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Abstract. We show that only languages in BPP have public-coin, black-
box zero-knowledge protocols that are secure under an unbounded (poly-
nomial) number of parallel repetitions. This result holds both in the plain
model (without any set-up) and in the Bare Public-Key Model (where the
prover and the verifier have registered public keys). We complement this
result by showing the existence of a public-coin black-box zero-knowledge
proof that remains secure under any a-priori bounded number of con-
current executions.

1 Introduction

Zero-knowledge (ZK) interactive protocols [GMR89] are paradoxical constructs
that allow one player P (called the prover) to convince another player V (called
the verifier) of the validity of a mathematical statement x ∈ L, while provid-
ing zero additional knowledge to the verifier. Beyond being fascinating in their
own right, ZK proofs have numerous cryptographic applications and are one of
the most fundamental cryptographic building blocks. A fundamental question
regarding zero-knowledge protocols is whether their composition remains zero-
knowledge. The three most basic notions of compositions are sequential com-
position [GMR89, GO94], parallel composition [FS90, GK96b] and concurrent
composition [FS90, DNS04]. In a sequential composition, the players sequen-
tially run many instances of a zero-knowledge protocol, one after the other. In a
parallel composition, the instances instead proceed in parallel, at the same pace.
Finally, in a concurrent composition, messages from different instances of the
protocol may be arbitrarily interleaved.

While the definition of ZK is closed under sequential composition [GO94], this
no longer holds for parallel composition [GK96b] (and thus not for concurrent
composition either). However, there are zero-knowledge protocols for all of NP
that have been demonstrated to be secure under both parallel and concurrent
composition. For the case of only parallel composition, constant-round protocols
are known [Gol02, FS90, GK96a]. For the case of concurrent composition, a
series of work [RK99, KP01, PRS02] show feasibility of Õ(log n)-round protocols;
furthermore, this round-complexity is essentially optimal with respect to black-
box simulation [KPR98, Ros00, CKPR01].

Whereas the original ZK protocols of [GMR89, GMW91, Blu87] are public-
coin—i.e., the verifier’s messages are its random coin-tosses—all of the afore-
mentioned parallel or concurrent ZK protocols use private coins. Indeed, in their
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seminal paper, Goldreich and Krawczyk [GK96b] (GK from now on) showed that
only languages in BPP have constant-round public-coin (stand-alone) black-box
ZK protocols with negligible soundness error, let alone the question of paral-
lel composition. In particular, their results imply that (unless NP ⊆ BPP) the
constant-round ZK protocols of e.g., [GMW91, Blu87] with constant soundness
error cannot be black-box ZK under parallel repetition (as this would yield a
constant-round black-box ZK protocol with negligible soundness error).

A natural question is whether the constant-round restriction imposed by the
GK result is necessary. Namely,

Is there a (possibly super-constant round) public-coin black-box ZK pro-
tocol that is secure under parallel (or even concurrent) composition?

Our results. In this work, we provide a negative answer to the above ques-
tion. Namely, we show that only languages in BPP have public-coin black-box
ZK protocols that remain secure under parallel (and thus also concurrent) com-
position. Thus, whereas for private-coin protocols, a super constant number of
rounds helps in establishing concurrent composition [RK99, KP01, PRS02], we
conclude that it is not the case for public-coin protocols.

Theorem (Informal). If L has a public-coin argument that is black-box parallel
ZK, then L ∈ BPP.

In fact, our result establishes that any black-box ZK protocol that remains secure
under m parallel executions must have Ω̃(m1/2) rounds.

On the positive side we show that every language in NP has a public-coin
black-box ZK proof that remains secure under an a-priori bounded number of
concurrent (and thus parallel) executions.

Theorem (Informal). Assume the existence of one-way functions. Then for
every polynomial m, there exists an O(m3)-round public-coin black-box
m-bounded concurrent ZK proof for NP.

This complements a result of [Bar01], which constructs constant-round public-
coin bounded-concurrent ZK arguments (rather than proofs) using non-black-box
simulation.

We next turn to compositions in models with trusted set-up. Canetti, Goldre-
ich, Goldwasser and Micali [CGGM00] show that in the Bare Public-Key (BPK)
Model, where each player has a registered public-key, constant-round black-box
concurrent ZK protocols exist for all of NP (whereas in the plain model without
set-up, as mentioned above, Ω̃(log n) rounds are necessary for non-trivial lan-
guages [CKPR01]). We show that for the case of public-coin protocols, the BPK
set-up does not help with composition.

Theorem (Informal). If L has a public-coin argument in the BPK model that
is black-box parallel ZK, then L ∈ BPP.

Finally, as we will see, some of the intermediate ideas in our work are closely
related to the notion of resettable soundness [BGGL01]. Very informally, we
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establish that parallel repetition of public-coin protocols not only reduces the
soundness error [PV07, HPPW08], but also qualitatively strengthen the soun-
dness—the new protocols will be secure even under a “resetting” attack.

