

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2011 Society for Industrial and Applied Mathematics
Vol. 40, No. 6, pp. 1529–1553

ON THE COMPOSITION OF PUBLIC-COIN ZERO-KNOWLEDGE
PROTOCOLS∗

RAFAEL PASS† , WEI-LUNG DUSTIN TSENG† , AND DOUGLAS WIKSTRÖM‡

Abstract. We show that only languages in BPP have public-coin black-box zero-knowledge
protocols that are secure under an unbounded (polynomial) number of parallel repetitions. This
result holds both in the plain model (without any setup) and in the bare public key model (where
the prover and the verifier have registered public keys). We complement this result by constructing
a public-coin black-box zero-knowledge proof based on one-way functions that remains secure under
any a priori bounded number of concurrent executions. A key step (of independent interest) in
the analysis of our lower bound shows that any public-coin protocol, when repeated sufficiently in
parallel, satisfies a notion of “resettable soundness” if the verifier picks its random coins using a
pseudorandom function.

Key words. public-coin interactive protocols, zero-knowledge, parallel repetition

AMS subject classification. 68Q17

DOI. 10.1137/100811465

1. Introduction. Zero-knowledge (ZK) interactive protocols [22] are paradoxi-
cal constructs that allow one player P (called the prover) to convince another player
V (called the verifier) of the validity of a mathematical statement x ∈ L, while provid-
ing zero additional knowledge to the verifier. This is formalized by requiring that the
view of an adversarial verifier, V ∗, during an interaction with the prover, P , can be
efficiently reconstructed by a so-called simulator, S. A particularly attractive notion
of ZK, called black-box ZK [19], requires the existence of a universal simulator S that
can generate the view of any V ∗ when given black-box access to V ∗.

A fundamental question regarding ZK protocols is whether their composition
remains ZK. Three basic notions of compositions are sequential composition [22, 19],
parallel composition [15, 17], and concurrent composition [15, 13]. In a sequential
composition, the players sequentially run many instances of a ZK protocol, one after
the other. In a parallel composition, the instances instead proceed in parallel, at the
same pace. Finally, in a concurrent composition, messages from different instances of
the protocol may be arbitrarily interleaved.

While the definition of ZK is closed under sequential composition [19], this no
longer holds for parallel composition [17] (and thus not for concurrent composition
either). However, there are ZK protocols for all of NP that have been demonstrated
to be secure under both parallel and concurrent composition. For the case of parallel
composition, constant-round protocols are known [21, 15, 16]. For the case of con-
current composition, a series of work [37, 31, 35] show feasibility of Õ(log n)-round
black-box ZK protocols; furthermore, this round complexity is essentially optimal

∗Received by the editors October 12, 2010; accepted for publication (in revised form) June 25,
2011; published electronically December 8, 2011. A preliminary version of this work appeared in
CRYPTO ’09.

http://www.siam.org/journals/sicomp/40-6/81146.html
†Department of Computer Science, Cornell University, Ithaca, NY 14853 (rafael@cs.cornell.edu,

wdtseng@cs.cornell.edu). The first author’s work was supported in part by a Microsoft New Fac-
ulty Fellowship, NSF CAREER award CCF-0746990, AFOSR award FA9550-08-1-0197, BSF grant
2006317, and I3P grant 2006CS-001-0000001-02. The second author’s work was supported in part
by an NSF Graduate Fellowship.

‡Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden (dog@csc.kth.se).

1529

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1530 R. PASS, W.-L. D. TSENG, AND D. WIKSTRÖM

with respect to black-box ZK [30, 38, 10].
Whereas the original ZK protocols of [22, 18, 8] are public-coin—i.e., the veri-

fier’s messages are its random coin tosses—all of the aforementioned parallel or con-
current ZK protocols use private coins. Indeed, in their seminal paper, Goldreich
and Krawczyk [17] show that only languages in BPP have constant-round public-
coin (stand-alone) black-box ZK protocols with negligible soundness error, let alone
the question of parallel composition. In particular, their results imply that (unless
NP ⊆ BPP) the constant-round ZK protocols of, e.g., [18, 8] with constant sound-
ness error cannot be black-box ZK under parallel repetition (as this would yield a
constant-round black-box ZK protocol with negligible soundness error).

A natural question is whether the constant-round restriction imposed by the [17]
result is necessary. Namely,

Is there a (possibly super-constant round) public-coin black-box ZK
protocol that is secure under parallel (or even concurrent) composi-
tion?

1.1. Our results. In this work, we provide a negative answer to the above
question. Namely, we show that only languages in BPP have public-coin black-box ZK
protocols that remain secure under parallel (and thus also concurrent) composition,
regardless of round complexity.

Theorem (informal). If L has a public-coin argument that is black-box ZK and
secure under parallel composition, then L ∈ BPP.

In fact, our result establishes that any public-coin, black-box ZK protocol for
a nontrivial language that remains secure under m parallel executions must have
Ω̃(m1/2) rounds.

On the positive side we show that every language in NP has a public-coin black-
box ZK proof that remains secure under an a priori bounded number of concurrent
(and thus parallel) executions.

Theorem (informal). Assume the existence of one-way functions. Then, for
every polynomial m, there exists an O(m3)-round public-coin black-box ZK for NP
that is secure under m-bounded concurrent composition.

An earlier result of Barak [5] also constructs public-coin bounded-concurrent ZK
protocols that additionally have constant rounds. However, Barak’s construction is
an argument (rather than a proof), assumes collision-resistant hash function, and uses
non-black-box simulation.

Finally, we briefly turn to compositions in models with trusted setup. Canetti
et al. [9] show that in the bare public key (BPK) model, where each player has a
registered public key, constant-round black-box concurrent ZK protocols exist for all
of NP (whereas in the plain model without set-up, as mentioned earlier, Ω̃(logn)
rounds are necessary for nontrivial languages [10]). We show that for the case of
public-coin protocols, the BPK setup does not help with composition.

Theorem (informal). If L has a public-coin argument in the BPK model that is
black-box parallel ZK, then L ∈ BPP.

We remark that our lower bound does not extend to more elaborate public key
setups. For example, Damg̊ard [12] shows that a public key infrastructure with a
certification authority can be used to construct constant-round public-coin arguments
that are black-box concurrent ZK.

As we will see, some of the intermediate ideas in our work are closely related
to the notion of resettable soundness [2]. Very informally, we establish that parallel
repetition of public-coin protocols not only reduces the soundness error [34, 25], but
also qualitatively strengthens the soundness—roughly speaking, the new protocols will

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON THE COMPOSITION OF PUBLIC-COIN ZK PROTOCOLS 1531

be secure under a “resetting” attack.

1.2. Techniques. To describe our techniques, first recall the Goldreich–Krawczyk
[17] lower bound that only languages in BPP have O(1)-round public-coin black-box
ZK protocols. Let Π = 〈P, V 〉 be a public-coin black-box ZK protocol for a language
L, and consider an adversarial verifier V ∗ that, instead of picking its messages at
random, computes them by applying a hash function to the current transcript. It is
shown in [17] that any black-box simulator S, together with V ∗, can decide L: on
input x, simply run SV ∗

(x) and accept if S outputs an accepting view of V ∗. Using
the ZK property of Π, if x ∈ L, then SV ∗

(x) will output an accepting view of V ∗

(because an honest prover would convince V ∗). The crux of their proof is then to
show that if x /∈ L, then SV ∗

(x) will not output an accepting view. If S does not
rewind V ∗, then this would directly follow from the soundness of Π. However, S may
rewind V ∗, and may only convince V ∗ in one of its rewinding “threads.” Nonetheless,
[17] manages to show that if S, by rewinding or “resetting” V ∗, manages to trick V ∗

into accepting x /∈ L, then we can construct a machine T (based on S) that manages
to convince an external verifier V (without rewinding V), contradicting the soundness
of the protocol. In other words, they show that any O(1)-round public-coin protocol
is sound under a resetting attack [9, 2], where the statement is fixed and the prover
(simulator) running time is bounded by a fixed polynomial. Analogously, to prove our
results, we show that any public-coin interactive protocol, repeated sufficiently many
times in parallel (and again letting the verifier pick its messages by applying a hash
function to the transcript), is sound under a resetting attack.

Previous reductions. The work of [17], as well as all subsequent black-box lower
bounds (e.g., [30, 38, 10, 4, 29, 23]) relies on the following approach for constructing the
stand-alone (nonresetting) prover T , given the rewinding simulator S. T incorporates
S and internally emulates an execution of S with an internally emulated verifier
(which of course can be rewound). During the emulation, T appropriately picks some
messages sent by S to the internal verifier, and forwards them to an external verifier
(and also forwards back the responses). The crux of the various lower bounds lies in
choosing the externally forwarded messages so that the external verifier is convinced.
The difficulty of this task stems from the fact that, at the time of deciding whether to
externally forward a message or not, T does not yet know if S will eventually choose
this message to “continue” its simulation (and use it as part of the output view), or
treat this message simply as a “rewinding” (used to collect information).

For the case of constant-round protocols, [17] shows that externally forwarding a
random selection of messages works; if the protocol has d rounds, then this random
selection is “correct” with probability at least 1/qd, where q is the number of queries
made by the simulator to the verifier. This approach of simply running the simulator
S “straight-line” seems hard to extend to protocols with a polynomial number of
rounds; the number of possible choices for messages to forward to the external verifier
becomes too large.1

Our reduction. In our work, we are given a ZK protocol Π = 〈P, V 〉 for a
language L that is secure under parallel repetitions. Building on the same framework

1For the case of sublogarithmic-round protocols, Canetti et al. [10] show that when given the
freedom to construct a concurrent adversarial verifier that can schedule messages in an arbitrary
way, there exists some particular scheduling which makes it easy to identify appropriate messages to
forward externally. Their work has the advantage that it applies to private-coin ZK protocols, but is
not applicable in our setting due to the use of concurrent adversarial verifiers and being limited to
sublogarithmic-round protocols. Incidentally, they also run the simulator S in a straight-line manner.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1532 R. PASS, W.-L. D. TSENG, AND D. WIKSTRÖM

as [17], we let V m∗ be a verifier that starts m parallel sessions and generates its
messages using hash functions, let S be the black-box ZK simulator, and use SV m∗

to decide L. As we will see, we choose the number of parallel sessions, m, as a
(polynomial) function of the number of rounds in Π. Following the same argument, it
is enough to show that on input x /∈ L, S cannot produce an accepting view of V m∗.
Because we may view S as a rewinding/resetting prover, it is equivalent to show that
protocol 〈Pm, V m∗〉 is sound under resetting attacks. In the rest of this section we
omit the common input x.

