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Abstract. We introduce a definition of a re-encryption mix-center, and
a definition of security for such a mix-center. Then we prove that any
semantically secure public key system, which allows re-encryption, can
be used to construct a secure mix-center.

1 Introduction

The notion of a mix-net was invented by Chaum [3], and further developed by
a number of people. Properly constructed a mix-net enables a set of sender’s to
send messages anonymously. A mix-net can be viewed as an electronic analog of
a tombola; messages are put into envelopes, the envelopes are mixed, and finally
opened. It is impossible to tell who sent any given message. Thus the service
that a mix-net provides is anonymity.

Informally the requirements on a mix-net are: correctness, privacy, robust-
ness, availability, and efficiency. Correctness implies that the result is correct
given that all mix-centers are honest. Privacy implies that if a fixed minimum
number of mix-centers are honest anonymity of the sender of a message is en-
sured. Robustness implies that if a fixed number of mix-centers are honest, then
any attempt to cheat is detected and defeated. Availability and efficiency are
the general requirements on any system run on an open network.

A mix-net consists of a number of mix-centers, i.e. servers, that collectively
executes a protocol. The basic idea of a mix-net, present already in Chaum’s
work [3], is that each mix-center receives a list of encrypted messages, trans-
forms them, using partial decryption or random re-encryption, reorders them,
and then outputs the transformed and reordered list. It should be difficult to find
an element in the input list and an element in the output list that encrypts the
same message. The reason for using several independent mix-centers is that it
allows a sender to trust a subset of the mix-centers to ensure privacy. Later con-
structions have mostly dealt with robustness, availability and efficiency, which
are aspects ignored by Chaum.

1.1 Previous Work and Applications of Mix-Nets

The mixing paradigm has been used to accomplish anonymity in many different
scenarios. Chaum’s original “anonymous channel” [3, 19] enables a sender to
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securely send mail to a receiver anonymously, and also to securely receive mail
from this recipient without revealing the sender’s identity. When constructing
election schemes [3, 8, 21, 24, 18] the mix-net is used to ensure that the vote
of a given voter can not be revealed. Also in the construction of electronic cash
systems [12] mix-nets have been used to ensure anonymity. Thus a mix-net is
a useful primitive in constructing cryptographic protocols.

Abe gives an efficient construction of a general mix-net [1], and argues about
its properties. Jakobsson has written (partly with Juels) a number of more gen-
eral papers on the topic of mixing [11, 13, 14] also focusing on efficiency, of which
the first appeared at the same time as Abe’s construction. Jakobsson states a re-
sult similar to our Theorem 1 given below in an informal form as Lemma 1a
in [13], but for the special case where the underlying cryptosystem is El Gamal.
We discuss his lemma in more detail in the next section.

Desmedt and Kurosawa [5] describes an attack on a protocol by Jakobs-
son [11]. Similarly Mitomo and Kurosawa [16] exhibits a weakness in another
protocol by Jakobsson [13]. Pfitzmann has given some general attacks on mix-
nets [23], and Michels and Horster give additional attacks in [17].

1.2 Previous Results on Mix-Centers

This work started with an attempt at writing down a formal proof of Jakob-
ssons Lemma 1a [13] given in a slightly simplified form below. Unfortunately the
statement, proof sketch, and usage of this lemma are not satisfactory.

Lemma 1a. (Jakobsson) If the adversary can, with a non-negligible advantage
ε over a guess uniformly at random, match any input of a mix-center to its
corresponding output, then this adversarial strategy can be used as a black box to
break the Decisional Diffie-Hellman assumption with a probability poly(ε).

One problem is that it assumes all message variables identically and inde-
pendently distributed. This model does not mirror the real world, where it is
common that the adversary has some prior knowledge about the distribution of
messages sent by a given party, and not all sender’s should be approximated by
the same distribution. Similarly it is probable that some message variables are
dependent. Consider for example elections, where the votes of spouses mostly
are dependent. Some problems with arbitrarily distributed messages follow.

Firstly, it is no longer clear how to state the lemma formally, since it is not
clear what it should mean to “guess uniformly at random”. Since the adversary
knows the order of the input elements of the first mix-center he may be able
to guess in different ways giving vastly different success probabilities. This is
described in full detail when we argue about Definition 6.