Techniques. To describe our technique, let us first briefly recall the GK lower
bound showing that only languages in L have O(1)-round public-coin black-box
ZK. Let (P, V ) be a black-box ZK proof of a language L. Consider a malicious
verifier V ∗ which, instead of picking its messages at random, computes them by
applying a hash function to the current transcript. GK show that any black-box
simulator S, together with V ∗ can decide L: on input x, simply run SV ∗(x)(x)
and accept if S outputs a view where V ∗ is accepting. It easily follows that if
x ∈ L, then SV ∗

(x) will output a transcript where V ∗ is accepting (as the honest
prover would convince V ∗). The crux of their proof is to show that if x /∈ L, then
SV ∗

(x) will output an accepting view only with small probability. If S was not
rewinding V ∗ this would directly follow from the soundness pf (P, V ). However S
might rewind V ∗, and might only convince V ∗ in one of its rewinding “threads”.
Nonetheless, GK manages to show that if S—using rewinding, or “resetting”—
manages to convince V ∗, then we can construct a machine T that uses S to
convince an external verifier V (without rewinding), contradicting the soundness
of (P, V ). In other words, they show that the protocol (P, V ∗) is sound under
a “resetting-attack” [CGGM00, BGGL01]. Analogously, to prove our results, we
show that if we have take a public-coin interactive proof (P, V ) and repeat it
sufficiently many times in parallel (and again letting the verifier pick its messages
by applying a hash function to the transcript), then the resulting protocol is
sound under a resetting-attack.

More details on the reduction. GK, as well as all subsequent black-box
lower bounds e.g., ([KPR98, Ros00, CKPR01, BL02, Kat08, HRS09]) rely on
the following approach for constructing the stand-alone (non-resetting) prover
T (given the “rewinding” simulator S). T incorporates S and internally emulates
the execution of S with an internally emulated verifier (which of course can be
rewound). While doing this emulation, T also appropriately picks some messages
sent by S to the internal verifier, and forwards them externally (and also forwards
back the reply received externally). The crux of the various lower bounds is how
these messages (to be forwarded externally) are chosen. The difficulty of this
task stems from the fact that, at the time of deciding whether to externally
forward a message or not, T does not yet know if the simulator will eventually
choose this message to “continue” its simulation, or treat this messages simply
as a “rewinding” (used to collect information).

For the case of constant-round protocols, GK show that a random selection
of messages to forward externally works. (If the protocol has d rounds, this
random selection is “correct” with probability 1/md, where m is the number
of queries made by the simulator to its verifier.) To handle a super constant
number of rounds, Canetti, Kilian, Petrank and Rosen [CKPR01] show that when
dealing with an adversarial verifier that can schedule messages in an arbitrary
way, there exists some particular scheduling which makes it easy to identify
appropriate messages to forward externally (as long as the number of rounds is
sub-logarthmic).
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This general approach of simply running the simulator S “straight-line” seems
hard to extend to protocols with a polynomial number of rounds; the number
of possible choices for messages to forward to the external verifier becomes too
large. To get around this problem, we use a different technique. Instead of simply
running S “straight-line”, we let T rewind S (while S itself believes it is rewinding
the verifier). This makes it possible for us to “check” whether a message is “good”
before forwarding it to the external verifier. Our strategy is twofold. First, we
only externally forward queries that have a good chance of being included in
the output view; since the protocol is public-coin, we can estimate this chance
by doing “test-runs” of S. Once we have forwarded a query, we will force S
to include it in the output view by repeatedly rewinding S. Intuitively, if the
forwarded queries are indeed “good”, then T should break the soundness of Π
after polynomially many rewinds. But what if the external verifier acts differently
from our test-runs and replies with a “bad” response to a forwarded query?
Using a probabilistic lemma due to Ran Raz [Raz98] (used to prove that parallel
repetition reduces the soundness error in two-prover games) we can show that
if we have enough parallel sessions, and the external verifier only decides the
verifier response in one session, the “goodness” of a forwarded query will not
change much.

We remark that our approach shares similarities with previous works on
the topic of soundness amplification under parallel repetitions, such as [BIN97]
[PV07] [IJK07], and especially [HPPW08]; in particular, our use of Raz’s lemma
is similar to its use in [HPPW08]. However, whereas those works show how to
transform a parallel prover with “small” success probability into a stand-alone
prover with “high” success probability, we show how to transform a rewinding
parallel prover into a (non-rewinding) stand-alone prover. This requires over-
coming several novel obstacles: most notably, we are required to deal with the
difficulty of forcing the simulator S to output a view which uses the queries
externally forwarded by T .

To extend our lower bound to the BPK model, we run into the additional
problem that the external verifier can decide whether to accept or reject based
on its secret key (which T does not know). T can thus no longer determine
whether an external verifier accepts or rejects when doing test-runs, which is
crucial for deciding which messages to forward externally. By relying on the
“trust-halving” technique from [IW97, BIN97], and its refinement in [HPPW08],
we show how T can make an “educated” guess which is sufficiently good.

Parallel-repetition and Resettable-soundness. As an independent contri-
bution, we believe that our techniques elucidates an intriguing (and useful)
connection between lower bounds for black-box ZK, and feasibility results for
soundness/hardness amplification. As mentioned, our core technical contribu-
tion shows that (appropriate) parallel-repetition of a public-coin protocol not
only reduced the soundness error [PV07, HPPW08], but also yields a protocol
that is sound even under a resetting attack [GK96b, CGGM00, BGGL01]. To
establish our ZK lowerbound, we only consider a “weak” notion of “resettable-
soundness” where the statement to be proved cannot be changed. In the full
version of the paper, we shows that if the original protocol also is a proof of
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knowledge [GMR89, FS90, BG02], then the parallelized version also satisfies the
stronger notion of resettable-soundness from [BGGL01] (where the adversary can
also change the statement during its rewindings). [BGGL01] showed a similar
type of result for O(1)-round public-coin proofs of knowledge.

