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Abstract. We introduce an offline precomputation technique for mix-
nets that drastically reduces the amount of online computation needed.
Our method can be based on any additively homomorphic cryptosystem
and is applicable when the number of senders and the maximal bit-size
of messages are relatively small.

1 Introduction

Suppose some senders S1, . . . , SN , each with input mi, want to compute the
sorted list (mπ(1), . . . , mπ(N)) while keeping the permutation π secret. A trusted
party can provide this service. First, it collects all messages. Then, it shuffles
the inputs according to π and outputs the result. A protocol, i.e. a list of ma-
chines M1, . . . , Mk, that emulates this service is called a mix-net, and the parties
M1, . . . , Mk are referred to as mix-servers. The assumption is that each sender
Si trusts that a certain fraction of the mix-servers M1, . . . , Mk is honest. The
notion of a mix-net was introduced by Chaum [9].

There are numerous proposals in the literature for how to construct a secure
mix-net, but there are also several attacks. A rigorous definition of security of
a mix-net was first given by Abe and Imai [1], though they did not construct a
scheme satisfying their construction. Wikström [20] gives the first definition of
a universally composable (UC) mix-net, and also the first UC-secure construc-
tion. In recent work, Wikström [21] gives a more efficient UC-secure scheme and
Wikström and Groth [23] describes an adaptively secure construction.

In this paper we assume that a statically UC-secure mix-net can be con-
structed, and consider to what extent offline precomputation can be used to
reduce the amount of online computation needed during execution.

1.1 Previous Work

General techniques, e.g., precomputation of re-encryption factors, fixed base ex-
ponentiation, and simultaneous exponentiation [16], can be used to lower the
online computational complexity of most mix-nets in the literature. However, for
the known constructions, it seems difficult to use these methods to completely
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remove the large number of exponentiations needed in the proofs of shuffles used
to provide security against active attacks.

We are not aware of any previous work on mix-nets using our approach, but
it is inspired by the ground-breaking work on homomorphic election schemes
introduced by Cohen1 and Fischer [10] and further developed in a long line of
papers [5,11,15].

In recent work [3], we consider a related precomputation technique with con-
nections to public key obfuscation. By comparison, the solution we present here
requires an individual key for each sender but is much more efficient. Thus, the
two solutions are complementary.

1.2 Our Contributions

We describe a novel precomputation technique for mix-nets based on additively
homomorphic cryptosystems such as the Paillier [19] cryptosystem. Although our
technique is universally applicable, it only reduces the online complexity in terms
of computation and communication when the number of senders and the maximal
bit-size of their messages are reasonably small. We also introduce the notion of
concatenation-friendly cryptosystems as a separate tool and prove that such
schemes can be constructed from any additively homomorphic cryptosystem.
Our technique may be of great value in some practical applications where online
computational power is a scarce resource and the result is needed quickly.

1.3 Notation

We denote the natural numbers by N, the integers by Z, the integers modulo n
by Zn, the multiplicative group modulo n by Z

∗
n, and the subgroup of squares

modulo n by SQn. We interpret strings as integers in base two when convenient.
We write a‖b to denote the concatenation of the two strings a and b. We use
PT and PT∗ to denote the set of polynomial time and non-uniform polynomial
time Turing machines respectively, and let κ be the main security parameter.
We say that a function ε(κ) is negligible if for every constant c and sufficiently
large κ it holds that ε(κ) < κ−c. We denote by Sort the algorithm that, on
input a list of strings, outputs the same strings in lexicographical order. If pk is
the public key of a cryptosystem, we denote by Mpk , Cpk , and Rpk the plaintext
space, the ciphertext space, and the randomness space respectively. We state our
results using the Universal Composability (UC) framework [8]. We use slightly
non-standard notation in that we use an explicit communication model, denoted
CI , that acts as a router between the parties. We refer the reader to [8,22] for
details on this variant of the UC model.

2 Additively Homomorphic Cryptosystems

There are several homomorphic cryptosystems in the literature, but not all are
additively homomorphic. For our new scheme, we do not require the
1 In his later work, Cohen published under the name Benaloh.
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cryptosystem to have efficient decryption for all encrypted messages. More pre-
cisely, we use the following definitions.

