
An Efficient Parallel Repetition Theorem

Johan H̊astad1, Rafael Pass2, Douglas Wikström3, and Krzysztof Pietrzak4

1 KTH, Stockholm, supported by ERC grant 226-203
2 Cornell University, Ithaca, supported in part by a Microsoft New Faculty

Fellowship, NSF CAREER Award CCF-0746990, AFOSR Award FA9550-08-1-0197,
and BSF Grant 2006317

3 KTH, Stockholm
4 CWI, Amsterdam

Abstract. We present a general parallel-repetition theorem with an ef-
ficient reduction. As a corollary of this theorem we establish that paral-
lel repetition reduces the soundness error at an exponential rate in any
public-coin argument, and more generally, any argument where the ver-
ifier’s messages, but not necessarily its decision to accept or reject, can
be efficiently simulated with noticeable probability.

1 Introduction

When the soundness error of an interactive proof [7] or interactive argument [3],
or more generally computationally-sound interactive proofs, is too large for appli-
cations, one might hope to prove a direct-product theorem which applies to the
protocol at hand. A direct-product theorem for some class of problems states
that if an adversary has some probability of succeeding in a single instance,
then his chance in solving many independent instances of the problem drops
exponentially. Running several independent instances of a protocol can be done
sequentially or in parallel. Sequential repetition means that the (i + 1)st exe-
cution of the protocol is only started after finishing the ith execution. Parallel
repetition means that all protocols are run simultaneously. It is well-known that
sequential repetition reduces the soundness error at an exponential rate for both
proofs and arguments. However, although parallel repetition is known to reduce
the soundness error in interactive proofs [1,6], Bellare, Impagliazzo and Naor [2]
demonstrate the existence of argument systems where parallel repetition does
not reduce the soundness error, leaving open the following question:

For what computationally-sound proof systems does parallel repetition
reduce the soundness error?

There have been several works addressing this question. Yao’s [17] work on hard-
ness amplification of one-way functions can be viewed as establishing that par-
allel repetition reduces the soundness error at an asymptotically optimal rate
in every “publicly-verifiable” two-round argument—namely arguments where
one can efficiently check if a transcript is accepting without knowing the veri-
fier’s internal randomness. Bellare, Impagliazzo and Naor [2] extended this re-
sult to show that parallel repetition reduces the error for general (not neces-
sarily publicly-verifiable) arguments with at most three rounds. For two-round

D. Micciancio (Ed.): TCC 2010, LNCS 5978, pp. 1–18, 2010.
c© International Association for Cryptologic Research 2010

2 J. H̊astad et al.

protocols, Canetti, Halevi and Steiner [4] obtain a quantitatively better bound
(approaching Yao’s original bound for publicly-verifiable arguments), and Im-
pagliazzo, Jaswal and Kabanets [11] show a more fine-grained “Chernoff-type”
theorem. Finally, Pass and Venkitasubramaniam [13] show that parallel repeti-
tion also reduces the error for any constant-round public-coin protocol.

On the negative side, as shown by Bellare et al [2] and Pietrzak and Wik-
ström [14], parallel repetition does not decrease the error for general (non public-
coin) protocols with eight rounds; furthermore, black-box reductions cannot be
used to establish such a result even for general four round protocols.

Thus, given the current state of the art, it is unknown whether parallel-
repetition reduces the soundness error even in public-coin protocols with a super-
constant number of rounds, or any general classes of non public-coin protocols
with more than 3 rounds. The former of these questions was stated as an open
problem by Bellare et al [2]. In this work we identify a general class of compu-
tationally sound protocols for which parallel repetition reduces the soundness
error. This class encompasses—and significantly extends—all earlier classes of
computationally sounds protocols for which parallel repetition had been estab-
lished; in particular, it includes all public-coin protocols but also natural classes
of private-coin protocols.

1.1 Our Results

We say that a verifier is δ-simulatable if, roughly speaking, given the prover’s
view of any partial interaction, with probability δ, the next-message function of
the verifier (excluding its verdict to accept or reject) can be simulated for all
remaining rounds (with a small statistical error). In other words, it is possible to
efficiently simulate a δ-fraction of the verifier’s continuations without knowing
the verifier’s internal randomness.

Note that any public-coin or three-round protocol trivially is 1-simulatable,
but this notion captures many other protocols. For instance, public-coin pro-
tocols in the public-key model—where the verifier has a secret key and might
determine whether to accept or reject based on this key—are also 1-simulatable.

Our main result is an efficient parallel repetition theorem (i.e., a parallel
repetition theorem with an efficient reduction) for any 1

poly -simulatable verifier.
More precisely, our main theorem says that for any protocol where the verifier
is δ-simulatable, we can turn an arbitrary parallel prover P(k) for the k-fold
repetition of V with success probability ε into a single instance prover P̃ with
success probability 1 − O

(
m
δ

√− log(ε)/k +
√

m log(mk)/
√

k
)

where 2m + 1 is
the number of rounds. Note that this implies that the error probability decreases
exponentially down to some negligible function when the number of repetitions
is sufficiently larger than the number of rounds. Following Impagliazzo et al. [11]
we can actually prove a more general “Chernoff-type” theorem, where one only
assumes that the parallel prover convinces a certain fraction (and not all) of the
individual verifiers.

As any public-coin protocol or three-round protocol satisfies 1-simulatability,
we get as corollaries parallel repetition theorems for three-round protocols [2] and

An Efficient Parallel Repetition Theorem 3

for public-coin protocols [13]. Note that whereas [13] only shows a parallel rep-
etition theorem for constant-round protocols, our theorem applies to protocols
with an arbitrary polynomial number of rounds. Our parameters are, however,
worse that those of [13], which establishes an essentially optimal error reduction
for the case of constant-round protocols.

As can be seen from the expression above, the success probability of the single-
instance prover decreases linearly with the number of rounds in the protocol. If
we restrict our attention to public-coin verifiers, or more generally, 1-simulatable
verifiers with verdict—i.e., verifiers where the next messages function and its
verdict to accept or reject—can be simulated with a small statistical error—
then we can show a stronger parallel repetition theorem, where the decrease in
error probability is independent of the number of rounds.

