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Abstract
We study the heuristically secure mix-net proposed by
Puiggalı́ and Guasch (EVOTE 2010). We present practi-
cal attacks on both correctness and privacy for some sets
of parameters of the scheme. Although our attacks only
allow us to replace a few inputs, or to break the privacy
of a few voters, this shows that the scheme can not be
proven secure.

1 Introduction

A fundamental problem in implementing electronic elec-
tions is how to guarantee the anonymity of the voters.
Chaum [1] studied the similar problem of how to allow
people to send anonymous e-mail, and introduced mix-
nets as a solution to this problem.

In Chaum’s mix-net, k mix-servers M1, . . . ,Mk are ar-
ranged in sequence. Each mix-server M j generates a
public/private key pair and publishes his public key pk j.
To anonymously send a message mi, the ith sender en-
crypts the message with all public keys and publishes the
resulting ciphertext Encpk1(Encpk2(· · ·Encpkk(mi) · · ·))
on a bulletin board. Let L0 be the list of all submit-
ted ciphertexts. For j = 1, . . . ,k, the jth mix-server M j
then takes L j−1 as input, removes the outermost layer of
encryption using his private key, and permutes the re-
sulting ciphertexts to form its output L j. Once the last
mix-server Mk has decrypted and shuffled the list, he can
publish the plaintext messages. One can easily see that
Chaum’s mix-net prevents linking the plaintext messages
published by the last mix-server to the original senders as
long as at least one of the servers is honest. On the other
hand, any mix-server can replace any ciphertext with a
ciphertext of his choice. This is clearly unacceptable in a
voting context.
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Another disadvantage of Chaum’s mix-net is that
the ciphertexts grow with each added mix-server.
Park et al. [17] introduced re-encryption mix-nets, where
the mix-servers use the homomorphic property of the
cryptosystem to re-randomize the ciphertexts instead of
decrypting. Sako and Kilian [22] introduced the first
universally verifiable mix-net based on the protocol of
Park et al. Their mix-net allows each mix-server to
prove in zero-knowledge that its output is a re-encryption
and permutation of its input. Sako and Kilian’s proof
was a cut-and-choose protocol, but more efficient proofs
of shuffles were given by Neff [15] and Furukawa and
Sako [5].

Many other works in the field aim to improve the ef-
ficiency of mix-nets, e.g., [10, 9, 7, 11, 12], but vulner-
abilities have been found in most mix-nets not based on
proofs of shuffles [18, 14, 2, 23, 13].

Puiggalı́ and Guasch [21] proposed a heuristically se-
cure mix-net at EVOTE 2010 (called the Scytl mix-
net in the rest of the paper) which combines ideas of
Golle et al. [7] and Jakobsson et al. [12]. To verify that a
mix-server correctly re-encrypts and permutes the votes
in Scytl’s mix-net, a verifier partitions the server’s input
into blocks and the server reveals the corresponding out-
put blocks. Furthermore, the server proves that the prod-
uct of the votes in each output block is a re-encryption of
the product of the votes in the corresponding input block.
This approach is significantly faster than even the most
efficient proofs of shuffles [8, 4], but the security is not
as well understood.

A version of Scytl’s mix-net was implemented and
used with four mix-servers in the Norwegian electronic
trial elections [16, 6], but all four mix-servers were run
by the same semi-trusted party and there was an addi-
tional “ballot box”. Privacy was ensured under the as-
sumption that either the “ballot box” or the semi-trusted
party remained honest. The mix-net was merely used as
a way to allow the semi-trusted party to convince audi-
tors that it performed the shuffling correctly, but as far
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as we know the original plan was to distribute trust on
multiple parties by letting different parties run the mix-
servers as proposed in [21]. However, our attacks against
the mix-net do not apply directly to the Norwegian im-
plementation due to their security model and their choice
of parameters. See the discussion in Section 6 for further
details.

1.1 Motivation and Contribution

We think it is important to study the Scytl mix-net, since
it has already been used in real elections to ensure cor-
rectness, and may be used to provide privacy in future
elections.