The crux of our work, then, is the following reduction: Given S, a resetting cheat-
ing prover of the parallelized protocol that convinces V m∗, we show how to construct
T , a straight-line (nonrewinding) cheating prover of the original single session protocol
that convinces V ; this contradicts the soundness of protocol Π. To further clarify the
difference between S and T , let us compare the transcripts of an interaction between
T and V , and of an interaction between S and V m∗. A transcript of the interaction
between T and V is simply a transcript of a single session of the protocol Π; each
query from T to V is simply a prefix of the transcript that extends the previous query
by one round of the protocol. A transcript of the interaction between S and V m∗ can
be much longer due to rewinds; furthermore, each query from S to V m∗ is a prefix of
a transcript of the parallelized protocol.

On a high level, T internally runs S with an internally simulated V m∗, and ex-
ternally interacts with an external verifier V . In order to take advantage of S to
convince the external verifier V , T “embeds” the interaction with V into the interac-
tion between S and V m∗. This “embedding” is not straightforward for the following
two reasons. First, just as in [17], the external verifier V cannot be reset, whereas
S may reset V m∗ many times (i.e., S can make many more queries than the number
of rounds of the protocol); as we will explain shortly, T carefully picks a subset of
the rewindings to forward externally. Second, recall that V is a single session verifier,
whereas V m∗ is an m-session parallel verifier (looking forward, the reason we let V
be a single session verifier is to enable T to appropriately pick which rewindings to
forward). Therefore, T embeds the interaction with V only into a single session i
of the m parallel sessions in the interaction between S and V m∗; in fact, session i is
picked uniformly random at the beginning and fixed throughout the execution of the
reduction (looking forward again, the fact that session i is picked uniformly will be
important for our analysis).

To summarize, T externally forwards only a subset of the S queries, and forwards
only component i (corresponding to session i) of those queries. T then forwards back
external responses from V as component i of the same subset of V m∗ responses; all
other V m∗ responses are picked uniformly at random by T internally (this includes
all except component i in the responses to the selected subset of S queries, and all
components of the remaining responses). Here we rely on the fact that Π is public-coin
in order for T to generate V m∗ responses in the forwarded session, despite the fact that
other verifier responses in the forwarded session may be externally generated by V .

Recall that the difficulty of the reduction comes from choosing which S queries to
forward externally. As remarked earlier, the approach of running S in a straight-line
manner seems unlikely to work for polynomial-round protocols. Instead, we let T
rewind S (while S itself believes it is rewinding the internally simulated V m∗). Our
strategy is twofold. First, T externally forwards only (component i of) queries that
have a good chance of being included by S in its output (by assumption, S outputs
a sequence of queries that convinces V m∗); because the protocol is public-coin, we
can estimate this chance by doing internal test runs. Second, once we have forwarded

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON THE COMPOSITION OF PUBLIC-COIN ZK PROTOCOLS 1533

(component i of) a query, we “force” S to include the query in its output by repeatedly
rewinding S while repicking the internally generated V m∗ messages (thus skewing the
distribution of the internally generated Vm∗ messages).

To analyze T , we need to show that S would successfully convince the internally
simulated V m∗, even though T has embedded the external interaction with V into the
interaction between S and V m∗. Note that the success probability of S depends only
on two inputs: the internally simulated V m∗ messages, and the embedded external
V messages (these can be found only in the forwarded session i). These two types
of messages differ in that the internally simulated V m∗ messages are picked by T ,
through the help of test runs, to be “good,” while the external V messages are just
uniform samples. We first show that if T is also allowed to rewind the external verifier
V (which we cannot), ensuring that internal V m∗ messages and external V responses
are both “good,” then T need only perform polynomially many rewinds in order for S
to successfully convince V m∗. Next, to remove the assumption of rewinding V , we use
a probabilistic lemma due to Raz [36], originally used to prove that parallel repetition
reduces the soundness error in two-prover games. We show that if there are enough
parallel sessions, then not being able to pick “good” verifier responses in just one ran-
dom session introduces only a small statistical error; since session i is picked uniformly
at random at the beginning, this suffices for bounding the success probability of T .

ZK lower bounds and soundness amplification. As an independent contri-
bution, we believe that our techniques elucidate an intriguing (and useful) connection
between lower bounds for black-box ZK and feasibility results for soundness/hardness
amplification. Our techniques share many similarities with works on soundness ampli-
fication under parallel repetitions, such as [7, 34, 27], and especially [25]; in particular,
our use of Raz’s lemma is similar to its use in [25]. Whereas those works show how to
transform a parallel prover with “small” success probability into a stand-alone prover
with “high” success probability, we have adapted their techniques to transform a
rewinding/resetting parallel prover into a nonrewinding stand-alone prover.

As a further example of this connection, we extend our lower bound to the BPK
model by relying again on techniques developed for soundness amplification. In the
BPK model, we have the additional problem that the external verifier can decide
whether to accept or reject based on its secret key, which T does not know. Conse-
quently, T cannot determine whether the external verifier would accept or reject when
doing test runs, which is crucial for deciding which messages to forward externally.
By relying on the “trust-halving” technique from [28, 7], and its refinement in [25],
we show how T can make “educated guesses” on whether the external verifier accepts
or not.

Extension to resettable soundness. More generally, the above techniques
show how to transform a public-coin protocol so that it is sound under a weak form
of resetting attack: where the statement is fixed, and the number of resets is a priori
bounded. Simply take a public-coin protocol, sufficiently repeat it in parallel, and let
the verifier generate its messages by applying hash functions to the current transcript.
If the verifier uses pseudorandom functions instead of hash functions as in [2], then we
may remove the a priori bound on the number of resets. Additionally, we show that
if the original protocol is also a proof of knowledge [22, 15, 3], then the parallelized
version satisfies the original (strongest) notion of resettable soundness from [2], where
the adversarial prover can also change the statement between resets. A similar type
of result for O(1)-round public-coin proofs of knowledge was shown in [2].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1534 R. PASS, W.-L. D. TSENG, AND D. WIKSTRÖM

Outline. We give some preliminaries in section 2 and jump into our impossibility
results in section 3 (standard model) and section 4 (bare public key model). We then
present our public-coin bounded-concurrent ZK protocol in section 5. Details of our
application to resettable soundness can be found in section 6.

2. Preliminaries. We assume familiarity with indistinguishability, interactive
proofs, and commitments. |x| denotes the length of a (bit) string x, and [n] denotes
the set {1, . . . , n}.

2.1. Interactive protocols. An interactive protocol Π is a pair of interactive
Turing machines, 〈P, V 〉, where V is probabilistic polynomial time (PPT). P is called
the prover, while V is called the verifier. 〈P, V 〉 (x) denotes the random variable (over
the randomness of P and V) representing V ’s output at the end of the interaction on
common input x. If, additionally, V receives auxiliary input z, we write 〈P (x), V (x, z)〉
to denote V ’s output. We assume without loss of generality that Π starts with a
verifier message and ends with a prover message, and say Π has k rounds if the prover
and verifier each sends k messages alternately. The notation 〈v1, p1, . . .〉 specifies a
full or partial transcript of Π, where v denotes verifier messages and p denotes prover
messages. Π is public-coin if the verifier messages are just disjoint segments of V ’s
random tape.

We may repeat an interactive proof in parallel. Let Πm = 〈Pm, V m〉 be Π re-
peated in m parallel sessions ; that is, each prover and verifier message in Πm is just
concatenation of m copies of the corresponding message in Π. V m completes Π in
all m sessions (or aborts in all sessions), and accepts if and only if all m sessions are
accepted by V .

2.2. ZK protocols. In the setting of ZK, we consider an adversarial verifier
that attempts to “gain knowledge” by interacting with an honest prover. An m-
session concurrent adversarial verifier V ∗ is a PPT machine that, on common input
x and auxiliary input z, interacts with m(|x|) independent copies of P concurrently
(called sessions); the traditional stand-alone adversarial verifier is simply a 1-session
adversarial verifier. There are no restrictions on how V ∗ schedules the messages among
the different sessions, and V ∗ may choose to abort some sessions but not others. Let
ViewP

V ∗(x, z) be the random variable that denotes the view of V ∗ in an interaction
with P (this includes the random coins of V ∗ and the messages received by V ∗). Note
that for public-coin protocols, the view of an honest verifier is just the transcript of
the interaction.

A black-box simulator S is a PPT machine that is given black-box access to V ∗

(written as S = SV∗
). Formally, S fixes the random coins r of V ∗ a priori, and S is al-

lowed to specify a valid partial transcript τ = 〈v1, p1, . . . , pi〉 of 〈P, V ∗
r 〉, and query V ∗

r

for the next verifier message vi+1. Here, τ is valid if it is consistent with V ∗
r , i.e., each

verifier message vj in τ is what V ∗
r would have responded given the previous prover

messages p1, . . . , pj−1 and the fixed random tape r. Note that S is allowed to “rewind”
V ∗ by querying V ∗ with different partial transcripts that share a common prefix.

Intuitively, an interactive proof is ZK if the view of any (stand-alone) adversarial
verifier V ∗ can be generated by a simulator. The protocol is concurrent ZK if the view
of any concurrent adversarial verifier can be generated as well. The formal definitions
follow.

Definition 1 (black-box ZK [22, 19]). Let Π = 〈P, V 〉 be an interactive proof (or
argument) for a language L. Π is black-box ZK if there exists a black-box simulator S
such that for every common input x, auxiliary input z and every (stand-alone) adver-
sary V ∗, SV∗(x,z)(x) runs in time polynomial in |x|, and the following two ensembles

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON THE COMPOSITION OF PUBLIC-COIN ZK PROTOCOLS 1535

are computationally indistinguishable as a function of |x|:

{ViewP
V ∗(x, z)}x∈L,z∈{0,1}∗ ≈ {SV∗(x,z)(x)}x∈L,z∈{0,1}∗ .

Note that because we consider black-box simulation, S does not get access to any
“internals” of V ∗ such as its auxiliary input z.

