J. Cryptol. (2012) 25: 116-135

DO 10.1007/500145-010-9090-x Journal of

CRYPTOLOGY

Parallel Repetition of Computationally Sound Protocols
Revisited*

Krzysztof Pietrzak

CWI, Amsterdam, Netherlands
pietrzak @cwi.nl

Douglas Wikstrom

KTH, Stockholm, Sweden
dog@kth.se

Communicated by Oded Goldreich

Received 3 May 2010
Online publication 3 November 2010

Abstract. We prove a negative result concerning error reduction by parallel repeti-
tion for computationally sound protocols, e.g., interactive arguments. Our main result
is a complete and computationally sound eight round interactive argument for which k-
fold parallel repetition does not reduce the error below a constant for any polynomial k.

The starting point for our construction is the work of Bellare, Impagliazzo and Naor
(FOCS’97). For any fixed k, they construct a four round protocol for which k-fold
parallel repetition does not lower the soundness error. The communication complexity
of this protocol is linear in k. By using universal arguments due to Barak and Goldreich
(CCC 2002), we turn this protocol into an eight-round protocol whose complexity is
basically independent of k.

1. Interactive Protocols

1.1. Interactive Proofs

In a single prover interactive proof, a prover P tries to convince a computationally
bounded verifier V that their common input x is in a language L [13]. The soundness
of such a protocol is an upper bound on the error probability of V, i.e., the probability
that V accepts P’s claim, even though x ¢ L. In order to lower the error probability, one
can repeat the interactive proof k times, where V accepts the claim if it accepts in all k
runs. The protocol can be repeated either sequentially, here V and P start the ith run
of the protocol only after finishing the (i — 1)th, or in parallel. Although the computa-
tional and communication complexity of parallel and sequential repetition is the same,
parallel repetition has the big advantage of not increasing the round complexity. For

* An extended abstract has appeared in the 4th Theory of Cryptography Conference, pp. 86-102, 2007.

© International Association for Cryptologic Research 2010

mailto:pietrzak@cwi.nl
mailto:dog@kth.se

Parallel Repetition of Computationally Sound Protocols Revisited 117

single prover interactive proofs, sequential and parallel repetition reduce the error at an
exponential rate: if a protocol with soundness € is repeated k times sequentially or in
parallel, the error probability drops to €*.!

In general, parallel repetition is more problematic than sequential repetition. For ex-
ample, parallel repetition does not preserve the zero-knowledge property of a protocol
[12], and there are two-prover proofs where running the proof twice in parallel does not
decrease the error at all [9]. On the positive side, Raz [22] shows that k-fold parallel
repetition of a two-prover two-round proof system with soundness € does decrease the
error to €** where o > 0 is some constant depending only on the proof system. Clearly
a < 1, a better upper bound is proven in [23].

1.2. Computational Soundness

Interactive arguments, introduced in [3], are defined like interactive proofs, but the
soundness of the protocol only holds against computationally bounded provers. Inter-
active protocols where the verifier is only secure against efficient cheating provers are
called computationally sound protocols. Sequential composition lowers the error proba-
bility of arguments at an exponential rate [7], but also here, the case of parallel repetition
is much more intricate.

FParallel Repetition for Arguments Bellare, Impagliazzo and Naor [2] show that, some-
what surprisingly, parallel repetition does not in general reduce the soundness of inter-
active arguments. More precisely, the authors of [2] construct—for any k—a four round
protocol such that k-fold parallel repetition does not decrease the error at all.

The communication complexity of their protocol is linear in k, which leaves open
the possibility that parallel repetition does reduce the error if the communication com-
plexity is not allowed to depend on the number of repetitions. This is a possibility one
should consider, since the above-mentioned constant « in Raz’s theorem is inverse in the
communication complexity of the protocol, and this dependence is necessary [10,23].
Observing that the four-round protocol of Bellare et al. can be restated as a two-round
two-prover protocol (without loosing the property that parallel repetition does not de-
crease the error) makes the possibility that unbounded communication complexity is
necessary here even more likely.

Noticing this possibility, Bellare et al. propose another four-round protocol with fixed
communication complexity, which has the property that relative to an oracle repeating
the protocol any polynomial number of times in parallel does not decrease the error. This
shows that there is no “black-box” error reduction theorem for this protocol. Bellare et
al. see this result as evidence that parallel repetition does not decrease the error of com-
putationally sound protocols. But it could be that parallel repetition does always reduce
the error, and the reason why there is no proof of this is that such a proof would require
non-black-box techniques. In this paper, we show that under standard assumptions the
interpretation of Bellare et al. is indeed correct for protocols with eight rounds or more,
and we strengthen the evidence that this is also true for protocols with four rounds. Be-
fore we explain our contribution in more detail, we first summarize the known positive
results on parallel repetition of computationally sound protocols.

! The parallel case was proven in Appendix C of [11].

118 K. Pietrzak and D. Wikstrom

Positive Results Complementing their negative results for four-round protocols, Bel-
lare et al. [2] show that parallel repetition reduces the error of computationally sound
protocols with three rounds or less at an exponential rate. Impagliazzo et al. [16] give a
more general “Chernoff-type” direct product theorem, where they not only show that the
prover is unlikely to cheat in all k parallel repetitions, but also that it is even unlikely to
cheat in significantly more than in an € fraction of the repetitions, where € is the sound-
ness of a single execution. Canetti et al. [4] give a quantitatively much better reduction
for two-round protocols. Pass and Venkitasubramaniam prove a parallel-repetition the-
orem for constant-round public-coin protocols. Hastad et al. [15] give a parallel repe-
tition for a class of computationally sound protocols which as important special cases
includes (not necessarily constant-round) public-coin protocols” and three-round proto-
cols. Chung and Liu [5] improve upon [15] and prove a tight bound: k-fold repetition
reduces the error from § to 8%. Haitner [14] considers a different way of doing parallel
repetition. He first changes the verifier in protocol at hand: In each round, the verifier
can (with some noticeable probability) terminate and accept. Although this increases the
error probability of the protocol, Haitner shows that parallel repetition of this modified
protocol always reduces the soundness error at an exponential rate.

Verifiers with a Secret Usually, the verifier in an interactive protocol is not supposed
to hold any secret information, and so its strategy is efficiently computable. Bellare
et al. [2] observe that when considering protocols where the verifier can hold secret
information, there exist “trivial” protocols where parallel repetition does not decrease
the error. We revisit and strengthen their observation in Sect. 4.

2. Our Contribution

Let n be a security parameter, we present the first computationally sound protocol where
k(n)-fold parallel repetition does not decrease the error for any polynomial k(). To
achieve this, we start with the protocol of Bellare et al. whose k-fold parallel repetition
does not decrease the error, but we modify it so that k is chosen by the prover (in
particular, if the prover has to run the protocol k(n) times in parallel, he can set k =
k(n)). In this protocol, the length of the second message from the prover to the verifier
is linear in k, and so we are forced to allow the verifier Vsyper to run in super-polynomial
time (in order for the protocol to work for any polynomial k(-)). We then transform this
protocol into one with a fixed polynomial time verifier Vj,o1y using universal arguments
due to Barak and Goldreich [1]. Loosely speaking, the long message is replaced by a
hash value of it, which is followed by an interactive proof to Vpoy that proves that Vsyper
would have accepted the message.