Finally, we show using a simple argument that our results hold also for concur-
rent provers, which may schedule their interaction with the individual verifiers
arbitrarily.

1.2 Some History and Related Papers

An earlier version of this paper [9], where we established a parallel repetition
only for interactive arguments with (1 − 1

poly)-simulatable verifiers (and some
generalizations thereof), dates back to April 2008. Recent works extend it.

Most notably, Haitner [8] gave a modification of any interactive protocol by
introducing a “random-termination verifier” where the verifier decides to stop
and accept immediately with small but noticeable probability at each round.
Haitner proved that any interactive protocol modified in this way, satisfies a
parallel repetition theorem.

His construction is the main motivation of our study of δ-simulatable verifiers
as it is easy to simulate a verifier that has halted. As a consequence our results
gives a new proof of Haitner’s theorem which is, in our eyes, simpler and which
gives better parameters.

In an even more recent paper Chung and Liu [5] improves the analysis of our
reduction. They manage to avoid the use of any lemma of the type obtained
by Raz getting optimal reduction of the error rate for the public-coin case and
almost optimal result in the case of 1-simulatable verifiers. It does not seem that
their result extends to the case of δ-simulatable verifiers.

In a different direction, Pass, Tseng and Wikström [12] rely on our techniques
to show that parallel repetition of public-coin protocols also gives a qualitative
(rather than quantitative) improvement in soundness: any public-coin argument,
when sufficiently repeated in parallel, becomes sound also against a “resetting”-
attack if the verifier uses a pseudo-random function to pick its messages. As
a corollary of this result, they establish impossibility of public-coin black-box
zero-knowledge protocols (for non-trivial languages) that remain secure under
parallel repetition. Interestingly, [12] show that the dependence on m in our
security reduction for the main theorem is inherent in their setting; this stands
in contrast with our sharper reduction for the case of public-coin protocols.

4 J. H̊astad et al.

1.3 Our Techniques

We show how to turn any parallel-prover P(k) into a single-instance prover P̃ ;
furthermore, we require that P̃’s success probability is significantly higher that
of P(k). Traditionally, P̃ achieves this by internally incorporating P(k), appro-
priately feeding it messages, while at the same time picking one of the parallel
executions that it feeds to an external verifier. In other words, out of the k in-
stances that P(k) believes it is participating in, P̃ controls k − 1 of them, while
one of them is externally forwarded.

The crux of this approach is how to determine the k − 1 messages sampled
in some particular round are good. In the public-coin case, in the work of Pass
and Venkitasubramaniam [13], the “goodness” of a message is determined by
estimating (using sampling) the probability with which P̃ would be able to
complete the partial interaction if this message was fixed; and P̃ selects the
message which leads to the highest success probability. This procedure requires
recursively sampling P̃ and results in a blow-up of the running-time as a function
of the number of rounds and thus only a constant number of rounds can be
handled. In the case of private-coin protocols, another problem arises already
for the case of three-round protocols: we might not be able to determine if
the verifier Vi accepts in a particular transcript as we do not know its random
tape. Bellare et al. [2] overcome this problem by “guessing” that Vi accepts, if,
intuitively, “many” other verifiers accept; as we are internally running all the
other verifiers we know their random tapes and thus their decision.

A-priori, it would seem that a combination of these approaches would at least
give a parallel-repetition theorem for constant-round private-coin protocols as
long as it is possible to appropriately sample the next messages of the verifier.
The problem is that when selecting “good” messages, we might be biasing the
distribution of continued executions. It is, thus, no longer clear that the proce-
dure of “guessing” that Vi accepts if many other verifiers accept, yields a good
estimate of whether Vi actually accepts.

The key technique introduced in this paper is a method for selecting “good”
messages without biasing the distribution too much. We essentially choose the
first continuation that can be seen to lead to a good outcome. The fact that this
procedure does not bias the distribution of interactions by too much follows from
a powerful lemma of Raz [15] which was used in an essential way in the proof of
the parallel repetition theorem for two-prover interactive proofs. Additionally,
this approach does not lead to a blow-up in running-time and can be applied to
any polynomial number of rounds.

Let us first outline the idea for the case of public-coin protocols. Instead of try-
ing to recursively estimate how good a message is, we use the following simple
procedure to pick messages to forward to Vi. Given a partial interaction, repeat-
edly sample random completions of this transcripts, until a successful transcript
is reached, i.e., one where all verifiers accept. When this happens, select the next
message to forward to the external verifier based on what that message was in the
sampled accepting transcript. In other words, sample a random message condi-
tioned on it leading to a successful transcript. To analyze why this works, consider

An Efficient Parallel Repetition Theorem 5

the following mental experiment, where messages from P̃ are determined in the
same way, but now also Vi’s messages are selected conditioned on them leading
to an accepting execution. Clearly, in this mental experiment P̃ succeeds in con-
vincing Vi with probability 1. It is also not hard to see that the expected number
of samples required by P̃ is not too high and that its running-time is still poly-
nomial. The problem is that the real external verifier does not pick its messages
conditioned on them leading to an accepting execution; rather, it picks them uni-
formly at random. However, by relying on Raz’ lemma, we can show, provided
that i is picked uniformly at random from [k], that the distribution of messages
actually sent by the real external verifier are statistically close to those sent in the
mental experiment, where we condition on them leading to an accepting execu-
tion. By applying the union bound over each round in the protocol, we conclude
that also in the real execution, P̃ succeeds which high probability.

Note that the above argument directly applies also to 1-simulatable verifiers
with verdict; we only require it to be possible to 1) emulate continuations of
partial interactions with the external verifier, and 2) determine if the external
verifier would have accepted in those executions. To extend this analysis to 1-
simulatable verifiers without verdict, we augment the argument by first showing
that in the mental experiment it is sufficient to guess the decision of Vi based
on the decisions of the other verifiers, in analogy with [2]. Now we can no longer
claim that the success probability in the mental experiment is 1, but it will still
be sufficiently high; the rest of the proof remains the same, and we conclude that
also in the real execution P̃ succeeds with high probability. We mention that to
simplify the analysis, and to generalize it to handle “Chernoff-type” bounds, we
generalize the “guessing” procedure of [2].