In this paper we demonstrate attacks against both the
correctness and the privacy of the proposed mix-net. The
attacks are based on a recent attack [13] on mix-nets
with randomized partial checking [12] and the observa-
tion that votes can be modified without detection if the
modified elements end up in the same block during the
verification phase.

Our first attack lets the first mix-server break the pri-
vacy of any chosen voter or small group of voters, as-
suming that the server can corrupt O(

√
b) voters, where

b denotes the number of blocks in the verification step.
The second attack is similar to the first, but reduces the
number of voters that have to be corrupted if the two first
mix-servers collude. Our third attack uses the particu-
lar way the lists are partitioned to allow any mix-server
except the first to replace O(

√
b) votes without being de-

tected. The last attack can also be used to violate the
privacy of O(

√
b) voters.

1.2 Summary of the Attacks

In the following table, which summarizes our results, b
denotes the number of blocks in the verification and ` =
N/b denotes the block size, where N is the number of
voters.
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√
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√
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1.2.1 Concrete examples

In an election with N = 1000000 votes and b =
√

N =
1000 blocks, each of size ` = 1000, our first attack can
recover the vote of one targeted sender with probabil-
ity 0.98 by corrupting the first mix-server and about 100
voters. If we instead use the attack of Section 5.2 and
corrupt the 2 first mix-servers, then it suffices to corrupt
2 voters to attack the privacy of one chosen voter with
probability 0.999. Finally, the third attack in Section 5.3
lets us replace 9 votes by corrupting one mix-server and
remain undetected with probability about 0.95.

The blocks in the previous examples were fairly large.
If one uses smaller blocks then the cost of running the
mix-net increases, but our attacks become less efficient.
Puiggalı́ and Guasch [21] recommend using ` = k

√
N

when mixing N votes using k mix-servers. With 1000000
votes and 3 mix-servers, this gives b = 10000 blocks of
size ` = 100. The attack in Section 5.1 then requires
about 300 corrupted voters in addition to the corrupted
mix-server in order to succeed with probability 0.98. By
using the second attack and corrupting 2 mix-servers, we
can bring down the number of corrupted voters to 30 and
be successful with probability 0.93. The third attack does
not apply since ` < b.

2 Notation

We consider a mix-net with k mix-servers M1, . . . ,Mk
that provides anonymity for a group of N voters. We
denote a cryptosystem by CS = (Gen,Enc,Dec), where
Gen, Enc, and Dec are the key generation algorithm, the
encryption algorithm, and the decryption algorithm re-
spectively. The key generation algorithm Gen outputs a
pair (pk,sk) consisting of a public key and a private key.
We let Mpk, Cpk, and Rpk be the sets of possible plain-
texts, ciphertexts, and randomizers, respectively, associ-
ated with the public key pk. We write c = Encpk(m,r)
for the encryption of a plaintext m using randomness r,
and Decsk(c) = m for the decryption of a ciphertext c.
We sometimes view Enc as a probabilistic algorithm and
drop r from our notation.

Recall that a cryptosystem is called homomorphic if
for every public key pk: Mpk, Cpk, and Rpk are groups
and Encpk is a homomorphism from Mpk ×Rpk to Cpk,
i.e., if for every m0,m1 ∈Mpk and r0,r1 ∈ Rpk we have

Encpk(m0,r0)Encpk(m1,r1) = Encpk(m0m1,r0 + r1) .

We write Mpk and Cpk multiplicatively and Rpk addi-
tively since this is the case in, for example, the ElGa-
mal cryptosystem. Homomorphic cryptosystems allow
ciphertexts to be re-encrypted. This means that anybody
with access to the public key can take a ciphertext c and
form c ·Encpk(1,r), for a randomly chosen r ∈ Rpk, and
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the resulting ciphertext is identically, but independently,
distributed to the original ciphertext.

Throughout the paper we employ the estimate of col-
lision probabilities used to prove the birthday bound.
More precisely, we use the fact that if we pick s elements
from a large set of size b with repetition, then some el-
ement in the set is picked at least twice with probability
roughly 1− e−λ 2/2, where λ = s/

√
b.

