Return Code Schemes for Electronic
Voting Systems

Shahram Khazaei' and Douglas Wikstrom?2(®9)
1 Sharif University of Technology, Tehran, Iran
shahram.khazaei@sharif.ir
2 KTH Royal Institute of Technology, Stockholm, Sweden
dog@kth.se

Abstract. We describe several return code schemes for secure vote sub-
mission in electronic voting systems. We consider a unified treatment
where a return code is generated as a multiparty computation of a secure
MAC tag applied on an encrypted message submitted by a voter. Our
proposals enjoy a great level of flexibility with respect to various usabil-
ity, security, and performance tradeoffs.

1 Introduction

Electronic voting systems have the potential of achieving end-to-end verifiability.
This is obtained through different verification mechanisms throughout all the
stages of the entire voting process, known as cast-as-intended, recorded-as-cast
and counted-as-recorded |[2].

Cast-as-intended verification assures each individual voter that his vote has
been cast according to his intention. Mechanisms that ensures the cast votes
have been correctly received and stored are called recorded-as-cast. Counted-as-
recorded verification allows any third party observer, such as voters and auditors,
to verify that the result of the tally corresponds to the received votes.

In some electronic voting systems, the voter casts his encrypted vote using
some voting device which might either belong to the election authorities, e.g.,
a computer with a touch screen in a furnished voting booth, or to the voter
himself, when the risk of coercion is limited. A malicious voting device (due to
malware or hostile hardware) may change a voter’s intended choice. Cast-as-
intended verifiability detects such attacks on voting devices.

There are two basic approaches to verifying that a vote was cast as intended:
(a) verify that the right choice was encrypted and that the ciphertext was
recorded, and (b) verify that the ciphertext decrypts to the intended choice.

The most straightforward solution to the first problem is to simply perform
the encryption independently on a different device and compare the results as is
done in Estonia [17].

Another approach is continuous blackbox testing as proposed by Benaloh [5],
and adopted in Helios [1], Wombat [23], and VoteBox [25]. Here the device
provides a ciphertext and the voter can choose to either use it, or to challenge
© Springer International Publishing AG 2017

R. Krimmer et al. (Eds.): E-Vote-ID 2017, LNCS 10615, pp. 198-209, 2017.
DOI: 10.1007/978-3-319-68687-5_12

Return Code Schemes for Electronic Voting Systems 199

the device to prove that it was formed correctly. Note that the latter choice
amounts to normal blackbox testing. The key insight of Benaloh is that we can
not only interlace testing with normal use (which is often done in safety critical
software), we can let the voters control when and where testing takes place to
provide maximum individual assurance. The importance of this observation lies
in part in that concerned voters can run more tests, so the testing seamlessly
aligns with the level of assurance needed by individual voters.

Depending on trust assumptions, i.e., who performs the verification of out-
puts that have been challenged (an electronic device, jointly with a human, or
third parties), Benaloh’s approach is more or less practical and gives different
types of assurances.

The reader may object that the encryption device must commit to its output
before the choice to verify it is made or not, but this is no different from many
other types of testing done on software. Benaloh’s approach is often confused
with cut-and-choose zero knowledge proofs due to the choice given to the voter
between two choices, but is better described as a have-or-eat protocol: you can’t
have your cake and eat it too (to see that the cake is not poisonous).

So called return codes have received a considerable amount of attention par-
ticularly due to their usability properties. We refer the reader to [3,4,12,14,18,
19,22] for several proposals. This approach has been used in nation-wide elec-
tions in Norway [12,13,22] and Switzerland [10].

The idea of return codes is that each possible choice of the voter is associated
with a random code that is returned upon submission of the encrypted vote as
an acknowledgement that the ciphertext received encrypts the intended choice.
To ensure privacy, the random codes of different voters are chosen independently.
In other words, individual codes reveal nothing about the vote itself.

