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Abstract. We introduce the notion of hierarchical group signatures.
This is a proper generalization of group signatures, which allows multi-
ple group managers organized in a tree with the signers as leaves. When
opening a signature a group manager only learns to which of its subtrees,
if any, the signer belongs.

We provide definitions for the new notion and construct a scheme
that is provably secure given the existence of a family of trapdoor per-
mutations. We also present a construction which is relatively practical,
and prove its security in the random oracle model under the strong RSA
assumption and the DDH assumption.

1 Introduction

Consider the notion of group signatures introduced by Chaum and van Heyst
[13]. A group member can compute a signature that reveals nothing about the
signer’s identity except that he is a member of the group. On the other hand the
group manager can always reveal the identity of the signer.

An application for group signatures is anonymous credit cards. The card-
holder wishes to preserve his privacy when he pays a merchant for goods, i.e.,
he is interested in unlinkability of payments. The bank must obviously be able
to extract the identity of a cardholder from a payment or at least an identifier
for an account, to be able to debit the account. To avoid fraud, the bank, the
merchant, and the cardholder all require that a cardholder cannot pay for goods
without holding a valid card. To solve the problem using group signatures we
let the bank be the group manager and the cardholders be signers. A cardholder
signs a transaction and hands it to the merchant. The merchant then hands
the signed transaction to the bank, which debits the cardholder and credits the
merchant. Since signatures are unlinkable, the merchant learns nothing about
the cardholder’s identity. The bank on the other hand can always extract the
cardholder’s identity from a valid signature and debit the correct account.

The above scenario is somewhat simplified since normally there are many
banks that issue cards of the same brand which are processed through the same
payment network. The payment network normally works as an administrator and
routes transactions to several independent banks. Thus, the merchant hands a
payment to the payment network which hands the payment to the issuing bank.
We could apply group signatures here as well by making the payment network act
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as the group manager. The network would then send the extracted identity to the
issuing bank. Another option is to set up several independent group signatures
schemes, one for each issuer. In the first approach, the payment network learns
the identity of the customer, and in the second approach the merchant learns
which bank issued the customer’s card. A better solution would reveal nothing
except what is absolutely necessary to each party. The merchant needs to be
convinced that the credit card is valid, the payment network must be able to
route the payment to the correct card issuer, and the issuer must be able to
determine the identity of the cardholder.

In this extended abstract we introduce and investigate the notion of hier-
archical group signatures. These can be employed to solve the above problem.
When using a hierarchical group signature scheme there is not one single group
manager. Instead there are several group managers organized in a tree, i.e., each
group manager either manages a group of signers or a group of group man-
agers. In the original notion the group manager can always identify the signer
of a message, but nobody else can distinguish between signatures by different
signers. The corresponding property for hierarchical group signatures is more
complicated. When opening a signature from a signer in its subtree, a group
manager learns to which of the subtrees directly below it the signer belongs. Sig-
natures from other signers are indistinguishable. Hence a group manager on the
level directly above the signers can identify its signers, whereas group managers
higher in the hierarchy only learns to which subtree the signer belongs.

When we use hierarchical group signatures to construct anonymous credit
cards for the more realistic setting we let the payment network be the root
manager that manages a set of group managers, i.e., the issuing banks, and we
let the cardholders be signers. The credit card application also demonstrates
what kind of responsibility model is likely to be used with a hierarchical group
signature scheme. With a valid signature on a transaction, the merchant has a
valid demand on the payment network. If the payment network has a signature
that can be shown to belong to a certain bank, the network has a valid demand
on that bank. Thus, it is in the network’s interest to open the signatures it
receives from merchants, and it is in the issuing banks’ interest to open the
signatures they receive from the network.