Outline. We introduce some preliminaries in Sect. 2, and jump into our impos-
sibility results in Sect. 3. Next we present our public-coin bounded-concurrent
zero-knowledge protocol in Sect. 4. Details of our extension to the Bare Public
Key model and our application to resettable soundness can be found in the full
version of this paper.

2 Preliminaries

We assume familiarity with indistinguishability, interactive proofs and commit-
ments. |x| denotes the length of a (bit) string x, and [n] denotes the set {1, . . . , n}.

Let Π = 〈P, V 〉 be an interactive proof for a language L between prover P
and verifier V . We assume WLOG that Π starts with a verifier message and
ends with a prover message, and say Π has k rounds if the prover and verifier
each sends k messages alternatively. The notation 〈v1, p1, . . .〉 specifies a full
or partial transcript of Π where v denotes verifier messages and p denotes
prover messages. Π is public-coin if the verifier messages are just independent
segments of V ’s random tape.

We may repeat an interactive proof in parallel. Let Πm = 〈Pm, V m〉 be Π
repeated in m parallel sessions; that is, each prover and verifier message in
Πm is just concatenation of m copies of the corresponding message in Π . V m

completes Π in all m sessions (or abort in all sessions), and accepts if and only
if all m sessions are accepted by V .

In general, an adversarial verifier is not restricted to parallel schedules. An
m-session concurrent adversarial verifier V ∗ is a probabilistic polynomial
time machine that, on common input x and auxiliary input z, interacts with
m(|x|) independent copies of P concurrently (called sessions). There are no
restrictions on how V ∗ schedules the messages among the different sessions, and
V ∗ may choose to abort some sessions but not others. Let ViewP

V ∗(x, z) be the
random variable that denotes the view of V ∗ in an interaction with P (this
includes the random coins of V ∗ and the messages received by V ∗). Note that
for public-coin protocols, the view of V ∗ is just the transcript of the interaction.

A black-box simulator S is a probabilistic polynomial time machine that
is given black-box access to V ∗ (written as S = SV∗

). Formally, the random tape
of V ∗, denoted by r, is uniformly chosen and fixed a priori, and S is allowed to
specify a valid partial transcript τ = 〈v1, p1, . . . , pi〉 of 〈P, V ∗

r 〉, and query V ∗
r

for the next verifier message vi+1. Here, τ is valid if it is consistent with V ∗
r —

i.e., each verifier message vj in τ is what V ∗ would have responded given the
previous prover messages p1, . . . , pj−1 (and the fixed random tape r). Note that
S is allowed to “rewind” V ∗ by querying V ∗ with different partial transcripts
that shares a common prefix.

Intuitively, an interactive proof is zero-knowledge (ZK) if the view of any
(stand-alone) adversarial verifier V ∗ can be generated by a simulator. The
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protocol is concurrent ZK if the view of any concurrent adversarial verifier can
be generated as well. The formal definitions follow.

Definition 1 (Black-Box Zero-Knowledge [GMR89, GO94]). Let Π =
〈P, V 〉 be an interactive proof (or argument) for a language L. Π is black-box
zero-knowledge if there exists a black-box simulator S such that for every common
input x, auxiliary input z, random tape r, and every (stand-alone) adversary
V ∗, SV∗

r (x,z)(x) runs in time polynomial in |x|. Furthermore, the ensembles
{ViewP

V ∗
r
(x, z)}x∈L,z,r∈{0,1}∗ and {SV∗

r (x,z)(x)}x∈L,z,r∈{0,1}∗ are computationally
indistinguishable over x ∈ L.

Definition 2 (Black-Box Concurrent Zero-Knowledge [DNS04]). Let
Π = 〈P, V 〉 be an interactive proof (or argument) for a language L. Π is black-
box concurrent zero-knowledge if for all polynomials m, there exists a black-box
simulator Sm such that for every common input x, auxiliary input z, random
tape r and every m-session concurrent adversary V ∗, S

V∗
r (x,z)

m (x) runs in time
polynomial in |x|. Furthermore, the ensembles {ViewP

V ∗
r
(x, z)}x∈L,z,r∈{0,1}∗ and

{SV∗
r (x,z)

m (x)}x∈L,z,r∈{0,1}∗ are computationally indistinguishable over x ∈ L.

We also consider a bounded version of concurrent zero-knowledge where the
order of quantifiers are reversed [Bar01].

Definition 3 (Black-Box Bounded Concurrent Zero-Knowledge). Let
Π = 〈P, V 〉 be an interactive proof (or argument) for a language L and let m be
a polynomial. Π is black-box m-bounded concurrent zero-knowledge if there exists
a black-box simulator S such that for every common input x, auxiliary input z,
random tape r, and every m-session concurrent adversary V ∗, SV∗

r (x,z)(x) runs in
time polynomial in |x|. Furthermore, the ensembles {ViewP

V ∗
r
(x, z)}x∈L,z,r∈{0,1}∗

and {SV∗
r (x,z)(x)}x∈L,z,r∈{0,1}∗ are computationally indistinguishable over x ∈ L.

3 Impossibility

From now on zero-knowledge refers to black-box zero-knowledge. In this section
we show that only languages in BPP have public-coin concurrent zero-knowledge
protocols. We actually show a stronger result: Except for languages in BPP,
no public-coin protocols remains black-box zero-knowledge when repeated in
parallel. The formal theorems are stated below, where n denote the security
parameter or the input size.