Definition 2 (black-box concurrent ZK [13]). Let Π = 〈P, V 〉 be an interactive
proof (or argument) for a language L. Π is black-box concurrent ZK if for every poly-
nomial m, there exists a black-box simulator Sm such that for every common input

x, auxiliary input z, and every m-session concurrent adversary V ∗, SV∗(x,z)
m (x) runs

in time polynomial in |x|, and the following ensembles are computationally indistin-
guishable as a function of |x|:

{ViewP
V ∗(x, z)}x∈L,z∈{0,1}∗ ≈ {SV∗(x,z)

m (x)}x∈L,z∈{0,1}∗ .

We also consider a bounded version of concurrent ZK where the order of quanti-
fiers are reversed [5].

Definition 3 (black-box bounded concurrent ZK). Let Π = 〈P, V 〉 be an inter-
active proof (or argument) for a language L and let m be a polynomial. Π is black-box
m-bounded concurrent ZK if there exists a black-box simulator S such that for every
common input x, auxiliary input z, and every m-session concurrent adversary V ∗,
SV∗(x,z)(x) runs in time polynomial in |x|. Furthermore, the following ensembles are
computationally indistinguishable as a function of |x|:

{ViewP
V ∗(x, z)}x∈L,z∈{0,1}∗ ≈ {SV∗(x,z)(x)}x∈L,z∈{0,1}∗ .

2.3. Resettable soundness. Informally, given a protocol Π = 〈P, V 〉, a cheat-
ing prover P ∗ performing a resetting attack has the power to reset (i.e., rewind) the
honest resettable verifier, resulting in multiple sessions of Π. Furthermore, in all these
sessions, V uses the same random tape that is uniformly chosen before the attack.
For example, a black-box ZK simulator is a valid resetting attack. We can consider
two different models on how the input instances are chosen for each session. In the
model of resettable soundness as defined by [2], P ∗ can adaptively choose different
input instances for each session. We also consider the model where P ∗ is given an
input instance that must be used in all sessions (similar to the definition of resettable
ZK by [9]); we call this fixed-input resettable soundness.

Definition 4 (resetting attack [2, Definition 3.1]). A resetting attack of a
cheating prover P ∗ on a resettable verifier V is defined by the following two-step
random process, indexed by a security parameter n:

1. Uniformly select and fix t = poly(n) random tapes, denoted r1, . . . , rt, for V ,
resulting in deterministic strategies Vrj . When an input x ∈ {0, 1}n is also chosen,
we call Vrj (x) an incarnation of V (i.e., V with its randomness set to rj and common
input set fixed to x).

2. On input 1n, P ∗ is allowed to interact with poly(n) incarnations of V . P ∗

chooses each incarnation (adaptively) by choosing x ∈ {0, 1}n and j ∈ [t] (these
choices may depend on P ∗’s previous interactions with other incarnations of V).
P ∗ may freely switch among interactions with different incarnations of V , and may
rewind/reset each incarnation of V .

We further define two variants of resetting attacks. In a fixed-input resetting at-
tack, the cheating prover P ∗ is given a fixed input instance x to use in all sessions. In
a q-query resetting attack, the cheating prover P ∗ is allowed q queries total for verifier
messages (summed over all interactions among the different incarnations of V).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1536 R. PASS, W.-L. D. TSENG, AND D. WIKSTRÖM

Remark. We have chosen the “interleaving” attack model instead of the “nonin-
terleaving” attack model, where P ∗ must finish its current interaction with an incar-
nation of V completely, before starting another interaction (see discussions in [9, 2]).
The two models are equivalent as shown in [9]. We choose the “interleaving” model
because later we will make the assumption that P ∗ never makes the same query to V
twice. The notion of a q-query resetting attack is also more natural in the “interleav-
ing” model.

Definition 5 (resettable soundness [2, Definition 3.1]). Let Π = 〈P, V 〉 be a pair
of interactive machines, where V is PPT. We say that Π is a resettably sound proof
(resp., resettably sound argument) for a language L if the following condition holds:

Resettable soundness: For every resetting attack by P ∗ (resp., poly-
nomial-size P ∗), the probability that some incarnation Vr(x) accepts
and x /∈ L is negligible in n.

We say Π is a q-query fixed-input resettably sound proof (resp., argument) for a
language L if the resettable soundness property holds with respect to any q-query fixed-
input resetting attack.

3. Impossibility of public-coin black-box parallel ZK. In this section we
show that only languages in BPP have public-coin concurrent ZP protocols. We
actually show a stronger result: Except for languages in BPP, no public-coin protocol
remains black-box ZK when repeated in parallel. The formal theorems are stated
below, where n denotes the security parameter or the input size.

Theorem 1. Suppose that language L has a k = poly(n)-round public-coin black-
box ZK proof Π with soundness error 1/2. If m ≥ k log2 n and Πm is ZK, then L ∈
BPP.

Theorem 2. Suppose that language L has a k = poly(n)-round public-coin black-
box ZK argument Π with soundness error 1/2. If m ≥ (k2 log k) log2 n and Πm is
ZK, then L ∈ BPP.

The difference between Theorems 1 and 2 is caused by the difference between
proofs and arguments. While the two theorems differ slightly in parameters, their
proofs differ greatly. We remark that our theorems trivially hold with respect to
“nonaborting” verifiers since we focus only on public-coin protocols.

3.1. Reducing to resettable soundness. The proofs of Theorems 1 and 2
begin in the same high-level framework as that of [17]. Suppose that a language L has
a k-round, public-coin ZK protocol Π = 〈P, V 〉, and that Πm is ZK with a black-box
simulator S that runs in time nd. To show that L ∈ BPP, we construct a “random
looking” adversarial verifier, V ∗, and consider the following decision algorithm D:
D(x) runs SV∗

(x) to generate a view of V ∗, and accepts x if and only if V ∗ accepts
given the generated view (which in turn occurs if and only if the honest verifier V
accepts in all m sessions of the view).

V ∗ is actually a family of adversarial verifiers constructed as follows. Let H be
a family of hash functions that is random enough compared to the running time of
S; formally, H should be nd-wise independent (see [17, 11]). Given h ← H , let V ∗

h

be the verifier that when queried with transcript τ , responds (deterministically) with
the message h(τ). We write V ∗ = V ∗

H to mean V ∗
h for a randomly chosen h; i.e., when

D runs SV∗
H, D first chooses h randomly from H and then runs SV∗

h.
We make two easy observations about SV∗

due to [17]. First, we may assume that
whenever S queries V ∗ with a transcript or outputs a transcript τ , it first queries
V ∗ with all the prefixes of τ ; this only increases the running time of S polynomially.
Second, we may assume that S never queries V ∗ with the same transcript twice

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON THE COMPOSITION OF PUBLIC-COIN ZK PROTOCOLS 1537

(instead S may keep a table of answers). Then the set of all responses generated by
V ∗
H is identical to the uniform distribution since H is nd-independent and S makes at

most nd queries to V ∗.
We need to show that decision procedure D is both complete and sound. Com-

pleteness states that if x ∈ L, then D should accept x with probability at least 2/3.
This easily follows: The output of SV∗

(x) is indistinguishable from an interaction of
〈Pm, V ∗〉 since S is a ZK simulator. Furthermore, 〈Pm, V ∗〉 is identical to m copies of
〈P, V 〉 since V ∗ produces independent, truly random verifier messages (made possible
since V is public-coin). Finally, by the completeness property of Π, V will accept x
with probability 1 in all the copies of 〈P, V 〉.

Soundness states that if x /∈ L, then D should accept with probability at most
1/3. That is, SV∗

(x) can produce an accepting view of V ∗ with probability at most
1/3. Equivalently, we may view S as an nd-query fixed-input resettable prover, and we
show that the protocol 〈Pm, V ∗〉 is nd-query fixed-input resettable sound. Therefore,
Theorems 1 and 2 are completed by the following lemmas, respectively.

Lemma 3 (resettably sound proofs). Suppose that Π = 〈P, V 〉 is a k = poly(n)-
round public-coin black-box ZK proof with soundness error 1/2. If m ≥ k log2 n and H
is a family of q = poly(n)-wise independent hash functions, then 〈Pm, V ∗

H〉 is q-query
fixed-input resettably sound.

Lemma 4 (resettably sound arguments). Suppose that Π = 〈P, V 〉 is a k =
poly(n)-round public-coin black-box ZK argument with soundness error 1/2. If m ≥
k2 log2 n and H is a family of q = poly(n)-wise independent hash functions, then
〈Pm, V ∗

H〉 is q-query fixed-input resettably sound.
Remark. Lemmas 3 and 4 may be stronger than necessary in two ways. First,

the definition of resettable soundness requires negligible soundness error while our
main theorems require only soundness error 1/3. Second, the definition of resettable
soundness allows the resetting prover to interact with polynomially many copies of
V ∗
h with uniformly and independently chosen h’s, while the ZK simulator interacts

only with one copy of V ∗
h for a uniformly chosen h. This second difference is moot,

however, because it is trivial to reduce a resetting attack on polynomially many copies
of V ∗

h (with uniformly and independently chosen h’s) to a resetting attack on a single
copy of V ∗

h (with uniformly chosen h), with only a polynomial loss in success prob-
ability. Therefore, in our proofs for Lemmas 3 and 4, we consider only one copy of
V ∗
h .

3.2. Proof of Lemma 3: Resettably sound proofs. Using the soundness
amplification theorem of [1], protocol 〈Pm, V ∗

H〉 has soundness error at most 1/2m.

Let P̂ ∗ be a q-query fixed-input resettable prover. Suppose for the sake of contra-
diction that for some input x /∈ L, V ∗

H accepts a resettable interaction with P̂ ∗ with

probability 1/p(n) for some polynomial p. We follow the strategy of [17] to use P̂ ∗ in
order to break the soundness of 〈Pm, V ∗

H〉.
Whenever P̂ ∗ succeeds in breaking resettable soundness, P̂ ∗ would have queried

V ∗ for k verifier messages that together form an accepting transcript of Πm. A
cheating prover of Πm can therefore run P̂ ∗ internally, guess which queries of P̂ ∗ will
form the accepting transcript, and forward them to an outside honest verifier of Πm.
Since P̂ ∗ queries V ∗ for at most q(n) messages, the probability of guessing all the right
queries is at least q−k (one guess for each round of Π). Note that forwarding queries
to an outside honest verifier does not lower the success probability of P̂ ∗ since V ∗ is
identical to an honest verifier (they both respond with random messages). Thus this
cheating prover, using P̂ ∗, can break the soundness of Πm with probability at least

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1538 R. PASS, W.-L. D. TSENG, AND D. WIKSTRÖM

(1/p)q−k = 2−Θ(k logn). Since m ≥ k log2 n, we have 2−m < 2−Θ(k logn) and reach a
contradiction.