Secondly Jakobsson assumes that the outcomes of the different copies of the
message variables are all different. This allows him to say that the probability of
randomly guessing a matching pair is 1

N+2 . This is no longer true if the number
of possible messages is small. Additionally, taking this into consideration, it is
not possible to argue like Jakobsson does in the argument about the N + 2:th
hybrid. He claims that if we pick new elements from the “message distribution”



370 Douglas Wikström

the N + 2:th hybrid will have no advantage. Consider a uniformly distributed
variable over a set of only two messages. When the lists are very large it is likely
that replacing all sent messages by new outcomes of the message variable, does
not change the lists much, and one can not conclude that the hybrid has no
advantage.

Thirdly, the proof sketch of the security of the complete mix-net of Jakobs-
son breaks down if we do not assume uniformly and independently distributed
message variables, since he applies his lemma also to the first mix-center in the
first re-encryption phase. This follows since, in the proof he permutes the input
to the adversary A randomly, and this is not the case in the protocol, where
the first mix-center in the first re-encryption phase may have partial knowledge
about the distribution of the message variables.

Another problem is that Jakobsson uses Lemma 1a in his proof sketch of his
Theorem 1. We discuss this issue in Section 3.3.

We conclude that a satisfactory definition, and formal proof are missing, and
that some care is needed to avoid misuse of Theorem 1.

1.3 Contribution

In some cited papers above, results about security and anonymity are claimed,
but a formal definition of a mix-center and a formal proof using such a definition
are missing in the literature.

We provide a definition of security for a single re-encryption mix-center and
show in Theorem 1 that any semantically secure re-encryption public key system
can be used to construct a secure mix-center. We have restricted ourselves to
mix-centers based on the random re-encryption paradigm.

We do not claim to give a definition of the privacy of a mix-net, since a def-
inition of security of a complete mix-net must involve several other aspects. We
highlight this in Section 3.3, where we explain two phenomena related to our
theorem that occur naturally in the construction of a mix-net. One of these phe-
nomena illustrates a misuse of Theorem 1 in the literature that to our knowledge
was undetected until now.

The results we present provide some of the missing pieces in a future formal
proof of security of a mix-net based on the re-encryption paradigm.

2 Notation and Definitions

We concentrate on non-uniform adversaries and denote the set of polynomial
size circuit families by PC.

Let X be a random variable with probability function pX : {0, 1}n → [0, 1].
Let M be a string describing a probabilistic circuit. We use the notation M(X)
for the induced random variable resulting when M is run on outcomes of X .
Unless otherwise stated, all random variables are independent of all other random
variables. We denote boolean values by T and F for true and false respectively.
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Let ΣN be the group of permutations on N elements. If N(n) is a polynomial
we sometimes write ΣN for the family {ΣN(n)}. We use a πN ∈ ΣN both as
a permutation and as a function, i.e. if l is a list πN l is the permuted list, and if
∆ is a set of indices πN (∆) is the image of this set under the bijection defined
by πN .

We write Mn = {0, 1}n, and M = {Mn}. We abuse notation for fami-
lies of objects and the actual objects in a family, i.e. if we should write “for
each n, Mn is a random variable distributed over Mn”, we instead write “M
is uniformly distributed over M”. Another example of this abuse of notation is
that Pr[D(E(m)) = m] > 1 − 1

nc in Definition 1 below should be interpreted
Pr[Dn(En(mn)) = mn] > 1− 1

nc . The same convention is used throughout. This
convention greatly simplifies the exposition.

The following definitions of a secure cryptosystem are given by Micali, Rack-
off, and Sloan in [15]. The definition of semantic security given in [15] is a slightly
changed version of a definition given by Goldwasser and Micali in [9]. Together
these two papers give a proof of equivalence of the definition of semantic security
of a cryptosystem and Definition 2 below.