1.1 Previous Work

The concept of group signatures was first introduced by Chaum and van Heyst
[13] in 1991. This and the group signature schemes that followed [14, 7] all have
the property that the complexity of the scheme grows with the number of par-
ticipants. In [11] Camenisch and Stadler presented a system where the key does
not grow with the number of participants. This system, however, relies on a
non-standard number-theoretic assumption. The assumption was actually found
to be incorrect and modified in [2]. An efficient system whose security rests on
the strong RSA assumption and the Diffie-Hellman decision assumption was pre-
sented by Camenisch and Michels in 1998 [10]. This system was improved in [1].
The currently most efficient scheme that is secure under standard assumptions



448 M. Trolin and D. Wikström

is [8]. More efficient schemes do exist [6, 9], but they are based on bilinear maps
and thus relies on less well-studied assumptions for security.

A related notion is traceable signatures introduced by Kiayias et al. [19],
where signatures belonging to a member can be opened, or traced, in a dis-
tributed way without revealing the group secret.

Bellare et al. [4] give a definitional framework for group signatures for static
groups, i.e., when the set of members cannot be changed after the initial setup.
The paper also contains a scheme based on general methods in this setting.
Kiayias and Yung [20] define security for dynamic groups and prove that a
modification of [1] is secure under these definitions. Independently, Bellare et al.
[5] extend the definitions of [4] in a similar way to handle dynamic groups, and
present a scheme that is secure under general assumptions.

In [2] the concepts of multi-group signatures and subgroup signatures are de-
scribed, and in [21] a system for hierarchicalmulti-groups is given. Itmay be worth-
while to consider the differences between these concepts and hierarchical signa-
tures introduced here. Subgroup signatures make it possible for an arbitrary num-
ber i of signers to produce a joint signature which can be verified to stem from
i distinct group members. Multi-group signature schemes allow a signer who is a
member of two groups to produce a signature that showsmembership of either both
groups or just one of them. In hierarchical multi-groups a signer who is a member
of a supergroup with subgroups can produce a signature that reveals membership
either of the supergroup or of a subgroup of his choice. However, the opening pro-
cedure is not hierarchical, i.e., there are no group managers for the subgroups.

1.2 Notation

Throughout the text, κ denotes a security parameter. A function f : N → [0, 1] is
said to be negligible if for each c > 0 there exists a κ0 ∈ N such that f(κ) < κ−c

for κ0 < κ ∈ N. We write ∅ to denote both the empty set and the empty string. If
T is a tree we denote by L(T ) its set of leaves and by V(T ) the set of all vertices.
We write Gq for the unique subgroup of order q of Z

∗
p for a prime p = 2q + 1. In

the ElGamal cryptosystem a secret key is a randomly generated x ∈ Zq and the
public key is y = gx. To encrypt message m ∈ Gq, r ∈ Zq is chosen randomly
and the cryptotext is given by (u, v) = Ey(m, r) = (gr, yrm). To decrypt a
cryptotext Dx(u, v) = u−xv = m is computed. We denote by N = PQ an RSA
module for two strong primes P and Q, and let QRN be the subgroup of squares
in Z

∗
N with generators g and h. The adversaries in this paper are modeled as

polynomial time Turing machines with non-uniform auxiliary advice string. We
denote the set of such adversaries by PPT∗.

2 Hierarchical Group Signatures

In this section we discuss the notion of hierarchical group signatures. We begin by
describing the parties of a hierarchical group signature system. Then we proceed
by giving formal definitions.
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Fig. 1. A tree of group managers and signers, where ρ = {β1, β2, β3}, β1 = {α1, α2},
β2 = {α3, α4, α5, α6}, and β3 = {α7, α8, α9}

There are two types of parties: signers denoted Sα for α in some index set I,
and group managers denoted Mα for indices α described below. The parties form
a tree T , where the signers are leaves and the group managers are inner nodes.
The indices of the group managers are formed as follows. If a group manager
manages a set of signers β ⊂ I we denote it by Mβ. This corresponds to Mβ

having Sα for α ∈ β as children. If a group manager Mγ manages a set of group
managers {Mβ1, . . . , Mβl

} we denote it by Mγ where γ = {β1, . . . , βl}. This
corresponds to Mγ having Mβi for i = 1, . . . , l as children. Let Mρ denote the
root group manager. We define the root group manager to be at depth 0 and
assume that all leaves in the tree are at the same depth δ. Figure 1 illustrates a
tree of parties.