Theorem 1. Suppose language L has a k = poly(n)-round public coin black-box
zero-knowledge proof Π with soundness error 1/2. If m ≥ k log2 n and Πm is
zero-knowledge, then L ∈ BPP.

Theorem 2. Suppose language L has a k = poly(n)-round public-coin black-box
zero-knowledge argument Π with soundness error 1/2. If m ≥ (k2 log k) log2 n
and Πm is zero-knowledge, then L ∈ BPP.

We remark here that our theorems also hold with respect to so-called non-
aborting verifiers that never send an invalid message.
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3.1 Common Proof Components

The proofs of Theorem 1 and 2 begin in the same high-level framework as that
of [GK96b]. Suppose a language L has a public-coin ZK protocol Π = 〈P, V 〉,
and Πm is zero-knowledge with a black-box simulator S that runs in time nd.
To show that L ∈ BPP, we construct a “random-looking” adversarial verifier,
V ∗, and consider the following decision algorithm D: D(x) runs SV∗

to generate
a view of V ∗, and accepts x if and only if V ∗ accepts given the generated view
(which in turn occurs if and only if the honest verifier V accepts in all m sessions
of the view).

V ∗ is actually a family of adversarial verifiers constructed as follows. Let H be
a family of hash functions that is random enough compared to the running time
of S; formally, H should be nd-wise independent (see [GK96b, CG89]). Let V ∗

h

be the verifier that when queried with transcript τ , responds (deterministically)
with the message h(τ). We write V ∗ to mean V ∗

h for a randomly chosen h, i.e.,
when D runs SV∗

, D first chooses h randomly from H and then run SV∗
h.

We make two easy observations about SV∗
. First, we may assume that when-

ever S queries V ∗ with a transcript or outputs a transcript τ , it first queries V ∗

with all the prefixes of τ ; this only increases the running time of S polynomially.
Second, we may assume that S never queries V ∗ with the same transcript twice
(instead S may keep a table of answers). Then the set of all responses generated
by V ∗ is identical to the uniform distribution since H is nd-independent and S
makes at most nd queries to V ∗.

We need to show that decision procedure D is both complete and sound.
Completeness states that if x ∈ L, then D should accept x with probability
at least 2/3. This easily follows: The output of SV∗

(x) is indistinguishable from
the interaction of 〈Pm, V ∗〉 since S is a zero-knowledge simulator. Furthermore,
〈Pm, V ∗〉 is identical to m-copies of 〈P, V 〉 since V ∗ produces independent, truly
random verifier messages. Finally, by the completeness property of Π , V will
accept x with probability 1 in all the copies of 〈P, V 〉.

Soundness states that if x /∈ L, then D should accept with probability at most
1/3. That is, SV∗

(x) can produce an accepting view of V ∗ with probability at
most 1/3. In a sense, this is the soundness of protocol Πm against a rewinding
prover such as S. This property is shown separately for proofs and arguments in
the next two sections.

3.2 Proof of Theorem 1: Zero-Knowledge Proofs

We show that D is sound when Π is a proof. Our approach follows that of
[GK96b] while relying on the soundness amplification theorem of [BM88].

Suppose for the sake of contradiction that for some x /∈ L, SV∗
(x) produces

an accepting view with probability more than 1/3; we will use S to lower bound
the soundness error of Πm (as an interactive proof of L). Whenever SV∗

outputs
a valid accepting view of V ∗ and a corresponding transcript τ of Πm, S would
have queried V ∗ for each of the k verifier messages in τ (recall that we assumed
this without loss of generality). A cheating prover of Πm can therefore run
SV∗

internally, guess which queries of S are used to form the accepting output
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transcript, and forward them to an outside honest verifier of Πm. Since S has
maximum running time nd, it can only query V ∗ for at most nd messages. The
probability of guessing all the right queries is then at least n−dk (one guess for
each round of Π). Note that forwarding queries to an outside honest verifier
does not lower the acceptance probability of SV∗

since V ∗ is identical to a honest
verifier (they both respond with random messages). Thus this cheating prover,
using S, can break the soundness of Πm with probability at least (1/3)n−dk =
Ω(2−dk log n).

On the other hand, recall that Π has soundness error less than 1/2. By the
soundness amplification theorem of [BM88], Πm should have soundness error at
most O(2−m). Since m ≥ k log2 n, we have O(2−m) < Ω(2−dk log n) and reach a
contradiction. ��

3.3 Proof of Theorem 2: Zero-Knowledge Arguments

We now show that D is sound even when Π is an argument. Again we argue
by contradiction, and suppose SV∗

(x) outputs an accepting view for some x /∈ L
with probably more than 1/3. We cannot repeat the proof of Theorem 1 because
parallel repetitions cannot reduce the soundness of arguments beyond being
negligibly small. Therefore we cannot use S to break the soundness of Πm.
Instead, we directly show a parallel repetition theorem for “resettable-soundness”;
that is, we relate the “resettable” soundness of 〈Pm, V ∗〉 to the soundness of Π .