Note that at its core this is classical code book encryption, i.e., the parties
receiving a vote in encrypted form send back the vote in encoded form to the
voter. However, we only use the return codes for acknowledgement, so there is
no need for the codes to uniquely identify the choices. Thus, for each voter we
need a fairly regular random map from the set of choices to a set of codes, i.e.,
a message authentication code (MAC) with a guaranteed privacy property.

For coherent integration with electronic voting systems, the following prop-
erties must be taken into account:

1. Secure printing. It must be possible to generate and secretly transmit
return codes for all voting options to a trusted printer.

2. Distributed evaluation. It must be possible to compute the return codes in
a distributed way such that no knowledge is leaked about the selected voting
option by the voter.

The first property can be achieved as follows. Let E,;(m) be a cipher-
text encrypted using a homomorphic cryptosystem. The secret key, unknown
to printer, is verifiably secret shared among some parties. For printing m, the
trusted printer, chooses a random one-time pad « and hands E,; () to the par-
ties who will then execute a distributed decryption protocol for Ep;(a)Epr(m) =

200 S. Khazaei and D. Wikstrom

Epi(am). When am is received back, the random pad is removed and m is
printed.

Remark 1 (Code voting). One potentially serious privacy drawback with any
system where votes are encrypted even in a relatively well protected environment
is that it is hard to guarantee that no information about votes is leaked through
malicious hardware, software, or any form of side channel.

Chaum’s code voting idea [7] addresses this problem by letting the voters
use code book encryption to submit their votes, i.e., each voter is given a list of
codes along with their plaintext meanings who will then enter the code as is into
a device. The Prét & Voter [8,24] system can be viewed as a code voting scheme
that uses a public key cryptosystem to prepare the code book and decode in a
distributed way using a mix-net.

Motivation and contribution. We provide several proposals achieving the
second property with different trust assumptions and trade-offs. Some allow a
single vote to be submitted and some do not have such a restriction. Some
are safe to use with write-ins and some are not. In some schemes, for each
individual voter some value must be verifiably secret shared (making them less
practical); whereas in other schemes, the verifiably secret shared values are not
voter dependent. Some schemes demand that the tallying servers be online during
the vote collecting phase, which is not desirable from a security point of view;
some others allow online servers to collect the votes without any help from the
tallying servers. The latter property is highly desirable since the tallying servers
can decrypt the votes off-line behind an airwall.

We think it is important to provide a tool box to practitioners that allow them
to choose the best trade-off between security properties, how trust is distributed,
and practical and cost considerations for the given setting, since the requirements
differ substantially in different election schemes and cultural contexts.

Most of our schemes work with any homomorphic public key cryptosystem,
however, we concentrate on the El Gamal cryptosystem for concreteness.

2 Notation

We assume that the reader is familiar with standard definitions of public key
cryptosystems, message authentication codes (MAC), zero-knowledge proofs and
the random oracle model. The reader is referred to [15,16] for the required back-
ground.

El Gamal cryptosystem. Recall that the El Gamal public key cryptosystem
is defined over a group G, of prime order ¢ with generator g over which the
Decisional Diffie-Hellman assumption holds. The secret key is a random z € Z,
and the corresponding public key is y = g*. The encryption of a message m € Gy
is Ey(m) = Ey(m,r) = (¢",my"), where the randomness r € Z, is chosen
randomly.

Return Code Schemes for Electronic Voting Systems 201

The encryption of a ciphertext (u,v) € G4 x Gy is then defined by D, (u,v) =
vu~®. El Gamal is homomorphic, which means that for every two encryp-
tions (u1,v1) = Ey(m1,71) and (ug,v2) = E,(ma,r2), the product ciphertext
(uru1,v1v2) is an encryption of mime with randomness 1 + 2. Consequently, a
ciphertext (u,v) = E,(m) can be re-encrypted to produce a fresh re-encryption
of m. This can be done without knowing the secret key, by simply multiplying
the ciphertext with an encryption of identity to compute RE, (u,v) = (ug”,vh"),
for some randomness 7.