Definition 1 (Public Key Cryptosystem, cf. [15]). A Public Key Cryp-
tosystem is a probabilistic Turing machine C running in expected polynomial
time that on input 1n outputs the description of two probabilistic circuits En
and Dn of polynomial size in n such that for a polynomial κ(n):

1. The encryption circuit En has n inputs and κ(n) outputs.
2. The decryption circuit Dn has κ(n) inputs and n outputs.
3. ∀m ∈ M, ∀c > 0, ∃n0 such that for n > n0:

Pr[D(E(m)) = m] > 1− 1
nc
.

We use the notation E(m, r) instead of E(m) when we want to make explicit
the probabilistic input r, and we assume that the number of random bits used
by E is η(n), a polynomial in n. We write Rn = {0, 1}η(n), and R = {Rn}.

Suppose m = (m1, . . . ,mN ) ∈ MN , and r = (r1, . . . , rN ) ∈ RN . We use the
notation E(m, r) = (E(m1, r1), . . . , E(mN , rN )) for element-wise encryption.

Definition 2 (GM-security, cf. [15]). Let (E,D) = {(En, Dn)} = {C(1n)},
where C is a public key cryptosystem, and let b be uniformly and independently
distributed in {0, 1}. C is GM-secure if ∀m0,m1 ∈ M, ∀T ∈ PC and ∀c > 0,
∃n0 such that ∀n > n0:

∣∣∣∣Pr[T (E,m0,m1, E(mb)) = mb]− 1
2

∣∣∣∣ <
1
nc
.

Another definition of security which can be proven equivalent to the other two
is the following:
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Definition 3 (GM-security∗). Let (E,D) = {(En, Dn)} = {C(1n)}, where C
is a public key cryptosystem, and let b be uniformly and independently distributed
in {0, 1}. C is GM-secure∗ if ∀m0,m1 ∈ M, ∀T ∈ PC and ∀c > 0, ∃n0 such
that ∀n > n0:

∣∣∣∣Pr[T (E,m0,m1, E(mb), E(m1−b)) = b]− 1
2

∣∣∣∣ <
1
nc
.

The following lemma is “folklore” knowledge, but for completeness we give
a proof in the appendix.

Lemma 1. Definition 3 is equivalent to Definition 2.

3 The Security of a Mix-Center

To be able to formally prove anything about a mix-center we first define the
concept of a mix-center and the right notion of security.

3.1 Definitions

The following definition captures that cryptotexts can be re-encrypted without
knowledge of the private key. This property is closely related to the homomorphic
property used in many papers (e.g. [10]). The by now classical El Gamal cryp-
tosystem [7], and the recently discovered Paillier cryptosystem [20] are examples
of systems that fit this definition.

Definition 4 (Re-Encryption Public Key Cryptosystem (RPKC)). A
Re-Encryp-tion Public Key Cryptosystem is a public key cryptosystem C that
on input 1n in addition to descriptions of En and Dn also outputs the description
of a circuit Fn of polynomial size in n such that:

1. Fn has κ(n) inputs and κ(n) outputs.
2. For all m ∈ M and all α, α′ ∈ E(m,R) we have:

Pr[α′ = F (α)] = Pr[α′ = E(m)] .

The function F above is called the “re-encryption function”. As for E we use
the notation F (α, r) instead of F (α) when we want to make explicit the prob-
abilistic input r of F viewed as a deterministic circuit. Without loss of gen-
erality we can assume that En, Dn and Fn uses an equal number of random
bits, i.e. we assume that all of the circuits use η(n) random bits, where η(n)
is a polynomial in n. Again we use the array notation as introduced above, i.e.
F (α, r) = (F (α1, r1), . . . , F (αN , rN )), for arrays α = (α1, . . . , αN ) = E(m), and
r = (r1, . . . , rN ) ∈ RN .

Formally Definition 2 and 3 are not applicable to an RPKC. The reason is
that A and T in Definition 2 and 3 respectively are given only E and not F as
input. To see that this is an important detail, consider an RPKC C such that if
we ignore F in the output it is GM-secure. Clearly C can encode the description
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of D into the description of F , which makes C easy to break using the knowledge
of F . It is however trivial to extend the definitions to be applicable also to an
RPKC such that the equivalence of the definitions still holds. Thus we use the
definitions as if they were defined properly for the case at hand, i.e. A and T
in Definition 2 and 3 respectively take as additional input F from the output
(E,D, F ) of C.