3 Description of the Mix-Net

Puiggalı́ and Guasch [21] propose a homomorphic mix-
net that combines ideas of Golle et al. [7] and Jakobsson
et al. [12] for the verification. On a high level, the mix-
net works as follows. The voters submit their inputs en-
crypted with a homomorphic cryptosystem, e.g., ElGa-
mal, to the mix-net. Starting from the first mix-server, in
turn, each mix-server re-encrypts and permutes the list
of the ciphertexts before passing the list on to the next
mix-server in the chain. Once the last mix-server has
published his output list on the bulletin board, the ver-
ification phase starts. A verifier partitions the input to
each mix-server into a number of blocks. The mix-server
then reveals the output block corresponding to each input
block without revealing how the individual ciphertexts
are shuffled. Then the server proves that the product of
all the ciphertexts in each output block is a re-encryption
of the product of the ciphertexts in the corresponding in-
put block. If the verification is passed, then the mix-
servers jointly decrypt the final list of ciphertexts and
otherwise the mixing restarts. Below we give more de-
tails on the scheme. The reader is referred to [21] for the
original description.

3.1 Setup

The mix-net uses a homomorphic cryptosystem, e.g. El-
Gamal. The public key pk and the corresponding secret
key sk are generated during a setup phase and the se-
cret key is verifiably secret shared among the servers [3].
To ensure that the result can be decrypted even if some
servers refuse to cooperate there is typically some thresh-
old τ such that any set of τ servers can decrypt the re-
sults, but smaller subsets gain no information about the
secret key. The details of how this is done is not impor-
tant for our attacks.

There is also a parameter b for the mix-net. For each
mix server, the input list containing N encrypted votes
will be divided into b blocks of (almost) equal size `.
To simplify the exposition we assume that N = `b. Our
results are easily generalized to the case where b does not
divide N, e.g., by allowing N mod b blocks to have size
`+1 and the remaining blocks to have size `.

3.2 Ballot Preparation and Encryption
The ith voter computes an encryption c0,i = Encpk(mi)
of its vote mi, and posts the ciphertext on the bulletin
board. To prevent voters from performing Pfitzmann’s
attack [19, 18] directly, each ciphertext is also augmented
with a non-interactive zero-knowledge proof of knowl-
edge of the plaintext.

3.3 Initial Ballot Checking
When all voters have submitted their ciphertexts, the
mix-servers check that the proofs are valid and that no
vote has been duplicated. After removing any such du-
plicate or invalid ciphertexts, the mix-servers agree on an
initial list L0 = (c0,1, . . . ,c0,N) of submitted ciphertexts.
This ballot checking is not important in our attacks since
even the corrupted voters will submit valid votes. There-
fore we assume, without loss of generality, that the list
L0 contains N distinct well-formed ciphertexts.

3.4 Mixing Phase
For j = 1, . . . ,k, the jth mix-server M j reads the list of
ciphertexts L j−1 = (c j−1,1, . . . ,c j−1,N) from the bulletin
board, chooses a permutation π j and re-encryption fac-
tors r j,1, . . . ,r j,N randomly, computes

c j,i = Encpk(1,r j,π j(i)) · c j−1,π j(i) ,

and writes L j = (c j,1, . . . ,c j,N) on the bulletin board.

3.5 Verification Phase
The verification is performed in a challenge-response
manner, with the challenge being a partitioning of the
mix-server’s input list. The parameters b and `, chosen
before the mixing starts, denote the number of blocks in
the partitioning and the size of each block respectively.

Challenge-Response. Each mix-server M j, receives a
partitioning of its input list L j−1 into b blocks as a
challenge. More precisely, M j receives a partitioning
I j−1,1, . . . , I j−1,b of the set [1,N] where the tth block
of ciphertexts are those in L j−1 whose indices are in
I j−1,t . For each I j−1,t , the server reveals the correspond-
ing block of re-encrypted votes. In other words, M j de-
fines

O j,t =
{

π
−1
j (i)

∣∣∣ i ∈ I j−1,t

}
and publishes O j,1, . . . ,O j,b along with a proof that the
product of the ciphertexts in each output block is a re-
encryption of the ciphertexts in the corresponding input
block, i.e., a proof of knowledge of an R j,t such that

∏
i∈O j,t

c j,i = Encpk (1,R j,t) · ∏
i∈I j−1,t

c j−1,i .
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Clearly M j knows R j,t = ∑i∈I j−1,t
r j,i since he picked

the re-encryption factors himself. Note that the mix-
servers do not prove that each output block is a permuta-
tion and re-encryption of the input block.