Note that standard group signatures correspond to having a single group
manager M{1,...,l} that manages all signers S1, . . . , Sl.

2.1 Definition of Security

Bellare et al. [4] give a definition of a group signature scheme, but more impor-
tantly they argue that two properties of group signatures, full anonymity and
full traceability, imply any reasonable security requirements one can expect from
a group signature scheme. We follow their definitional approach closely.

Definition 1 (Hierarchical Group Signature). A hierarchical group signa-
ture scheme HGS = (HKg, HSig, HVf, HOpen) consists of four polynomial-time
algorithms

1. The randomized key generation algorithm HKg takes as input (1κ, T ), where
T is a tree of size polynomially bounded in the security parameter κ with
all leaves at the same depth, and outputs a pair of maps hpk, hsk : V(T ) →
{0, 1}∗. For each node (or leaf) α, hpk(α) is the public key and hsk(α) is
the secret key.

2. The randomized signature algorithm HSig takes as input a message m, a tree
T , a public key hpk, and a secret signing key hsk(α), and returns a signature
of m.

3. The deterministic signature verification algorithm HVf takes as input a tree
T , a public key hpk, a message m and a candidate signature σ of m and
returns either 1 or 0.
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Fig. 2. Nodes in black represent group managers able to distinguish between signatures
by Sα(0) and Sα(1) , the two marked leaves

4. The deterministic opening algorithm HOpen takes as input a tree T , a public
key hpk, a secret opening key hsk(β), a message m, and a candidate signature
σ. It outputs an index α ∈ β or ⊥.

We need to define what we mean by security for a hierarchical group signature
scheme. We begin with anonymity. Consider Figure 2, where two signers Sα(0)

and Sα(1) are marked. Assume that it is known that a message has been signed
by one of them. Then any group manager on the path leading from Sα(0) or Sα(1)

to their first common ancestor can determine which of them signed the message.
In the figure those group managers are marked with black. In the definition of
anonymity we capture the property that unless the adversary corrupts one of
these group managers, it cannot determine whether Sα(0) or Sα(1) signed the
message, even if the adversary is given the private keys of all signers and is
allowed to select α(0), α(1) and the message itself.

We define Experiment 1 to formalize these ideas. Throughout the experiment
the adversary has access to an HOpen(T, hpk, hsk(·), ·, ·) oracle. At the start of
the experiment the adversary is given the public keys of all parties and the private
keys of all signers. Then it can adaptively ask for the private keys of the group
managers. At some point it outputs the indices α(0) and α(1) of two leaves and a
message m. The HSig(·, T, hpk, hsk(·)) oracle computes the signature of m using
the private key hsk(α(b)) and hands it to the adversary. The adversary finally
outputs a guess d of the value of b. If the scheme is anonymous the probability
that b = d should be negligibly close to 1/2 when b is a randomly chosen bit.
The labels corrupt, choose and guess below distinguish between the phases of the
experiment.

Experiment 1 (Hierarchical Anonymity, Expanon−b
HGS,A(κ, T )).

(hpk, hsk) ← HKg(1κ, T ); sstate ← (hpk, hsk(L(T ))); C ← ∅; α ← ∅;
Do

C ← C ∪ {α}
(sstate, α) ← AHOpen(T,hpk,hsk(·),·,·)(corrupt, sstate, hsk(α))

While (α ∈ V(T ) \ C)
(sstate, α

(0), α(1), m) ← AHOpen(T,hpk,hsk(·),·,·)(choose, sstate)
σ ← HSig(m, T, hpk, hsk(α(b)))
d ← AHOpen(T,hpk,hsk(·),·,·)(guess, sstate, σ)
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Let B be the set of nodes on the paths from α(0) and α(1) up to their first
common ancestor αt excluding α(0) and α(1) but including αt, i.e., the set of
nodes α

(0)
l , α

(1)
l , l = t, . . . , δ − 1, such that

α(0) ∈ α
(0)
δ−1 ∈ α

(0)
δ−2 ∈ . . . ∈ α

(0)
t+1 ∈ αt � α

(1)
t+1 � . . . � α

(1)
δ−2 � α

(1)
δ−1 � α(1) .