Definition 1. A weak cryptosystem CS = (Kg, E, D) is a cryptosystem except
we do not require that D run in polynomial time. If there exists polynomial T (·)
and κs(κ) > 0 such that {0, 1}κs ⊂ Mpk and such that Dsk (Epk (m)) outputs
m in time T (κ) for every (pk , sk) = Kg(1κ) and m ∈ {0, 1}κs, we call CS a
κs-cryptosystem.

Definition 2. A weak cryptosystem CS is homomorphic if for every (pk , sk) =
Kg(1κ):

1. The message space Mpk and the randomizer space Rpk are additive abelian
groups, and the ciphertext space Cpk is a multiplicative abelian group, and
the group operations can be computed in polynomial time given pk.

2. For every m, m′ ∈ Mpk and r, r′ ∈ Rpk : Epk (m, r)Epk (m′, r′) = Epk (m +
m′, r + r′).

Definition 3. A weak homomorphic cryptosystem CS is said to be additive if,
for every (pk , sk) = Kg(1κ) the message space Mpk is the additive modular group
Zn for some integer n > 1. In this case we identify the elements of Zn with their
bit-string representations as integers in base two.

Efficient Examples. The Paillier cryptosystem [19,12] is additively homomor-
phic, since Mpk = Zn, Rpk = Z

∗
n, and Cpk = Z

∗
n2 , where n is the κ-bit modulus

contained in the public key pk . Similarly, the Okamoto-Uchiyama cryptosys-
tem [18], a precursor of the Paillier cryptosystem, is additively homomorphic,
since Mpk = Zp, Rpk = Zn, and Cpk = Z

∗
n, where n is the κ-bit modulus

contained in the public key pk .

Inefficient Examples. The Goldwasser-Micali cryptosystem [14], when based on
quadratic residues, is additively homomorphic, since Mpk = Z2, Rpk = SQn, and
Cpk is the subset of Z

∗
n with Jacobi symbol 1. This example may be interesting

despite its inefficiency, since the quadratic residuosity assumption is considered
a very weak assumption. The Boneh-Goh-Nissim cryptosystem [6] can be viewed
as an additively homomorphic O(κ)-cryptosystem. This is both inefficient and
based on a very strong assumption, but it may still be interesting in connection
with our ideas due to its special algebraic properties.

3 The Basic Idea

Our construction is simple provided that we use an additive homomorphic κs-
cryptosystem such that Nκm < κs, where N is the maximal number of senders
and κm is the maximal bit-size of submitted messages.

The idea can be described as follows. Define Bi = 2(i−1)κm for i = 1, . . . , N .
The offline phase produces ciphertexts for the sequence of indexed positions
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where the inputs will end up, namely B1, . . . , BN . Then, still in the offline phase,
these ciphertexts are re-randomized and shuffled. Each sender is assigned one
such encrypted index to use as his effective public key. The sender uses the ad-
ditive homomorphic property of the cryptosystem to exponentiate his encrypted
index to his plaintext value mi, thereby creating a ciphertext of the value mi

offset to that sender’s bit position (which remains hidden from the sender). The
resulting ciphertext is then sent to the bulletin board. When all inputs are sub-
mitted, the offline phase ends. Then, they are aggregated using homomorphic
addition. The plaintext of the resulting single ciphertext is the concatenation of
all submitted messages, with each message at its appropriate offset. The idea is
illustrated in Figure 1.

00000000 0000 0001

00010000 0000 0000

00000000 0001 0000

00000001 0000 0000

00000000 0001 0000

00000000 0000 0001

00000001 0000 0000

00010000 0000 0000

m4 0000 00000000

m2

m1

m3

m4

0000m2 0000 0000

00000000 0000

00000000 0000

m3

m1

m4 m3 m1m2

∏

(m2, m4, m3, m1)
Dsk(·)

Fig. 1. The trivial ciphertexts are shuffled to produce a new list of re-encrypted and
permuted ciphertexts. Then each sender uses its assigned ciphertext as a public key
and the result is a new list of ciphertexts, where the messages of the senders are
embedded. Finally, the mix-servers take the product of the ciphertexts and decrypt a
single ciphertext to find the input messages, but in random order.