Finally, consider the case of 1
poly -simulatable verifiers. Here we can only em-

ulate continuations of the external verifier for a small, but noticeable, fraction
of its true continuations. Nevertheless, by another application of Raz’s lemma,
we can show that the distribution of messages sent to the internal prover does
not change by too much even if we condition the ith execution on a noticeable
subset of continuations, and thus 1

poly -simulatability suffices. More precisely, by
Raz’s lemma, it follows that the probability the external verifier chooses a con-
tinuation that we can simulate is not affected much if we condition on getting an
accepting interaction; this, in particular means that (on average) the probability
that a partial transcript leads to an accepting transcript does not change much
even if we condition on only continuations that we can simulate.

Note that in the above proof sketch we lose a factor of m, i.e., the number of
rounds in the protocol, by the application of the union bound. For the special
case of 1-simulatable verifiers with verdict, we go back to the underlying tool of
relative entropy used to prove Raz’s lemma, and use it to prove a generalization
that considers multiple rounds at once, without losing the factor of m.

1.4 Outline of Paper

We first introduce some basic definitions in Section 2. Then we give a definition of
δ-simulatable verifiers in Section 3. In Section 4 we state the parallel repetition

6 J. H̊astad et al.

theorem. Then in Section 5 we prove the general parallel repetition theorem,
leaving the sharper theorem for the full version. Finally, we explain in Section 6
how to generalize our results to concurrent provers.

2 Notation and Basic Definitions

We denote the set {1, . . . , m} by [m]. We use n to denote the security parameter.
All random variables are written in uppercase and usually we use the correspond-
ing lower case for outcomes of the variable. When we say that a random variable
X over a set X is chosen randomly, we mean that it is uniformly and indepen-
dently distributed of all other variables. We use log a to denote the logarithm of
a in base 2. We write x←R X when x is chosen randomly from the set X .

If X is a random variable we write PX (x) = Pr [X = x] to denote the probabil-
ity that it assumes the value x, and we denote its support by [X]. If X and Y are
random variables we denote the conditional distributions of Y given X by PY |X ,
and when we condition on a fixed value x ∈ [X] we denote the corresponding
probability function by PY |X (· |x). Thus, PY |X (y |x) = PXY (x, y) /PX (x).
When W is an event, we write PX|W (x) = Pr [X = x |W].

We often use the chain-rule for distributions and we use dots, when we are
interested in a specific conditional distribution, e.g., we write PXY = PY PX|Y
and PX|Y (· |y).

Definition 1. The statistical distance between two distributions PX and PY

over a set X is
‖PX − PY ‖ =

1
2

∑

x∈X
|PX (x)− PY (x) | .

In a computationally sound protocol, soundness only holds against efficient (i.e.,
polynomial-time) provers. In general, a computationally sound protocol accepts a
joint parameter λ that may, or may not, contain an instance of a language. We use
P and V to denote the prover and verifier of a protocol, and we write 〈P ,V〉(λ) for
the output of V after an interaction with P on common input λ. For notational
convenience, we consider the security parameter n and any additional advice to
the prover as encoded into λ. We denote the k-wise parallel repetition of a verifier
V by Vk. The repeated verifier simulates the individual verifiers independently,
except that their message rounds are synchronized. It accepts if all the individual
verifiers accept. The ith verifier is denoted by Vi, but all verifiers run the same
program V . We are also interested in repeated threshold verifiers, denoted by Vk

γ ,
that accept if at least (1− γ)k of the individual verifiers accept.

The number of exchanges in the protocol is denoted by m, where one exchange
consists of two rounds, and the very first message of the prover is considered part
of the 0th exchange.

We denote the lth message of the ith verifier Vi by Cl,i and its state after the
lth message has been computed by Tl,i. We denote the lth message sent by the
prover to the ith verifier Vi by Al,i, and we denote the state of the prover after it
has computed its lth message by Sl. The decision of Vi is denoted by Di, i.e., 1 for

An Efficient Parallel Repetition Theorem 7

accept and 0 for reject. We define Cl = (Cl,1, . . . , Cl,k) and Al = (Al,1, . . . , Al,k).
The variables are then related as follows given a random joint parameter Λ

T0,i = Λ (1)

(S0, A0) = P(k)(Λ)
(Tl+1,i, Cl+1,i) = VRl,i

(Tl,i, Al,i) for 0 ≤ l < m

(Sl, Al) = P(k)(Sl−1, Cl) for 0 < l ≤ m

Di = V(Tm,i, Am,i) ,

where we think of both the prover and verifier as deterministic algorithms and
denote the random tape used by Vi in round l by Rl,i. The verifier may of course
“store” randomness from one round to be used in later rounds.

To collect random variables belonging to different exchanges we write, e.g.,
C[l],i = (C1,i, . . . , Cl,i) and C[l] = (C1, . . . , Cl). Sometimes we wish to exclude
only a single index i. Then we write Cl,〈i〉 = (Cl,1, . . . , Cl,i−1, Cl,i+1, . . . , Cl,k).
We mostly view V and P(k) as deterministic functions, but when convenient and
clear from the context we drop the the random tape from our notation.

3 Simulatable Verifiers

Our parallel repetition theorem is applicable to δ-simulatable verifiers. Roughly
speaking, we say that a verifier is δ-simulatable if given only the prover’s view
of any partial interaction (which thus excludes the verifier’s internal state), we
can efficiently simulate a δ fraction of the verifier’s actual continuations.

Recall that given a prover P and a verifier V , a partial transcript of length l is
denoted (λ, a[l], c[l]), the lth states of P and V are denoted sl and tl respectively,
and that these values are defined formally by Equation (1) in Section 2. Thus,
the prover’s view after producing its lth message al is given by (s[l], λ, a[l], c[l]).