If B ∩ C 
= ∅ or if A asked its HOpen(T, hpk, hsk(·), ·, ·) oracle a question (α(0)
l ,

m, σ) or (α(1)
l , m, σ) return 0. Otherwise return d.

Consider the above experiment with a depth one tree T and root ρ. In that
case we may assume that hsk(ρ) is never handed to the adversary, since the
adversary fails in that case anyway. Similarly the HOpen(T, hpk, hsk(·), ·, ·) oracle
reduces to the Open oracle in [4]. Thus, our experiment reduces to the experiment
for full anonymity given in [4] where the adversary gets the secret keys of all
signers, but only the public key of the group manager.

Next we consider how the notion of full traceability can be defined in our
setting. Full traceability as defined in [4] is similar to security against chosen
message attacks (CMA-security) as defined by Goldwasser, Micali and Rivest
[18] for signatures. The only essential difference is that the group manager must
always be able to open a signature and identify the signer. In our setting this
amounts to the following. Given a signature deemed valid by the HVf algorithm,
the root should always be able to identify the child directly below it of which the
signer is a descendent. The child should have the same ability for the subtree of
which it is a root and so on until the child itself is a signer.

Again we define an experiment consisting of two phases. The adversary is
given the secret keys of all group managers. Then the adversary adaptively
chooses a set of signers to corrupt. Then in a second phase the adversary out-
puts a message and a signature. If the output amounts to a signature deemed
valid by HVf and the signer cannot be traced, or if the signature is traced to a
non-corrupted signer, the adversary has succeeded and the experiment outputs
1. Otherwise it outputs 0. Thus, the distribution of the experiment should be
negligibly close to 0 for all adversaries if the scheme is secure.

Experiment 2 (Hierarchical Traceability, Exptrace
HGS,A(κ, T )).

(hpk, hsk) ← HKg(1κ, T ); sstate ← (hpk, hsk(V(T )\L(T )); C ← ∅; α ← ∅;
Do

C ← C ∪ {α}
(sstate, α) ← AHSig(·,T,hpk,hsk(·))(corrupt, sstate, hsk(α))

While (α ∈ V(T ) \ C)
(m, σ) ← AHSig(·,T,hpk,hsk(·))(guess, sstate)

If HVf(T, hpk, m, σ) = 0 return 0. Define α0 = ρ and αl = HOpen(T , hpk,
hsk(αl−1), m, σ) for l = 1, . . . , δ. If αl = ⊥ for some 0 < l ≤ δ return 1.
If αδ 
∈ C and the HSig(·, T, hpk, hsk(·)) oracle did not get a question (m, αδ)
return 1. Otherwise return 0.
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Consider the experiment above with a depth one tree. This corresponds to giving
the adversary the secret key of the group manager, and letting it adaptively
choose additional signing keys. This is precisely the setting of [4].

The advantage of the adversary is defined in the natural way by setting
Advanon

HGS,A(κ, T ) = | Pr[Expanon−0
HGS,A(κ, T ) = 1] − Pr[Expanon−1

HGS,A(κ, T ) = 1]| and
Advtrace

HGS,A(κ, T ) = Exptrace
HGS,A(κ, T ).

Definition 2 (Security of Hierarchical Group Signatures). A hierarchical
group signature scheme HGS = (HKg, HSig, HVf, HOpen) is secure if for all trees
T of polynomial size in κ with all leaves at the same depth, and all A ∈ PPT∗,
Advtrace

HGS,A(κ, T ) + Advanon
HGS,A(κ, T ) is negligible.

3 Our Constructions

We construct two hierarchical group signature schemes, one under general as-
sumptions, and one under standard assumptions in the random oracle model.
Both require a trusted key generator at the start of the protocol. The two con-
structions are different, but based on similar ideas. In this extended abstract
we only give the main ideas behind our constructions. Detailed descriptions and
proofs of our claims are given in the full paper [26].