Verifiable secret sharing and distributed key generation of El Gamal.
Sometimes we require that a number of M parties jointly generate a public key.
The corresponding secret key is verifiably secret shared among them such that
it can be recovered by any subset of size at least A of the parties, but it remains
hidden to any coalition of size at most A — 1. Feldman’s verifiable secret sharing
protocol [9] is an efficient way for distributed key generation for El Gamal.

In Feldman’s method, parties jointly produce a random tuple (yo,...,yr—1) =
(g™,...,g™ 1) where z; € Z,, j € [A]. The parties do not know z;’s; rather,
A-1

each party ¢ € [M] receives a share sy = f(¢), where f(z) = Y, x;z". This can
be viewed as sharing a secret key z = 2y using the Shamir’s [26] method, but
parties also compute a public key y = yg and receive the Feldman commitment
g%t to the share of fth party. The same idea can be extended to Pedersen’s
perfectly-hiding commitment scheme [21], when verifiably sharing a secret is a
preliminary goal; details are omitted.

Distributed exponentiation. Suppose an El Gamal secret key z is shared
among the M parties and, given u € Gy, they wish to jointly compute u”.
This can be done using the following procedure [11]. Each party ¢, publishes
fe = u®t along with a zero-knowledge proof of discrete logarithm equality. From
any subset A C [M] of size A\ of published shares, parties then compute u* =
[oen fi*, where cg’s are Lagrange coefficients defined as ¢, = [[;c o g4y 1/ (i—0).
The method can be modified to work with Pedersen’s verifiable secret sharing [21]
as well.

Distributed decryption of El Gamal ciphertexts. When an El Gamal
secret key is shared among some parties, distributed decryption of a given cipher-
text (u,v) is also possible, without recovering the secret key itself. The parties
first go through a distributed exponentiation protocol and compute u®. The
plaintext is then simply recovered as m = v/u®.

Mix-nets. Mix-net, first introduced by Chaum [6], is an important crypto-
graphic protocol which lies at the heart of several electronic voting systems and
has other applications as well. It is executed by N voters and M mix-servers.
In a re-encryption mix-net [20], mix-servers jointly generate a public key for
a homomorphic cryptosystem and keep shares of the corresponding secret key.
Each voter i € [N] submits a ciphertext along with a zero-knowledge proof of
knowledge. When write-ins is not allowed, we assume that the voters have to
choose among a set {m;};c[s of pre-defined voting options. In this case, a zero-

202 S. Khazaei and D. Wikstrom

knowledge proof must guarantee that the submitted ciphertext decrypts to one
of the pre-defined choices.

When all encrypted votes have been received, the mix-net takes the list of
all valid submitted ciphertexts and produces a mixed list of the decrypted plain-
texts. More precisely, mix-servers take turns and re-encrypt each ciphertext.
A permuted list of ciphertexts is then published along with a so called zero-
knowledge proof of shuffle. The output list of the last mix-server is then jointly
decrypted to determine the permuted list of submitted plaintexts. Any coalition
of size less than A mix-servers cannot obtain any knowledge about the corre-
spondence between input ciphertexts and output plaintexts.

3 Online Tallying Servers

In this section we consider four return code schemes, including a few variations.
All are practical but the drawback is that the tallying servers must be online dur-
ing the online voting stage. The main differences between the proposed schemes
come from the choice of the underlying MAC scheme Mac. Tallying servers run
the mixnet and in a setup phase they jointly generate a public key y while shares
of the corresponding secret key are kept private.

We assume that each voter is allowed to vote for one of a pre-defined set of
choices {m;} jc[s- In all schemes, the ith voter submits a ciphertext E, (m), where
m is either one of the pre-defined choices or some random (known or unknown)
representation of the designated choice. A corresponding zero-knowledge proof
will also be submitted. The voter then receives a MAC tag Macy,(m) as his
return code, through the execution of a secure multiparty computation. Here,
k; is some (possibly) voter-dependent symmetric key shared between online vote
collecting parties. Computation of such return codes are only possible by online
participation of tallying servers.