Input Partitioning. The partitioning of the input of the
first mix-server can be generated randomly by a trusted
party, jointly by the mix-servers themselves, or using a
random oracle. For our attacks, it is not important ex-
actly how the input partitioning of the first mix-server is
chosen as long as it is random.

For every other mix-server the partitioning of the in-
put is determined by the partitioning of the output of
the preceding mix-server. More precisely, to form the
input partitioning of M j, the indices of each output
block O j−1,1, . . . ,O j−1,b are first sorted by numerical
value [20]. Then the first input block I j−1,1 of mix-server
M j is defined by choosing the first element of O j−1,1, the
first element of O j−1,2, the first element of O j−1,3 and so
on until the block is full; once the first elements of ev-
ery block O j−1,1, . . . ,O j−1,b has been used, the process
is continued with the second element from each of those
blocks in the same order. This process is continued until
all output blocks are full.

Puiggalı́ and Guasch have considered other ways of
generating the challenge partitionings [20], e.g., a ran-
dom partitioning could be chosen independently for each
mix-server. When we present our attacks we also discuss
the impact of changing the partitioning scheme.

3.6 Ballot Decryption

If the mixing operation completes without detecting any
cheating mix-server, then the holders of the secret key sk
jointly decrypt all output ciphertexts, yielding the full list
of plaintext ballots. Otherwise, the mixing starts from the
beginning after eliminating the mix-server that failed to
respond to its challenge partitioning.

4 Pfitzmann’s Attack

A modified variant of the attack of Pfitzmann [19, 18]
and its generalization [13] can be adopted to break the
privacy of any given group of voters (of constant size)
with probability roughly 1/b, where b is the number of
blocks. Since this forms the basis of our attacks on pri-
vacy, we detail it below.

The attacker knows the correspondence between vot-
ers and initial ciphertexts and targets a group of s vot-
ers with submitted ciphertexts c1, . . . ,cs ∈ L0. It corrupts
the first mix-server and selects two additional ciphertexts
c0,1,c0,2 ∈ L0. Then he chooses exponents δ1, . . . ,δs ran-
domly and forms a modified list L′0 by replacing c0,1 and

c0,2 by

u1 =
s

∏
i=1

cδi
i and u2 =

c0,1c0,2

u1
.

Finally, he re-encrypts the ciphertexts in L′0 and permutes
them to form L1 and publishes L1 on the bulletin board
like an honest mix-server.

If the mix-net produces an output, then the attacker
searches for s+1 plaintexts m1, . . . ,ms and m in the final
list of plaintext ballots that satisfy m = ∏

s
i=1 mδi

i . This
lets the attacker conclude that with overwhelming prob-
ability the ith targeted ciphertext is an encryption of mi.
We must show that M1 passes the verification step with
probability 1/b.

By construction, u1u2 = c0,1c0,2 so if 1,2 ∈ I0,t for
some t, then

∏
i∈O1,t

c1,i = Encpk (1,R1,t) · ∏
i∈I0,t

c0,i ,

where R1,t = ∑i∈I0,t
r1,i. That is, the proof that the first

mix-server provides for the modified list L′0 is also a valid
proof for the original list L0. Thus, the attack succeeds
with probability 1/b and breaks the privacy of a constant
number of voters. More voters can not be attacked, since
the complexity of identifying the desired s+1 plaintexts
in the output list grows exponentially with the number of
attacked voters s.

We remark that the attack may be detected at the end
of the mixing if the modified ciphertexts u1 and u2 do
not decrypt to valid votes. Thus, it is in practice likely
that the mix-net would have been replaced after a first
successful attack.