Proof Outline. The rest of this section describes how to construct a cheating
prover T for Π . T runs S internally and plays the role of V ∗ when S makes a
query. To break the soundness of Π , T needs to choose one of the m sessions
and forward a complete set of S queries in that session (one for each round
of Π) to an honest outside verifier V of Π . Moreover, S must eventually use
these forwarded queries to output an accepting view. This is challenging since
S may query V ∗ multiple times for each round of Πm. While T must decide to
forward a query or not at the time of the query, S can wait until all queries are
completed before choosing which queries to form the output view. To overcome
this obstacle, a key part of our analysis relies on rewinding S (note that at the
same time, S believes that it is rewinding V ∗). Our strategy is twofold. First we
only forward queries that has some chance (preferably a good chance) of being
included in the output view; this is done by doing test-runs of S. Once we have
forwarded a query, we will force S to include it in the output view by repeatedly
rewinding S.

We can describe a transcript of S as an alternating sequence of queries from
S and responses from T , [s1, t1, s2, t2, . . . ], where each S-query is in fact a partial
transcript of Πm that ends with a prover message (awaiting a verifier response).
To avoid confusion, in our analysis τ and 〈·〉 denote views of V ∗ (which are just
transcripts of Πm), while h and [·] denote transcripts of S. Recall that S may
rewind V ∗, and thus a transcript of S may be much longer than a view of V ∗.
Since the randomness of S is fixed, the behaviour of S is entirely determined by
the T -responses in a transcript. The goal of T is then to generate a full transcript
of S so that S produces an accepting view of V ∗ and a corresponding transcript
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τ of Πm, while simultaneously having the foresight to forward (a session of) all
the S-queries pertaining to τ to the external verifier V (i.e. all S-queries that
are a prefix of τ). If so, T has broken the soundness of Π , and we call this a
successful simulation of S.

On a high level, T first fixes a random session j0 ∈ 1, . . . , m as the forwarding
session. Then, T will incrementally fix the transcript of S while forwarding S-
queries to V in k iterations (one for each round of Π). During each iteration,
T first forwards a query to V . Then, T continues the simulation of S using V ’s
response until it finds a suitable query to forward in the next iteration. In more
details:

Step 1. In iteration i, T starts with a partial transcript hi of S that ends with
a query for the ith message of Π . T will forward session j0 of this query to
V and receive a reply vj0

i .
Step 2. Fixing the reply vj0

i , T randomly completes the partial transcript hi

up to 300k2nd times until it finds a successful completion h. If no successful
completion is found, T aborts. Otherwise, let τ be the accepting view of
V ∗ produced by S under transcript h (in particular, τ must include all the
queries that have been forwarded by T ). By assumption, S must query T for
the i + 1st verifier message in τ . Let hi+1 be the prefix of h up to this query
(note that hi+1 is an extension of hi), and this query (considered a “good”
query for the i+1st verifier message) will be forwarded in the next iteration.

During the analysis, we first use Raz’s lemma to show that because the number
of sessions is large and j0 was chosen randomly, we may pretend vj0

i is nicely chosen
conditioned on success, just like the other sessions (chosen by T in step 2). We also
show that T rarely aborts.

Proof Details. We now introduce a series of hybrid simulators that formally
defines and analyses T ; all our hybrids will always generate truly random re-
sponses to S-queries so that S cannot distinguish the hybrids from V ∗. We will
start with a hypothetical hybrid, and gradually move towards T .

Hybrid 1. Our first hybrid T (1) serves to introduce the general idea of how T
queries S internally; T (1) does not yet forward messages to the external verifier V .

T (1) builds a full transcript of S in k + 1 iterations. In iteration i, T (1) fixes
an S-query τi for the ith message of Πm. This query should have a good chance
of being included by S in an accepting transcript of Πm, and therefore is a good
candidate to forward externally. Note that fixing an S-query amounts to fixing
the transcript of S up until the desired S-query is made.

We now describe T (1) in detail. In the very beginning, T (1) fixes a random
session j0 ∈ {1, . . . , m}; eventually the jth

0 session will be forwarded externally.
After that, T (1) incrementally grows a transcript of S in k iterations. During the
ith iteration, T (1) receives a partial transcript of S from the previous iteration,
hi = [t1, s1, . . . , s� = τi], where τi is a S-query for the ith verifier message of Πm

(h1 = [], the empty transcript). Looking ahead, session j0 of τi will be forwarded
to the external V in later hybrids of T . As an invariant maintained by T (1),
it should be possible to extend hi into a full transcript of S where S outputs



On the Composition of Public-Coin Zero-Knowledge Protocols 169

an accepting view of V ∗ containing the query τi. We call such a full transcript
a successful completion of hi. Each iteration can be further divided into two
steps:

Step 1. T (1) does not forward τi to the external V ; instead it simulates a re-
sponse to its liking. T (1) randomly samples a completion of hi into h con-
ditioned on success (always possible due to the invariant). Let v

(j0)
i be the

response to τi in the jth
0 session in the successful completion h; it is used

in place of a response from V . Let h̃i be a slight extension of the partial
transcript hi where the session j0 response to τi is fixed to v

(j0)
i .

Step 2. T (1) now samples a completion of h̃i into h̃ conditioned on success (note
that h from the previous step is one such completion). Under h̃, S would
output an accepting view τ of V ∗ (note that τ must extend τi). Let τi+1 be
the S query for the i + 1st verifier message in τ (note that τi+1 extends τi).
T (1) then sets hi+1 to be the prefix of h̃ up to when S makes the query τi.
Note that the invariant holds since by definition h̃ is a successful completion
of hi+1.