In some schemes, we need to assign to each voter ¢ a secret random value
B; and/or choice-dependent secret random values 3; ; for every j € [s]. This is
done by assigning random encryptions E,(5;) and E,1(0; ;) to the corresponding
voter. In practice the ciphertexts can be defined as the output of a random
oracle applied to the voter’s identifier (along with that of voting alternative, if
required, and other session identifiers). Thus, there is no need for the mix-servers
to generate and communicate the ciphertexts to the voter.

Remark 2. We use the term “message authentication code” loosely in the sense
that the schemes may not satisfy the standard definition of MACs for general
purpose and the security level may also be much lower, since this suffices in our
context.

3.1 Universal Hash Functions Used as MACs

Consider the ensemble of functions F' = {fa,b}(a,b)ezga where f,p(z) = azx +
b mod ¢. This is the canonical example of a universaly hash function. It is well

Return Code Schemes for Electronic Voting Systems 203

known that this is an unconditionally secure one-time MAC scheme if ¢ is prime
and large enough.

The function f,; is linear, so it can be computed over homomorphic
encryptions, i.e., given a ciphertext E,(g%) we can compute E,(g%)*E,(g°) =
Ey(gf“’b(‘”)), which can then be decrypted in a distributed way. Any element
m € G4 can be represented as g” for a unique x € Z, since Gy is cyclic, so we
can express the same relation as E, (m)?E, (8) = E,(g/+*®), where m = ¢g* and
B=g"

Thus, we can trivially compute a MAC tag for any individual party that
submits a ciphertext as long as we do not do it more than once. More precisely,
in a voting system we generate for the ith voter a verifiably secret shared a; €
Z4 and an encryption E,(5;) for a randomly chosen 5; € G,. When the voter
submits a ciphertext E,(m;) along with a zero-knowledge proof indicating that
indeed one the pre-defined choices has been encrypted, he receives back the
return code mj'f3;. Therefore, the underline MAC function is Mac,, g,(m) =
m® (3; for the ith voter. Return codes can be computed online using protocols for
distributed exponentiation and decryption as explained in Sect.2. In the setup
phase, only distributed exponentiation is performed for every pre-defined voting
option. The resulting ciphertexts are then communicated to a trusted third party
to be securely printed, e.g., using the method described in the introduction.
Furthermore, by construction the MAC tag is randomly distributed, so it can
be truncated directly.

The security follows directly from the underlying MAC scheme. In addition
to the danger of tallying servers being online, the drawback is that it only allows
a single vote to be submitted and we need to generate a verifiably secret shared
value for each voter.

3.2 One-Time Pad and Random Choice Representatives

Consider the MAC function Macg(m) = Sm where key and message spaces are
both G4. The tag is a one-time pad symmetric encryption of the message and
clearly not a secure MAC scheme. Indeed, an adversary can guess m and compute
Bm' /m for another message m' to attempt to construct a valid MAC tag for m/.
However, it is a one-time secure MAC for a random choice of plaintext unknown
to the adversary.

A simple way to make sure that this is the case is to assign unique representa-
tives of the choices for each voter, i.e., for the ith voter we generate random ele-
ments 3; ; € G, for j € [s], but in encrypted form as ciphertexts w; ; = E, (5, ;).
We can now provide the ciphertexts w; 1,...,w; s to the ith voter. The voter
then chooses the encryption of its choice, re-encrypts it, and proves in zero-
knowledge that it is a re-encryption of one of its designated ciphertexts. This is
a small constant factor more expensive than the corresponding proof for public
choice representatives.

In the setup phase, for each voting option all representatives are shuffled,
but they are published in encrypted form. More precisely, for each j € [s], the

204 S. Khazaei and D. Wikstrom

ciphertext list wy j,...,wn ; is shuffled without decrypting and the re-encrypted
list is made public.

The return code corresponding to the jth alternative of ith voter is then
B:,;8; where again f3; is a random secret value known in encrypted form E,(3;).

When all votes have been submitted and return codes have been received,
the ciphertexts are mixed and the random elements encrypted by voters are
published in permuted order. To be able to decode the actual voters’ choices,
the shuffled lists of representatives are also decrypted for every voting option. It is
of course important that the shuffled random representatives are only decrypted
after all votes have been collected.