This transformed protocol is a computationally sound protocol relative to some
public-parameters that must be honestly sampled (the precise result is stated in The-
orem 3, Sect. 5). However, an interactive argument [3] does not accept any public para-
meter as input, and our protocol does not even take a statement as input. In Sect. 5.2, we
first eliminate the public parameter (we discuss the issue of public-parameters in more

2 The counterexamples in [2] and this paper are private-coin protocols. The positive results for public-coin
protocols just mentioned show that this is inherent.

Parallel Repetition of Computationally Sound Protocols Revisited 119

detail in Sect. 2.1 below), and then show how to turn the protocol into an interactive
argument of any language.

The basic idea for the latter step is to combine our protocol (let us call it X'1) with
any interactive proof or argument Y. Here we let the prover choose if he wants to run
X1 or Xp. If Xy is complete, then the combined protocol is a complete argument, and
its soundness (of a single run or when run in parallel) is basically the soundness of X.
We get the following theorem.

Theorem 1 (Main theorem). There exists a complete eight-round interactive argument
with error probability 3 /4 such that k(-)-fold parallel repetition does not reduce its error
probability below 1/17 for any polynomially bounded k(-), under the assumption that a
collision-free family of hash functions and a non-interactive non-malleable (with respect
to XOR) commitment-schemes with respect to superpolynomial adversaries exist.

Unfortunately, the use of a universal argument increases the round complexity of the
protocol from the optimal four to eight. The question whether parallel repetition lowers
the error probability for -round protocols with 3 < r < 8 remains open.

Towards answering this question, in Sect. 6 we propose a new four-round protocol
relative to an oracle, where k(n)-fold parallel repetition does not decrease the error
for any polynomial k(-). An oracle with this property has already been constructed
in [2]. This oracle is quite sophisticated, whereas our oracle is just a generic group and
potentially can be instantiated with a concrete group satisfying some clearly defined
hardness assumptions (basically, it must be hard to compute the inverse of a random
element). Presently, we are not aware of any suitable candidate group.

More precisely, let p € [2",2"!] be a randomly chosen prime, let ¢’ : Ly —

[0,22" — 1] be a randomly chosen injection and ¢ (x) def ¢’ (x mod p) its natural ex-
tension to the whole of Z. Then denote by O the oracle defined by O(x) = ¢(x) and
OX,Y)=¢(p~"(X)+¢~1(Y))if X,Y € ¢(Z,) and L otherwise. We prove the fol-
lowing theorem.

Theorem 2. There exists a complete four-round protocol relative to the oracle O with
error probability 1/2 + negl(n) such that k(-)-fold parallel repetition does not reduce
its error probability below 1/2 — negl(n) for any polynomially bounded k(-).

2.1. About the Public Parameter

As explained above, we first construct a protocol (cf. Theorem 3 in Sect. 5) which
requires that a public parameter is available to all parties, and the negative result on
parallel repetition only applies if all the instantiations that are run in parallel use the
same parameter. This parameter is the public-key of a CCA2-secure cryptosystem, and
the protocol is complete in the sense that a prover who knows the corresponding secret-
key can make the verifier accept with probability one.

This situation is not quite satisfying as most positive results on error reduction by
parallel repetition, including the parallel repetition theorems for three-round protocols
of Bellare et al. [2] and for public-coin protocols of Pass et al. [20], do not consider such
a public parameter. And, in fact, parallel repetition does not lower the soundness error

120 K. Pietrzak and D. Wikstrom

if we allow such a parameter even for “zero round” protocols: Just consider a random
variable A, which denotes the initial random parameter such that Pr[A = 1] = € for
some A. Now consider a verifier which accepts if A = A. The soundness error here is €,
and it does not decrease even if we repeat the “protocol” any number of times (using
the same public parameter).

There are two ways to close this conceptual gap. For one thing, we can try to prove
the positive results relative to a public parameter. As illustrated by the trivial example
above, this is not possible in general. To exclude such pathological counterexamples
where it is obvious that repetition (sequential or parallel) is of no use to lower the error,
one can state the theorem relative to a fixed public parameter A, i.e., prove a statement of
the form: “if the soundness error for the protocol is € = €()) conditioned on the public
parameter being A = A, then & fold parallel repetition (with public parameter 1) lowers
the error to...”. This then gives a meaningful parallel-repetition theorem for protocols,
assuming the distribution of the public-parameter A is such that the soundness error €
is small (i.e., bounded away from 1) with high probability over the choice of A. This
clearly is the case for the protocol we construct to prove Theorem 3, where the public
parameter is a public-key for a CCA2-secure cryptosystem. Hastad et al. [15] prove a
parallel repetition theorem of this kind for public-coin protocols.

The other way to close the conceptual gap is to construct counterexamples without
using a public parameter, which is what we do in this work. It is possible to adapt
our main Theorem 3 so that no public parameter is required by using a commitment
scheme instead of an encryption scheme in the protocol proving our counterexample.
To prove the soundness (of a single run of) the protocol, the commitment scheme must
be non-malleable with respect to XOR.? Panday et al. [19] construct non-interactive
non-malleable (with respect to any relation, not just XOR as we need it) commitments,
albeit under somewhat non-standard assumptions. Very recently Pass and Wee construct
such commitments from any sub-exponentially hard one-way function [21].

3. Preliminaries

3.1. Notation

We use Z to denote the integers and Z, to denote the integers modulo p. We use log
to denote the logarithm in base two. We denote by PT and PT* the set of uniform and
non-uniform polynomial time Turing machines, respectively. The corresponding sets of
oracle machines are denoted by adding a superscript, e.g., PTY. We use n to denote the
security parameter, and say that a function € (n) is negligible if for every constant c there
exists a constant ng such that e(n) < n~°¢ for n > ng. We use negl(n) to denote a fixed
but unspecified non-negative negligible function. A function f(n) is overwhelming if
1 — f(n) is negligible. If v : N — N is a function we denote by PT} the set of non-
uniform Turing machines that execute in time v(n) p(n) for some polynomial p. We say

3 More precisely, no efficient adversary A should be able to win the following game with probability
more than 1/2 4 negl. Given a commitment C = Commit(b, r) for a random bit b, A outputs commitments
Cl,...,Cpwith C; #C foralli =1,...,€. Then A gets b and r, opens Cj,...,Cy to by, ...,by, and we
say that A wins if b=0b1 @by & --- D by.

Parallel Repetition of Computationally Sound Protocols Revisited 121

that v is polynomial-time computable if there exists a Turing machine M, that on input
x € {0, 1}* outputs v(x) in at most p(|x|) steps, for a polynomial p.

We say that a family of hash functions is PT;}-collision-free if it is collision-free
with respect to adversaries in PT}. Similarly, we say that a cryptosystem is PT}-CCA2-
secure, if it is CCA2-secure with respect to adversaries in PT}.

We denote by (V (x), P(y))(z) the output of V on private input x and common input
z after interacting with P on private input y and common input z. We denote by kV
the sequential repetition of k copies of V and we denote by V* the parallel repetition
of k copies of V. In both cases, identical private and common inputs are given to each
instance and the combined verifier accepts if and only if all instances accept.

3.2. Computationally Sound Protocols

We consider the setting introduced in [2]. Two parties, a prover P and a verifier V, are
communicating. They are both given an initial context A € {0, 1}* and the length of this
string serves as the security parameter. The initial context could be the output of another
protocol or some string in a set-up assumption. Since we do not mention A explicitly
below, we replace it by the security parameter in unary representation 1”7, but our results
hold in the more general setting.

Both parties are also given a common input x which is generated together with some
secret information w by a probabilistic polynomial time instance generator [that is
given input 1”. The secret information w is given to P at the start of the protocol.

