(κ) and negligible knowledge error ε(κ) such that the extractor of the
subprotocol πrp executes in time Tγ′(κ) = t(κ)/(γ′ − ε(κ)) for every common
input (d, d′), induced by a random vector u, to the subprotocol such that the
success probability of the subprotocol is γ′. We invoke the extractor, but we
must stop it if γ′ turns out to be too low and find a new random u that induces
a common input to the subprotocol with a larger value of γ′. We assume that
the same negligible function ε(κ) bounds the failure probability in Lemma 2.

Consider a fixed common input (pk, C, C′) and prover P . Denote by γ the
probability that P convinces V . We assume that ε(κ) < γ/4, i.e., the knowledge
error will increase somewhat compared to the knowledge error of πrp.

We denote by B the distribution over {0, 1} given by pB(1) = γ/(8t(κ)).
Note that this distribution can be sampled for any common input even with-
out knowledge of γ, since we can simply perform a simulation of the protocol,
pick an element from the space {1, . . . , 8t(κ)} randomly, and define the sam-
ple to be one if the prover succeeds and the picked element equal one. We are
going to use the random variable to implicitly be able to say if an induced
common input to the subprotocol gives a too low success probability γ′. We
now make this idea precise. The extractor proceeds as follows, where in the
BGN case η denotes the modulus n and in the Paillier case η denotes the or-
der of the plaintext space of the outer layer Paillier, i.e., n2 where n is the
modulus.

1. For l = 1, . . . , N do:
(a) Start the simulation of an execution between V and P and denote by

ul the random vector chosen by the simulator. Denote by (pk, dl, d
′
l) the

common input to the subprotocol πrp induced by ul.
(b) If ul,j = ul,j′ for some j �= j′ or if there does not exists ak,l ∈ Z such that∑l

l′=1 ak,l′ul′,j equals one modulo η if j = l and it equals zero modulo
η for j < l, then go to Step 1a.

(c) Invoke the knowledge extractor of the protocol πrp on the common in-
put (pk, dl, d

′
l). However, in between each step executed by the extrac-

tor, the distribution B is sampled. If a sample equals one before the
extractor halts, then go to Step 1a. Otherwise, denote by πl and sl the
permutation and extracted randomness such that ((pk, dl, d

′
l), (πl, sl)) ∈

Rrp.
2. Compute ak,l ∈ Z such that

∑N
l=1 ak,lul,j equals one or zero modulo η

depending on if k = j or not. Define (bkj) = (akl)(ulj) − I, where I is
the identity N × N -matrix and the matrix operations are taken over the
integers.

How to Shuffle in Public 573

In BGN Case. Compute r = (rk,j) = (ak,l)(sl,j), and output (π, r).

In Paillier Case. Compute r = (rk,j) = (
∏N

i=1(ci,π(j)/c′ij)
bki/η

∏N
l=1 s

ak,l

l,j),
where the division bki/η is taken over the integers, and output (π, r).

We do the easy part of the analysis first. Consider the correctness of the
output given that the extractor halts. Since ul,j = ul,j′ for all j �= j′ and
both Dpk(C) and Dpk(C′) are permutation matrices by assumption, we con-
clude that π1 = . . . = πN = π for some permutation π ∈ ΣN . We have

N∏
i=1

(c′ij)
uli = d′lj = dl,π(j)Epk(0, sl,j) = Epk(0, sl,j)

N∏
i=1

culi

i,π(j) . (1)

Apply the ak,l as exponents on the left of Equation (1) and take the product
over all l. This gives

N∏
l=1

(
N∏

i=1

(c′ij)
uli

)ak,l

=
N∏

i=1

(
N∏

l=1

(c′ij)
ak,luli

)
= c′kj

N∏
i=1

(c′ij)
bki .

Then apply the exponents ak,l on the right side of Equation (1) and take the
product over all l. This gives

N∏
l=1

(
Epk(0, sl,j)

N∏
i=1

culi

i,π(j)

)ak,l

=

(
N∏

l=1

Epk(0, sl,j)akl

) (
N∏

i=1

cbki

i,π(j)

)
ck,π(j) .

To summarize: c′kj =
(∏N

i=1(ci,π(j)/c′ij)
bki

)(∏N
l=1 Epk(0, sl,j)akl

)
ck,π(j). The ar-

gument is concluded differently depending on the cryptosystem used.