3.1 Our Approach

All known group signatures are based on the idea that the signer encrypts a
secret of some sort using the group manager’s public key, and then proves that
the resulting cryptotext is on this special form. The security of the cryptosystem
used implies anonymity, since no adversary can distinguish cryptotexts of two
distinct messages if they are encrypted using the same public key. We generalize
this approach.

First we consider the problem of forwarding partial information on the iden-
tity of the signer to group managers without leaking information. Each group
manager Mβ is given a secret key skβ and a public key pkβ of a cryptosys-
tem. We also give each signer Sα a public key pkα that is used to identify the
signer. Each signer is associated in the natural way with the path α0, α1, . . . , αδ

from the root ρ = α0 to the leaf α = αδ in the tree T of group managers and
signers. To compute a signature, the signer computes as part of the signature a
chain

(C0, C1, . . . , Cδ−1) =
(
Epkα0

(pkα1
), Epkα1

(pkα2
), . . . , Epkαδ−1

(pkαδ
)
)

.

Note that each cryptotext Cl in the list encrypts the public key pkαl+1
used to

form the following cryptotext. The particular structure of the chain and the fact
that all leaves are on the same depth in the tree ensures that a group manager
Mβ on depth l can try to open a signature by decrypting Cl, i.e., it computes
pk = Dskβ

(Cl). If αl = β, then pk = pkαl+1
. Thus, if Mβ manages signers, it
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learns the identity of the signer Sα, and if it manages other group managers it
learns the identity of the group manager below it in the tree which (perhaps
indirectly) manages the signer Sα.

Now suppose that αl 
= β, so pk 
= pkαl+1
. What does Mβ , or indeed any

outsider, learn about the identity of the signer Sα? It clearly does not learn
anything from a cryptotext Cl about the encrypted cleartext, as long as the
cryptosystem is semantically secure. However, if the cryptotext Cl+1 some-
how indicates which public key was used to form it, Mβ , or any outsider, can
simply look at Cl+1 and recover the cleartext of Cl. This means that it can
look at the chain of cryptotexts and extract information on the identity of
the signer. We conclude that using the approach above, we need a cryptosys-
tem which not only hides the cleartext, but also hides the public key used to
form the cryptotext. Such a cryptosystem is called an anonymous cryptosys-
tem [3].

Next we consider the problem of ensuring hierarchical traceability. This prob-
lem consists of two parts. We must ensure chosen message security to avoid that
an illegitimate signer is able compute a valid signature at all. However, the more
difficult problem is to ensure that the signer Sα not only formed (C0, . . . , Cδ−1)
as described above for some public keys pkα0

, . . . , pkαδ
, but also that the public

keys used correspond to the unique path α0, α1, . . . , αδ from the root ρ = α0
to the leaf α = αδ corresponding to the signer Sα. This is the main obstacle to
construct an efficient hierarchical group signature scheme.

3.2 A Construction Under General Assumptions

We sketch the construction under general assumptions. To achieve hierarchi-
cal anonymity we employ the cryptosystem of Goldwasser and Micali [17] and
prove that this cryptosystem is anonymous. To achieve traceability we use the
group signature scheme of Bellare et al. [4] and a non-interactive adaptive zero-
knowledge unbounded simulation sound proof (NIZK) as defined and constructed
for any language in NP in Feige, Lapidot and Shamir [16], Sahai [23], and De
Santis [24]. Both constructions are provably secure under the existence of a trap-
door permutation family.

The signer proves using the NIZK that the chain of cryptotexts is formed
correctly, and the group signature scheme ensures that only legitimate signers
can form a signature, without losing anonymity. The group signature also allows
us to use a semantically secure cryptosystem for the chain (cf. [4, 8]), since any
query to the HOpen oracle obviously can be answered correctly by the simulator
if we know the full identity of the signer, i.e., we use a variant of the double-
cryptotext trick of Naor and Yung [22]. The following theorem is proved in the
full version [26].

Theorem 1. If there exists a family of trapdoor permutations, then there exists
a secure hierarchical group signature scheme.