3.3. Universal Arguments

Barak and Goldreich [1] introduce the notion of universal arguments as a special variant
of Micali’s computationally sound proofs [17]. They define the relation Ry as the set
of pairs ((M, x, t), w) such that the Turing machine M outputs 1 on input (x, w) within
t steps. Denote by Ty (x, w) the number of steps made by M on input (x, w). A key
property of their definition is that ¢ is given in binary. We are mainly interested in two
properties of universal arguments: (i) the complexity of the verifier depends only on the
size of the common input and not on the size of the witness, and (ii) the witness used by
the prover can be extracted in a weak sense. The actual definition given by Barak and
Goldreich [1] is duplicated below.

Definition 1 (Universal Argument). A universal-argument system is a pair of strate-
gies, denoted (P, V) that satisfies the following properties:

1. Efficient verification. There exists a polynomial p such that for any y =
(M, x, 1), the total time spent by the probabilistic verifier strategy V, on common
input y, is at most p(]y|). (In particular, all messages exchanged in the protocol
have length smaller than p(|y|).)

2. Completeness by a relatively efficient prover. For every ((M, x,t), w) in Ry
we have Pr[(V, P(w))(M, x,t) = 1] = 1. Furthermore, there exists a polynomial
p such that the total time spent by P(w) on common input (M, x, t) is at most
P(Tu(x, w)) < p(1).

3. Computational soundness. For every polynomial-size circuit family {P;},cn,
and every (M, x,1) € {0,1}" \ Ry: Pr[{V, P})(M,x,t) = 1] < u(n) for some
negligible function w(n).

122 K. Pietrzak and D. Wikstrom

4. Weak proof of knowledge. For every positive polynomial p there exists a positive
polynomial p’ and a probabilistic polynomial-time oracle machine E such that
for every polynomial-size circuit family { P},en, and every sufficiently long y =
(M, x,t) €{0, 1}, if Pr[(V, P*)(y) = 1] > m, then

1

Pr[3w N {0, 1}'Vi € (1,....1}: (v, w) € Ry A EL7 (3, i) = wi] > ———.
" p'(yD

Proposition 1 [1]. If there exists a family of collision-free hash functions, then there
exists universal arguments with 4 rounds.

4. When the Verifier Holds a Secret

In this section, we show that parallel repetition does not in general decrease the error
probability of computationally sound protocols when the verifier is given private infor-
mation.

Bellare et al. [2] give the following simple example of such a protocol: The common
input is an RSA modulus N = pq and the secret of the verifier is the factors p and g.
The verifier flips a coin. If it is “heads” it gives the factors to the prover, and otherwise
not. It accepts if the prover’s reply is (p, g). An even simpler example is the following
one-round protocol: The verifier has a secret bit b, and accepts if the message from the
prover is b.

Clearly, parallel repetition does not decrease the error probability for the two proto-
cols above (in fact, for the first protocol it increases), but neither does sequential repe-
tition. This leaves open the interesting possibility that parallel repetition decreases the
error probability of computationally sound protocols where the verifier holds a secret,
for all protocols where sequential repetition reduces the error. Below we show that this
is not the case by giving a natural (four-round) protocol that when repeated sequentially
lowers the error probability, but if repeated in parallel gives error probability essentially
one. Here CS = (Kg, Enc, Dec) denotes a public key cryptosystem.

Protocol 1 (Don’t Do in Parallel (Verifier Holds a Secret)).
Common input: Public key pk.
Private input to both prover and verifier: Private key sk.

V chooses b € {0, 1} randomly, computes B = Enc,, (), and hands B to P.
P chooses ¢ € {0, 1} randomly, computes C = Ency(c), and hands C to V.
If C # B, then V hands ¢ = Decg (C) to P and otherwise L.

P computes b’ = Decgy (B) and hands b’ to V.

V accepts if and only if b =b'.

Al

Proposition 2 (Single Instance of Protocol 1). The protocol is overwhelmingly com-
plete and has 4 rounds. If the cryptosystem CS is CCA2-secure, then for every prover
P* € PT*: Prpi sy s [{ Vs (sk, pk), P*(pk)) =1] < % + negl(n).

Proof. Completeness is clear and the number of rounds follow by counting. Suppose
the claim is false, i.e., there exists a prover P* that succeeds with probability at least

Parallel Repetition of Computationally Sound Protocols Revisited 123

1/2 4+ n~¢ for n in some infinite index set . Denote by A the CCA2-adversary that
proceeds as follows. It accepts a public key pk, hands the pair of messages (0, 1) to
the experiment, and waits for a challenge ciphertext B. Then it starts a simulation of
the interaction between V and P* on the common input pk and using B. If P* sends
C # B to the verifier it invokes its decryption oracle to compute ¢ = Decgy(C) and
hands it back. Finally, it outputs the reply b’ of P* as its guess of the contents of B.
It follows that A breaks the CCA2-security of CS, since when the verifier accepts, the
guess b’ equals the content of B. (]

Proposition 3 (Sequential Repetition of Protocol 1). If the cryptosystem CS is
CCA2-secure, then for every polynomially bounded k(-) and every prover P* € PT*:
Pr (i sk, 5 [(K Vs (sk, pk), P*(pk)) = 1] < (3)* +negl(n).

Proof. We use a subscript i with the elements in the ith sequential execution, i.e., we
write (B;, Ci, c;, bl/. , b;) for the values in the ith execution. Denote by E; the event that
the verifier accepts in the ith instance of the protocol. Thus, we have Pr[E;] = Pr[b; =
bil= % + %(Pr[bl’. =1|b; =1]—Pr[b; =1 b; =0)).

Suppose there exists a constant ¢, an infinite index set A, and a prover P* such that
Propk,si),s [k Vi (sk, pk), P*(pk)) = 1] > (%)k +n~¢ for n € N and fix such a security
parameter n. Then we have

k—1

/\ E,~:| > (1/2)% +n¢.

i=1

Pr[E{1Pr[E; | E1]Pr[E3 | Eo A Eq]- ~~P1"|:Ek

This implies that there exists a fixed / such that Pr[E; | /\f;i E/]1> % + n~¢. In other
words, |Pr{b) =1 by =0A AL} E;1=Prlb) =1 b = 1 AN'Z} Ei]l = n¢/2. Denote
by A the adversary that accepts a public key pk and hands the pair of messages (0, 1) to
the experiment, and waits for a challenge ciphertext B. Then it proceeds as follows:

1. It simulates the interaction between kV and P* on common input pk. The verifier
Vifori=1,...,] —11is simulated honestly except that it invokes the decryption
oracle to compute ¢; = Decg (C;) if necessary. If any event E; occur foran 1 <
i <l —1 it halts with output 0.

2. Then it defines B; = B, continues the simulation, computing ¢; using the decryp-
tion oracle if necessary, and outputs the final message b; of P* in the /th instance
of the protocol.

We clearly have Pr[/\é;]l E;] > n~¢. Thus, the probability that A completes the in-
teraction with the experiment is non-negligible. By construction, A never queries its
decryption oracle on B; = B except with negligible probability. Thus, it follows that the

CCAZ2-security of CS is broken.]

Proposition 4 (Parallel Repetition of Protocol 1). For every polynomially bounded
k(-) there exists a prover P* € PT such that:

k * _ _
PE LGV sk, plo. P (pk)) = 11 2 1~ negl(n).

124 K. Pietrzak and D. Wikstrom

Proof. The prover P* does the following. It waits for B; from V;. Then it defines C; =
Bi+1 mod x and hands it to V;. With overwhelming probability C; # B;, so it is given
b; +1mod x = DeCsk(C;) from V;. Then it returns b; to V;. Thus, with overwhelming
probability b; = b;, each V; accepts, and VK accepts with overwhelming probability as
well, since k is polynomial.]