Definition 2 (δ-Simulatable Verifier). A verifier V is said to be δ-simulatable
if there exists a PPT simulator S such that for every prover strategy P and
every partial history (s[l], t[l], λ, a[l], c[l]), there is a subset Δ of V’s random tapes,
compatible with the history so far, of density δ such that the output of S on
input (s[l], λ, a[l], c[l]) is statistically close to the prover’s view of a continued
interaction between P and V, including V’s verdict, when V’s random tape is
chosen uniformly from Δ. When the verdict of V is removed from consideration,
we say that V is δ-simulatable without verdict, or simply δ-simulatable.

Remark 1. Note that the definition requires the simulator to simulate a proba-
bility distribution that is allowed to be dependent on the state of the verifier and
that this state is unknown. This seems like an impossible task in general unless
we minimize the information contained in the state. In the early version of this
paper [9] this state was not included in the probability distribution but instead
we required that the next message of the internal, fully simulated verifiers could
be efficiently generated based on the conversation up to this point. If this is in-
deed possible then we can instead let the state be given by the messages already

8 J. H̊astad et al.

sent and then use this generation process to replace the original verifier. With
the current definition we need no condition on the internal verifiers and hence
it is, in our eyes, preferable.

Remark 2. The property that we only demand the two distributions to be sta-
tistically close and not identical is only a technicality. In fact, when using the
definition in this abstract we assume that the two distributions are the same,
to avoid cumbersome notation to take care of the error terms given by a small
statistical distance.

Remark 3. Acareful reading of the proof reveals thatwe can let the probability δof
successful sampling depend on the round but not on the partial history it extends.

Remark 4. We can allow a weaker definition of simulatability where the ability
to simulate V also depends on the P ’s messages. This leads to a more complicated
proof of Lemma 4 that either loses a factor of m in the error bounds or uses the
methods of [16] to get the same bounds. In order to keep this extended abstract
self-contained we use the weaker definition here.

Clearly, any public-coin protocol is 1-simulatable with verdict. It is also easy to
see that the “random-termination verifiers” of Haitner are 1

4m -simulatable with
verdict: the simulator simply aborts (accepting) with probability 1

4m . Further-
more, public-coin protocols in a public-key model (where the verifier only sends
random messages, but bases is decision on its secret key), as well as three-round
protocols, are 1-simulatable without verdict.

4 The Parallel Repetition Theorem

We prove a parallel repetition theorem for any verifier that is δ-simulatable
without verdict. The theorem implies that a (2m + 1)-round protocol when re-
peated k = Ω(m2

δ2 t) times in parallel reduces the error probability from 1/2
to 2−t + negl(n) if we require that all parallel verifiers accept. In the general
statement we consider also repeated threshold verifiers Vk

γ that accept if at least
(1− γ)k of the k parallel verifiers accept.

Theorem 1. Assume ε ≤ 1/2, let V ∈ PPT be a verifier that is δ-simulatable
without verdict, and let P(k) be a polynomial-time parallel prover. Then there ex-
ists a prover P̃ running in time Poly (n, k, m, 1/ε) such that for every λ ∈ {0, 1}∗
where Pr[〈P(k),Vk

γ 〉(λ) = 1] ≥ ε, for some threshold 0 ≤ γ < 1,

Pr
[
〈P̃,V〉(λ) = 1

]
≥ 1− γ −O

(m

δ

√
− log(ε)/k +

√
m log(mk)/

√
k
)

,

where n is the security parameter, m is the number of messages sent by V, and
k is the number of verifiers interacting with the parallel prover.

The constants hidden in the O (·)-notation in Theorem 1 are small and given
explicitly in our proof. It turns out that in the case of 1-simulatable verifiers we
can get a stronger theorem.

An Efficient Parallel Repetition Theorem 9

Theorem 2. Assume ε ≤ 1/2, let V ∈ PPT be a verifier, and let P(k) be a
polynomial-time parallel prover. Then there exists a prover P̃ running in time
Poly (n, k, m, 1/ε) such that for every λ ∈ {0, 1}∗ where Pr[〈P(k),Vk

γ 〉(λ)=1]≥ε,
for some threshold 0 ≤ γ < 1,

1. if V is 1-simulatable with verdict, then

Pr
[
〈P̃ ,V〉(λ) = 1

]
≥ 1− γ − 2

√
− log(ε)/k −

√
1/k , and

2. if V is 1-simulatable without verdict, then

Pr
[
〈P̃ ,V〉(λ) = 1

]
≥ 1− γ −O

(√
m

√
− log(ε)/k +

√
m log(mk)/

√
k
)

,

where n is the security parameter, m is the number of messages sent by V, and
k is the number of verifiers interacting with the parallel prover.

Due to the lack of space the proof of Theorem 2 is omitted but can be found in
[16]. It relies on the notion of relative entropy (Kullback-Leibler distance) and
uses a lemma extending Lemma 1 below to treat multiple rounds.

Readers familiar with the recent result of Pass et al. [12], may find Case 1
of Theorem 2 surprising, since superficially it seems the same technique should
be applicable to remove the dependence on the number of rounds in [12], which
would contradict their results. The reason this is not the case is that in [12], the
reduction samples messages in a given round conditioned on two events: (1) that
“all verifiers accept”, and (2) that the “right” message is output by the embedded
“resetting” attacker. Thus, in each round a distinct event is considered. Another
way to say this is that the probability that the “right” messages are output in all
rounds in a straight-line execution of the resetting attacker is Poly (n)−m. Thus,
we could apply this technique to simplify the proof in [12], but the dependence
on m would not disappear.

5 Proof of Theorem 1

We prove Theorem 1 in three steps. First we prove the theorem for public-coin
verifiers in the case where γ = 0. This immediately generalizes to 1-simulatable
verifiers with verdict. Then we show how to generalize the proof to verifiers that
are only δ-simulatable with verdict. Finally, we prove that the result can be
generalized to γ > 0 and verifiers that are δ-simulatable without verdict.