In the remainder of the paper we relax the restriction Nκm ≤ κs, give a more
detailed description, and prove the security of the scheme, but, before we do so
we give a more detailed description of the simple case. In the offline-phase, the
mix-servers first form the list of trivial encryptions

(C1, . . . , CN ) = (Epk (B1, 0), . . . , Epk (BN , 0)) .

Then, they mix the above list to produce a randomly re-encrypted and permuted
list of ciphertext on the form

(C′
1, . . . , C

′
N ) = (Epk (Bπ(1), s1), . . . , Epk (Bπ(N), sN )) .

The sender Si is then assigned the public key pk i = C′
i. To send a message

mi ∈ {0, 1}κm, the sender Si chooses ri ∈ Rpk randomly, computes the ciphertext

ci = pkmi

i Epk (0, ri)

and writes it on the bulletin board. It also proves knowledge of ri ∈ Rpk and
mi ∈ {0, 1}κm such that the above holds. When the submission phase is over,
the mix-servers compute the product c =

∏N
i=1 ci. Note that we have
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c =
N∏

i=1

pkmi

i Epk (0, ri) = Epk(0, r)
N∏

i=1

Epk (Bπ(i), si)mi = Epk

( N∑

i=1

Bπ(i)mi, r
′
)

= Epk

( N∑

i=1

Bπ(i)−1mi, r
′
)

= Epk
(
mπ−1(1)‖ · · · ‖mπ−1(N), r

′) ,

for r =
∑N

i=1 ri and r′ = r +
∑N

i=1 simi, since mi ∈ {0, 1}κm. The mix-servers
jointly compute m′

1‖ · · · ‖m′
N = Dsk (c), and output Sort(m′

1, . . . , m
′
N ).

The Relation With Homomorphic Election Schemes. Recall that the idea behind
the homomorphic election schemes [10] mentioned in the introduction is to use
an additive homomorphic κs-cryptosystem and let a sender Si encode a vote for
party j by a ciphertext ci = Epk(M j), where M is an integer larger than the
number of senders N . The point is that the plaintext of the ciphertext product∏N

i=1 ci is of the form
∑C−1

j=0 ajM
j, where aj is the number of senders that voted

for candidate number j. If C is the number of candidates, this approach requires
that C log N ≤ κs, but one can increase the number of candidates by using
several ciphertexts. In some sense, our approach follows by switching the roles
played by candidates and senders.

4 Model and Definitions

We define some ideal functionalities and the notion of concatenation-friendly
cryptosystems to allow us to state our results more easily.

4.1 The Ideal Bulletin Board

We assume the existence of an ideal authenticated bulletin board. Each party
can write to the bulletin board, nobody can erase anything from the bulletin
board, and the messages that appear on the bulletin board are indexed in the
order they appear (see the full version [4] for a formal definition).

4.2 The Ideal Mix-Net

We use an ideal mix-net functionality similar to the one in [20]. The only essential
difference is that we explicitly allow the adversary to prohibit senders from
submitting an input. This makes the ideal functionality more realistic.

Functionality 1 (Mix-Net). The ideal functionality for a mix-net, FMN, run-
ning with mix-servers M1, . . . , Mk, senders S1, . . . , SN , and ideal adversary S
proceeds as follows

1. Initialize a list L = ∅, a database D, a counter c = 0, and set JS = ∅ and
JM = ∅.
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2. Repeatedly wait for inputs
– Upon receipt of (Si, Send, mi) with mi ∈ {0, 1}κm and i �∈ JS from

CI , store this tuple in D under the index c, set c ← c + 1, and hand
(S, Si, Input, c) to CI .

– Upon receipt of (Mj, Run) from CI , store (Mj , Run) in D under the index
c, set c ← c + 1, and hand (S, Mj , Input, c) to CI .