5 Our Attacks

The basic attack of Section 4 only requires corrupting
the first mix-server without corrupting any voter, but it
is only successful with low probability. In this section,
we first show how an attacker can perform Pfitzmann’s
attack without detection by corrupting a small number of
voters in addition to the first mix-server. Then we de-
scribe an attack on privacy which reduces the required
number of corrupted voters further, but needs two mix-
servers to be corrupted. Finally, we present an attack on
the correctness of the mix-net which can also be turned
into an attack on privacy. We detail our attacks below.

5.1 Attack on Privacy Without Detection
The key idea stems from a recent attack [13] on mix-
nets with randomized partial checking [12] and can be
explained as follows. If several corrupted voters submit
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re-encryptions of the same ciphertext, then a corrupted
mix-server has the freedom to match them arbitrarily to
their re-encryptions in his output list during the verifica-
tion. Thus, if any two ciphertexts submitted by corrupted
voters belong to the same block of the input partition-
ing, we may map them to ciphertexts u1 and u2 defined
as in Section 4. This happens with high probability by
the birthday bound if the attacker corrupts enough vot-
ers. We now detail the attack.

Without loss of generality we assume that the cor-
rupted voters submit ciphertexts c0,1, . . . ,c0,B that are
constructed to be re-encryptions of one another. It is
not essential that the adversary corrupts the first B vot-
ers; the attack works the same with any B corrupted vot-
ers as long as the attacker knows how to re-encrypt one
vote to any other. To simplify the exposition we as-
sume that c0,i = Encpk(1,ri) for these ciphertexts. The
first mix-server is corrupted and forms a modified list
L′0 by replacing c0,1 and c0,2 by u1 and u2, which are
computed as in Section 4. That is, the attacker chooses
random exponents δ1, . . . ,δs and sets u1 = ∏

s
i=1 cδi

i and
u2 = c0,1c0,2/u1, where the ci’s are the ciphertexts sub-
mitted by the targeted voters. All the remaining N − 2
ciphertexts are left unchanged. Then the first mix-server
re-encrypts each ciphertext in L′0 and permutes them to
form L1 as an honest mix-server.

If any two ciphertexts submitted by corrupted voters
end up in the same input block to the first mix-server,
we say that a collision has occurred. More precisely, we
have a collision if there are two ciphertexts c0,i1 and c0,i2
submitted by corrupted voters and an input block I0,t such
that i1, i2 ∈ I0,t . Let c1,i′1

and c1,i′2
be the re-encryptions

of u1 and u2 respectively and, similarly, let c1,l′1
and c1,l′2

be the re-encryptions of c0,i1 and c0,i2 . Thus, we have

π
−1
1 (1) = i′1 π

−1
1 (2) = i′2

π
−1
1 (i1) = l′1 π

−1
1 (i2) = l′2 .

To answer the challenge partitioning, the first mix-
server instead views it as if c0,i1 and c0,i2 had been re-
placed by u1 and u2 to form L′0. In other words, the mix-
server re-defines π1 such that

π
−1
1 (i1) = i′1 π

−1
1 (i2) = i′2

π
−1
1 (1) = l′1 π

−1
1 (2) = l′2 .

as shown in Figure 1.
To see that the first mix-server can pass the verification

test, note that

c1,i′1
c1,i′2

= u1u2 ·Encpk(1,r1,1 + r1,2)

= c1,i1c1,i2 ·Encpk(1,(r1− ri1 + r1,1)+(r2− ri2 + r1,2))

π−1
1

i2 l′2

i1 l′1

2 i′2

1 i′1

Figure 1: Modification for re-definition of π1.The solid
lines represent the original permutation and the dashed
lines show the modifications.

and

c1,l′1
= c1,1 ·Encpk(1,ri1 − r1 + r1,i1)

c1,l′2
= c1,2 ·Encpk(1,ri2 − r2 + r1,i2) ,

i.e., it can: replace r1,i1 by r1− ri1 + r1,1, replace r1,i2 by
r2− ri2 + r1,2, replace r1,1 by ri1 − r1 + r1,i1 , and replace
r1,2 by ri2−r2 +r1,i2 and then compute the response with
R1,1, . . . ,R1,b to the challenge partitionings as an honest
mix-server.