5.1 Proof of Theorem 1 in the Public-Coin Case

It is quite natural to simulate an interaction between the parallel prover P(k) and
the repeated verifier Vk and let the external verifier play the role of Vi for some i. In
other words any message to Vi would instead be forwarded to the external verifier
and its reply is taken as the reply of Vi. The question is how to choose the index
i and how the other verifiers should be simulated. We solve this in a simple way

10 J. H̊astad et al.

by picking a uniformly random i, simulating the other verifiers by picking random
messages and then taking the first answers that can be seen to lead to making all
verifiers accept. Let us discuss the intuition behind this approach.

Consider the tree of all possible interactions between P(k) and Vk, where each
leaf encodes which verifiers accept and the edges on level l are labeled with the
random choices of the verifiers in exchange l. If we could sample a random leaf
such that all verifiers accept, then clearly Vi also accepts for a any choice of i. If
the success probability of P(k) is ε we can efficiently sample from this distribution
in time polynomial in 1/ε and the security parameter n as follows. In exchange
l we repeatedly choose the messages cl = (cl,1, . . . , cl,k) of all verifiers randomly
and simulate a completion conditioned on the interaction so far and our choice of
messages in exchange l. If the completion gives a leaf where all verifiers accept,
then we take cl to be the messages of the verifiers in exchange l. Clearly, if a
suitable cl is found for each l, then all verifiers accept.

Suppose now that we pick a random index i and in exchange l pick the mes-
sage cl,i of Vi only once. The messages cl,〈i〉 = (cl,1, . . . , cl,i−1, cl,i+1, . . . , cl,k)
of all other verifiers are still repeatedly sampled, but now conditioned on cl,i

in addition to the interaction so far. The key observation is that this modified
distribution is quite close to the original one, and that we may view Vi as the
external verifier. Thus, we avoid sampling too much to stay close to the original
distribution on the leaves where all verifiers accept.

More Details. Denote by Complete the probabilistic algorithm that given a par-
tial interaction between P(k) and Vk returns a random sample from the distribu-
tion of the decisions of the verifiers, conditioned on the partial interaction given
as input. The detailed reduction is given by Algorithm 1 below. The parameter

Algorithm 1 (b). P̃u(x)

if x is a joint parameter λ then // Read joint parameter

(s0, a0)← P(k) (λ) // Compute prover’s first message
i←R [k] // Choose random index
return

([
i, s0, λ, ∅, a[0]

]
, a0,i

)
// Output state and first message

else
Interpret x as

([
i, sl−1, λ, c[l−1], a[l−1]

]
, cl,i

)
// Read state & verifier’s message

for v = 1, . . . , u do

cl,〈i〉 ←R {0, 1}p(n)×(k−1) // Sample verifiers’ messages

(sl, al)← P(k) (sl−1, cl) // Compute prover’s reply
if Complete(λ, c[l], a[l]) = 1 then // If messages are good,

return
([

i, sl, λ, c[l], a[l]

]
, al,i

)
// then output reply

done
done
return (fail , fail) // Give up

end

An Efficient Parallel Repetition Theorem 11

u denotes the maximal number of samples generated by the prover in each round
to find a suitable reply from the parallel prover. For simplicity we assume that
the message of the verifier in each exchange is drawn from {0, 1}p(n) for some
polynomial p.

Note that the prover keeps as its state the index i corresponding to the exter-
nal verifier, the state of the simulated parallel prover, and a partial interaction.
We now consider the error probability of the constructed prover.

The sampling lemma of Raz [15] says that given independently distributed
random variables U1, . . . , Uk, the distribution of Ui does not change much on av-
erage over the index i by conditioning on an event E, provided that the probabil-
ity of E is not too small. (We mention that the sampling lemma was previously
used by Impagliazzo et al. [11] in the context of parallel-repetition of 2-round
arguments). We make use of the following variant that appears as Corollary 6
in Holenstein’s simplified proof of Raz’ theorem [10].

Lemma 1. [10] Let PY UkV = PY

(∏k
i=1 PUi|Y

)
PV |Y Uk be a probability distri-

bution and E an event. Then

1
k

∑

i=1

∥
∥PY UiV |E − PY V |E PUi|Y

∥
∥ ≤ k−1/2

√
log |V ∗| − log Pr [E] .

where V ∗ is the set of values of v that can occur conditioned on E occurring.

In our application, the variable Y represents the interaction so far and Ui are
the messages of the verifiers in the current round. We let V be a binary variable
such that PV |Y Uk (1 |y, u) is the probability that all verifiers accept in a random
completion, for every partial interaction (y, u) ∈ [Y, Uk]. The lemma then implies
for a random Y that most Ui are, even if we condition on extending Y to an
accepting interaction, distributed very closely to their unconditional distribution
which in this case is the uniform distribution.

Thus, we can conclude that in any single round, if we have chosen Y up to
this point with the conditional distribution of a partial interaction leading to an
accepting leaf then if we, in this round, pick a random i, the distribution of Ui

is likely to be close to uniform. A problem to be taken care of is that i is chosen
once and remains fixed for all rounds.

Let us consider a modified process where the external verifier Vi instead of
choosing cl,i with the uniform distribution does a process similar to that of P̃u. It
samples complete interactions that extend the current interaction of all verifiers
until it finds a complete interaction where all verifiers accept and then chooses
the value of cl,i in this interaction as its response. Furthermore, let us remove
the restriction that P̃u only makes u attempts to find a complete interaction
where all verifiers accept and let it sample until it finds a completion. Let Dreal

be the distribution on interactions produced by P̃u interacting with Vi and let
Dideal be the distribution on interactions in this modified process.

Clearly, Dideal outputs a uniformly selected interaction in which all verifiers
accept. Thus, in this modified process Vi always accepts. Below we estimate the
statistical distance between this process and the original process. This statistical

12 J. H̊astad et al.

distance is an upper bound on the probability that Vi rejects. Let us first see
that it is unlikely that the modified process ever needs to sample a large number
of times. This is intuitively not surprising. For the sampling to take a long time
we need to choose a partial interaction that is very unlikely to lead to a complete
accepting interaction. But as we are choosing partial interactions as part of an
accepting interaction we are very unlikely to choose such a partial interaction.
This is made formal by the following easy lemma, a proof of which is given below.