The advantage of this system is that there is no need for verifiably secret
shared exponents and re-voting is allowed. But zero-knowledge proofs are slightly
more costly.

3.3 One-Time Pad and Standard MAC Schemes

Another way to resolve the problem encountered by solely using one-time pad is
to construct a MAC scheme Mac’ by combining it with a standard MAC scheme
Mac [27]. More precisely, a key consists of a pair (3, k), where 8 € G, is chosen
randomly, and k is a randomly chosen key for Mac. The combined scheme Mac’
is then defined by Macj , (m) = Macy.(8m).

This can be distributed in the generic way between M servers, each holding a
secret key kg, by replacing the application of Macy, by an array that is compressed
with a collision resistant hash function H, i.e., we can define

Macg, k (m) = H((Mack, (3m))ee(m)),

where K = (ky,...,kp). It may seem that this does not suffice to satisfy our
requirements for secure printing in electronic voting systems, since apparently
the printer must send fm to the servers. However, the MAC keys ki,...,ky
can be shared with the trusted party to print the pre-computed return codes
without loss of security.

In an electronic voting system a ciphertext E,(3;) is generated for the ith
voter and the MAC key for that voter is (3;, K) = (06;,k1,...,kr). The mix-
servers simply take an input ciphertext E,(m) submitted by the ith voter,
decrypt E, (8;)Ey(m) = E,(Bim), and output H((Macy, (6im))ee(an)-

The advantage of this system is that there is no need for mix-servers to gen-
erate a secret shared value for each individual voter and re-voting is also allowed.
The disadvantage is that it is not robust. If a server is down, the return code
cannot be computed. One way to resolve this problem is to let each server veri-
fiably secret share his symmetric key between other servers. But this guarantees
security only against semi-honest adversaries and malicious servers cannot be
detected.

3.4 Diffie-Hellman MAC Schemes

Recall that the Diffie-Hellman assumption states that no efficient algorithm can
compute g% given ¢g¢ and ¢° as input, where a,b € Z, are randomly chosen.

Return Code Schemes for Electronic Voting Systems 205

Furthermore, a standard hybrid argument shows that it is also hard to compute
any g% given g% and g% fori € [N] and j € [s] for some N and s, where a;,b; €
Z4 are randomly chosen. If we accept the decisional Diffie-Hellman assumption,
then this is strengthened to the claim that ¢%% is indistinguishable from a
randomly chosen element in Gy.

This immediately gives two MAC schemes that are compatible with mix-nets
based on the El Gamal cryptosystem. Both schemes use random representations
of voting options. The first variant is voter independent while the second is not.
In both cases hashing the MAC tag allows truncation for any underlying group.

3.5 First Variant

We encode the jth choice by a randomly chosen element v; € G,, where in
contrast to Sect. 3.2, 71, ...,7s may be public and known at the beginning. Let
the mix-servers generate a verifiably secret shared MAC key a; for the ith voter.
Then, computing the MAC of the plaintext «; provided in encrypted form E, (v;)
is done by simply computing 7;” by distributed exponentiation and decryption.
Note that v; = g% for some b; € Z,, so the result is g%%. To summarize, the
underlying MAC scheme is defined by Mac,, (m) = m® for the ith voter. This
can be computed under encryption, which means that we can also provide the
result in one-time pad encrypted form to a third party. This system remains
secure when re-voting is allowed.

3.6 Second Variant

The first variant is somewhat impractical in that the mix-servers must generate a
secret shared exponent a; € Z, for each individual voter. We can switch the roles
of randomly chosen representatives of choices and verifiably distributed secret
exponents. More precisely, random elements ; ; in encrypted form as ciphertexts
E, (8 ;) are generated for every i € [N] and j € [s]. The preparation phase and
encryption procedure is exactly like that of Sect. 3.2, but now a single verifiably
secret shared value a is generated and the same function Mac,(m) = m® is used
for all voters.