Note that in Step 2 of the final (kth) iteration, T (1) simply outputs h̃ as a full
transcript of S (there is no τk+1 to fix). Due to the invariant, T (1) always produce
a transcript of S where S outputs an accepting transcript τ , whose incremental
prefixes τ1, . . . , τk were forwarded by T to the external verifier.

Hybrid 2. Our second hybrid, T (2), describes a way to sample successful com-
pletions in Step 2 of each iteration (Step 1 will be replaced with the external
verifier and is left alone for now). In Step 2, T (2) randomly completes the given
partial execution (h̃i) up to 300k2nd times, until a successful completion is found.
If none of the completions are successful, T (2) aborts. Note that conditioned on
T (2) not aborting, the output distribution of T (2) is identical to T (1).

To show that T (2) aborts with small probability, suppose for now that T (2)

is allowed to sample an unbounded number of completions. Let us bound the
expected number of completions that are needed to have a successful one. In the
following analysis we distinguish between two probability spaces: PrS [·] is used
to measure probabilities over a single execution of S. On the other hand, PrT [·] is
used to measure probabilities over an execution of T (2) (with unbounded number
of completions) which includes rewinding and executing S multiple times.

Let Hi and H̃i be the set of possible partial transcripts of S that is given
to T (2) in Step 1 and Step 2 of the ith iteration, respectively. Given h ∈ Hi

(or H̃i), let PrS [h] denote the probability that a transcript of S has prefix h,
and let PrT [h] denote the probability that T (2) is given h in the ith iteration;
similarly, PrS [· | h] and PrT [· | h] are probabilities conditioned on these events
occurring. Let Ah be the event (over the S probability space) that a transcript
of S has prefix h and is a successful completion of h; as a special case, A = A∅

is just the event that S outputs an accepting transcript. Also let Ri be the
random variable (over the T (2) probability space) that denotes the number of
completions performed by T (2) in step 2 of iteration i.
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Lemma 3. ET [Ri] ≤ 3nd.

Proof. First expand ET [Ri] by conditioning on the transcript h fixed in Step 1:

ET [Ri] =
∑

h∈H̃i

PrT [h]ET [Ri | h] (1)

Recall that in Step 2, T (2) samples random completions of h until a successful
completion is found. Therefore

ET [Ri | h] =
1

PrS [Ah | h]
⇒ ET [Ri] =

∑

h∈H̃i

PrT [h]
1

PrS [Ah | h]
(2)

We now state a claim and give its proof in the full version of this paper.

Claim 4. Let h ∈ H̃i. PrT [h] PrS [A] = PrS [Ah].

Intuitively, the claim says that the probability of T (2) fixing h is proportional
to the probability of successfully completing h (PrS [A], the probability that S
produces an accepting transcript, is the normalizing factor). This can be shown
by a counting argument. By expanding the RHS of Claim 4 and rearranging
terms, we have

PrT [h] PrS [A] = PrS [Ah] = PrS [h] PrS [Ah | h]

⇒ PrT [h]
1

PrS [Ah | h]
= PrS [h]

1
PrS [A]

≤ 3 PrS [h]

since we assumed PrS [A] ≥ 1/3. Substituting this back into (2) gives

ET [Ri] ≤ 3
∑

h∈H̃i

PrS [h] (3)

finally, we may breakup the set H̃i based on the length of h which ranges from 1
to nd (where length is the number of S-queries). Since each transcript of S has
exactly one length � prefix:

ET [Ri] ≤ 3
nd∑

�=1

∑

h∈H̃i,|h|=�

PrS [h] ≤ 3
nd∑

�=1

1 = 3nd

��
Now we can show that 300k2nd random completions are enough for T (2).

Lemma 5. T (2) aborts with probability at most 1/5.

Proof. Since ET [Ri] =
∑

h̃i
PrT [h̃i]ET [Ri | h̃i] = ET [ET [Ri | h̃i]] ≤ 3nd, the

Markov inequality states that the probability of T (2) fixing an h̃i such that
ET [Ri | h̃i] ≥ 30knd is at most 1/(10k). For each “good” h̃i where ET [Ri | h̃i] <
30knd, we apply the Markov inequality again to obtain PrT [Ri ≥ 300k2nd |
hi] ≤ 1/(10k). Using the union bound we see that in any iteration, T (2) aborts
in Step 1 with probability at most 1/(5k). A final union bound over k iterations
of Step 2 shows that T (2) aborts overall with probability at most 1/5. ��



On the Composition of Public-Coin Zero-Knowledge Protocols 171

Hybrid 3. Our third and final hybrid T (3) = T differs from T (2) in Step 1 of
each iteration. Recall that some session j0 is chosen randomly as the forwarding
session. Instead of generating v

(j0)
i in Step 1, T (3) asks the external honest verifier

V for a verifier message. Because Π is public-coin, T (3) can continue to complete
partial transcripts of S even if session j0 is forwarded to V externally.

Given transcript hi = [t1, s1, . . . , s� = τi] in iteration i, T (3) forwards session
j0 of τi to V , and uses the response from V as v

(j0)
i in Step 2. Suppose for

now that T (3) does not abort and terminates successfully. Then S would have
generated an accepting transcript τ of Πm. Since τ1, . . . , τk are prefixes of τ ,
session j0 of τ would be an accepting transcript of Π consisting of forwarded
prover messages and responses from V . This breaks the soundness of Π .