Definition 5 (Re-Encryption Mix-Center (RMC)). A Re-Encryption
Mix-Center is a probabilistic Turing machine CH running in expected polynomial
time that on input (1n, N), N is a polynomial N(n) in n, outputs descriptions
of probabilistic circuits En, Dn, Fn, and Hn of polynomial size in n such that:

1. The probabilistic Turing machine KN (CH) that, given input 1n, simulates
CH on input (1n, N) and outputs descriptions of En, Dn, Fn is an RPKC.

2. Hn has κ(n)×N inputs and κ(n)×N outputs.
3. H(α) = ΠNF (α), where ΠN is uniformly distributed in ΣN .

We use the notation πNF (α, r) = H(α) when we want to make explicit H ’s
probabilistic input, i.e. πN and r.

Note that the above is a definition of a re-encryption mix-center. In Chaum’s
[3] original construction each mix-center performed a partial decryption, and not
a re-encryption. In Chaum’s construction the number of input bits is not equal
to the number of output bits. Also one could imagine that a mix-center received
input encrypted with one cryptosystem, and produced output using another
cryptosystem.

A Definition of a Secure RMC. We now introduce a notion of security for
an RMC. Define a predicate ρ with regard to a given RMC taking as input a pair
of lists and a pair of indices. Let l = E(m, r) and l′ = πNF (l, r′), where m =
(m1, . . . ,mN ) ∈ MN , r, r′ ∈ RN , and πN ∈ ΣN . Let (i, j) be a pair of indices
1 ≤ i, j ≤ N . We let ρ(l, l′, i, j) = T if and only if it holds that mi = mπ−1

N (j).
The predicate is true if the encryption at index i in l and the encryption at
index j in l′ both encrypt the same message. It is clearly possible that there
exist several pairs (i, j1), (i, j2), ..., (i, jk) for which ρ(l, l′, i, jt) = T .

The following definition says that given a secure RMC it is impossible to find
a pair of indices (i, j) such that ρ(l, l′, i, j) holds with respect to the input l and
output l′ of the RMC notably better than guessing cleverly.

Definition 6 (Security of an RMC). Let CH be an RMC, define the family
(E,D, F,H) = {(En, Dn, Fn, Hn)} = {CH(1n)}, and let A ∈ PC.

Let M be arbitrarily but independently distributed over MN , and let J =
{Jn}, where Jn is uniformly and independently distributed over {1, . . . , N(n)}.
Define the random variables:

L = E(M), L′ = H(L), and (IA, JA) = A(E,F, L, L′) .

CH is secure if for all M and A as above ∀c > 0, ∃n0 such that ∀n > n0:

|Pr[ρ(L,L′, IA, JA) = T ]− Pr[ρ(L,L′, IA, J) = T ]| < 1
nc
.
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We argue that this is the right definition of a secure RMC as follows. Suppose
that the underlying cryptosystem KN(CH) is in some magical way perfect. That
is, a cryptotext gives no information in an information theoretical sense about
the encrypted message. Then an adversary clearly can not pick the second com-
ponent of its output better then picking a uniformly chosen index, since the
permutation ΠN , unknown to the adversary, is uniformly and independently
distributed.

On the other hand the first component can still be chosen cleverly to bias
the success probability. Consider for example the case where allMi are constant,
and all but one equals mi. Then the success probability depends heavily on how
the first component is chosen.

The definition states that given an adversary A that has a certain success
probability, we get almost the identical success probability by using the first
component of A’s output and picking the second component randomly. Since we
pick the second index randomly this amounts to clever guessing.

3.2 Results on the Security for an RMC

Let KN (CH) denote the probabilistic Turing machine that given input 1n sim-
ulates CH on input (1n, N) to get (En, Dn, Fn, Hn) and outputs (En, Dn, Fn).
We are able to prove the following theorem of which Jakobssons Lemma 1a [13]
could be said to be a special case.

Theorem 1. CH is a secure RMC if and only if for all polynomials N(n) in n,
KN (CH) is a semantically secure RPKC.