The advantage of this scheme is that the MAC function can be evaluated in
batches on submitted ciphertexts and in contrast to the construction in Sect. 3.2
the representatives may be shuffled and decrypted before all ciphertexts have
been received. Re-voting is still allowed.

4 Offline Tallying Servers

In this section, we propose two schemes to resolve the online-server danger of
presented schemes of Sect. 3. This is achieved without a considerable amount of
performance loss or organizational overhead. The main idea is to use two inde-
pendent public keys with shared secret keys. More precisely, in the setup phase,
the tallying servers generate a public key y and keep shares of the corresponding

206 S. Khazaei and D. Wikstrom

secret key. Additionally, the vote collecting servers produce a public key z in the
same manner.

In the online voting phase, ith voter submits a pair of ciphertexts (v;,w;),
along with some scheme-dependent zero-knowledge proof. Here, v; and w; are
ciphertexts encrypted under public keys y and z, respectively. The first cipher-
text, v;, is used to decode voter’s choice after mixing. The second ciphertext, w;,
is an encryption of a random value, so it basically contains no information about
the voter’s choice. To compute the return code, w; is simply decrypted by online
servers who collect the encrypted votes. Therefore, the shares of y are never
exposed during the online voting phase. Even if the secret key of z is revealed,
no knowledge is leaked about the voter’s choice which is encrypted under y.

When all ciphertexts have been collected, the ciphertexts list vy,...,vy is
shuffled. Then, they are decrypted, and if necessary decoded, to obtain the cast
votes. Since tallying can be performed behind an airwall, this approach ensures
a high level of privacy for the voters.

As an alternative approach to print the pre-computed return codes, the online
servers can simply share their secret key with the trusted party without loss of
security.

The main requirement to be satisfied is that the two submitted ciphertexts
are constructed such that they cannot be split. Below, we propose two such con-
structions. In addition to enhanced privacy due to airwalling, the advantage of
these systems is that there is no need for voter-dependent verifiably secret shared
values and re-voting is also allowed. The drawback is that the zero-knowledge
proofs are more costly compared with the schemes of Sect. 3.

4.1 First Variant

In setup phase, for every i € [N] and j € [s], servers generate secret random pairs
of elements (o ;, 3;,;) in encrypted form as random ciphertext pairs (v; j, w; ;) =
(Ey(ai,j), E, (B”)) As it was explained in Sect. 3, such ciphertexts can be simply
interpreted as the output of a random oracle. To vote for jth choice, the ith voter
computes v; and w; as respective re-encryptions of v; ; and w; ;. The pair (v;, w;)
is then submitted along with a zero-knowledge proof.

In the setup phase, for each voting option j all representatives vy j,...,vn;
are mixed and a permutation of the decrypted list a; j,...,an ; is published.
When every voter ¢ has submitted a ciphertext pair (v;,w;), the first elements
are shuffled, decrypted and decoded.

4.2 Second Variant

In the second variant, for every ¢ € [N] and j € [s], the pre-computed random
values w; ; = E,(; ;) are prepared as before. To vote for jth choice, the ith voter
computes v; as an encryption E,(m;) and w; as a re-encryptions of w; ;. The pair
(vi,w;) is then submitted along with a zero-knowledge proof. Computation of
return codes and tallying is straightforward. Zero-knowledge proofs are slightly
less costly compared with the first variant.

Return Code Schemes for Electronic Voting Systems 207

5 About Write-In Candidates

Some of the systems can be adapted to allow write-ins in the sense that voters
simply encrypt a representation of one of the pre-determined choices, or an arbi-
trary message. The zero knowledge proof of knowledge would then not impose
any additional structure. Naturally, return codes can not be provided in printed
form for a relatively small number of messages, so to have a chance to verify a
return code for an arbitrary message the voter needs the shared MAC key.