Due to the pigeonhole principle, if the attacker cor-
rupts B = b +1 voters, he will get a collision with prob-
ability one. However, thanks to the birthday paradox,
the success probability is already significant if about

√
b

voters are corrupted. In particular, if b is large and we
set B = 3

√
b, then we get a collision with probability

1− e−32/2 ≈ 0.98.
It is natural to assume that the adversary can choose

the indices of his ciphertexts in L0 or at least influence
the order enough to get a random partition to the first
mix-server. When this is the case, the attack above ap-
plies regardless of how the challenge partitioning is de-
fined. Thus, this is a fundamental flaw of the verification
scheme.

5.2 Additional Attack on Privacy
To describe the attack it is convenient to first consider
a modified version of the protocol with a different chal-
lenge partitioning scheme for the first mix-server. Then,
given the attack against the modified protocol, it is easy
to see that another attack on the real protocol is possible.

Consider the following modified challenge partition-
ing scheme. Instead of choosing the input partitioning
of the first mix-server at random, choose a random par-
titioning O0,1, . . . ,O0,b of [1,N] and then derive the chal-
lenge partitioning I0,1, . . . , I0,b exactly as I j−1,1, . . . , I j−1,b
is derived from O j−1,1, . . . ,O j−1,b for j > 1 (see Sec-
tion 3.5). We attack the mix-net with this modified chal-
lenge scheme by corrupting the first mix-server and the
first B voters and proceeding exactly as in the previous
attack. The only difference is that the probability of a
collision is much larger here.
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Let O0,i1 , . . . ,O0,iB′ , B′ ≤ B, be the blocks that contain
at least one of the integers 1, . . . ,B. Then within each
such block the smallest integer is one of 1, . . . ,B. Let S be
the set of such smallest integers. Then by construction,
the integers in S are contained in I0,1 ∪ ·· · ∪ I0,db/`e. We
say that we get a collision if at least two integers of S
appear in some I0,t .

For any db/`e, it suffices that |S| > db/`e to ensure
that there is a collision due to the pigeonhole principle.
When db/`e is large, then it suffices that |S| > 3

√
b/`

to get a collision with probability at least 0.98 by the
birthday bound. The success probability of the attack
drops slightly due to the possibility of the event |S| <
B. Suppose that ` ≥ 36 and b is large. If we set B =
3
√

b/`, then we get λ = 3/
√

` in the approximation of
the collision probability, so we can conclude that |S|= B
with probability roughly e−λ 2/2 ≥ e−1/8 ≈ 0.88 (and this
probability increases rapidly with increasing `). Thus,
the probability that the attacker is not detected is roughly
0.98e−λ 2/2 ≥ 0.86.

Finally, we note that we can transform the attack on
the mix-net with the modified way to generate the chal-
lenge partitioning of M1 into an attack on the real mix-
net by corrupting both M1 and M2. The first mix-server
follows the protocol except that it does not re-encrypt
its input ciphertexts and it chooses the permutation such
that the inputs of corrupted voters appear at the top of
L1. Then M2 plays the role of M1 in the attack on the
modified mix-net.

It is easy to adapt the attack to the case where the per-
mutation π1 used by M1 is determined by sorting L1. To
see this, note that M1 can re-encrypt its input ciphertexts
in such a way that the re-encryptions of the input cipher-
texts of corrupted voters still appear at the top of L1 and
the attack can be employed by taking the re-encryption
exponents of M1 into consideration.

When one of the mix-servers can influence the chal-
lenge partitioning of the input to the following mix-
server, then we expect to find similar vulnerabilities, but
this attack fails if the challenge partitioning is chosen
randomly and independently for each mix-server.