454 M. Trolin and D. Wikström

3.3 A Construction Under the DDH Assumption and the Strong
RSA Assumption

To achieve hierarchical anonymity in the practical construction we employ the
ElGamal cryptosystem, which is semantically secure under the DDH assumption.
It is easy to see that ElGamal is also anonymous, as long as a fixed group is
used for each security parameter. Thus, each group manager Mβ holds a secret
key xβ and a public key yβ = gxβ , and the chain of cryptotexts is on the form

((u0, v0), . . . , (uδ−1, vδ−1)) = (Eyα0
(yα1), . . . , Eyαδ−1

(yαδ
)) .

To achieve chosen message security we employ the Fiat-Shamir heuristic to
turn an identification scheme into a signature scheme. The secret key of a signer
Sα is a Cramer-Shoup [15] signature σα = Sigcs(yα1 , . . . , yαδ−1) of the public
keys corresponding to the path α0, α1, . . . , αδ from the root ρ = α0 to the leaf
α = αδ. The Cramer-Shoup scheme is provably secure under the strong RSA
assumption.

To form a signature of a message m the signer first computes a commitment
C(σα) of the signature σα. Then it computes an honest verifier zero-knowledge
public coin proof π(m) that the cryptotexts ((u0, v0), . . . , (uδ−1, vδ−1)) form a
chain and that C(σα) hides a signature of the list (yα1 , . . . , yαδ−1) of public keys
used to form the chain of cryptotexts. The proof is given in the random oracle
model and the message m to be signed is given as a prefix to every query to the
random oracle. Thus, the complete signature is given by

(Eyα0
(yα1), . . . , Eyαδ−1

(yαδ
), C(σα), π(m)) .

Intuitively, this means that if a signer Sα can produce a valid signature, we
can by rewinding extract a signature of the list of public keys corresponding to
the path from the root to the signer. Thus, a signature can only be formed if the
signer is legitimate and if it has formed the chain correctly. Denote the hierar-
chical group signature scheme sketched above by HGS. We prove the following
theorem in the full version [26].

Theorem 2. The hierarchical signature scheme HGS is secure under the DDH
assumption and the strong RSA assumption in the random oracle model.

Efficiency Analysis. The complexity of the protocol is largely determined by
the proof sketched in the next subsection. This protocol has soundness 1 −
O(δ2−κ′

), where κ′ is a secondary security parameter. Using standard computa-
tional tricks we estimate the complexity of the protocol to correspond to roughly
κ′(δ + 3) general exponentiations modulo a κ-bit integer. If we set δ = 3 and
κ′ = 160 this corresponds to less than 1000 general exponentiations. The size of
a signature is about 1 Mb. The full version [26] contains a more detailed analysis.

Construction of the Proof of Knowledge. The main obstacle to find an
efficient hierarchical group signature scheme following our approach is how to
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prove efficiently that C(σα) is a commitment of a signature σα of the list of pub-
lic keys (yα1 , . . . , yαδ−1) used to form the chain ((u0, v0), . . . , (uδ−1, vδ−1)). We
construct a reasonably practical honest verifier zero-knowledge public coin proof
for this relation by carefully selecting and combining a variety of cryptographic
primitives and techniques. Due to the complexity of this protocol we can only
sketch the main ideas of this protocol in this extended abstract. Details are given
in the full version [26].

Let q0, . . . , q3 be primes such that qi = 2qi+1 + 1 for i = 0, 1, 2. A list of
such primes is called a Cunningham chain and exists under mild assumptions
on the distribution of primes. There is a subgroup Gqi+1 ⊂ Z

∗
qi

of order qi+1 for
i = 0, 1, 2. Denote by gi and yi fixed and independently chosen generators of Gqi

for i = 1, 2, 3, i.e., loggi
yi is not known to any party in the protocol. Thus, we

can form a commitment of a value yα ∈ Gq3 in three ways, as

(yt′′′

3 gs′′′

3 , ys′′′

3 yα) , (yt′′

2 gs′′

2 , ys′′

2 gyα

2 ) , and (yt′

1 gs′

1 , ys′

1 g
gyα
2

1 ) ,

where t′′′, s′′′ ∈ Zq3 , t′′, s′′ ∈ Zq2 , and t′, s′ ∈ Zq1 are randomly chosen. By
extending the ideas of Stadler [25] we can give a reasonably practical cut-and-
choose proof that the elements hidden in two such commitments are identical.