– Upon receipt of (S, AcceptInput, c) such that something is stored under
the index c in D do
(a) If (Si, Send, mi) with i �∈ JS is stored under c, then append mi to L,

set JS ← JS ∪ {i}, and hand (S, Si, Send) to CI .
(b) If (Mj , Run) is stored under c, then set JM ← JM ∪ {j}. If |JM | >

k/2, then sort the list L lexicographically to form a list L′, hand
((S, Mj , Output, L′), {(Ml, Output, L′)}k

l=1) to CI and ignore further
messages. Otherwise, hand CI the list (S, Mj , Run).

4.3 The Ideal Mixer

Since our focus in this paper is to minimize the online work needed by the mix-
servers and not how to construct a secure mix-net from scratch, we assume the
existence of a powerful ideal functionality that allows us to invoke the different
phases of a mix-net without going into details. We use this functionality during
the offline phase only. Although it is essentially equivalent to an ideal mix-net, we
call it a mixer to distinguish it from the ideal mix-net above, and we parameterize
it by a cryptosystem. The functionality outputs a public key, waits for a list of
ciphertexts to mix, and then finally waits for ciphertexts to decrypt.

Functionality 2 (CS-Mixer). The ideal functionality for a CS-mixer, Fmixer,
running with mix-servers M1, . . . , Mk, senders S1, . . . , SN , and ideal adversary
S proceeds as follows

1. Set JM = ∅, compute (pk , sk) = Kg(1κ), and hand ((S, PublicKey, pk),
{(Mj, PublicKey, pk )}k

j=1) to CI .
2. Wait for an input on the form (Mj , Mix, Lj) with j �∈ JM and set JM ←

JM ∪ {j}.
(a) If there is an L = (ci)N

i=1 such that Lj = L for more than k/2 dis-
tinct j, where ci ∈ Cpk , choose ri ∈ Rpk randomly and compute L′ =
(cπ(1)Epk (0, r1), . . . , cπ(N)Epk (0, rN )) for a random π ∈ ΣN . Then hand
((S, Mixed, L′), {(Mj, Mixed, L′}k

j=1) to CI , and go to the next step.
(b) Otherwise hand (S, Mj , Mix, Lj) to CI and wait for another input.

3. Repeatedly wait for messages. Upon receiving (Mj , Decrypt, c) check if c has
been received. If so set Jc ← Jc ∪ {j}. Otherwise initialize Jc = ∅. If |Jc| >
k/2, then hand ((S, Decrypted, c, Dsk (c)), {(Mj , Decrypted, c, Dsk(c))}k

i=1)
to CI , and otherwise hand (S, Mj , Decrypt, c) to CI .

Proving that this functionality can be realized in an efficient and UC-secure
way is beyond the scope of this paper. It can be achieved following [21,23].
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4.4 Ideal Zero-Knowledge Proof of Knowledge of Plaintexts

We assume the existence of an ideal zero-knowledge proof of knowledge for cor-
rect encryption. The corresponding relation is defined below.

Definition 4 (Plaintext Knowledge). Define the relation Renc as consisting
of the pairs ((pk , pk ′, c), (m, r)) such that c = (pk ′)mEpk (0, r) and m ∈ {0, 1}κm.

Functionality 3 (Zero-Knowledge Proof of Knowledge). Let L be a lan-
guage given by a binary relation R. The ideal zero-knowledge proof of knowledge
functionality FR

ZK of a witness w to an element x ∈ L, running with provers
S1, . . . , SN , and verifiers M1, . . . , Mk, proceeds as follows.

1. Upon receipt of (Si, Prover, x, w) from CI , store w under the tag (Si, x), and
hand (S, Si, Prover, x, R(x, w)) to CI . Ignore further messages from Si.

2. Upon receipt of (Mj, Question, Si, x) from CI , if JSi,x is not initialized set
JSi,x = ∅ and otherwise JSi,x ← JSi,x∪{j}. Let w be the string stored under
the tag (Si, x) (the empty string if nothing is stored). If |JSi,x| = k, then hand
((S, Mj , Verifier, Si, x, R(x, w)), {(Mj , Verifier, Si, x, R(x, w))}k

j=1) to
CI and otherwise (S, Mj , Question, Si, x).