5. When the Verifier Holds No Secret

From now on, we consider computationally sound protocols where the verifier holds no
secret. In this section, we give an eight-round computationally sound protocol (relative
to some public-parameter) where parallel repetition does not decrease the error.

Theorem 3. There exists a complete eight-round protocol with error probability 3 /4
such that k(-)-fold parallel repetition does not reduce its error probability below 1/17
for any polynomially bounded k(-), under the assumption that a collision-free family
of hash functions and a CCA2-secure cryptosystem with respect to superpolynomial
adversaries exist.

The protocol is relative to a public parameter, namely an honestly sampled public-
key of a cryptosystem is known to all parties (the protocol can be seen as “proof of
knowledge” of the corresponding secret-key).

In order to prove Theorem 2, in Sect. 5.2 we turn this protocol into an interactive argu-
ment, as explained in the introduction.

The Example of Bellare et al. Before we give our counterexample, we recall the coun-
terexample given by Bellare et al. [2] on which our example is based. The idea of the
protocol is to explicitly allow the prover to make several instances of it dependent if run
in parallel.

Protocol 2 (Don’t Do In k-Parallel, [2]).
Common input: Public key pk.
Private input to prover: Private key sk.

1. V chooses b € {0, 1} and r € {0, 1}"" randomly, computes B = Ency(b,), and

sends B to P.
2. P computes b = Decy(B). Then it chooses b} € {0, 1} and r/ € {0, 1}" for i =
l,...,k — 1 randomly under the restriction that b = @i‘;ll b;, computes C; =

Encpi (b}, r{), and hands (C1, ..., Cr—1) to V.
V hands (b,r) to P.
4. P hands (b, 7]), ..., (b}_y.7}_) 10 V.

5. V accepts if C; = Encyr(b), 1)), B # Ci, and @\—| b/ = b.

(O8]

We have modified the protocol slightly to be more consistent with our counterexam-
ple below. In the original, the test is b # @i:ll b; and this is needed if given a ciphertext
the cryptosystem allows construction of a new ciphertext of an identical plaintext. If we
require that the cryptosystem used in the protocol is CCA2-secure, this is not an issue.

Parallel Repetition of Computationally Sound Protocols Revisited 125

Intuitively, if a single instance of the protocol is run, then a prover without access to
sk can only convince the honest verifier with probability 1/2, since it must commit itself
to a guess EBf:ll b of b before receiving (b, r) and the cryptosystem is non-malleable
(recall that CCA2-security implies non-malleability). On the other hand, if k instances
of the protocol are run in parallel, then the prover can send the tuple (C; 1, ..., Cix—1) =
(B1,...,Bi—1, Bi+1,..., By) to V; and then either all verifier instances accept or all
verifier instances fail, the first event occurring with probability at least 1/2. If there are

fewer than k instances the remaining C;’s can be defined as ciphertexts of zero.

Why Is the Example Unsatisfactory? The example requires that the complexity of the
verifier in each instance grows linearly with the number of instances. In other words,
the example does not imply that k’-parallel repetition of the protocol for k' > k does not
lower the error probability.

This deficiency motivated Bellare et al. [2] to consider if there exists any analytical
method, whereby one can show that the error probability is lowered by the parallel
repetition of a protocol. They prove that there exists no such method that treats the
prover interacting with the repeated verifier as a black-box. Although we agree that this
result is a strong indication that there exists no error-reduction procedure at all, it does
not preclude the possibility of a non-black-box error-reduction procedure.

5.1. Our Counter Example

The idea of our counter example is to reduce the complexity of the verifier by making
the long messages submitted by the prover in Bellare et al.’s protocol implicit. More
precisely, we let the prover choose k on the fly, and hand a hash value of the list of
ciphertext (Cq, ..., Cr—1) instead of sending them explicitly. It also sends a hash value
of (b}, r))....,(b,_,,r;_,) instead of sending them explicitly. The problem with this
is, of course, that now the verifier cannot perform the original verification. To solve this
problem without increasing the complexity of any instance of the verifier the prover
proves using universal arguments [1] that it knows correct preimages of the hash values.
For technical reasons we replace addition modulo 2 by addition modulo 17. The reader
may think of 17 as some constant to be defined in the proof such that the theorem holds.

We assume that there exists a cryptosystem that is chosen ciphertext secure in the
sense of Rackoff and Simon [24] against adversaries in PT}; where v(-) is a polynomially
computable superpolynomial function (the reader can think of v(n) as n'°¢"). It should
be possible to construct such a scheme from any family of trap-door permutations secure
against adversaries in PT;} following Dolev, Dwork, and Naor [8] or Sahai [25], but we
are not aware of any explicit proof of this. We also assume the existence of a family of
hash functions that is collision-free against adversaries in PT}.

Denote by R, the relation consisting of pairs ((B, H, h, k), (C1,...,Cir—1)) such
that h = H(Cy,...,Cy—1) and B # C; fori =1,...,k — 1. Denote by R, the rela-
tion consisting of pairs ((pk, H,h,b,a, k), ((b},r]), ..., (b;_,.7;_;))) such that b =

— S b mod 17, a = H((b),r]), ..., (b_,, 7)), and
h=H(Encpk (b, 7)), ..., Encpic(br_y, 17_1)).

Denote by My, a canonical Turing machine that decides R in polynomial time in 7
and k and correspondingly for Mz, .

126 K. Pietrzak and D. Wikstrom

Protocol 3 (Don’t Do in Parallel).
Common input: Public key pk.
Private input to prover: Private key sk.

1. V samples a collision-resistant hash function H. It chooses b € Z7 and r € {0, 1}"
randomly, computes B = Ency (b, r), and sends B, H to P.

2. P computes b’ = Decg(B). Then it chooses r’ € {0, 1}" randomly, computes C =
Enc,i(b',r’") and h = H(C), and hands (h, k,,) to V, where k =1 and 1, =
TMR,, ((B,H, h,k),C).

3. If k > v(n) or t, > v(n), then V outputs 0. Otherwise P and V execute a uni-
versal argument on common input y, = (Mg, , (B, H, h, k), t;) and private input
wp, = C to the prover.

4. If V accepts the universal argument, then it hands (b, r) to P. Otherwise it out-
puts O.

5. P computes a = H(V',r’) and t, = Ty, ((pk, H, h, b, a, k), (b',r")) and hands
(a,t;)to V.

6. If t, > v(n), then V outputs 0. Otherwise P and V execute a universal ar-
gument on common input y, = (Mg, (pk, H,h,b,a,k),t,) and private input
wy = b, 1.

7. If V accepts the universal argument it outputs 1 and otherwise 0.

We stress that k, 17, and ¢, are encoded in binary. Thus, even though the adversary
can choose f, and #, larger than any polynomial (as they only have to be smaller than
the superpolynomial v(n)), the complexity of the verifier can still be bounded by some
fixed polynomial in n as it is polynomial only in » and log(v(n)). This means that also
k can be larger than any polynomial. This freedom is needed since we do not want to
put any fixed polynomial bound on the “width” of the parallel repetition. On the other
hand, this is what forces us to consider superpolynomial adversaries. The problem is that
when reducing soundness of the protocol to breaking the cryptosystem or the collision-
freeness of the hash function we need to extract the ciphertexts Cy, ..., Cx—1, but we
cannot guarantee that a polynomial time adversary cannot use implicit such values,
which could give a superpolynomial witness during extraction.