The scheme of Sect. 3.1 is based on an unconditionally secure one-time MAC
scheme, so it remains as secure for any message. The scheme of Sect. 3.2 does
provide some security, but for reasons discussed in that section only if write-in
votes are rare and unpredictable. Finally, the scheme of Sect. 3.5 also works for
write-ins, but under a strong non-standard DDH-assumption with some care. We
must assume that 0% is indistinguishable from a random element even when the
message ¢ strictly speaking is not randomly chosen. One way to make this a more
plausible assumption is to pad a message with random bits before interpreting
it as a group element, but it remains a non-standard assumption that is fragile
in a complex system where slight changes may render it difficult to defend.

6 Conclusion

We present several return code systems for electronic voting applications, some of
which overlaps or encompasses schemes previously proposed as separate schemes.
We are unable to single out one scheme that is superior to all the other schemes
in every way.

Table 1. Summary of: what is pre-computed by the tallying servers, the form of
ciphertexts submitted by the ith voter to vote for the jth choice, the form of the
corresponding return codes for different features of proposed schemes. Furthermore,
for each scheme it is indicated if: a single global MAC key is used or if a separate key
must be secret shared for each individual voter, if multiple votes can be submitted,
and if the scheme matches well with write-in votes (for which the voter can not receive
any pre-computed return codes in advance of course).

Section Pre-computed Submitted Return code | Global Re-voting | Write-ins
MAC key

Section 3.1 | Ey(3;) Ey(m;) my* B - - v
Section 3.2 | Ey (8;)w;,; = REy (w; ;) B4, Bi v v Partly

Ey(Bi,;)
Section 3.3 | Ey(8;) Ey(m;) Macg, x(mj) | - v -
Section 3.5 | y; Ey(v5) v;-” - v Partly
Section 3.6 | wi ; = Ey(Bi,5) | REy(w; ;) BE v v -
Section4.1 | v; j = Ez(a,5) | REy(vs,5) Bij v v -

wi,j = Ey(Bij) | RE:(wi;)
Section4.2 | w; j = E»(Bi;) | Ey(my) Bi; v v -

RE (w;,;)

208 S. Khazaei and D. Wikstrom

Instead our view is that all the schemes are simple combinations of crypto-
graphic constructions that are well understood and that they together give a
powerful toolbox to construct return codes for many types of elections. Table 1
summarizes different features of proposed schemes.

References

1. Adida, B.: Helios: web-based open-audit voting. In: Proceedings of the 17th
USENIX Security Symposium, 28 July—1 August 2008, San Jose, pp. 335-348
(2008)

2. Adida, B., Neff, C.A.: Ballot casting assurance. In: 2006 USENIX/ACCURATE
Electronic Voting Technology Workshop (EVT 2006), Vancouver, 1 August 2006

3. Allepuz, J.P., Castell6, S.G.: Internet voting system with cast as intended verifica-
tion. In: Kiayias, A., Lipmaa, H. (eds.) Vote-ID 2011. LNCS, vol. 7187, pp. 36-52.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32747-6_3

4. Ansper, A., Heiberg, S., Lipmaa, H., @verland, T.A., van Laenen, F.: Security and
trust for the Norwegian E-voting pilot project E-valg 2011. In: Jgsang, A., Maseng,
T., Knapskog, S.J. (eds.) NordSec 2009. LNCS, vol. 5838, pp. 207-222. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-04766-4_15

5. Benaloh, J.: Simple verifiable elections. In: 2006 USENIX/ACCURATE Electronic
Voting Technology Workshop (EVT 2006), Vancouver, 1 August 2006

6. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84-88 (1981)

7. Chaum, D.: Surevote: technical overview. In: Proceedings of the Workshop on
Trustworthy Elections (WOTE 2001) (2001)

8. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election
scheme. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 118-139. Springer, Heidelberg (2005). doi:10.1007/11555827_8

9. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
28th Annual Symposium on Foundations of Computer Science, Los Angeles, 2729
October 1987, pp. 427-437 (1987)

10. Galindo, D., Guasch, S., Puiggali, J.: 2015 Neuchatel’s cast-as-intended ver-
ification mechanism. In: Haenni, R., Koenig, R.E., Wikstrom, D. (eds.)
VOTELID 2015. LNCS, vol. 9269, pp. 3-18. Springer, Cham (2015). doi:10.1007/
978-3-319-22270-7_1

11. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptol. 20(1), 51-83 (2007)

12. Gjgsteen, K.: Analysis of an internet voting protocol. IACR Cryptology ePrint
Archive, 2010:380 (2010)

13. Gjgsteen, K.: The Norwegian internet voting protocol. IACR Cryptology ePrint
Archive, 2013:473 (2013)

14. Gjgsteen, K., Lund, A.S.: The Norwegian internet voting protocol: a new instanti-
ation. IACR Cryptology ePrint Archive 2015:503 (2015)

15. Goldreich, O.: The Foundations of Cryptography. Basic Techniques, vol. 1.
Cambridge University Press, Cambridge (2001)

16. Goldreich, O.: The Foundations of Cryptography. Basic Applications, vol. 2.
Cambridge University Press, Cambridge (2004)

http://dx.doi.org/10.1007/978-3-642-32747-6_3
http://dx.doi.org/10.1007/978-3-642-04766-4_15
http://dx.doi.org/10.1007/11555827_8
http://dx.doi.org/10.1007/978-3-319-22270-7_1
http://dx.doi.org/10.1007/978-3-319-22270-7_1

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

Return Code Schemes for Electronic Voting Systems 209

Heiberg, S., Laud, P., Willemson, J.: The application of I-voting for Estonian
parliamentary elections of 2011. In: Kiayias, A., Lipmaa, H. (eds.) Vote-ID
2011. LNCS, vol. 7187, pp. 208-223. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32747-6_13

Heiberg, S., Lipmaa, H., van Laenen, F.: On E-vote integrity in the case of malicious
voter computers. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 373-388. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15497-3_23

Lipmaa, H.: Two simple code-verification voting protocols. TACR Cryptology
ePrint Archive, 2011:317 (2011)

Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/nothing
election scheme. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
248-259. Springer, Heidelberg (1994). doi:10.1007/3-540-48285-7_21

Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129-140.
Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1_9

Puigalli, J., Guasch, S.: Cast-as-intended verification in Norway. In: 5th Interna-
tional Conference on Electronic Voting 201 (eVOTE 2012), Co-organized by the
Council of Europe, Gesellschaft fiir Informatik and E-voting.CC, 11-14 July 2012,
Castle Hofen, Bregenz, Austria, pp. 49-63 (2012)

Rosen, A., Ta-shma, A., Riva, B.: Jonathan (Yoni) Ben-Nun. Wombat voting sys-
tem (2012)

Ryan, P.Y.A., Schneider, S.A.: Prét a voter with re-encryption mixes. In:
Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 313-326. Springer, Heidelberg (2006). doi:10.1007/11863908_20

Sandler, D., Derr, K., Wallach, D.S.: Votebox: a tamper-evident, verifiable elec-
tronic voting system. In: Proceedings of the 17th USENIX Security Symposium,
28 July—1 August 2008, San Jose, pp. 349-364 (2008)

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (1979)
Wikstrom, D.: Proposed during rump session of evote 2015 (2015)

http://dx.doi.org/10.1007/978-3-642-32747-6_13
http://dx.doi.org/10.1007/978-3-642-32747-6_13
http://dx.doi.org/10.1007/978-3-642-15497-3_23
http://dx.doi.org/10.1007/978-3-642-15497-3_23
http://dx.doi.org/10.1007/3-540-48285-7_21
http://dx.doi.org/10.1007/3-540-46766-1_9
http://dx.doi.org/10.1007/11863908_20

	Return Code Schemes for Electronic Voting Systems
	1 Introduction
	2 Notation
	3 Online Tallying Servers
	3.1 Universal Hash Functions Used as MACs
	3.2 One-Time Pad and Random Choice Representatives
	3.3 One-Time Pad and Standard MAC Schemes
	3.4 Diffie-Hellman MAC Schemes
	3.5 First Variant
	3.6 Second Variant

	4 Offline Tallying Servers
	4.1 First Variant
	4.2 Second Variant

	5 About Write-In Candidates
	6 Conclusion
	References