Lemma 2. Let Y be a random variable and let X0, X1, X2, . . . be identically
distributed binary random variables which are only dependent through Y , i.e.,
PY,X0,...Xj = PY

∏j
i=0 PXi|Y and PXi|Y = PXj |Y for any i, j. Let J be the

random variable denoting the smallest nonzero index such that XJ = 1. Then
E [J |X0 = 1] ≤ 1

Pr[X0=1] .

Let us see how this lemma proves that the expected number of samples needed to
find an accepting completion is small. We let Y be a random partial interaction
which is chosen by picking a complete accepting interaction, i.e., Y is C[l−1] for
some l, and we let Xi be one if a particular random completion of Y makes all
verifiers accept. Then E [J |X0 = 1] is exactly the expected number of attempts
to complete the interaction Y to make all verifiers accept given that Y was picked
by first picking a complete interaction which makes all verifiers accept and then
truncating to the appropriate length.

Let δ =
√− log (ε)/k+(εu)−1. We claim that the statistical difference between

Dreal and Dideal when truncated to t rounds is bounded by tδ. This is clearly
true for t = 0 and we proceed by induction using the following lemma.

Lemma 3. Let X0 and X1 be two random variables over X , and let Zx and Z ′
x

be two families of random variables parameterized by x ∈ X such that

‖PX0 − PX1‖ = δ1 and Ex

[∥∥PZx − PZ′
x

∥
∥]

= δ2 ,

where x is distributed according to PX0 . Then
∥
∥PX0,ZX0

− PX1,Z′
X1

∥
∥ ≤ δ1 + δ2 .

Before we prove Lemma 3, let us see how it enables us to complete the induction
step. We let X0 be a (t− 1)-round interaction chosen according to Dideal, X1 a
(t−1) round interaction chosen according to Dreal, ZX0 the next round message
chosen by the verifiers according to Dideal and Z ′

X0
the next round message

chosen from Dreal. We need to estimate the expected statistical distance between
Z ′

X0
and ZX0 over X0.

We have two differences between the two distributions, how Vi’s message
is chosen and the limited sampling. The latter is, by Lemma 2 and Markov’s
inequality, bounded by (εu)−1 and we claim that former difference is bounded
by

√− log (ε)/k. Let us see how this follows from Lemma 1.
As stated before, we let Y be the interaction up to the (t − 1)st round and

Ui the message of Vi in round t and V a bit which is one with the probability

An Efficient Parallel Repetition Theorem 13

that a random completion of the given interaction accepts. The event E is that
”V = 1”. Then Dideal picks messages with the distribution given by PUi|Y V E

while Vi picks messages with the uniform distribution which in this case is PUi|Y .
Lemma 1 now tells us exactly that for a random Y and i the statistical distance
between these two distributions is at most

√− log (ε)/k.
Finally, setting u = ε−1m

√
k completes the proof of Theorem 1 in the public-

coin case as claimed. The missing proofs of Lemma 3 and Lemma 2 are given
below.

Proof (Lemma 2). We can consider only values y such that Pr [X0 =1 |Y =y] > 0
and summing over those we have

E [J |X0 = 1] =
∑

y

Pr [Y = y |X0 = 1] E [J |Y = y ∧X0 = 1]

=
∑

y

Pr [Y = y |X0 = 1] / Pr [X1 = 1 |Y = y ∧X0 = 1]

=
∑

y

Pr [Y = y |X0 = 1] / Pr [X1 = 1 |Y = y]

=
∑

y

Pr [Y = y ∧X1 = 1]
Pr [X0 = 1]

· Pr [Y = y]
Pr [X1 = 1 ∧ Y = y]

≤ 1
Pr [X0 = 1]

,

where the third equality follows from the conditional independence of the Xi’s
and the fourth equality follows since the Xi’s are also identically distributed. �

Proof (Lemma 3). We use the characterization that two distributions are at sta-
tistical distance δ if and only if there is a coupled way of choosing elements from
the two distributions such that the two samples are equal with probability 1− δ.
We need to choose coupled pairs (x, z) and (x′, z′) from the given distributions.
First choose a coupled pair (x, x′) distributed according to PX0 and PX1 , re-
spectively. If they are unequal, which happens with probability δ1, we give up. If
they are are equal we choose a coupled pair (z, z′) according to the distributions
PZx and PZ′

x
. The probability that these are unequal (over the choice of x and

the second choice) is upper bounded by δ2. This completes the proof. �

5.2 Proof of Theorem 1 for δ-Simulatable Verifiers with Verdict

When the verifier is no longer public-coin and only δ-simulatable for some δ ≥
1/Poly (n), it may keep its state hidden from the prover inbetween exchanges.
To deal with this, we replace each call to Complete in Algorithm 1 by a call to
the δ-simulator on input (i, s[l], t[l],〈i〉, λ, a[l], a[l]).

We consider a fixed round l and all variables below depend on the value
of l but, for notational convenience, we omit this dependence. Let us define
Xi = (Tl−1, C[l−1], Cl,i) and Yi = (Tl,〈i〉, Cl,〈i〉). Recall that Cl,〈i〉 denotes the
array (Cl,1, . . . , Cl,i−1, Cl,i+1, . . . , Cl,k) and similarly for Tl,〈i〉.

14 J. H̊astad et al.

By δ-simulatability, there is a subset, Δ of the external verifiers possible ran-
dom tapes for which we can simulate Vi.

Let W be an indicator variable of the event D = 1 (that all verifiers accept).
Then define δi

xi,yi
as the probability that the prover’s view of a random comple-

tion of (xi, yi), conditioned on the event W = 1, is an output from the simulator.
Furthermore, let δi

xi
be the expected value of δi

xi,yi
over yi, where yi is chosen

according to the distribution PYi|Xi,W (· |xi, 1). Due to the conditioning on
W = 1, δ-simulatability does not immediately say anything about these quanti-
tities, but for any fixed xi the distribution of Yi conditioned on both W = 1 and
the event that the output is from simulator is given by the probability function

PYi|Xi,W (yi |xi, 1)
δi
xi,yi

δi
xi

.