Proposition 5 (Single Instance of Protocol 3). Protocol 3 is overwhelmingly com-
plete and has 8 rounds. Let v : N — N be a fixed superpolynomial and polynomial-
time computable function, let the hash function be PT}-collision-free, and let CS
be PT}-CCA2-secure. Then for every prover P* € PT} for all sufficiently large n:

Pk, sk),s [(Vs (PK), P*(pk)) = 1] < 3.

We postpone the proof of the above proposition for a second. By the following propo-
sition, sequential repetition does lower the error probability of Protocol 3. We only
state this proposition to emphasize that the reason that parallel repetition does not lower
the error probability of the protocol is not due to some pathological behavior—where
the success probability of the prover depends significantly on the choice of the public
parameter—as explained in Sect. 2.1.

Parallel Repetition of Computationally Sound Protocols Revisited 127

Proposition 6 (Sequential Repetition of Protocol 3). Let v :N — N be a fixed su-
perpolynomial and polynomial-time computable function, let the hash function be PT}-
collision-free, and let CS be PT};-CCA2-secure. Then for every polynomially bounded
k() and every prover P* € PT*: Prop sy s [(k Vs (pk), P*(pk)) = 1] < (%)k + negl(n).

We omit the proof of this proposition as it is very similar to the proof of Proposition 3.

Proposition 7 (Parallel Repetition of Protocol 3). For every polynomially bounded
k(-) there is a prover P* € PT such that Pr(pk,sk),s[(\{?k(pk), P*(pk)) = 1] > 11_7 —
negl(n).

Proof. We define the prover P* interacting with VX, i.e., the parallel repetition
of k instances of V, as follows. Given the cryptotexts B; from all V; it defines
(Cits..osCik—1) =(B1,...,Bi—1, Bi+1..., Br). Then it executes the first universal
argument honestly. When it gets (b;, ;) from V; it defines

((bl/',]’ri/,l)’ R (bz/',kfl’ri/,kfl))
=(b1, 1), ..., (bi—1,ri—1), bix1,Tix1)s ..., (b, 11)).

If ZLI b; # 0 mod 17 it fails and stops. Otherwise, it executes the rest of the protocol
honestly. With probability % we have Zle b;i =0 mod 17, and the probability that
B; = Bj for some i # j is negligible. Thus, it follows that the prover succeeds at least
with probability {5 — negl(n). O

Proof of Proposition 5. Completeness follows by inspection. Although the naive im-
plementation of the protocol has more than eight rounds, it is easy to see that one can
combine the rounds of the universal argument with the main protocol and achieve eight
rounds.

Suppose there exists a prover P* € PT} with Pr, o) s [(Vs (pk), P*(pk)) =11 =6 >
% for n in some infinite index set AV. Consider the following experiment. The adversary
is given a public key pk and a challenge ciphertext B = Ency (b, r) where b is chosen
randomly in Zg7. Then it may ask any decryption queries except B and then output
a guess b’ of b. A simple averaging argument implies that if |Pr[b’ = b] — 1/17| is
non-negligible, then the cryptosystem is not CCA2-secure.

The CCA2-Adversary We define an adversary A € PT? against the above experiment
run with the cryptosystem CS as follows. It accepts a public key pk and a challenge
B =Encyk(b, r), where b is chosen randomly in Z;7. Then it generates a collision-free
hash function H and simulates the honest verifier V except that it instructs it to use B
instead of generating this ciphertext as in the protocol. If #; is too large and V outputs 0,
then A outputs 0. The simulation proceeds until the first universal argument has been
executed. Then A invokes the knowledge extractors of the universal argument to extract
Ci,...,Ck_1 such that ((B, H, h,k), (Cy,...,Cr_1)) € Rp. More precisely, it tries a
random r and computes (Cy, ..., Cir_1) = (ErP*(yh, D,..., Ef*(yh,k’)), where k' is
the number of bits in k — 1 ciphertexts, y, = (MR, , (B, H,h,k),t,), and ErP* is the

128 K. Pietrzak and D. Wikstrom

extraction algorithm guaranteed by the weak proof of knowledge property of universal
arguments. If w, = (Cy, ..., Cx—1) does not satisfy (y, w;) € Ry it tries again with a
fresh r. This procedure is repeated at most g, (n) times, where gj(n) is a polynomial to
be determined in the analysis below. If extraction fails it outputs 0. Otherwise, it asks
its decryption oracle for b; = Decy (C;) fori =1,...,k — 1 and outputs as its guess of
b the value b’ = — Y"*~! b/ mod 17.

We want to show that the CCA2-security of CS is broken by A, since this contra-
dicts the security of CS. To do that, we must argue that extraction succeeds from the
first universal argument, but this is not sufficient. The problem is that it is conceivable
that the adversary uses one set of ciphertexts as a preimage of 4 in the first universal
argument and another set in the second. Intuitively, the collision-freeness of the hash
function prohibits this, but we must prove that this is so.

Divide the randomness s used by the verifier into four parts: sy is used to sample the
hash functions H, sp is used to form B, s, is used in the first universal argument,
and s, is used in the second universal argument. Denote by Sgood the set of tuples
(s, pk, sk, sp) such that

Pr [(V(SHySB,ShsSa)(pk)’ P*(Pk)> = 1] >6/2.

ShySa

An averaging argument implies that Pr[(sg, pk, sk, sB) € Sgood] = 6/2. Note that the
common input y, = (MR, , (B, h, k), t;) is defined by (su, pk, sk, sp).

Claim 1. For every constant f > 0 there is a polynomial g (n) such that the proba-
bility that A fails to extract wy, such that (yy, wy) € Ry on a common input yj, induced
by (su, pk, sk, sp) € Sgood is bounded by 827,

Proof. From the weak proof of knowledge property of a universal argument follows
that there exists a positive polynomial p’(-) such that

1
4G

Pr[Fw;, N {0, 1Y'Vi €{1,..., 1} : (v, wi) € Ry A EL" (yps i) = wp] >
r

for common inputs y, induced by (s, pk, sk,sp) € Sgood. Thus, for such common
inputs the expected number of repetitions needed to extract a witness is bounded by
P’ (lyn]). If we define g (n) = (2f/8)p’(|yh), it follows from Markov’s inequality that
extraction fails with probability bounded by 62~/ for such inputs.]

We conclude from the union bound that the probability that (sg, pk, sk, sp) € Sgoods
and A succeeds to extract wy, such that (y,, wy) € Ry is atleast (1/2 — 2_f)8. Then we
set ¢c; = 1/2 — 27/ and note that by choosing f > 0 appropriately we may set ¢; < 1/2
arbitrarily close to 1/2.

A Hypothetical Machine Unfortunately, the above claim says nothing about the proba-
bility that the negative sum (modulo 17) of the plaintexts of the extracted Cq, ..., Cx_|
equal the plaintext of B. Intuitively, the problem is that the prover could use one H-
preimage of A in the first universal argument and another one in the second, but this
should of course never happen due to the collision-freeness of H.

Parallel Repetition of Computationally Sound Protocols Revisited 129

Denote by Ac¢ the machine that simulates A until Cy, ..., Cx_1 are extracted from
the first universal argument, or until it outputs 0. Then it chooses s, randomly and
continues the simulation of the interaction of V and P* until P* hands (a,f,) to V.
Then it repeatedly, at most g, (n) times, invokes the extractors of the second universal
argument with fresh randomness in the hope to extract w, = (b}, 7{), ..., (b, _;.7;_}))
such that (y,, w,) € Ry, and then outputs (wy, w,). Otherwise it outputs 0.