3.3. Proof of Lemma 4: Resettably sound arguments. We turn to proving
our main result. Again we argue by contradiction. Suppose that P̂ ∗ is a q-query fixed-
input resettable prover, and suppose that P̂ ∗ convinces V ∗

H on some input x /∈ L with
probability more than 1/p(n) for some polynomial p. We cannot repeat the proof
of Lemma 3 because parallel repetitions cannot reduce the soundness of arguments
beyond being negligibly small. Instead, we directly show a parallel repetition theorem
for resettable soundness; that is, we relate the resettable soundness of 〈Pm, V ∗

H〉 to
the soundness of Π.

Proof outline. The rest of this section describes how to construct a cheating
prover T for Π. T runs P̂ ∗ internally and simulates V ∗

H in response to P̂ ∗ queries.

Every query made by P̂ ∗ is answered by a uniformly random reply. This perfectly
simulates V ∗

H since H is q-wise independent and P̂ ∗ makes at most q queries (and
never makes the same query twice); at the end of the qth query, T will have implicitly
defined a hash function h ∈ H and simulated V ∗

h , and P̂ ∗ will have successfully broken
resettable soundness with probability 1/p(n) over the choice of these random replies
(i.e., generated an accepting view of V ∗

H).
To break the (stand-alone) soundness of Π, T chooses one of them parallel sessions

and forwards a complete set of P̂ ∗ queries in that session (one for each round of Π) to
an honest outside verifier V . The goal is to forward the queries on which P̂ ∗ is able to
convince V ∗ = V ∗

H in protocol Πm. This is challenging because P̂ ∗ may have multiple
queries for each round of Πm. While T must decide to forward a query or not at the
time of the query, P̂ ∗ can wait until all queries are completed before choosing which
queries to form an accepting view of V ∗. To overcome this obstacle, a key part of
our analysis relies on rewinding P̂ ∗ (note that at the same time, P̂ ∗ believes that it
is rewinding V ∗). Our strategy is twofold. First we forward only queries that have
some chance (preferably a good chance) of being included in a convincing transcript;
this is done by doing test runs of P̂ ∗. Once we have forwarded a query, we force P̂ ∗

to use the query to convince V ∗, by repeatedly rewinding P̂ ∗.
We describe a transcript of P̂ ∗ as an alternating sequence of responses from T

and queries from P̂ ∗, [t1, s1, t2, s2, . . .], where each P̂ ∗-query si is in fact a partial
transcript of Πm that ends with a prover message, awaiting a verifier response. To
avoid confusion, in our analysis, τ and 〈·〉 denote views of V ∗ (transcripts of Πm),
while h and [·] denote transcripts of P̂ ∗ (transcripts of a resettable execution of Πm).
The goal of T is then to generate a full transcript h of P̂ ∗ in which P̂ ∗ generates
a convincing transcript τ of 〈Pm, V ∗〉, while simultaneously having the foresight to
forward (a session of) all the P̂ ∗-queries pertaining to τ to the external verifier V (i.e.,
all P̂ ∗-queries in h that are a prefix of τ). If so, T has broken the soundness of Π, and
we call this a successful simulation of P̂ ∗. Note that because the randomness of P̂ ∗

is fixed, the behavior of P̂ ∗ is entirely determined by the T -responses in a transcript.
We start with a brief description of T . T first fixes a random session j̃ ∈ {1, . . . ,m}

to be forwarded. Then in k iterations (one for each round of Π), T incrementally fixes
a transcript of P̂ ∗ and forwards a P̂ ∗-query to V . In more detail, at the beginning of
iteration i, T starts with a partial transcript hi = [t1, s1, . . . , s�] of P̂

∗ that ends with
s� = τi, a query for the ith message of Π (h1 = [], the empty transcript). Then,

Step 1. T forwards session j̃ of the query τi to V , and receives a response v
(j̃)
i ;

Step 2. Fixing the reply v
(j̃)
i , T uniformly samples completions of the partial tran-

script hi until a “successful” completion h is found; specifically, P̂ ∗ on tran-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON THE COMPOSITION OF PUBLIC-COIN ZK PROTOCOLS 1539

...
...

τi −→ −→ −→ −→
τ j̃i−→

←− ←−
vj̃i←− ←−

vj̃i←−

−→ −→ −→ −→
...

τi+1 −→ −→ −→ −→
τ j̃i+1−→

vj̃i+1←−
vj̃i+1←−

T V

P̂ ∗ V ∗
H

hi h̃i

hi+1 h̃i+1

Fig. 1. In order to interact with an outside honest verifier V , the reduction T internally
maintains a partial interaction between the given resetting prover, P̂ ∗, and the (supposedly resettably
sound) verifier V ∗

H . The figure captures T after step 1 of the i + 1st iteration and illustrates some
of the notation we define in the analysis.

script h should produce an accepting view of V ∗, τ , that extends the query
τi. To move onto the next iteration, let τi+1 be the length i + 1 prefix of τ ,
and let hi+1 be the prefix of h up until P̂ ∗ makes the query τi+1.

During the analysis, we first use Raz’s lemma to show that because the number

of sessions is large and j̃ was chosen randomly, we may pretend that v
(j̃)
i is nicely

chosen, conditioned on success, just like the other sessions (chosen by T in step 2).
We also show that T rarely aborts.

Proof details. We now introduce a series of hybrid simulators that formally
defines T ; all our hybrids generate truly random responses to P̂ ∗-queries so that
P̂ ∗ cannot distinguish the hybrids from V ∗. We start with a hypothetical hybrid
and gradually move towards T . Refer to Figure 1 for a graphical description of the
reduction T .

Hybrid 1. Our first hybrid T (1) serves to introduce the general idea of how T
queries P̂ ∗ internally; T (1) does not yet forward messages to the external verifier V .

T (1) builds a full transcript of P̂ ∗ in k + 1 iterations. In iteration i, T (1) fixes
an P̂ ∗-query τi for the ith message of Πm. This query should have a good chance of
being used by P̂ ∗ in an accepting transcript of Πm, and therefore is a good candidate
to forward externally. Note that fixing a P̂ ∗-query amounts to fixing the transcript
of P̂ ∗ up until the desired P̂ ∗-query is made.

We now describe T (1) in detail. In the very beginning, T (1) fixes a random session
j̃ ∈ {1, . . . ,m}; eventually the j̃th session will be forwarded externally. After that, T (1)

incrementally grows a transcript of P̂ ∗ in k iterations. During the ith iteration, T (1)

receives a partial transcript of P̂ ∗ from the previous iteration, hi = [t1, s1, . . . , s� =
τi], where τi is a P̂ ∗-query for the ith verifier message of Πm (h1 = [], the empty
transcript). As an invariant maintained by T (1), it should be possible to extend hi

into a full transcript of P̂ ∗, where P̂ ∗ outputs an accepting view of V ∗ containing the
query τi. We call such a full transcript a successful completion of hi. Each iteration
can be further divided into two steps:
Step 1. T (1) does not forward τi to the external V ; instead it simulates a response

as follows. T (1) randomly samples a completion of hi into h, conditioned on

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1540 R. PASS, W.-L. D. TSENG, AND D. WIKSTRÖM

success (always possible due to the invariant). Let v
(j̃)
i be the response to τi

in the j̃th session in the successful completion h. Let h̃i be a partial extension

of the partial transcript hi, where the session j̃ response to τi is fixed to v
(j̃)
i

(but the responses in other sessions are not specified).
Step 2. T (1) now samples a completion of h̃i into h̃ conditioned on success (note that

h from the previous step is one such completion). Under transcript h̃, P̂ ∗

would output an accepting view τ of V ∗ (note that τ must extend τi). Let
τi+1 be the P̂ ∗ query for the i + 1st verifier message in τ (note that τi+1

extends τi by definition of success). T (1) then sets hi+1 to be the prefix of h̃
up to when P̂ ∗ makes the query τi+1. Note that the invariant holds since by
definition h̃ is a successful completion of hi+1.

Note that in step 2 of the final (kth) iteration, T (1) simply outputs h̃ as a full transcript
of P̂ ∗ (there is no τk+1 to fix). Due to the invariant, T (1) always produces a transcript
of P̂ ∗, on which P̂ ∗ outputs an accepting transcript τ . Moreover, the prefixes of τ
would be the same τ1, . . . , τk that were “chosen” by T (1) in each iteration (and would
eventually be forwarded to the external verifier V in later hybrids).

Hybrid 2. Our second hybrid, T (2), describes a way to efficiently sample suc-
cessful completions in step 2 of each iteration (step 1 will be replaced with the external
verifier and is left alone for now). In step 2, T (2) randomly completes the given partial
execution (h̃i) up to 100k2pq times, until a successful completion is found. If none of
the completions are successful, then T (2) aborts. Note that conditioned on T (2) not
aborting, the output distribution of T (2) is identical to T (1).

To show that T (2) aborts with small probability, suppose for now that T (2) is
allowed to sample an unbounded number of completions. Let us bound the expected
number of random completions that are needed to sample a successful one. In the
following analysis we distinguish between two probability spaces: PrP [·] is used to
measure probabilities over a single execution of P̂ ∗. On the other hand, PrT [·] is
used to measure probabilities over an execution of T (2) (with unbounded number of
completions), which includes rewinding and executing P̂ ∗ multiple times.

Let Hi and H̃i be the set of possible partial transcripts of P̂ ∗ that is given to
T (2) in steps 1 and 2 of the ith iteration, respectively. Given h ∈ Hi (or H̃i), let
PrP [h] denote the probability that a transcript of P̂ ∗ has prefix h, and let PrT [h]
denote the probability that T (2) is given h in the ith iteration; similarly, PrP [· | h]
and PrT [· | h] are probabilities conditioned on these events occurring. Let Ah be
the event (over the P̂ ∗ probability space) that a transcript of P̂ ∗ has prefix h and
is a successful completion of h; as a special case, A = A∅ is just the event that P̂ ∗

outputs an accepting transcript. Also let Ri be the random variable (over the T (2)

probability space) that denotes the number of completions performed by T (2) in step
2 of iteration i.

First we give a lemma. Intuitively, the lemma says that the probability of T (2)

fixing h is proportional to the probability of successfully completing h; the normalizing
factor is simply PrP [A], the probability that P̂ ∗ produces an accepting transcript.