Note that the functionality synchronizes the response. For cryptosystems such
as Paillier [19] and ElGamal [13] with messages encoded in the exponent, the
above functionality can be efficiently realized using the Naor and Yung [17]
double ciphertext trick and an efficient proof of membership in an interval [7].

4.5 Concatenation Friendly Cryptosystems

To simplify the exposition, we introduce the notion of concatenation-friendly
cryptosystems. Informally, a concatenation-friendly cryptosystem allows con-
catenation of plaintexts under the cover of encryption. We show that this feature
can be obtained from any additively homomorphic κs-cryptosystem for an arbi-
trary κs > 0.

Definition 5. Let CS = (Kg, E, D) be a Nκs-cryptosystem. We say that CS
is (N, κm)-concatenation friendly if there exists Shift, Exp ∈ PT, such that for
every κ ∈ N and every (pk , sk) = Kg(1κ):

1. For every m ∈ {0, 1}κm we have Dsk (Exppk (Epk (0), m)) = 0.
2. For every 1 ≤ t ≤ N and mc ∈ {0, 1}κm:

Dsk (Exppk (Epk (Shiftpk (t)), mc)) = 0(t−1)κm‖mc‖0(N−t)κm .

3. For every ml ∈ {0, 1}(t−1)κm, mc ∈ {0, 1}κm, mr ∈ {0, 1}(N−t)κm:

Dsk
(
Epk(ml‖0κm‖mr)Epk (0(t−1)κm‖mc‖0(N−t)κm)

)
= ml‖mc‖mr .

We abuse notation and write cm instead of Exppk (c, m), and also drop the sub-
script pk from Shiftpk (·). We stress that, in general, the operation computed by
Exp is not the standard exponentiation operator.
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Proposition 1. Let N , κm, and κs > 0 be polynomially bounded. If there exists
a polynomially indistinguishable additively homomorphic κs-cryptosystem, then
there exists a (N, κm)-concatenation friendly and polynomially indistinguishable
Nκm-cryptosystem.

Proof. Let CSah = (Kgah, Eah, Dah) be a polynomially indistinguishable additively
homomorphic κs-cryptosystem for some polynomial κs(κ) > 0. Define Kg equal
to Kgah.

The idea is to “pack” the bits of a message into a list of ciphertexts in such
a way that we can “concatenate” messages from {0, 1}κm under encryption as
required by the definition. We assume that an integer 0 < tm ≤ κs has been fixed
and define tr = 
κm/tm�. The integer tr decides into how many pieces we divide
a message m ∈ {0, 1}κm, and tm decides how many bits we have in each such
piece. Note that we may choose a value of tm lower than strictly necessary, so
that, later, we can optimize the number of bits encrypted under CSah depending
on the specific values of N , κm, and κs, without breaking the symmetry required
for concatenation under the cover of encryption.

On input pk and m ∈ {0, 1}Nκm, the encryption algorithm E first writes
m = m1‖ . . . ‖mN with mj ∈ {0, 1}κm. Then it writes mj = m1,j‖ . . . ‖mtr,j

with mi,j ∈ {0, 1}tm . This gives a tr × N -matrix m = (mi,j), where the jth
column corresponds to mj. Then it defines

Mi,j = mi,jtM +1‖ . . . ‖mi,jtM+tM

for j = 0, . . . , t′M where tM is chosen maximal under the restriction tmtM ≤ κs,
and t′M = N/tM − 1. Finally, the algorithm chooses ri,j ∈ Rah

pk randomly and
defines

c =
(
Eah

pk (Mi,j , ri,j)
)tr ,t′

M

i=1,j=0 .

The decryption algorithm D takes as input a secret key sk and a ciphertext
c = (ci,j) and proceeds as follows. It first computes

(Mi,j) = (Dah
sk (ci,j))

for i = 1, . . . , tr, j = 0, . . . , t′M and interprets Mi,j as mi,jtM +1‖ · · · ‖mi,jtM +tM

by truncating the string in the natural way. Then, it outputs the concatenation
m of the columns in the matrix m = (mi,l), where i ranges over {1, . . . , tr} and
l ranges over {1, . . . , N}.