Denote by Séood the set of tuples (sy, pk, sk, sg, sp) such that (sg, pk, sk, sg) € Sgood
and

Er[<V(SH,SB,Sh,Sa)(pk)7 P*(Pk)> = 1] = 8/4

An averaging argument implies that

I;hr[(sH,pk, sk, 5B, 5h) € Sgood | (51, Pk 5k, 5B) € Sgo0d] = 8/4.

Claim 2. For every constant f’ > 0 there is a polynomial g, (n) such that the probabil-
ity that Ac fails to extract w, such that (y,, wg) € Ry on a common input y, induced
by (sy,pk, sk,sp,sp) € S’ 4 1s bounded by 82—/,

200

Proof. This follows mutatis mutandis from the proof of Claim 1. (]

We conclude that the probability that A¢ succeeds to extract w, where (y,, w,) €
Ry conditioned on (sg, pk, sk, sg) € Sgood is at least (1/4 — 2’f/)8. We define ¢, =
1/4 -2~/ " and note that by choosing f’ > 0 appropriately we can set 0 < ¢p < 1/4
arbitrarily close to 1/4.

Claim 3. The probability that the output (wy, w,) contains a collision for H, i.e.,
it satisfies (Cy,..., Ck—1) # (Encpk(b], 7)), ..., Encpr(b;_y,7;_,)), conditioned on
(pk, sk, sp) € Sgood is negligible.

Proof. If this were not the case, we could define A’C as the adversary that takes
a description H of a hash function as input and simply simulates Ac and out-
puts (C1,...,Cx—1) and (Encpk (b}, r{), ..., Encpr(b)_,,r,_;)). It would break the
collision-freeness of H with non-negligible probability. (]

Conclusion of Proof of Proposition From our claims, it follows that the probability
that A¢ outputs (wy,, w,) such that

(C1,..., Ck=1) = (Encpr(b),), ..., EnCp By, 1))

and b= — Z;:ll b; mod 17 is at least (¢18)(c28) —negl(n) > 382 > %, where the con-

stant 0 < c3 < 1/8 may be chosen arbitrarily close to 1/8. This concludes the proof. [J

5.2. Making the Counterexample an Interactive Argument

Protocol 2 (and thus also Protocol 3 derived from it) can be seen as an interactive proof
of knowledge of the secret-key sk corresponding to the public-parameter pk. As dis-

130 K. Pietrzak and D. Wikstrom

cussed in Sect. 2, we would rather have a counterexample which is an interactive argu-
ment. To achieve this, we first remove the public parameter by replacing the encryption
scheme with a commitment scheme. We then show how to turn the resulting protocol
into an interactive argument with basically the same soundness.

Protocol 4 below is basically Protocol 2, but where the encryptions are replaced with
commitments.

Protocol 4 (Don’t Do in k-Parallel Without Public Parameter).

1. V chooses b € {0, 1} and r € {0, 1}"* randomly, computes B = Commit(b, r), and
sends B to P.

2. P chooses random b € {0, 1}, and b;e{0,1}and r/ € {0, 1}" fori=1,...,k—1
randomly under the restriction that b = @f‘;ll b;, computes C; = Commit(b}, /),

and hands (Cy,...,Cr_1)to V.

V hands (b, r) to P.

4. P hands ((b},r]), ..., (b_y, 1) to V.

5. V accepts if C; = Commit(b], r}), B # C;, and @_| b/ = b.

1’71

W

One can show (similarly as we did for Protocol 2 in Sect. 5.1) that the soundness
error of a single instance is 1/2 + negl(n) if the commitment scheme is non-malleable.
Such commitment schemes have very recently been constructed by Pandey et al. [19],
albeit under non-standard assumptions. A cheating prover can win with probability 1/2
even if this protocol is repeated k times in parallel, again this can be seen exactly as we
did for Protocol 2 in Sect. 5.1.

We can derive from Protocol 4 an eight-round protocol—which we denote by
(Vr, Pr)—whose communication complexity is independent of k, exactly as we con-
structed Protocol 3 from Protocol 4 in the previous section. Analogously to Proposi-
tion 5, one can show that for any efficient cheating prover P; we have Pr;[(Vr, P}) =
1] < 3/4, and analogously to Proposition 7, for any polynomial k(-) there exists a prover
P73 which can make V7 accept with probability 1/17 — negl(n).

In order to prove Theorem 1, we now must explain how to construct an interactive
argument whose soundness (of a single run or when run in parallel) is basically the
same as of (Vr, Pr). For this, let (Vp, Pp(w))(x) be any complete interactive proof
(or argument) with an efficient prover Pp and negligible soundness error. Recall that
this means that Pp(w), given as input a witness w for x € L, can convince Vp of the
fact that x € L. Let (V¢, Pc)(x) be the “combined” protocol, where the prover can with
the first message decide if he wants to run the protocol (Vr, Pr) (i.e., interact with
Vr) or rather the protocol (Vp, Pp)(x). Here we let the first message from V¢ contain
the first message from V7 and one from Vp, this way we do not need an extra round
where the prover communicates with which verifier he would like to interact. The honest
prover P(w) always chooses to run the (complete) proof (Vp, Pp(w))(x); clearly, then
also (Vc, Pc(w))(x) is complete. Further, as the soundness error of (Vp, Pp)(x) is
negligible, the soundness error of (Vc, Pc)(x) is the same (up to a negligible additive
term) as the soundness error of (V7, Pr).

Parallel Repetition of Computationally Sound Protocols Revisited 131
6. Parallel Repetition Relative to a Generic Group

In the previous section, we gave—under standard assumptions—an eight-round proto-
col with constant communication complexity where parallel repetitions does not de-
crease the error. In this section, we give such a protocol with an optimal four rounds
relative to a generic group oracle.

6.1. The Model

A generic group is a group where the group elements are encoded by random strings.
Access to the encoding and the group operation is provided by a public oracle O. This
model was put forward by Nechaev [18] and extended by Shoup [26] to prove lower
bounds on the running time of the best generic algorithms to solve the discrete logarithm
and related problems. An algorithm is called generic, if it does not use the representation
of the group elements, for example the baby-step giant-step algorithm for the discrete
logarithm problem is generic, but index-calculus is not. Damgard and Koprowski [6]
extend this model to groups of unknown order. Our model is very similar to theirs; the
main difference is that our group oracle does not provide any efficient way to invert
elements.* For ease of notation, we write N = 2",

The distribution of the group oracle is defined as follows. A random prime p in the

range N < p < 2N and a random injection ¢’ : Z, — 10, NZ — 1] are chosen. Let

o (x) def ¢’(x mod p) denote the natural extension of ¢’ to the whole of Z. To find

the encoding of an element the oracle is called with a single argument, i.e., we define
O(x) = ¢(x). In addition to providing encodings, the oracle can be called with two
arguments from ¢(Z) to find their product, i.e., we define O(X,Y) = b (X)) +
¢~ 1Y) if X,Y € ¢(Z) and L otherwise. As mentioned above, unlike [6] our oracle
does not provide the inverse operation ¢ (—x mod p) from ¢ (x), in fact, for our proof
it is necessary that computing ¢ (—x mod p) given ¢ (x) is hard.

We use a polynomial time computable predicate 7 : [0, N2 — 1] — {0, 1} such that
[Prxegz)[t(X) = 1] — 1/2] is negligible. A simple Way5 to construct such a predicate
is to set 7(x) = 1 <= x > N. Due to the random choice of ¢, it is not hard to see that
it has the required property with overwhelming probability over the choice of ¢. Below
we assume that Prycyz)[7(X) = 1] = 1/2 to simplify the exposition.