Lemma 5. Let h ∈ H̃i. PrT [h] PrP [A] = PrP [A
h].

Proof. Recall that the behavior of P̂ ∗ is entirely determined by the random
messages generated by T (2). Let us consider a complete binary tree T of depth nd that
represents all possible length nd random bit strings generated by T (2). Then every
partial execution of P̂ ∗ corresponds to a node in T based on the verifier messages
received so far by P̂ ∗ in h.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON THE COMPOSITION OF PUBLIC-COIN ZK PROTOCOLS 1541

Let us focus on the leaf nodes in T since they occur with equal probability. Given
h, define L(h) to be the set of leaf nodes in T that are children of h; these nodes
correspond to possible completions of h. We also define G(h) to be the subset of L(h)
that corresponds to successful completions of h (i.e., leaves where the event Ah is
true). Finally, let L0 = L(∅) be all the leaf nodes, and let G0 = G(∅) be the subset of
L0 that corresponds to executions where P̂ ∗ produces an accepting transcript.

Recall that our goal is to prove that

Pr
T
[h] Pr

P
[A] = Pr

P
[Ah].

Clearly

Pr
P
[A] =

|G0|
|L0|

Pr
P
[Ah] =

|G(h)|
|L0|

.(1)

To expand PrT [h], let h̃1, h2, . . . , hi, h̃i = h be the prefixes of h given to T (1) in
previous steps of previous iterations. As we see below, the expression for PrT [h]
telescopes

Pr
T
[h] = Pr

T
[h̃1]

i∏
�=2

Pr
T
[h� | h̃�−1] Pr

T
[h̃� | h�]

=
|G(h̃1)|
|G0|

i∏
�=2

|G(h�)|
|G(h̃�−1)|

|G(h̃�)|
|G(h�)|

=
|G(h̃i)|
|G0|

=
|G(h)|
|G0|

.(2)

Equations (1) and (2) together give the lemma.
Now we bound the expected number of samples needed to find a successful com-

pletion.
Lemma 6. ET [Ri] ≤ pq.
Proof. First expand ET [Ri] by conditioning on the transcript h fixed in step 1:

(3) E
T
[Ri] =

∑
h∈H̃i

Pr
T
[h]E

T
[Ri | h].

Recall that in step 2, T (2) samples random completions of h until a successful com-
pletion is found. Therefore

E
T
[Ri | h] =

1

PrP [Ah | h] ⇒ E
T
[Ri] =

∑
h∈H̃i

Pr
T
[h]

1

PrP [Ah | h] .(4)

By expanding the right-hand side of Lemma 5 and rearranging terms, we have

Pr
T
[h] Pr

P
[A] = Pr

P
[Ah] = Pr

P
[h] Pr

P
[Ah | h]

⇒ Pr
T
[h]

1

PrP [Ah | h] = Pr
P
[h]

1

PrP [A]
≤ pPr

P
[h],

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1542 R. PASS, W.-L. D. TSENG, AND D. WIKSTRÖM

since we assumed PrP [A] ≥ 1/p. Substituting this back into (4) gives

(5) E
T
[Ri] ≤ p

∑
h∈H̃i

Pr
P
[h].

Finally, we may break up the set H̃i based on the length of h which ranges from 1 to
q (where length is the number of P̂ ∗-queries). Since each transcript of P̂ ∗ has exactly
one length � prefix,

E
T
[Ri] ≤ p

q∑
�=1

∑
h∈H̃i,|h|=�

Pr
P
[h] ≤ p

q∑
�=1

1 = pq.

Finally, we show that 100k2pq random completions are enough for T (2).
Lemma 7. T (2) aborts with probability at most 1/5.
Proof. Since ET [Ri] =

∑
h̃i
PrT [h̃i]ET [Ri | h̃i] = ET [ET [Ri | h̃i]] ≤ pq, the

Markov inequality states that the probability of T (2) fixing an h̃i such that ET [Ri |
h̃i] ≥ 10kpq is at most 1/(10k). For each “good” h̃i, where ET [Ri | h̃i] < 10kpq, we
apply the Markov inequality again to obtain PrT [Ri ≥ 100k2pq | h̃i] ≤ 1/(10k). Using
the union bound we see that in any iteration, T (2) aborts in step 1 with probability at
most 1/(5k). A final union bound over k iterations of step 2 shows that T (2) aborts
overall with probability at most 1/5.

Hybrid 3. Our third and final hybrid T (3) = T differs from T (2) in step 1 of each
iteration. Recall that some session j̃ is chosen randomly as the forwarding session.

Instead of generating v
(j̃)
i in step 1, T (3) asks the external honest verifier V for a

verifier message. Because Π is public-coin, T (3) can continue to complete partial
transcripts of P̂ ∗ even if session j̃ is forwarded to V externally.

Given transcript hi = [t1, s1, . . . , s� = τi] in iteration i, T (3) forwards session j̃

of τi to V and uses the response from V as v
(j̃)
i in step 2.2 Suppose for now that

T (3) does not abort and terminates successfully. Then P̂ ∗ would have generated an
accepting transcript τ of Πm. Since τ1, . . . , τk are prefixes of τ , session j̃ of τ would be
an accepting transcript of Π consisting of forwarded prover messages and responses
from V . This breaks the soundness of Π.

Therefore, it remains to show that T (3) is successful with probability more than
1/2. We will use Raz’s lemma [36, Claim 5.1] in analogy with [27, 25] to show that

v
(j̃)
i as generated by T (1) and T (2) is actually very close to the uniformly random
messages generated by the honest verifier V . First we cite Raz’s lemma as it appears
in [26, Lemma 5].

Lemma 8. Let {Uj}j∈[m] be independent random variables on U with probability

distribution PUj . Let W be an event in Um and let Pr[W] be measured according to
the joint probability distribution ΠjPUj . Then

m∑
j=1

Δ(Uj |W,Uj) ≤

√
m log

(
1

Pr[W]

)
,

2Strictly speaking, the interaction between T (3) and the honest verifier V is nonresetting. There-
fore, instead of forwarding session j̃ of query τi to V , T (3) simply sends the last prover message in
session j̃ of the query τi to V . For ease of exposition, we continue to use the phrase “T (3) forwards
the query τi” to mean the above.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON THE COMPOSITION OF PUBLIC-COIN ZK PROTOCOLS 1543

where Δ is the statistical distance between distributions, and Uj |W is the jth compo-
nent of an element in Um chosen based on the joint probability distribution ΠjPUj ,
conditioned on W .

In other words, let {Uj}j be independent random variables, and let W be an event
over ΠjUj. If W occurs with high probability and there are many Uj, then on average
over j, sampling Uj conditioned on W does not differ much from simply sampling Uj .
Lemma 8 allows us to bound the change in success probability when T (3) forwards
messages from a random session to V .

Lemma 9. T (3) fails with probability at most 3/10 +O(1/ logn).
Proof. We first construct a series of finer hybrids, T1, . . . , Tk+1, where Ti proceeds

as T (2) until the start of iteration i (no forwarding), and continues as T (3) afterwards
(with forwarding).3 Observe that T1 = T (3) and Tk+1 = T (2).

Consider two neighboring hybrids, Ti and Ti+1, which differ only in iteration i.
Let h be the partial execution given in iteration i. For j ∈ [m], let Uj be the random
variable that denotes all the additional session j messages sent by T to randomly
complete h, i.e., {Uj}j are independent and uniformly random. Let Wh be the event
that the random messages U1, . . . , Um together produced a successful completion of

h. By definition, the distribution of v
(j̃)
i produced by Ti+1 (i.e., T (2)) is just the first

message of Uj̃|Wh. On the other hand, the distribution of v
(j̃)
i produced by Ti (i.e.,

T (3)) is just the uniform distribution, just like the first message of Uj.

Since Ti−1 and Ti differ only in how v
(j̃)
i is produced, their difference in success

probability can be bounded by the statistical difference in the distributions of v
(j̃)
i .

This is in turn bounded by

∑
h∈Hi

m∑
j=1

Pr
T
[h] Pr[j̃ = j]Δ(Uj |Wh, Uj)=

∑
h∈Hi

Pr
T
[h]

⎛
⎝1

m

m∑
j=1

Δ(Uj |Wh, Uj)

⎞
⎠ .(*)

Lemma 8 states that for any event W ,

1

m

m∑
j=1

Δ(Uj |W,Uj) ≤

√
1

m
log

(
1

Pr[W]

)
.

Observe that before iteration i, Ti and Ti+1 are identical to T (2). When T (2) does
not abort, T (2) is identical to T (1). In that case, Lemma 6 along with the Markov
inequality implies that except with probability 1/(10k), T (2) fixes a “good” h with
ET [Ri | h] ≤ 10kpq, so that

Pr[Wh] = Pr
P
[Ah | h] = 1

ET [Ri | h]
≥ 1

10kpq
.

We can now break the sum in (*) into two parts. Observe that

∑
bad h ∈ Hi

Pr
T
[h]

⎛
⎝ 1

m

m∑
j=1

Δ(Uj |Wh, Uj)

⎞
⎠ ≤ ∑

bad h ∈ Hi

Pr
T
[h] ≤ 1

10k
,

3This still makes sense since Π is a public-coin protocol; the outside verifier can directly generate
a verifier response for any round of the protocol.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1544 R. PASS, W.-L. D. TSENG, AND D. WIKSTRÖM

since statistical distances are upper bounded by 1, and

∑
good h ∈ Hi

Pr
T
[h]

⎛
⎝ 1

m

m∑
j=1

Δ(Uj |Wh, Uj)

⎞
⎠

≤
∑

good h ∈ Hi

Pr
T
[h]

√
1

m
log(10kpq) ≤

√
1

m
log(10kpq),

since
∑

h∈Hi
PrT [h] = 1. Together, they show that (*) is at most

1

10k
+

√
1

m
log (10kpq) =

1

10k
+O

(
1

k
√
log n

)
,

since m ≥ k2 log2 n. Summing up over the hybrids, and recalling that T (2) fails with
probability at most 1/5 (Lemma 7), T (3) fails with probability at most

1

5
+ k

(
1

10k
+O

(
1

k
√
logn

))
≤ 3

10
+O

(
1√
logn

)
,

as desired.
Lemma 9 shows that T is successful with probability > 1/2, and completes the

proof of Lemma 4.
Remark. As with most lower bounds for black-box ZK, a careful reading reveals

that Theorems 1 and 2 also apply to more liberal definitions of ZK, such as ε-ZK4

[13] and ZK with expected polynomial time simulators.