We want to prove that this, for a uniformly random i, is statistically close to the
distribution PYi|Xi,W (· |xi, 1) and thus we should estimate

1
k

k∑

i=1

∑

xi,yi

PXi,Yi|W (xi, yi |1)

∣∣
∣
∣
∣
1− δi

xi,yi

δi
xi

∣∣
∣
∣
∣

. (2)

The following lemma is the key to estimating this distance.

Lemma 4

1
k

k∑

i=1

∑

xi,yi

PXi,Yi|W (xi, yi |1)
∣∣δi

xi,yi
− δ

∣∣ ≤ O
(√− log(ε)/k

)
. (3)

We postpone the proof of the lemma until we have seen how it is used. Fix i and
xi and consider the contribution to the sums in (2) and (3) over a random Yi con-
ditioned on W = 1. Define a random variable Z which takes the value δi

xi,yi
/δi

xi

with probability PYi|Xi,W (yi |xi, 1). Then the contribution to Equation (3) is
at most δ E [|1− sZ|] with s = δi

xi
/δ while the contribution to Equation (2) is

E [|1− Z|]. Now consider the following lemma.

Lemma 5. Assume that Z is a positive random variable with E [Z] = 1. Then
for any s > 0 we have E [|1− Z|] ≤ 2 E [|1− sZ|].

Again, we postpone the proof until we have completed the argument. Since
E [Z] = 1, we see that Equation (2) is bounded by O(δ−1

√− log(ε)/k). Thus the
additional statistical distance between the ideal distribution and that obtained
by our parallel prover introduced in round l is bounded by this quantity.

Using coupling and the union bound as in Section 5.1, we conclude that re-
placing the 1-simulator by a δ-simulator introduces an additional error of at
most O(m

δ

√− log(ε)/k).
Finally, let us prove the two lemmas above, completing the proof of Theorem 1

in this case.

An Efficient Parallel Repetition Theorem 15

Proof (Lemma 4). We apply Lemma 1 with Ui representing Vi’s random tape
compatible with the interaction up to this point. We need to analyze the proba-
bility that we can simulate Vi conditioned upon all verifiers accepting. Without
conditioning this probability is statistically close to δ by the definition of δ-
simulatability (for notational convenience we assume here that this probability
equals δ). The deviation from this is bounded by the statistical distance of the
conditioned distribution from the uniform distribution. The lemma now follows
from Lemma 1. �

Proof (Lemma 5). Note that
∑

z≤1 PZ (z) (1−z) = 1
2 E [|1− Z|], since E [Z] = 1

and |1 − z| is symmetric around 1. If s ≤ 1, then |1 − z| < |1 − sz| for every
z ≤ 1 and the claim follows. If s > 1, then we instead consider the partial sum
for z > 1 and apply the corresponding argument. �

5.3 Proof of Theorem 1 for δ-Simulatable Verifiers without Verdict

First we note that it is easy to generalize the above result to the case with a
repeated threshold verifier that accepts if at least (1− γ)k verifiers accept. Re-
place the definition of the indicator variable W such that it is one if and only
if

∑k
i=1 Di ≥ (1− γ)k. Then in the corresponding “modified process” discussed

in Section 5.1 the probability that Vi accepts is at least 1− γ, since i is chosen
uniformly in [k] and independently of the “modified process”. A trivial modifi-
cation of the analysis above then gives the same additional statistical error due
to having an external verifier, the use of limited sampling, and a δ-simulatable
verifier.

To generalize the theorem to δ-simulatable verifiers without verdict, starting
from the result established in Section 5.2 for δ-simulatable verifiers with ver-
dict, we modify the reduction by redefining W using “soft” decisions as was
already done in [2]. Suppose that instead of accepting only samples where at
least (1− γ)k verifiers accept, we define a binary random variable W that is one
with probability min(1, 2ν(γk−z)), where z is the number of rejecting verifiers,
and accept a sample if W = 1. Then it turns out that, provided that, we choose
ν small enough, this acceptance criteria can be approximated well even if we do
not know the verdict of the external verifier Vi. Let us start with the key lemma,
of which the proof is postponed to the end of this section.

Lemma 6 (Soft Decision). Let D1, . . . , Dk be binary random variables such
that Pr[

∑k
i=1 Di ≥ (1 − γ)k] ≥ ε, let Z = k −∑k

i=1 Di, let γ > 0, ν > 0, and
m ≥ 1, and let W be a binary random variable such that Pr [W = 1 |Z = z] =
min(1, 2ν(γk−z)). Then

1
k

k∑

i=1

Pr [Di = 0 |W = 1] ≤ γ +
1
kν

(log m + log k − log ε) +
4

ν2mk2
.

Remark 5. Although setting ν = 1 and γ = 0 recovers the decision procedure in
[2], our analysis differs from theirs. They implicitly use Raz’s lemma to argue

16 J. H̊astad et al.

that the variables Wi and W are close in distribution on average over i. We need
the stronger statement that these variables are close in distribution for any i.
This is why we need the additional parameter ν.

Now set ν = 1√
m

√− log(ε)/k and suppose now at first that we did know the
verdict of Vi. The old argument carries over and we end up at a random point
where W = 1. Before we could conclude that Vi accepted while currently by
applying Lemma 6, we see that the probability that Vi rejects is at most

γ +
1
kν

(log m + log k − log ε) +
4

ν2mk2

= γ +
√

m
√− log(ε)k

(log(mk)− log(ε)) +
1

− log(ε)k

≤ γ +
√

m log(mk)/
√

k +
√

m
√
− log(ε)/k + 1/k ,

and this is enough to prove Theorem 1.
The key to case the case when we do not know the verdict of Vi is that if ν is

small then the decision of an individual verifier is does not affect the behavior
very much. In fact, let us simply approximate Z by assuming than Di = 1 and
let us run our parallel prover using this approximation. Compare a run of this
modified prover and a run of an ideal prover that uses the correct value of Z
using the same randomness.