Recall that the collision-free Chaum-Heijst-Pfitzmann [12] hash function is
defined by HCHP : Z

δ
q2

→ Gq2 , HCHP : (z1, . . . , zδ) �→
∏δ

l=1 hzl

l , where the bases
h1, . . . , hδ ∈ Gq2 are randomly chosen, i.e., no party knows a non-trivial repre-
sentation of 1 ∈ Gq2 in these elements.

We employ ElGamal over Gq3 . This means that the public keys yα1 , . . . , yαδ

belong to Gq3 . Although it is not trivial, the reader should not find it too hard to
imagine that Stadler-techniques can be used to prove that the public keys used
for encryption are identical to values hidden in a list of commitments formed as

((µ0, ν0), . . . , (µδ−1, νδ−1)) = ((yt′′
0

2 g
s′′
0

2 , y
s′′
0

2 h
yα1
1 ), . . . , (y

t′′
δ−1

2 g
s′′

δ−1
2 , y

s′′
δ−1

2 h
yαδ

δ )) .

The importance of this is that if we take the product of the commitments we
get a commitment of HCHP(yα1 , . . . , yαδ

), i.e.,

( δ−1∏

i=0

µi,

δ−1∏

i=0

νi

)
=

(
yt′′

2 gs′′

2 , ys′′

2

δ∏

i=1

h
yαi

i

)
, (1)

for some t′′, s′′ ∈ Zq2 . Thus, at this point we have devised a way for the signer
to verifiably commit to the hash value of the keys it used to form the chain of
cryptotexts. This is a key step in the construction.

Recall that the signer commits to a Cramer-Shoup signature σα of the list
of public keys it uses to form the chain of cryptotexts. This signature scheme
uses an RSA-modulus N and elements from the subgroup QRN of squares in
Z
∗
N , and it is parameterized by two collision-free hash functions. The first hash

function is used to compute a message digest of the message to be signed, i.e.,
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the list (yα1 , . . . , yαδ
) of public keys. Above we have sketched how the signer

can verifiably form a commitment of the HCHP hash value of this message, so
it is only natural that we let this be the first of the two hash functions in the
signature scheme. However, in the signature scheme the message digest lives in
the exponent of an element in QRN in the signature scheme. To move the hash
value up in the exponent and to change group from Gq1 to QRN , the signer
forms two commitments

(
yt′

1 gs′

1 , ys′

1 g
HCHP(yα1 ,...,yαδ

)
1

)
and htgHCHP(yα1 ,...,yαδ

) .

Then it gives a cut-and-choose proof that the exponent in the left commitment
equals the value committed to in the product (1). It also proves that the ex-
ponents in the two commitments are equal. Thus, at this point the signer has
proved that it holds a commitment over QRN of the hash value of the public
keys it used to form the chain of cryptotexts.

The second hash function used in the Cramer-Shoup signature scheme is
applied to a single element in QRN . Since HCHP is not collision-free on such
inputs, we use the Shamir hash function HSh

(g,N) : Z → QRN , x �→ gx mod N
instead. Using similar techniques as explained above the signer evaluates the
hash function and moves the result into the exponent, by two Stadler-like cut-
and-choose proofs.

Given the two hash values in the exponents of two commitments, standard
techniques can be used to prove that the commitment C(σα) is a commitment of
the Cramer-Shoup signature σα of the list of public keys used to form the chain
of cryptotexts.

4 Conclusion

We have introduced and formalized the notion of hierarchical group signatures
and given two constructions. The first is provably secure under general assump-
tions, whereas the second is provably secure under the DDH assumption and
the strong RSA assumption in the random oracle model. The latter is practical,
i.e., it can be implemented and run on modern workstations, bit it is still slow.
Both require a trusted key generator. Thus, an interesting open problem is to
eliminate these deficiencies.
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