4. Public-coin ZK in the BPK model. Many setup assumptions have been
used to construct concurrent ZK with better efficiency than the standard model. For
example, in the common reference string (CRS) model, even noninteractive ZK is
possible [14]. Other “weaker” setups have produced varying results, and we will be
concentrating on the bare public key model.

In the BPK model [9], every player has a public key that can be accessed by any
other player. When a protocol is repeated in parallel, we assume that the honest par-
ties use fresh independent public keys for each parallel session. By assuming that all
public keys are properly registered before a protocol begins, Canetti et al. [9] showed
that constant-round, private-coin arguments exist for NP even if we require black-box
resettable ZK, a property that implies black-box concurrent ZK. In constrast, in the
plain model, Õ(logn) rounds are required for concurrent black-box ZK proofs [10].
It is therefore natural to ask if the BPK setup can overcome our lowerbound for
public-coin ZK protocols.

In this section we extend our impossibility result from section 3 to the BPK model.
We actually extend our result to a larger class of slightly private-coin protocols, defined
by the following properties:

1. The first message of the protocol, from the verifier, is allowed to be private
coin. All other subsequence verifier messages are public-coin, i.e., independent
segments of the verifier’s random tape.

2. At the end of the protocol, the verifier may run a private coin algorithm
to accept or reject the interaction. In particular, the verifier’s decision may
depend on the private coins used to generate the first message.

4In ε-ZK, the indistinguishability gap between the view of V ∗ and the view generated by the
simulator is allowed to be an inverse polynomial, as opposed to negligible.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON THE COMPOSITION OF PUBLIC-COIN ZK PROTOCOLS 1545

Note that every public-coin protocol in the BPK model can be transformed into a
slightly private-coin protocol, because of the following:

1. The verifier can send its public key to the prover in the first message (prop-
erty 1).

2. The verifier can base its acceptance decision on its secret key (property 2).
Our modified theorem is the following.

Theorem 10. Suppose that language L has a k = poly(n)-round slightly
private-coin black-box ZK argument Π with negligible soundness error in n. If m ≥
(k2 log2 k) log2 n and Πm is ZK, then L ∈ BPP.

Recall that in the analysis of Theorem 2, we treat the black-box ZK simulator
S as a resetting prover P̂ ∗ of 〈Pm, V ∗〉, and we use P̂ ∗ to construct a machine T ,
which in turn contradicts the soundness of Π. We now have a problem whenever T
needs to sample a successful completion of a partial transcript of P̂ ∗, since T does not
know whether the external verifier V would accept or reject the transcript produced
by P̂ ∗. To overcome this problem, we follow an approach similar to [7, 25] by guessing
whether V would accept or reject based on whether the other verifiers, simulated by
T , accept or reject their respective parallel sessions.

Proof. We extend the analysis of Theorem 2 in analogy with [25]. We first describe
how T guesses if V accepts or rejects in the forwarded session j̃. Whenever T completes
a partial execution of P̂ ∗, let z−j̃ be the number of sessions, excluding session j̃, in
which S produced a rejecting view. We exclude session j̃ for the aforementioned
reason that without knowing the private key (or private coins) of the external verifier
V , T cannot tell if V will accept or reject the view.

Let w−j̃ be a Bernoulli random variable with Pr[w−j̃ = 1] = 2−νz−j̃ , where ν is an
asymptotically small parameter to be determined later. w−j̃ corresponds to T ’s guess:
If w−j̃ = 1, then T will consider the completion successful, and vice versa. Intuitively,
T is more likely to consider a completion a success if the number of rejecting sessions
is fewer.

To facilitate the analysis, we also consider a hypothetical but more symmetric
process. Given a transcript generated by P̂ ∗, let z be the number of sessions, including
session j̃, in which P̂ ∗ produced a rejecting view. Similarly, let w be the Bernoulli
random variable with Pr[w = 1] = 2−νz.

We now prove Theorem 10 with the same framework as Theorem 2, using the
following modified hybrids. Hybrids T (1), T (2), and T (3) are constructed as before,
except they now compute z and w to determine whether a completion is successful.
The final machine, T , differs from T (3) by computing z−j̃ and w−j̃ instead.

Lemma 11. The probability that T (1) generates a rejecting view in session j̃ is at
most

3

m

(
− log ν2

ν
+ 4

)
.

Proof. The proof of this lemma essentially follows from an analysis in [25] (which
contained more general parameters). For the sake of completeness, we include their
analysis without the extra parameters here.

Before introducing the public key extension, T (1) simply samples a random suc-
cessful transcript of P̂ ∗ (see Lemma 5). After adopting the new notion of success
based on w, T (1) now samples a random transcript of P̂ ∗ conditioned on w = 1. That
is, T (1) outputs a transcript of P̂ ∗ that generates rejecting views in j sessions with
probability proportional to 2−νj.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1546 R. PASS, W.-L. D. TSENG, AND D. WIKSTRÖM

Since T (1) chooses j̃ randomly, it is enough to bound the expected number of
rejecting sessions. Let pj be the probability that in a random execution of P̂ ∗, the
output view contains j rejecting sessions. Then, the expected number of rejecting
verifiers is

(6)

∑m
j=0 jpj2

−νj∑m
j=0 pj2

−νj
.

A bound of (6) with more general parameters is given in [25]. For the sake of com-
pleteness, we include their analysis below without the extra parameters.

Recall that by assumption, P̂ ∗ generates an output view in which all sessions
accept with probability at least 1/3. Therefore we can lower bound the denominator
of (6) by

m∑
j=0

pj2
−νj ≥ p0 ≥ 1/3.

To upper bound the numerator, we use the following inequality:

∞∑
j=0

j2−νj =
2−ν

(1− 2−ν)2
≤ 1

(1− 2−ν)2
≤ 4

ν2
.

The last inequality follows from the fact that 1 − 2−ν ≥ ν/2 for small ν. Directly
applying this bound to the numerator (using pj ≤ 1) gives an overly loose bound since
ν is asymptotically small. Instead, we split the expression of the numerator at some
parameter t:

m∑
j=0

jpj2
−νj ≤ t

m∑
j=0

pj2
−νj +

m−t∑
j=1

jpt+j2
−ν(t+j)

≤ t+
4

ν2
2−νt.

Setting t = − log ν2/ν, we see that the expected number of rejecting verifiers is at
most

3

(
− log ν2

ν
+ 4

)
.

Since T (1) chooses j̃ uniformly from {1, . . . , k}, the probability that T (1) outputs a
view that rejects in session j̃ is

3

m

(
− log ν2

ν
+ 4

)
.

Lemma 12. The probability that T (2) aborts is at most 1/5. Otherwise, the output
of T (2) is identical to T (1).

Proof. By computing w and z, there are now more “successful” executions than
before (originally, only executions where z = 0, i.e., no rejecting sessions, were success-
ful). Therefore, T (2) now aborts with less probability than before, which is bounded
by 1/5 (Lemma 7).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON THE COMPOSITION OF PUBLIC-COIN ZK PROTOCOLS 1547

Lemma 13. T (3) fails to produce an accepting view in session j̃ with probability
at most

3

m

(
− log ν2

ν
+ 4

)
+

3

10
+O

(
1

logn

)
.

Proof. This follows from Lemma 11, and by applying Raz’s lemma in the same
manner as in Lemma 9.

Lemma 14. The output of T (3) and T differs statistically by at most kν.
Proof. T (3) and T differs in how a successful completion is recognized. For any

completion, the difference in probability of it being considered successful by T (3) and
T is

Pr[w−j̃ = 1]− Pr[w = 1] = 2−νz−j̃ − 2−νz ≤ 2−ν(z−1) − 2−νz ≤ 1− 2−ν ≤ ν.

For each round of protocol Π, T (3) and T repeatedly perform the same task (com-
pleting partial transcript of S) until w = 1 or w−j̃ = 1, respectively. Therefore the
statistical difference between the two processes is at most kν.

Combining Lemmas 13 and 14, we see that T fails to break the soundness of Π
with probability at most

3

m

(
− log ν2

ν
+ 4

)
+

3

10
+O

(
1√
logn

)
+ kν.

By setting ν = 1/
√
km, the expression becomes

3

√
k

m
log(km) +

12

m
+

3

10
+O

(
1√
logn

)
+

√
k

m
.

Since m ≥ k2 log2 k log2 n, we conclude that T fails with probability at most 3/10 +
o(1). That is, T succeeds with nonnegligible probability, contradicting the soundness
of Π.

5. Public-coin bounded concurrent ZK. In this section we give a family
BoundedConcZK of public-coin proofs for NP, parametrized by k. The proof with
parameter k has 2k3 + 4 rounds, and is k-bounded concurrent ZK assuming the exis-
tence of one-way functions, whenever k = ω(logn), where n is the input size. Bound-

edConcZK requires the use of statistically binding commitment schemes.

5.1. Commitment schemes. Commitment protocols allow a sender to com-
mit itself to a value while keeping it secret from the receiver ; this property is called
hiding. At a later time, the commitment can be opened only to a single value as
determined during the commitment protocol; this property is called binding. Com-
mitment schemes come in two different flavors, statistically binding and statistically
hiding; we make use of statistically binding commitments only in this paper. Below
we sketch the properties of a statistically binding commitment; full definitions can be
found in [20].

In statistically binding commitments, the binding property holds against un-
bounded adversaries, while the hiding property holds only against computationally
bounded (nonuniform) adversaries. The statistical-binding property asserts that, with
overwhelming probability over the randomness of the receiver, the transcript of the in-
teraction fully determines the value committed to by the sender. The computational-
hiding property guarantees that the commitments to any two different values are
computationally indistinguishable.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1548 R. PASS, W.-L. D. TSENG, AND D. WIKSTRÖM

Protocol BoundedConcZK

Common input: An instance x of a language L ∈ NP and a parameter k.

Stage one: For i from 1 to 2k3:

P → V : Commit to a random bit pi using a statistically binding com-
mitment.

V → P : Reply with a random bit vi.

Stage two: A 4-round public-coin witness indistinguishable proof (e.g., parallel
repetitions of the Blum Hamiltonicity protocol [8]) of the NP statement:

(
there exist distinct i1, . . . , ik3+ 1

2
k2 s.t. pij = vij for all j

)
∨ (x ∈ L)

Fig. 2. Our public-coin black-box bounded concurrent ZK protocol.