The encryption and decryption algorithms obviously run in polynomial time,
since each individual operation does, and it is easy to see that an encrypted
message is always recovered. Thus, CS = (Kg, E, D) is a Nκm-cryptosystem.

The polynomial indistinguishability of the scheme follows by a standard hy-
brid argument, since a ciphertext essentially consists of a polynomial length list
of ciphertexts of a polynomially indistinguishable cryptosystem [14].

It remains to show that the scheme is (N, κm)-concatenation friendly. We de-
fine multiplication component-wise, i.e., cc′ = (ci,j)(c′i,j) = (ci,jc

′
i,j). The output

of Shift(t) is defined as the concatenation of the columns in the tr × N -matrix
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(zi,l) where zi,l = 0 for all elements except that z1,t = z2,t = . . . = ztr,t = 1.
In other words the tth column consists of ones and all other elements are zero.
Finally, we define the Exp algorithm as follows. We write m = (m1, . . . , mtr)
with mi ∈ {0, 1}tm as above. Then we define

cm = (cmi

i,j ) .

Consider now t and mc as in Definition 5, and denote by z = (zi,l) = Shift(t),
and define Zi,j = zi,jtM+1‖ . . . ‖zi,jtM+tM for j = 0, . . . , t′M . We have

Epk(Shift(t))m =
((

Eah
pk (Zi,j)

)tr ,t′
M

i=1,j=0

)m =
(
Eah

pk (Zi,j)mi
)tr,t′

M

i=1,j=0

=
(
Eah

pk(zi,jtM +1‖ . . . ‖zi,jtM+tM )mi
)tr,t′

M

i=1,j=0 .

If we write Eah
pk(zi,jtM +1‖ . . . ‖zi,jtM+tM )mi = Eah

pk (z′i,jtM +1‖ . . . ‖z′i,jtM +tM
), we

may conclude that z′i,l = 0 for all i and l except that z′i,t = mi for i = 1, . . . , tr. In
other words, the second requirement is satisfied. Note that if Shift(t) is replaced
by 0 above, we see in a similar way that the first requirement is satisfied.

Consider now ml, mc, and mr as in Definition 5 and write m = ml‖0κm‖mr

and m′ = 0(t−1)κm‖mc‖0(N−t)κm . We have

Epk (m)Epk (m′) =
(
Eah

pk(Mi,j)
)tr,t′

M

i=1,j=0

(
Eah

pk (M ′
i,j)

)tr ,t′
M

i=1,j=0

=
(
Epk (mi,jtM +1‖ . . . ‖mi,jtM +tM )Epk (m′

i,jtM +1‖ . . . ‖m′
i,jtM +tM

)
)tr ,t′

M

i=1,j=0 .

From the additive homomorphism of CSah we conclude that

Epk (mi,jtM +1‖ . . . ‖mi,jtM +tM )Epk (m′
i,jtM +1‖ . . . ‖m′

i,jtM +tM
)

= Epk(m̄i,jtM +1‖ . . . ‖m̄i,jtM+tM )

with m̄i,l = mi,l for l �= t and m̄i,l = m′
i,l otherwise. Thus, the third requirement

is satisfied.
Finally, note that it is an easy task to optimize the value of tm with regards

to minimizing the number of individual ciphertexts.

5 Detailed Protocol and Security Analysis

We are now ready to describe the details of our scheme and prove its security.

Protocol 1 (Online/Offline Mix-Net). The online/offline mix-net π
o/o
MN ex-

ecuting with senders S1, . . . , SN , mix-servers M1, . . . , Mk, and ideal adversary S
proceeds as follows.