The theorem implies that if there exists a semantically secure RPKC, then the
construction given in Definition 5 gives a secure mix-center according to Defini-
tion 6. We implicitly use the generalization of Definition 2 and 3 to re-encryption
public key cryptosystems, as discussed in Section 3.1. We give a proof of Theo-
rem 1 in Appendix A.

Note that the presence of the quantification over the variableN in Theorem 1
is necessary. Without it there could exist some N for which KN (CH) outputs
trivial (E,D, F ). We also need that N is polynomial in n since we otherwise
would be unable to perform a hybrid argument in the proof.

3.3 Definition 6 is Not Sufficient for a Mix-Net

Our results give strong evidence for the security of many constructions of mix-
nets in the literature. However they do not imply that the mix-nets proposed in
the literature are secure, since there is not even a formal definition of security
of a mix-net. Neither is Definition 6 intended to serve as a definition of security
of a mix-net.

To emphasize this fact we give a generalization of an attack on mix-nets of
which special cases has been described by Pfitzmann [23], and Jakobsson [11].
Jakobsson also gives a solution on how to prevent this attack. We also give an
example of a situation, where our results seem to be applicable but are not.
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Using Malleability to Break Anonymity. The notion of non-malleability
was introduced by Dolev, Dwork and Naor [6]. Informally a cryptosystem is non-
malleable if, given a cryptotext αi = E(mi) of a message mi, it is impossible to
construct α′i = E(m

′
i), where m

′
i has some non-trivial relation to mi.

Suppose that we have a mix-net that viewed as a single mix-center is secure
by Definition 6, and that the cryptotexts given as input to the mix-net are
encrypted using a malleable cryptosystem. Let αi = E(mi) be the encryption of
a message mi sent to the mix-net by Alice. We want to break the anonymity of
her message. To do this we construct α′i = E(m

′
i) by using the malleability of

the cryptosystem, where (mi,m
′
i) ∈ R, and R is some non-trivial relation. Then

we send αj = α′i as our message.
Thus the input to the mix-net can be written as α1, . . . , αN , where αi is

the cryptotext of Alice and αj = α′i is our contrived cryptotext. The output in
cleartext of the mix-net has the form m̂1, . . . , m̂N where mi = m̂l for some l
and m′

i = m̂k for some k �= l. If we apply the transformation φR on each m̂i,
where φR(mi) = m′

i and (mi,m
′
i) ∈ R, we get a list on the form: m̂′

1, . . . , m̂
′
N .

Note now that m̂′
k = m̂l. This implies that it is likely that m̂k is the message sent

by Alice. Depending on the relation R the probability of getting an ambiguous
answer is higher or lower, and several attackers using “independent” relations
increase the probability of a correct guess.

Jakobssons [11] relation is identity, and Pfitzmann [23] assumes an El Gamal
cryptosystem where she uses the relation Rx = {(m,mx)} for some fixed x. The
attack clearly fails if we use a non-malleable cryptosystem and check for identical
cryptotexts, and this is what Jakobsson proposes.

The conclusion is that Definition 6 is inappropriate to define the privacy
of a complete mix-net. A definition of privacy of mix-nets must allow adaptive
attacks like the above, and must be defined in a multi-party setting.

Using Malleability to Break Robustness. A frequently used paradigm to
achieve efficient and robust mix-net protocols is repetition. Consider the follow-
ing game, where we let the underlying cryptosystem be the El Gamal system.

Let m = (m1, . . . ,mN ) be an array of cleartexts, let α = E(m) be the
corresponding array of cryptotexts, and let H be the output of a secure RMC.
Let α′ be the concatenation of h copies of the list α, and set α′′ = H(α′).