In BGN Case. Note that bki = 0 mod η for all k and i, and the order of any
ciphertext divides η. Thus, the first product equals one in the ciphertext group.
Furthermore, the randomizer space is Zη so we have

c′kj = Epk

(
0,

N∑
l=1

aklsl,j

)
ck,π(j) .

In Paillier Case. Again bki = 0 mod η for all k and i, but the order of a
ciphertext may be larger than η. However, we may define b′ki = bki/η, where
division is over the integers, define s′j =

∏N
i=1(ci,π(j)/c′ij)

b′
ki , and write

c′kj = Epk

(
0, s′j

N∏
l=1

sakl

l,j

)
ck,π(j) .

We remark that s′j is an element in Z
∗
n3 and not in Z

∗
n as expected. However, it

is a witness of re-encryption using alternative Paillier encryption.
It remains to prove that the extractor is efficient in terms of the inverse suc-

cess probability of the prover. Fix an l. Denote by E the event that the prover

574 B. Adida and D. Wikström

succeeds to convince the adversary, i.e., Pr[E] = γ. Denote by S the set of vec-
tors u such that Pr[E | u ∈ S] ≥ γ/2. An averaging argument implies that
Pr[u ∈ S] ≥ γ/2. Denote by Eul

the event that the go to statement in Step 1b
is executed. We show that if u ∈ S, then a witness is extracted efficiently with
constant probability, and if u �∈ S, then the extraction algorithm will be stopped
relatively quickly.

If u �∈ S, then we focus only on the distribution B. The expected number
of samples from B needed before a sample is equal to one is clearly 1/pB(1) =
8t(κ)/γ. Thus, if we ignore the issue of finding the witness the simulation in Step
1c is efficient in terms of 1/γ.

If u ∈ S, then the expected number of steps needed by the extractor of the
subprotocol πrp is bounded by Tγ/2(κ). By Markov’s inequality the probabil-
ity that more than 2Tγ/2(κ) steps are needed is bounded by 1/2. The proba-
bility that one of the first ω = 2Tγ/2(κ) samples of B is one is bounded by
1 − (1 − pB(1))ω ≤ 1 − eω(−pB(1)+pB(1)2) ≤ 1 − e−1/2, since ε(κ) < γ/4.

Thus, Step 1c executes in expected time 8t(κ)/γ, and from independence fol-
lows that it halts due to the extractor finding a witness with probability at least
1 − 1

2 (1 − e−1/2). In other words the expected number of restarts of the lth
iteration of Step 1 is constant.

From Lemma 2 and independence of the ul,j follow that the probability that
the go to statement of Step 1b is executed is negligible. This means that the
extractor runs in expected time cNt(κ)/(γ − 4ε(κ)) for some constant c. This
concludes the proof, since cNt(κ) is polynomial and 4ε(κ) is negligible.

Proof (Proposition 5). Completeness and the public-coin property follow by in-
spection. The honest-verifier zero-knowledge simulator simply picks e ∈ [0, n2κr]
and f ∈ [0, n32κr] and b ∈ {0, 1} randomly and defines α = ((c′)bc1−b)he

2hf
3 mod

n3. The resulting view is statistically close to a real view, since 2−κr is negligible.
For soundness, note that if we have che

2hf
3 = α = (c′)he′

2 hf ′

3 mod n3 with
e, f, e′, f ′ ∈ Z, then we can divide by hf

3 and take the he
2th root on both sides.

This gives c = (c′)he′−e
2 h

(f ′−f)/he
2

3 mod n3, which implies that the basic protocol
is special 1/2-sound. The protocol is then iterated in parallel κc times which
gives negligible error probability 2−κc . The proof of knowledge property follows
immediately from special soundness.

	Introduction
	Our Contributions
	Previous Work
	Overview of Techniques

	Preliminaries
	Notation
	Homomorphic Cryptosystems
	Functionalities
	Shuffles

	A Generic Decryption Shuffle
	The Obfuscator
	Limitations of the Generic Construction

	Obfuscating a Boneh-Goh-Nissim Decryption Shuffle
	The BGN Cryptosystem
	The Obfuscator

	Obfuscating a Paillier Re-encryption Shuffle
	The Paillier Cryptosystem
	The Obfuscator

	Proving Correctness of Obfuscation
	Proving a Shuffle of the Columns of a Ciphertext Matrix
	Proving Double Re-encryption

	Distributed Generation and Obfuscation of a Shuffle
	Complexity Estimates
	Conclusion
	Proofs