Sender Si

1. Wait until (Mj , SenderPublicKeys, (pk i)N
i=1) appears on FBB for more than

k/2 distinct j.
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2. Wait for an input (Send, mi) with mi ∈ {0, 1}κm. Then choose ri ∈ Rpk

randomly and compute ci = pkmi

i Epk (0, ri).
3. Hand (Prover, (pk , pk i, ci), (mi, ri)) to FRenc

ZK .
4. Hand (Send, ci) to FBB.

Mix-Server Mj

Offline Phase

1. Wait for a message (PublicKey, pk) from Fmixer.
2. Form the list L = (Epk (Shift(1), 0), . . . , Epk (Shift(N), 0). Hand (Mix, L) to

Fmixer, and wait until it returns (Mixed, (pk i)
N
i=1).

3. Hand (Write, SenderPublicKeys, (pk i)N
i=1) to FBB.

4. Initialize JM = ∅ and repeatedly wait for new inputs or the next new message
on FBB.
– On input (Run), hand (Write, Run) to FBB.
– If (Mj , Run) appears on FBB, then set JM ← JM ∪ {j}. If |JM | > k/2,

go to Step 5.
– If (Sγ , Send, cγ) appears on FBB for γ �∈ JS then do:

(a) Set JS ← JS ∪ {γ}.
(b) Hand (Question, Sγ , (pk , pkγ , cγ)) to FRenc

ZK and wait for a reply
(Verifier, Sγ , (pk , pkγ , cγ), bγ) from FRenc

ZK .

Online Phase

5. Let J ′
S ⊂ JS be the set of γ such that bγ = 1. Compute c =

∏
γ∈J′

S
cγ ,

hand (Decrypt, c) to Fmixer, and wait until a message (Decrypted, c, m) is
returned by Fmixer.

6. Write m = m1‖ . . . ‖mN , where mi ∈ {0, 1}κm, set m′ = (m1, . . . , mN ), and
return (Output, Sort(m′)).

5.1 Online Complexity

The complexity of our scheme depends heavily on the application, the cryptosys-
tem used, the number of parties N and the maximal bit-size κm of messages.
The setting where our techniques reduce the online complexity the most is when
the verification of the submissions can be considered part of the offline phase and
Nκm ≤ O(κ). For this case, the online complexity both in terms of computation
and communication between the mix-servers is drastically reduced, as illustrated
by the following example.

The most natural practical set-up is to use the Paillier cryptosystem [19]
with Nκm ≤ O(κ). In this case, the online complexity consists of performing
O(N) multiplications and O(1) joint decryptions. This can be done using O(k)
exponentiations, with a small hidden constant. The fastest mix-net based on
the Paillier cryptosystem requires at least Ω(kN) exponentiations with small
constants with precomputation. Thus, we get a speed-up on the order of N .

We have chosen to consider the submission phase as part of the offline phase.
If this is not reasonable, then our techniques are still applicable, but they do
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not reduce the complexity as much. In the Paillier example, this would give a
speedup on the order of k. We expect most applications with Nκ ≤ O(κ) to be
somewhere between these to extremes.

5.2 Security Analysis

We denote by Ml the set of static adversaries that corrupt at most l mix-servers
and arbitrarily many senders. The following proposition captures the security
properties of the protocol.

Proposition 2. Let CS be a concatenation-friendly and polynomially indistin-
guishable cryptosystem. Then π

o/o
MN securely realizes FMN with respect to Mk/2

adversaries in the (FBB, FRenc
ZK , Fmixer)-hybrid model.

We refer the reader to the full version [4] for a proof.

6 Conclusion

A mix-net allows any polynomial number N of senders to send any of exponen-
tially many possible messages, i.e, the only restriction is that Nκm is polynomial
in κ, where κm is the maximal bit-size of submitted messages.

The homomorphic election schemes may be viewed as a mix-net with the
restriction that 2κm log N ≤ O(κ), i.e., each sender can send one out of very
few messages, but there can be many senders. The advantage of this is that
homomorphic election schemes are much more efficient than general mix-nets.

In this paper we have considered the dual restriction κmN ≤ O(κ), i.e., there
can be few senders, but each sender can send one out of many messages. We have
shown that, in this case also, there exists a solution that is much more efficient
than a general mix-net in the online phase.
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