Therefore, it remains to show that T (3) is successful with probability more
than 1/2. We will use Raz’s lemma [Raz98] in analogy with [IJK07, HPPW08]
to show that v

(j0)
i as generated by T (1) and T (2) is actually very close to the

uniformly random messages generated by the honest verifier V . First we cite
Raz’s lemma as it appears in [Hol07, Lemma 5]:

Lemma 6. Let {Uj}j∈[m] be independent random variables on U with probability
distribution PUj . Let W be an event in Um and Pr[W ] be measured according to
the joint probability distribution ΠjPUj . Then

m∑

j=1

Δ(Uj |W, Uj) ≤
√

m log
(

1
Pr[W ]

)

where Δ is the statistical distance between distributions, and Uj |W is the jth

component of an element in Um chosen based on the joint probability distribution
ΠjPUj , conditioned on W .

In other words, let {Uj}j be independent random variables, and let W be an
event over ΠjUj. If W occurs with high probability and there are many Uj ,
then on average over j, sampling Uj conditioned on W does not differ much
from simply sampling Uj. Lemma 6 allows us the bound the change in success
probability when T (3) forwards messages from a random session to V .

Lemma 7. T (3) fails with probability at most 3/10 + O(1/ log n).

Proof. We first construct a series of finer hybrids, T1, . . . , Tk+1, where Ti pro-
ceeds as T (2) until the start of iteration i (no forwarding), and continues as T (3)

afterwards (with forwarding)1. Observe that T1 = T (3) and Tk+1 = T (2).
Consider two neighboring hybrids, Ti and Ti+1, which differ only in iteration

i. Let h be the partial execution given in iteration i. For j ∈ [m], let Uj be
the random variable that denotes all the additional session j messages sent by
T to randomly complete h, i.e., {Uj}j are independent and uniformly random.
Let Wh be the event that the random messages U1, . . . , Um together produced
1 This still makes sense since Π is a public-coin protocol; the outside verifier can

directly generate a verifier response for any round of the protocol.
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a successful completion of h. By definition, the distribution of v
(j0)
i produced

by Ti+1 (i.e., T (2)) is just the first message of Uj0 |Wh. On the other hand, the
distribution of v

(j0)
i produced by Ti (i.e., T (3)) is just the uniform distribution,

just like the first message of Uj .
Since Ti−1 and Ti only differ in how v

(j)
i is produced, their difference in success

probability can be bounded by the statistical difference in the distributions of
v
(j)
i . This is in turn bounded by:

∑

h∈Hi

m∑

j=1

PrT [h] Pr[j0 = j]Δ(Uj |Wh, Uj)=
∑

h∈Hi

PrT [h]

⎛

⎝1
m

m∑

j=1

Δ(Uj |Wh, Uj)

⎞

⎠(*)

Lemma 6 states that for any event W ,

1
m

m∑

j=1

Δ(Uj |W, Uj) ≤
√

1
m

log
(

1
Pr[W ]

)

Observe that before iteration i, Ti and Ti+1 are identical to T (2). When T (2)

does not abort, T (2) is identical to T (1). In that case, Lemma 3 along with
the Markov inequality implies that except with probability 1/(10k), T (2) fixes a
“good” h with ET [Ri | h] ≤ 30knd, so that

Pr[Wh] = PrS [Ah | h] =
1

ET [Ri | h]
≥ 1

30knd

We can now break the sum in (*) into two parts. Observe that

∑

bad h ∈ Hi

PrT [h]

⎛

⎝ 1
m

m∑

j=1

Δ(Uj |Wh, Uj)

⎞

⎠ ≤
∑

bad h ∈ Hi

PrT [h] ≤ 1
10k

since statistical distances are bounded by 1, and

∑

good h ∈ Hi

PrT [h]

⎛

⎝ 1
m

m∑

j=1

Δ(Uj |Wh, Uj)

⎞

⎠

≤
∑

good h ∈ Hi

PrT [h]

√
1
m

log(30knd) ≤
√

1
m

log(30knd)

since
∑

h∈Hi
PrT [h] = 1. Together, they show that (*) is at most

1
10k

+

√
1
m

log (30knd) =
1

10k
+ O

(
1

k log n

)

since m ≥ (k2 log k) log2 n. Summing up over the hybrids, and recalling that T (2)

fails with probability at most 1/5 (Lemma 5), T (3) fails with probability at most

1
5

+ k

(
1

10k
+ O

(
1

k log n

))
≤ 3

10
+ O

(
1

log n

)

��
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Lemma 7 shows that T is successful with probability > 1/2, and completes the
proof of Theorem 2. ��

4 Bounded Concurrent Zero-Knowledge

In this section we give a family of public-coin proofs for NP, BoundedConcZK,
parametrized by k, assuming the existence of one-way functions. The proof with
parameter k has 2k3 + 4 rounds, and is k-bounded concurrent zero-knowledge
whenever k = ω(log n) where n is the input size.