Noninteractive statistically binding commitment schemes can be constructed us-
ing any one-to-one one-way function (see section 4.4.1 of [20]). Allowing some minimal
interaction (in which the receiver first sends a single random initialization message),
statistically binding commitment schemes can be obtained from any one-way func-
tion [33, 24].

5.2. A bounded concurrent public-coin ZK protocol. Our construction of
BoundedConcZK is similar in spirit to the concurrent ZK protocol of [37]. Given
a language L ∈ NP and a parameter k, we construct a two stage public-coin proof
〈P, V 〉 as follows. In stage one, 2k3 rounds of messages are exchanged where in each
round, the prover gives a statistically binding commitment of a random bit pi, and the
verifier responds with a random bit vi; we call pi = vi a correct guess (note that unlike
[37], the verifier does not commit to the bits vi). In stage two, 〈P, V 〉 runs a 4-round
public-coin witness indistinguishable proof of the modified NP statement “either x ∈ L
or that pi = vi for k

3 + k2/2 values of i,” where x is the problem instance. This can
be instantiated with a parallel repetition of the Blum Hamiltonicity protocol [8] with
2-round statistically binding commitments constructed from one-way functions. The
verifier accepts if the prover is successful with the stage two proof. See Figure 2 for a
complete description of protocol BoundedConcZK.

We choose 2k3 rounds of interaction in stage one of BoundedConcZK for the
following two reasons. First, by the Chernoff bound, we expect that no adversarial
prover can have more than k3 + O(

√
k3) correct guesses. Hence BoundedConcZK

is sound. On the other hand, a ZK simulator can repeatedly rewind the verifier until
it gets a correct guess. Intuitively (and shown formally later), in each round of stage
one, the simulator can set one extra pi = vi for some session, in addition to “natural
luck” (that gives correct guesses for half of the sessions). Since the number of sessions
is bounded by k, the simulator is able to have k3 + O(k3/k) = k3 + O(k2) correct
guesses per session. This provides the simulator with a trapdoor to simulate stage
two of the protocol, and hence BoundedConcZK is bounded concurrent ZK. We
remark that k3 was chosen for the sake of simplicity and is not optimized. We show
completeness and soundness below.

BoundedConcZK is clearly complete. A prover given a correct problem instance
and witness pair, (x ∈ L,w), can commit to random bits in stage one, and use w to
successfully complete the stage two proof.

We next show that BoundedConcZK has negligible soundness error. Suppose
x /∈ L. Then there are two ways for the prover to mislead the verifier:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON THE COMPOSITION OF PUBLIC-COIN ZK PROTOCOLS 1549

1. The prover may have pi = vi for k3 + k2/2 (or more) values of i either by
breaking the binding property of the commitment, or by guessing luckily. The
former occurs with negligible probability since the commitment is statistically
binding. The latter occurs with probability e−k/4 by the Chernoff bound.5

2. Otherwise, the prover may break the soundness of the stage two proof, which
occurs with probability at most 2−k due to the parallel repetitions.

Since k = ω(logn), both e−k/4 and 2−k are negligible in n.

5.3. Black-box bounded concurrent ZK. We construct a black-box simu-
lator S such that given an adversarial verifier, V ∗, SV∗

generates the view of V ∗

in BoundedConcZK, provided that the number of concurrent sessions m satisfies
m ≤ k. The goal of S is to obtain as many correct guesses as possible by rewinding
V ∗. Toward that goal, S employs a simple greedy strategy to incrementally generate
and fix a partial view of V ∗. Whenever V ∗ sends S a first stage message vi, S checks
if it had guessed correctly when committing to pi. If so, S lengthens the partial
view of V ∗ to include this correct guess. Otherwise, S rewinds V ∗ back to the pre-
viously generated partial view. This “incremental strategy” is somewhat reminiscent
of [32], but since our protocol is public-coin, the actual analysis is quite different.
Additionally, we take care to always simulate the stage two proof in a straight-line
fashion without rewinds, so that we may use a simple hybrid argument to show the
ZK property.

We use superscripts to distinguish messages from different sessions. To prevent
S from focusing too much on one particular session, we keep m counters, c1, . . . , cm,
to record how much “work” has been done in each session. In general, S proceeds as
follows to incrementally fix the view (originally the empty view is fixed). When asked
to provide a prover message,

1. S commits to a fresh random bit for each stage one prover message;
2. for each stage two proof, S aborts if in this session, pi = vi for less than

k3 + k2/2 values of i. Otherwise, S uses this as a witness to generate the
prover messages in the stage two proof.

When receiving a verifier message,
3. if S receives a message vji (from session j) and cj < 2k2, it checks if the

commitment to pji is part of the fixed partial view. If yes, S simply continues,

“giving up” on this guess. Otherwise, S checks if pji = vji . If yes, S extends

the fixed partial view up to message vji and increments cj ; in this case we say

that vji is rigged. If pji �= vji , then S rewinds V ∗ to start a fresh continuation
from the previously fixed partial view;

4. if S receives the second stage two verifier message from any session (e.g., the
challenge message of the Blum Hamiltonicity protocol), then it extends the
fixed partial view up to the just received verifier message. As a consequence,
all stage two proofs are simulated by S in a straight-line fashion without
rewinds;

5. if S has performed k − 1 rewinds without rigging a message or encountering
a stage two verifier message, and on the kth try again receives vji �= pji , where

pji is not fixed and cj < 2k2, then S simply gives up and pretends to rig vji
anyway (albeit incorrectly). That is, S extends the fixed partial view up to
message vji and increments cj .

5Here we use the following form of Chernoff bound. If {Xi} are i.i.d. satisfying Pr[Xi = 0] =

Pr[Xi = 1] = 1/2, then Pr[
∑n

i=1 Xi ≥ n/2 + a] ≤ e−2a2/n

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1550 R. PASS, W.-L. D. TSENG, AND D. WIKSTRÖM

The next two lemmas show that S is a k-bounded black-box ZK simulator when
k ∈ ω(logn).

Lemma 15. S runs in (strict) polynomial time.
Proof. S performs at most km(2k2) rewinds, which is polynomial in n.
Lemma 16. If x ∈ L and m ≤ k, then SV∗

(x, z) and ViewP
V ∗(x, z) are computa-

tionally indistinguishable over n.
Proof. We introduce a series of hybrids.

Hybrid 1. Our first hybrid S1 is given witness w to the statement x ∈ L. S1

proceeds identically as S until a stage two proof is reached. S1 aborts if S aborts,
but uses the witness w instead of the various pi’s to complete the stage two proof.
Even though S performs many rewinds, S never rewinds a partial stage two proof.
Therefore, SV∗

(x, z) and SV∗
1 (x, z) are computationally indistinguishable because the

stage two proof is witness indistinguishable.

Hybrid 2. Our second hybrid S2 is identical to S1 except that it samples two
random bits for each stage one commitment pi and qi. S2 commits to pi, but checks
vi against qi. Since S1 gives polynomially many commitments and runs in polynomial
time, and since each commitment is computationally hiding and independent from
the rest of the execution of S1 (stage two proofs are provided using w), SV∗

1 (x, z) and
SV∗
2 (x, z) are computationally indistinguishable.

Hybrid 3. Our third hybrid S3 is identical to S2 except that S3 always gives a
stage two proof using witness w even if S2 aborts. To see that SV∗

2 (x, z) and SV∗
3 (x, z)

are computationally indistinguishable, it suffices to show that S2 aborts with negligible
probability.

Observe that whenever S extends the fixed partial view (either by rigging a com-
mitment, or by encountering a verifier challenge in a stage two proof), at most one
commitment from each session with fewer than 2k2 rigged messages is fixed as part
of the simulator output. This is because before encountering a second commitment
in any session, S would first try to rig the first commitment. For each session, S rigs
at most 2k2 stage one commitments and encounters at most one stage two verifier
challenge. Therefore, the number of commitments fixed per session without rigging
is at most (k − 1)(2k2 + 1) = 2k3 − (2k2 − k + 1). In other words, every session will
have at least 2k2 − k + 1 commitments rigged.

We now show that except with negligible probability, S2 will have k
3+k2/2 correct

guesses per session. Recall that the guesses of S2, qi, are independent from V ∗’s
responses since these guesses play no part in the commitments sent to V ∗. Therefore,
except with probability poly(n)2−k, every rigged commitment is a correct guess. Next,
for the 2k3 − (2k2 − k + 1) ≥ 2k3 − 2k2 messages that are not rigged, we apply the
Chernoff bound to see that except with probability e−O(k), we should have at least
(k3−k2)−k2/4 = k3−5k2/4 correct guesses. Thus, except with negligible probability,6

we have a total of (k3− 5k2/4)+ (2k2−k+1) ≥ k3+k2/2 correct guesses, as desired.

Final step. S3 is now identical to P (sends identically distributed messages)
except that it may rewind V during the execution. But S3 rewinds only if qi �= vi,
an event independent from the protocol execution. Therefore SV∗

3 (x, z) is identical to
ViewP

V ∗(x, z). This concludes the proof.

6Recall again that 2−k and e−O(k) are negligible in n since k = ω(logn).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON THE COMPOSITION OF PUBLIC-COIN ZK PROTOCOLS 1551

6. Application to resettably sound arguments. In this section we show
how to achieve more general notions of resettable soundness that were not required
for our main theorem. First, we need an argument of knowledge as a building block.

6.1. Proofs and arguments of knowledge. Loosely speaking, an interactive
proof is a proof of knowledge if the prover convinces the verifier that it possesses, or
can feasibly compute, a witness for the statement proved.

Definition 6 (proof of knowledge [6]). An interactive protocol Π = 〈P, V 〉
is a proof of knowledge (resp., argument of knowledge) of language L with respect
to witness relation RL if Π is indeed an interactive proof (resp., argument) for L.
Additionally, there exists a polynomial q, a negligible function ν, and a probabilistic
oracle machine E, such that for every interactive machine P ∗ (resp., polynomially
sized machine P ∗) and every x ∈ L, the following holds:

1. If Pr[〈P ∗, V 〉 (x) = 1] > ν(|x|), then on input x and oracle access to P ∗(x),
machine E outputs a string from the RL(x) within an expected number of
steps bounded by

q(|x|)
Pr[〈P ∗, V 〉 (x) = 1]− ν(|x|) .