These two provers only behave differently when the the modified prover ac-
cepts a history that the ideal prover would have rejected. To be precise, each
time the modified prover accepts a history the probability that the ideal prover
would have rejected the same history is 1− 2−ν ≤ ν.

As the modified prover only accepts m histories over the course of a run,
the statistical difference between the behavior of modified prover and the ideal
prover is bounded by νm.

This gives a total additional error from using soft decisions when sampling of
(m+1)ν ≤ (

√
m+1)

√− log(ε)/k. Combined with the proof of Lemma 6 below,
this concludes the proof of Theorem 1 in its full generality.

Proof (Lemma 6). Let pj = Pr[Z = j]. We know by assumption that

kγ∑

j=0

pj ≥ ε . (4)

We know that Pr [Z = j |W = 1] is proportional to pj2−min(0,ν(j−γk)). This im-
plies that the expected number of Di’s equal to zero is

E [Z |W = 1] =

∑k
j=0 jpj2−min(0,ν(j−γk))

∑k
j=0 pj2−min(0,ν(j−γk))

. (5)

The denominator is lower bounded by
∑γk

j=0 pj2−min(0,ν(j−γk)) =
∑γk

j=0 pj and
is thus, by Equation (4), at least ε. Let t be a parameter to be determined, then
the numerator is bounded by

An Efficient Parallel Repetition Theorem 17

k∑

j=1

max(γk + t, j)pj2−min(0,ν(j−γk))

≤ (γk + t)
k∑

j=1

pj2−min(0,ν(j−γk)) +
k−(γk+t)∑

j=1

jpγk+t+j2−ν(t+j) . (6)

It is not difficult to see that
∑∞

j=1 j2−νj ≤ 4
ν2 and thus the upper bound in

Equation (6) is at most

(γk + t)
k∑

j=1

pj2−min(0,ν(j−γk)) +
4
ν2

2−νt .

Setting t = 1
ν (log m+log k−log ε) and using that the denominator of Equation

(5) is at least ε we see that

E [Z |W = 1] ≤ γk +
1
ν

(log m + log k − log ε) +
4

ν2mk
.

The proof is concluded by remembering that i is chosen uniformly at random
from [k]. �

6 Concurrent Repetition

Although verifiers repeated in parallel perform their computations independently
and use independently generated randomness, their communication is synchro-
nized. It is natural to consider a more general form of repetition where this
restriction is removed, i.e., the prover may arbitrarily schedule its interaction
with the individual verifiers.

Only minor modifications are needed to generalize Theorem 1 and Theorem 2,
with the same parameters, to the setting where a concurrent prover interacting
with the k-wise concurrent repetition of V is converted into a prover P̃ interact-
ing with V . The key observation for this extension is that a concurrent prover
only sends m + 1 messages to Vi. Thus, P̃ need only sample completions at m
points during an interaction with V , and Lemma 1 is only applied m times. Fur-
thermore, the δ-simulator and soft decisions are only used at each point where
P̃ samples completions, i.e., exactly m times. More details will be given in the
full version of this paper.

References

1. Babai, L.: Trading group theory for randomness. In: 17th ACM Symposium on the
Theory of Computing (STOC), pp. 421–429. ACM Press, New York (1985)

2. Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the er-
ror in computationally sound protocols? In: 38th IEEE Symposium on Founda-
tions of Computer Science (FOCS), pp. 374–383. IEEE Computer Society Press,
Los Alamitos (1997)

18 J. H̊astad et al.

3. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences 37(2), 156–189 (1988)

4. Canetti, R., Halevi, S., Steiner, M.: Hardness amplification of weakly verifiable
puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 17–33. Springer,
Heidelberg (2005)

5. Chung, K.-M., Liu, F.-H.: Parallel repetition theorems for interactive argu-
ments. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 19–36. Springer,
Heidelberg (2010)

6. Goldreich, O.: Modern Cryptography, Probabilistic Proofs and Pseudorandomness.
Algorithms and Combinatorics. Springer, Heidelberg (1998)

7. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

8. Haitner, I.: A parallel repetition theorem for any interactive argument. In: 50th
IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer
Society Press, Los Alamitos (2009)

9. H̊astad, J., Pass, R., Pietrzak, Wikström, D.: An efficient parallel repetition theo-
rem (April 2008) (manuscript)

10. Holenstein, T.: Parallel repetition: simplifications and the no-signaling case. In:
39th ACM Symposium on the Theory of Computing (STOC), pp. 411–419. ACM,
New York (2007)

11. Impagliazzo, R., Jaiswal, R., Kabanets, V.: Chernoff-type direct product theorems.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 500–516. Springer,
Heidelberg (2007)

12. Pass, R., Tseng, D., Wikström, D.: On the composition of public-coin zero-
knowledge protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 160–176. Springer, Heidelberg (2009)

13. Pass, R., Venkitasubramaniam, M.: An efficient parallel repetition theorem for
arthur-merlin games. In: 39th ACM Symposium on the Theory of Computing
(STOC), pp. 420–429. ACM, New York (2007)

14. Pietrzak, K., Wikström, D.: Parallel repetition of computationally sound protocols
revisited. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 86–102. Springer,
Heidelberg (2007)

15. Raz, R.: A parallel repetition theorem. SIAM Journal on Computing 27(3), 763–803
(1998)

16. Wikström, D.: An efficient concurrent repetition theorem (2009),
http://eprint.iacr.org/

17. Yao, A.C.: Theory and application of trapdoor functions. In: 23rd IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 80–91. IEEE Computer
Society Press, Los Alamitos (1982)

http://eprint.iacr.org/

	An Efficient Parallel Repetition Theorem
	Introduction
	Our Results
	Some History and Related Papers
	Our Techniques
	Outline of Paper

	Notation and Basic Definitions
	Simulatable Verifiers
	The Parallel Repetition Theorem
	Proof of Theorem 1
	Proof of Theorem 1 in the Public-Coin Case
	Proof of Theorem 1 for δ-Simulatable Verifiers with Verdict
	Proof of Theorem 1 for δ-Simulatable Verifiers without Verdict

	Concurrent Repetition
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