4.1 A Bounded Concurrent Public-Coin ZK Protocol

Our construction of BoundedConcZK is similar in spirit to the concurrent
zero-knowledge protocol of [RK99]. Given a language L ∈ NP and a parameter
k, we construct a two stage public-coin proof 〈P, V 〉 as follows. In stage one,
2k3 rounds of messages are exchanged where in each round, the prover gives
a statistically binding commitment ([Nao91, HILL99]) of a random bit pi, and
the verifier responds with a random bit vi; we call pi = vi a correct guess. In
stage two, 〈P, V 〉 runs a 4-round public-coin witness indistinguishable proof of
the modified NP statement “either x ∈ L or that pi = vi for k3 + k2/2 values of
i”, where x is the problem instance. This can be done, for example, by k parallel
repetitions of the GMW 3-coloring protocol [GMW91]. The verifier accepts if
the prover is successful with the stage two proof.

Protocol BoundedConcZK

Common Input: An instance x of a language L ∈ NP and a parameter k.
Stage One: For i from 1 to 2k3:

P → V : Commit to a random bit pi.
V → P : Reply with a random bit vi.

Stage Two: Run k parallel repetitions of the GMW 3-coloring protocol for
the NP statement:

(
there exists distinct i1, . . . , ik3+ 1

2 k2 s.t. pij = vij for all j
)
∨ (x ∈ L)

Fig. 1. Our public-coin black-box bounded concurrent zero-knowledge protocol

We set the round complexity of BoundedConcZK to O(k3) for the following
two reasons. First, by the Chernoff bound, we expect that no adversarial prover
can have more than k3 + O(

√
k3) correct guesses. Hence BoundedConcZK is

sound. On the other hand, a zero-knowledge simulator can repeatedly rewind
the verifier until it gets a correct guess. Intuitively (and shown formally later),
in each round of stage one, the simulator can set one extra pi = vi for some
session, in addition to “natural luck” (that gives correct guesses for half of the
sessions). Since the number of sessions is bounded by k, the simulator is able
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to have k3 + O(k3/k) = k3 + O(k2) correct guesses per session. This provides
the simulator with a trapdoor to simulate stage two of the protocol, and hence
BoundedConcZK is bounded concurrent zero-knowledge. We remark that k3

was chosen for the sake of simplicity and is not optimized. The formal proof of
completeness and soundness can be found in the full version of this paper.

4.2 Black-Box Bounded Concurrent Zero-Knowledge

We construct a black box simulator S such that given a malicious verifier, V ∗,
SV∗

generates the view of V ∗ in BoundedConcZK, provided that the number
of concurrent sessions m satisfies m ≤ k. The goal of S is to obtain as many
correct guesses as possible by rewinding V ∗. Towards that goal, S employs a
simple greedy strategy to incrementally generate a partial view of V ∗. Whenever
V ∗ sends S a first stage message vi, S checks if it had guessed correctly when
committing to pi. If so, S lengthens the partial view of V ∗ to include this correct
guess. Otherwise, S rewinds V ∗ back to the previously generated partial view.
This “incremental strategy” is somewhat reminiscent of [Lin03], but since our
protocol is public-coin, the actual analysis is quite different.

We use superscripts to distinguish messages from different sessions. To pre-
vent S from focusing too much on one particular session, we keep m counters,
c1, . . . , cm, to record how much “work” has been done in each session. In general,
S proceeds as follows to incrementally fix the output (originally the empty view
is fixed):

1. S commits to a fresh random bit for each stage one prover message.
2. For each stage two proof, S aborts if in this session, pi = vi for less than

k3 + k2/2 values of i. Otherwise, S uses this as a witness to complete the
stage two proof.

3. If S receives a message vj
i (from session j) and cj < 2k2, it checks if the

commitment to pj
i is part of the fixed output. If yes, then nothing can be

done, so S simply continues. Otherwise, S checks if pj
i = vj

i . If yes, S takes
the opportunity to fix the execution up to message vj

i as part of the output
and increments cj ; in this case we say vj

i is rigged. If pj
i �= vj

i , then S rewinds
V ∗ to start a fresh continuation from the currently fixed output.

4. If S has performed k − 1 rewinds without rigging a message, and on the kth

try again receives vj
i �= pj

i where pj
i is not fixed and cj < 2k2, S simply gives

up and pretend to rig vj
i anyway (albeit incorrectly). That is, S fixes the

output up to message vj
i and increments cj .

Claim 8. S is a k-bounded black-box zero-knowledge simulator when k ∈ ω(log n).

Proof (sketch). We give a proof sketch here, and defer the full proof to the full
version of this paper. Suppose for now that all pi and vi are independent and
uniformly random (intuitively because the prover commitments are computa-
tionally hiding). We claim that except with negligible probability, S will have
k3 + k2/2 correct guesses per session. If so, S can complete the stage two proofs
(using the witness indistinguishable property) and generate the view of V ∗.
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To show our claim, observe that whenever a message is rigged, at most one
commitment from each session is fixed to be part of the output, because before
a second commitment appears in the same session, S would have tried to rig
the first commitment first (unless this session already has 2k2 messages rigged).
Since S rigs at most 2k2 messages from each session, and there are 2k3 messages
and at most k sessions, every session will actually have 2k2 messages rigged.

Since all pi and vi are independent, a rigged message is always a correct guess
except with probability 2−k. Since there are m(k3+2k2) ≤ 2k4 messages in total,
the union bound says that except with 2k42−k probability, all rigged messages
are correct guesses. Next, for the 2k3−2k2 messages that are not rigged, we apply
the Chernoff bound to see that except with probability e−k/4, we should have at
least (k3 − k2) − k2/2 correct guesses. Thus except with negligible probability,
we have a total of k3 + k2/2 correct guesses as desired. ��
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