6.2. Our Counterexample

We present a protocol which can be seen as an interactive proof that the prover P
“knows” the group order p of the group oracle O. If P indeed knows p, he can make
the verifier V accept with probability 1.

4 There is no efficient generic algorithm to find the inverse of an element if a large prime divides the
(unknown) group order. In [6], the oracle explicitly provides the operation of inverting elements, the reason is
that the authors of [6] wanted to prove lower bounds on the hardness of a problem in the RSA-group, where
there exists an efficient (non-generic) algorithm for inversion (Extended Euclid).

5 Here we are using the fact that the representation is random, i.e., our argument is not purely generic.
A simple way to avoid this is to use the predicate t’(x) = 7 (PRF; (x)) for some pseudo-random function PRF
and public seed s.

132 K. Pietrzak and D. Wikstrom

Protocol 5 (Don’t Do in Parallel (Generic Group)).
Common input: A predicate t.
Private input to prover: A predicate T and a group order p.

1. VO chooses x € [0, N2 —1] randomly and sends X = ¢ (x) to PO.

2. P9 chooses any y € [0,2N — 1] which satisfies t(¢(y)) = 1, computes Z =
¢(y — x), and sends Z to vO.

3. V9 sends x to PO.

4. P9 sends y to vo.

5. vO accepts if and only if ¢(y —x) = Z and t(¢(y)) = 1.

Note that if the prover computes the messages Z and y as shown in the protocol, then
the verifier accepts. In Step 2, the prover can compute ¢(—x mod p) = ¢ ((p — 1)x)
from X in polynomial time using his knowledge of p.

Proposition 8 (Single Instance). The protocol is overwhelmingly complete and has
4 rounds. For every prover P*© e PT*O with total query complexity polynomially
bounded in n we have Pr[(VO, P*O)(T) =1] < % + negl(n), where the probability

is taken over O, t, and the internal randomness of VO,

Before we prove the proposition above, we show that parallel repetition fails to reduce
the error probability.

Proposition 9 (Parallel Repetition). For every polynomially bounded k(-) there is a
prover P*O ¢ PTO such that Pr[((VO)k, P*O)(r) =1]> % — negl(n), where the prob-
ability is taken over O, t, and the internal randomness of vo.

Proof. The prover P*O after receiving the messages X; = ¢(x;), 1 <i <k, sim-
ply computes Z; = ¢(Zle{1 iy X0)- Then when it receives xi, ..., x it computes
yI=- =Y = 25{:1 x;. Note that Z; can be computed by repeated queries to O
using only X1,..., X;. By construction, we have ¢ (y; — x;) = ¢(Zf:1x1 — X)) =
¢(Zl€{1 TN} x))=Z;fori =1,..., k. The distribution of ¢ (y) is statistically close
to uniform, and thus 7(¢ (y1)) = 1 with probability at least 1/2 — negl(n). O

.....

Proof of Proposition 8. Without loss of generality, we can forbid queries O(X, Y)
to the oracle using inputs X, Y € [0, N> — 1] that have not been previously received as
output from O. The reason is that only a p/N? < 2/N fraction of [0, N> — 1] is in the
range of ¢, and thus O(X, Y) will almost certainly output L if X and/or Y have not
been received as output from O.

Let Qg = X = ¢(x) and for i > 0 we denote by Q; the answer to the ith oracle query
P*© makes to O. We define Q' ={Qo, ..., Oi}.

Note that now each oracle output Q; is of the form ¢ (a; + b;x) where P*© knows
a;, b; € 7.° Denote by £ = £(n) the polynomial number of oracle queries made by the
prover. Without loss of generality, we assume that (a;, b;) # (aj, b;) fori # j, and that

6 Here “knows” means that one can efficiently extract a;, b; given the queries that P *O makes to O.

Parallel Repetition of Computationally Sound Protocols Revisited 133

Z € Q'. (Otherwise, Z is most likely not even in the range of ¢, and thus the verifier
who checks ¢ (y — x) = Z will certainly reject.) We now prove two claims from which
the proposition follows.

Claim 4 (Hard to find multiple of p). For any algorithm M € TM O which makes
at most m — 1 oracle queries, each of length at most m bits and where the output is of
length at most m bits, we have Pr[(M© =v) A (p | v)] € O(m3/N) (which is negligible
for a polynomially bounded m).

Proof. Denote by P(N) the set of primes in [N, 2N — 1]. By the prime number theo-
rem |P(N)| = @ (N /n).

The ith oracle query of M is either of the form 7; = O(¢;) (for some t; € Z,
log(t;) < m) or T; = O(T}, T;) for j,k <i (then t; =t; + t). So M can learn
1 =0),..., Tn—1 = O(tu—1) where either log(t;) <m ort; =t; +t; for j, k <i.
Moreover, we let M do two additional queries, the first query Tp = O(0) and the last
query T, = O(v) must be the output #,, = v. We call a sequence 1, ..., 1, as above
valid.

Note that if p | v then T,, = ¢ (v mod p) = ¢(0) = Ty. Thus we can generously
upper-bound the probability that p | v by the probability that for any i, j,0 <i < j <m
we have T; = T;. The reason for upper-bounding the probability of the more gen-
eral event that M finds a collision (and not just that p divides v) is that now we
can without loss of generality assume that M chooses the queries non-adaptively, i.e.,
M initially outputs a valid sequence fy, ..., t,, meaning it wants to make the queries
To, ..., T,, where T; = ¢(t,-).7 The size of any ¢#; can be upper-bounded by log(#;) < 2m
as follows: If the ith query is of the form O(t;) then log(f;) < m (as we do not al-
low queries that are longer than m bits). If the query is of the form O(T}, Ty), then
log(#;) <1+ max{log(z;), log(t)}, so for any i <m,log(t;) <m +1i <2m.

Forany 0 <i < j <mletd;; = |t; — t;|. Note that log(d;;) < max{t;,t;} < 2m, thus
at most 2m/n primes from P(N) divide d;;. The probability that p is one of those
primes is at most (2m/n)/|P(N)| = ®(m/N). By the union bound, the probability
that p divides any of the d;; (or equivalently, we have a collision 7; = T}) is at most
O @m3/N). O

The following claim is very similar to Theorem 1 in [26].

Claim 5 (x close to uniform). Let y denote the view of the prover P*O after Step 2
of Protocol 5. Then with overwhelming probability over y, the distribution of x condi-
tioned on y is statistically close to uniform over [0, N 2]

Proof. The prover initially gets Qg = ¢ (x), and then can make queries Q; = ¢(g;) =
¢(a; + xb;). We will say that the prover wins (and in this case just give him x) if

7 The reason adaptivity does not help is that all M sees, as long as there is no collision, is a sequence
Ty, T1, . .. of uniformly random elements without repetition. To prove that adaptivity does no help, we con-
struct a non-adaptive M’ from an adaptive M which has exactly the same probability of finding a collision:
M/’ first runs M answering its oracle queries with random (without repetition) Té, Tl’ T,),. This run defines
a sequence fq, ..., tm, which M now uses as its (non-adaptively chosen) queries.