5.3 Attack on Correctness
This attack requires only one corrupted mix-server and
shows that if ` ≥ b, then the correctness can be attacked
by replacing R = 1

3

√
b− 1 votes with small probability

of detection.
The attacker corrupts a mix-server M j other than the

first one. The mix-server replaces c j−1,1, . . . ,c j−1,R by
its own ciphertexts u1, . . . ,uR and it replaces c j−1,R+1 by

uR+1 =
R+1

∏
i=1

c j−1,i

/ R

∏
i=1

ui

to form a modified list L′j−1. Note that the products
of the respective ciphertexts are equal, i.e., ∏

R+1
i=1 ui =

∏
R+1
i=1 c j−1,i. Then it re-encrypts and permutes L′j−1 to

form L j following the protocol.
The challenge partitioning O j−1,1, . . . ,O j−1,b is ran-

domly chosen. Modifying R + 1 = 1
3

√
b votes gives

λ = 1/3 in the birthday bound, so we may conclude that
the probability that two integers in [1,R+1] belong to the
same block is roughly 1− e−λ 2/2 ≈ 0.05. When this is
not the case, the integers 1, . . . ,R+1 all belong to I j−1,1.
To see that this implies that the attack goes undetected it
suffices to note that

∏
i∈O j,1

c j,i = Encpk(1,R j,1)
R+1

∏
i=1

ui ∏
i∈I j−1,1\[1,R+1]

c j−1,i

= Encpk(1,R j,1) ∏
i∈I j−1,1

c j−1,i ,

i.e., the revealed randomness is valid for both L′j−1 and
L j−1.

The mix-server can double the number of replace-
ments by doing the same trick for the ciphertexts that
appear at the end of L j−1 at the cost of squaring the prob-
ability of executing the attack without detection. This is
far better than simply increasing R by a factor of two.

It is straightforward to turn this attack on correct-
ness into an attack on privacy by using the ciphertexts
u1, . . . ,uR to employ Pfitzmann’s attack.

6 Discussion

Our first attack shows that by corrupting O(
√

b) voters
and the first mix-server, the privacy of any targeted voter
can be broken without detection. This attack is appli-
cable regardless how the challenge partitioning of the
first mix-server is chosen. Thus, this attack illustrates
a fundamental shortcoming of the construction unless b
is very large.

Our second attack shows that if a mix-server can influ-
ence the challenge partitioning of the the next mix-server,
then by corrupting both servers and O(

√
b/`) voters, the

privacy of any targeted voter can be violated. Thus, b
must be much larger than `. On the other hand, if ` is
very small, then the overall privacy of the mix-net starts
to deteriorate, since much more information about the
permutations are revealed. The complexity of the con-
struction also increases drastically. One way to reduce
the second attack to the first attack is to choose the chal-
lenge partitioning randomly and independently for each
mix-server, but this also reduces the overall privacy of
the mix-net compared to the proposed scheme.

The third attack shows that if ` ≥ b, then no matter
how big b is, an adversary that corrupts a single mix-
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server can replace O(
√

b) ciphertexts, or violate the pri-
vacy of up to O(

√
b) arbitrarily targeted voters, without

detection. Thus, the mix-net must not be used with `≥ b.
Our attacks against the mix-net are efficient in terms

of the number of corrupted voters as long as b is rela-
tively small. However, we believe that the attacks are
relevant even if a substantial number of corrupted voters
are required, since all we really need from the corrupted
voters is their randomness. (The other requirement, that
they all vote for the same candidate, is easy to satisfy in
any election with a small number of popular candidates.)
Note that the corrupted voters still get their votes counted
correctly (except for the two replaced votes). Thus, be-
ing corrupted does not pose a drawback for the voter.
Furthermore, adding an additional check that the vote is
cast as intended will not help in the setting where the
voter’s computer has been compromised but the voter is
unaware of this fact. This is not an unlikely scenario if
the voters use their own computers to cast the votes. Also
note that while we can only attack the privacy of a small
number of people, we can actually target celebrities or
other public figures.

Our attacks do not apply directly to the implementa-
tion used in the recent electronic elections in Norway
due to additional components in the protocol that help
ensuring the privacy of the voters. In particular, the en-
crypted ballot are collected by a “ballot-box” and it is
assumed that an attacker can not corrupt both the ballot-
box and the mix-servers. If we could corrupt the ballot-
box, then our attacks on privacy would work, but would
still be inefficient due to the small value of `. The attack
on correctness does not work for the same reason. How-
ever, there is no guarantee that more serious vulnerabili-
ties cannot be found and our attacks precludes a proof of
security for the mix-net.
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