The machine E is called the knowledge extractor.

6.2. Resettably sound arguments. It is shown implicitly in [16] that any
constant-round public-coin argument is fixed-input resettably sound if the verifier uses
a pseudorandom function to generate its messages. In [2, Proposition 3.5], the analysis
is extended to show that any constant-round public-coin argument of knowledge for
L ∈ NP is a (full-blown) resettably sound argument of knowledge of L, again if the
verifier uses a pseudorandom function to generate its messages. We give a pair of
analogous theorems below, based on our techniques in section 3.

Theorem 17. Let Π = 〈P, V 〉 be a public-coin argument for an NP language L
with negligible soundness error. Define Π̃m = 〈Pm, Ṽ m〉 to be m parallel repetitions
of Π with the following modification: Ṽ m will sample a pseudorandom function f at
the beginning of the protocol and construct each verifier message by applying f to the
prover messages received so far. Then, whenever m ≥ k2 log2 n, Π̃m is a fixed-input
resettably sound argument.

Theorem 18. Let Π = 〈P, V 〉 be a public-coin argument of knowledge for an
NP language L with negligible soundness error. Define Π̃m = 〈Pm, Ṽ m〉 similarly to
Theorem 17. Then, whenever m ≥ k2 log2 n, Π̃m is a resettably sound argument of
knowledge.

Note that in contrast with section 3, we have replaced multiwise independent hash
functions with pseudorandom functions. This is because a resettably sound argument
needs to guard against all polynomial time resetting attacks, and so we cannot assume
a universal bound on the running time of the attacks.

Proof sketch of Theorem 17. Suppose some polynomial time P ∗
m breaks the fixed-

input resettable soundness property against Ṽ m. Let V̂ m be a hybrid verifier that
is identical to Ṽ m except that V̂ m uses a truly random function F instead of a
pseudorandom function f . Then, by the property of a pseudorandom function, P ∗

m also
breaks the fixed-input resettable soundness property against V̂ m. Now, the techniques
of section 3.3 show how to to construct a cheating P ∗ based on P ∗

m that contradicts
the soundness property of Π. This gives a contradiction.

Proof sketch of Theorem 18. We use the same techniques as [2]. Consider using
the same proof sketch as Theorem 17. It is easy to extend the techniques of section 3.3

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1552 R. PASS, W.-L. D. TSENG, AND D. WIKSTRÖM

to full-blown resettable attacks where P ∗
m selects the input instances adaptively. The

main subtlety, as pointed out by [2], is the hybrid argument involving the pseudoran-
dom functions.

We need to show that if P ∗
m breaks the resettable soundness property against

the pseudorandom Ṽ m, then it should also break the resettable soundness property
against the truly random V̂ m. The subtlety here is that a computationally bounded
distinguisher cannot determine whether P ∗

m has completed a successful resetting at-
tack or not, because it cannot determine whether the x’s chosen by P ∗

m are in L or not.
To overcome this obstacle, we require Π to be an argument of knowledge, i.e., there is
a witness-extraction algorithm. We may then apply the witness-extraction algorithm
to P ∗ (constructed from P ∗

m) to determine whether the input instance accepted by V
is indeed in the language L or not.

Acknowledgments. We thank Johan H̊astad and the reviewers for their invalu-
able comments, and for highlighting our work’s connection with resettable soundness.
We are especially grateful to Oded Goldreich for his many suggestions that greatly
improved the presentation.

REFERENCES

[1] L. Babai and S. Moran, Arthur-Merlin games: A randomized proof system, and a hierarchy
of complexity class, J. Comput. System Sci., 36 (1988), pp. 254–276.

[2] B. Barak, O. Goldreich, S. Goldwasser, and Y. Lindell, Resettably-sound zero-knowledge
and its applications, in Proceedings of the 42nd Annual Symposium on Foundations of
Computer Science, 2001, pp. 116–125.

[3] B. Barak and O. Goldreich, Universal arguments and their applications, in Comput. Com-
plexity, (2002), pp. 162–171.

[4] B. Barak and Y. Lindell, Strict polynomial-time in simulation and extraction, in Proceedings
of the 34th Annual ACM Symposium on Theory of Computing, 2002, pp. 484–493.

[5] B. Barak, How to go beyond the black-box simulation barrier, in Proceedings of the 42nd
Annual Symposium on Foundations of Computer Science, 2001, pp. 106–115.

[6] M. Bellare and O. Goldreich, On defining proofs of knowledge, in Proceedings of the 12th
Annual International Cryptology Conference, 1992, pp. 390–420.

[7] M. Bellare, R. Impagliazzo, and M. Naor, Does parallel repetition lower the error in compu-
tationally sound protocols?, in Proceedings of the 38th Annual Symposium on Foundations
of Computer Science, 1997, pp. 374–383.

[8] M. Blum, How to prove a theorem so no one else can claim it, Proc. of the International
Congress of Mathematicians, (1986), pp. 1444–1451.

[9] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali, Resettable zero-knowledge (ex-
tended abstract), in Proceedings of the 32nd Annual ACM Symposium on Theory of Com-
puting, 2000, pp. 235–244.

[10] R. Canetti, J. Kilian, E. Petrank, and A. Rosen, Black-box concurrent zero-knowledge
requires ω̃(logn) rounds, in Proceedings of the 33rd Annual ACM Symposium on Theory
of Computing, 2001, pp. 570–579.

[11] B. Chor and O. Goldreich, On the power of two-point based sampling, J. Complexity, 5
(1989), pp. 96–106.

[12] I. Damg̊ard, Efficient concurrent zero-knowledge in the auxiliary string model, in Proceedings
of the 2000 International Conference on the Theory and Application of Cryptographic
Techniques, 2000, pp. 418–430.

[13] C. Dwork, M. Naor, and A. Sahai, Concurrent zero-knowledge, J. ACM, 51 (2004), pp. 851–
898.

[14] U. Feige, D. Lapidot, and A. Shamir, Multiple non-interactive zero knowledge proofs based
on a single random string, in Proceedings of the 31st Annual Symposium on Foundations
of Computer Science, 1990, pp. 308–317.

[15] U. Feige and A. Shamir, Witness indistinguishable and witness hiding protocols, in Proceed-
ings of the 22nd Annual ACM Symposium on Theory of Computing, 1990, pp. 416–426.

[16] O. Goldreich and A. Kahan, How to construct constant-round zero-knowledge proof systems
for NP, J. Cryptology, 9 (1996), pp. 167–190.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON THE COMPOSITION OF PUBLIC-COIN ZK PROTOCOLS 1553

[17] O. Goldreich and H. Krawczyk, On the composition of zero-knowledge proof systems, SIAM
J. Comput., 25 (1996), pp. 169–192.

[18] O. Goldreich, S. Micali, and A. Wigderson, Proofs that yield nothing but their validity for
all languages in NP have zero-knowledge proof systems, J. ACM, 38 (1991), pp. 691–729.

[19] O. Goldreich and Y. Oren, Definitions and properties of zero-knowledge proof systems, J.
Cryptology, 7 (1994), pp. 1–32.

[20] O. Goldreich, Foundations of Cryptography—Basic Tools, Cambridge University Press, Cam-
bridge, UK, 2001.

[21] O. Goldreich, Concurrent zero-knowledge with timing, revisited, in Proceedings of the 34th
Annual ACM Symposium on Theory of Computing, 2002, pp. 332–340.

[22] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive proof
systems, SIAM J. Comput., 18 (1989), pp. 186–208.

[23] I. Haitner, A. Rosen, and R. Shaltiel, On the (im)possibility of Arthur-Merlin witness
hiding protocols, in Proceedings of the 6th Theory of Computing Conference, 2009, pp. 220–
237.

[24] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, A pseudorandom generator from any
one-way function, SIAM J. Comput., 28 (1999), pp. 1364–1396.

[25] J. Håstad, R. Pass, D. Wikström, and K. Pietrzak, An efficient parallel repetition theorem,
in Proceedings of the 7th Theory of Computing Conference, 2010, pp. 1–18.

[26] T. Holenstein, Parallel repetition: Simplifications and the no-signaling case, in Proceedings
of the 39th Annual ACM Symposium on Theory of Computing, 2007, pp. 411–419.

[27] R. Impagliazzo, R. Jaiswal, and V. Kabanets, Chernoff-type direct product theorems, in
Proceedings of the 27th Annual International Cryptology Conference, 2007, pp. 500–516.

[28] R. Impagliazzo and A. Wigderson, P = BPP if E requires exponential circuits: Derandom-
izing the xor lemma, in Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, 1997, pp. 220–229.

[29] J. Katz, Which languages have 4-round zero-knowledge proofs?, in Proceedings of the 5th
Theory of Cryptography, 2008, pp. 73–88.

[30] J. Kilian, E. Petrank, and C. Rackoff, Lower bounds for zero knowledge on the internet,
in Proceedings of the 39th Annual Symposium on Foundations of Computer Science, 1998,
pp. 484–492.

[31] J. Kilian and E. Petrank, Concurrent and resettable zero-knowledge in poly-loalgorithm
rounds, in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,
2001, pp. 560–569.

[32] Y. Lindell, Bounded-concurrent secure two-party computation without setup assumptions, in
Proceedings of the 35th Annual ACM Symposium on Theory of Computing, 2003, pp. 683–
692.

[33] M. Naor, Bit commitment using pseudorandomness, J. Cryptology, 4 (1991), pp. 151–158.
[34] R. Pass and M. Venkitasubramaniam, An efficient parallel repetition theorem for Arthur-

Merlin games, in Proceedings of the 39th Annual ACM Symposium on Theory of Com-
puting, 2007, pp. 420–429.

[35] M. Prabhakaran, A. Rosen, and A. Sahai, Concurrent zero knowledge with logarithmic
round-complexity, in Proceedings of the 43rd Annual Symposium on Foundations of Com-
puter Science, 2002, pp. 366–375.

[36] R. Raz, A parallel repetition theorem, SIAM J. Comput., 27 (1998), pp. 763–803.
[37] R. Richardson and J. Kilian, On the concurrent composition of zero-knowledge proofs, in

Proceedings of the 1999 International Conference of the Theory and Application of Cryp-
tographic Techniques, 1999, pp. 415–432.

[38] A. Rosen, A note on the round-complexity of concurrent zero-knowledge, in Proceedings of the
20th Annual International Cryptology Conference, 2000, pp. 451–468.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