134 K. Pietrzak and D. Wikstrom

Qi = Qj (equivalently, g; =¢g; mod p or a; +b;jx =aj +bjx mod p) for any i # j.
As in the proof of the previous claim, we can now without loss of generality assume that
the queries are chosen non-adaptively and defined by a sequence (ai, by), ..., (as, bs)
(where each (a;, b;) either satisfies b; =0 or a; =a; + ay, b; = b; + by for some 0 <
Jj <k <i.) As shown in the proof of the previous claim, the probability of a collision
where

gi=q;mod p butg; #q;

is negligible (and this is true even if the a;, b; can be chosen as functions of x). It
remains to prove that a collision where

gi =q; (orequivalently, a; + b;x =a; 4+ b;x)

is unlikely. For any fixed (a;, b;) # (a;j, b;j) the above equation has at most one solu-
tion x. As x is uniform over [0, N> — 1], the collision probability is bounded by 1/N?2.
Taking the union bound over all pairs of queries 0 <i < j < m the collision probability
is at most m?/N?2. O

We can now conclude the proof of the proposition, for this we must show that

[Pr[¢p(y —x) = Z AT(p (1)) = 1] — 1/2| < negl(n).

Let Z = ¢(a; + b;x) for some a;, b;. Then y =a; + (b; + 1)x mod p whenever ¢ (y —
x) = Z. By Claim 4, we can assume that p { (b; + 1). By Claim 5, we know that x is
close to uniformly random for the prover at the point where he must choose a;, b;, thus
a; + (b; + 1)x mod p is close to uniformly random over Z, (as b; + 1 generates Z,
additively). This implies that [Pr[t (¢ (y)) = 1] — 1/2] is negligible, since Pr[t(¢ (1)) =
1] is negligibly close to 1/2 if u is chosen randomly in [0, N — 1].]

Acknowledgements

We thank Thomas Holenstein for fruitful discussions.

References

[1] B.Barak, O. Goldreich, Universal arguments and their applications. SIAM J. Comput. 38(5), 1661-1694
(2008)

[2] M. Bellare, R. Impagliazzo, M. Naor, Does parallel repetition lower the error in computationally sound
protocols? in 38th IEEE Symposium on Foundations of Computer Science (FOCS) (IEEE Computer
Society, Los Alamitos, 1997), pp. 374-383

[3] G. Brassard, D. Chaum, C. Crépeau, Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci.
37(2), 156-189 (1988)

[4] R. Canetti, S. Halevi, M. Steiner, Hardness amplification of weakly verifiable puzzles, in TCC (2005),
pp. 17-33

[5] K.-M. Chung, F.-H. Liu, Parallel repetition theorems for interactive arguments, in 7CC 2010: 7th Theory
of Cryptography Conference, ed. by Daniele Micciancio. Zurich, Switzerland, February 9-11, 2010.
Lecture Notes in Computer Science, vol. 5978 (Springer, Berlin, 2010), pp. 19-36

Parallel Repetition of Computationally Sound Protocols Revisited 135

(6]

(71

(8]

(91
[10]
(1]
[12]
[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

1. Damgard, M. Koprowski, Generic lower bounds for root extraction and signature schemes in general
groups, in Advances in Cryptology—Eurocrypt 2002. Lecture Notes in Computer Science, vol. 2332
(Springer, Berlin, 2002), pp. 256-271

1. Damgérd, B. Pfitzmann, Sequential iteration of interactive arguments and an efficient zero-knowledge
argument for np, in 25th International Colloquium on Automata, Languages and Programming (ICALP)
(1998), pp. 772-783

D. Dolev, C. Dwork, M. Naor, Non-malleable cryptography, in 23rd ACM Symposium on the Theory of
Computing (STOC) (ACM, New York, 1991), pp. 542-552

U. Feige, On the success probability of the two provers in one-round proof systems, in Structure in
Complexity Theory Conference (1991), pp. 116-123

U. Feige, O. Verbitsky, Error reduction by parallel repetition—a negative result. Combinatorica 22(4),
461-478 (2002)

O. Goldreich, Modern Cryptography, Probabilistic Proofs, and Pseudorandomness (Springer, New
York, 1998)

0. Goldreich, H. Krawczyk, On the composition of zero-knowledge proof systems. SIAM J. Comput.
25(1), 169-192 (1996)

S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof systems. SIAM J.
Comput. 18(1), 186-208 (1989)

I. Haitner, A parallel repetition theorem for any interactive argument, in 50th IEEE Symposium on
Foundations of Computer Science (FOCS) (IEEE Computer Society, Los Alamitos, 2009), pp. 241-
250

J. Hastad, R. Pass, D. Wikstrom, K. Pietrzak, An efficient parallel repetition theorem, in 7CC 2010: 7th
Theory of Cryptography Conference, ed. by D. Micciancio. Zurich, Switzerland, February 9-11, 2010.
Lecture Notes in Computer Science, vol. 5978 (Springer, Berlin, 2010), pp. 1-18

R. Impagliazzo, R. Jaiswal, V. Kabanets, Chernoff-type direct product theorems, in Advances in
Cryptology—Crypto 2007 (2007), pp. 500-516

S. Micali, Computationally sound proofs. SIAM J. Comput. 30(4), 1253—-1298 (2000)

V.I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm. Math. Not. 55(2), 165—
172 (1994)

O. Pandey, R. Pass, V. Vaikuntanathan, Adaptive one-way functions and applications, in Advances in
Cryptology-Crypto 2008. Lecture Notes in Computer Science, vol. 5157 (Springer, Berlin, 2008), pp.
57-74

R. Pass, M. Venkitasubramaniam, An efficient parallel repetition theorem for Arthur-Merlin games, in
STOC2007, pp. 420-429

R. Pass, H. Wee, Constant-round non-malleable commitments from sub-exponential one-way functions,
in Advances in Cryptology—Eurocrypt’10. Lecture Notes in Computer Science (Springer, Berlin, 2010),
pp. 638-655

R. Raz, A parallel repetition theorem. SIAM J. Comput. 27(3), 763-803 (1998)

R. Raz, A counterexample to strong parallel repetition, in 49th Annual Symposium on Foundations of
Computer Science. Philadelphia, Pennsylvania, USA, October 25-28, 2008 (IEEE Computer Society,
Los Alamitos, 2008), pp. 369-373

C. Rackoff, D. Simon, Non-interactive zero-knowledge proof of knowledge and chosen ciphertext at-
tack, in Advances in Cryptology—Crypto’91. Lecture Notes in Computer Science, vol. 576 (Springer,
Berlin, 1991), pp. 433-444

A. Sahai, Non-malleable non-interactive zero-knowledge and adaptive chosen-ciphertext security, in
40th IEEE Symposium on Foundations of Computer Science (FOCS) (IEEE Computer Society, Los
Alamitos, 1999), pp. 543-553

V. Shoup, Lower bounds for discrete logarithms and related problems, in Advances in Cryptology—
Eurocrypt’97. Lecture Notes in Computer Science, vol. 1233 (Springer, Berlin, 1997), pp. 256-266

	Parallel Repetition of Computationally Sound Protocols Revisitedthanks
	Abstract
	Interactive Protocols
	Interactive Proofs
	Computational Soundness
	Parallel Repetition for Arguments
	Positive Results
	Verifiers with a Secret

	Our Contribution
	About the Public Parameter

	Preliminaries
	Notation
	Computationally Sound Protocols
	Universal Arguments

	When the Verifier Holds a Secret
	When the Verifier Holds No Secret
	Why Is the Example Unsatisfactory?
	Our Counter Example
	The CCA2-Adversary
	A Hypothetical Machine
	Conclusion of Proof of Proposition

	Making the Counterexample an Interactive Argument

	Parallel Repetition Relative to a Generic Group
	The Model
	Our Counterexample

	Acknowledgements
	References