Note that α′′ contains a multiple of h different cryptotexts of each mi. Sup-
pose we are given α′′ and the goal of the game is to replace all cryptotexts of any
single arbitrarily chosen messagemi, with encryptions of some other messagem′

i,
but let the remaining set of encrypted messages be fixed. That is we must, given
α′′ construct a α′′′ such that it contains a multiple of h cryptotexts of each mi

except one mj for which we have replaced all its cryptotexts by encryptions of
some m′

j . What is the probability of success in this game?
At first it seems that if all mi are different, then since the RMC is secure the

probability should be something like the probability of guessing the position of
all h copies of cryptotexts of mi. Indeed an argument similar to this is used by
Jakobsson [13] in the proof sketch of his Theorem 1.
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Unfortunately this is not true in general, not even for uniformly distributed
messages, as the following example shows. Suppose that the cryptosystem in
use is the El Gamal system [7] over a group G. Let m1 be uniformly and inde-
pendently distributed in G = M, let k1 ∈ G, and 0 �= k2 ∈ Z|G| be fixed and
set mi = k1mk2

i−1 for all i �= 1. Given an El Gamal cryptotext αi = E(mi) of mi

it is easy to compute f(αi) = E(k1mk2
i ) without knowledge of the private key.

Thus to succeed in our game we need only compute the list f(α), where we let f
be defined element-wise. This maps cryptotexts of mi−1 onto cryptotexts of mi

except formN , which is mapped to an elementm′
1 �= mi for allmi. Thus we have

in effect replaced cryptotexts of m1 with cryptotexts of m′
1 without identifying

what cryptotexts to change.
Even though this example is not an immediate attack on any existing mix-net

construction, an argument similar to this, but for a more complicated game can
be found in Jakobsson’s proof sketch of Theorem 1 in [13], and possibly other
papers as well. We would welcome a formal proof of such claims.

4 Conclusion and Future Work

We have formalized the security of a mix-center in the re-encryption paradigm,
and showed that a secure mix-center can be constructed if there exists a pub-
lic key encryption system with the re-encryption property. For many mix-net
constructions this is the key step in a formal proof of privacy.

A formal proof of security for a complete mix-net, in the byzantine setting is
still an open question. There are many proof sketches in the literature of mix-
nets, and several constructions have been broken. Since these constructions are
claimed to be provably secure, we think this calls for greater attention to details.
Only with formal proofs can important applications such as electronic elections
be considered seriously.

An interesting future line of research is to prove a mix-net secure in the
security framework of Canetti [2] or Pfitzmann and Waidner [22].
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that (E,D) = {(En, Dn)} = {C(1n)}, when we write E or D.
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Definition 7 (Generalized GM-security∗ (gGM)). Let C be a public key
cryptosystem, let (E,D) = {(En, Dn)} = {C(1n)}, and let b be uniformly dis-
tributed in {0, 1}. C is gGM-secure if for all polynomials N in n, ∀πN ∈ ΣN ,
∀m ∈ MN , ∀T ∈ PC, ∀c > 0, ∃n0 such that ∀n > n0:

∣∣∣∣Pr[T (E,m, π
b
NE(m)) = b]−

1
2

∣∣∣∣ <
1
nc
.

Lemma 2. A public key cryptosystem C is GM-secure iff it is gGM-secure.

Proof. We see that gGM-security immediately implies GM-security∗, since we
may take the polynomial N(n) = 2 in the definition of gGM-security.

To prove the opposite direction of the lemma, we assume it is false. Then there
exists a GM-secure cryptosystem C, and a polynomial N , ∃m ∈ M, ∃T ∈ PC,
∃πN ∈ ΣN , ∃c > 0, and an infinite set N such that for n ∈ N :

∣∣∣∣Pr[Tn(En,mn, π
b
N,nEn(mn)) = b]− 1

2

∣∣∣∣ ≥
1
nc
.

We now define an A = {An} ∈ PC that breaks the GM-security∗ of C. Consider
a fixed n ∈ N . Note that for any permutation, in particular for πN,n, there exists
a chain of permutations id = π(1), π(2), . . . , π(N) = πN,n, such that π(i+1) and
π(i) differ only by a transposition. We get the following hybrid argument:

ζi = Pr[Tn(En,mn, (π(i))bEn(mn)) = b],
1
nc

≤ |ζN − ζ1| ≤
N−1∑

i=1

|ζi+1 − ζi| .

where ζ1 = 1
2 since (π(1))b = id. This implies |ζt+1 − ζt| ≥ 1

Nnc for some 1 ≤
t < N . Let k0 and k1 be the two indices such that π(t)(k0) = π(t+1)(k1) and
π(t+1)(k0) = π(t)(k1). Let (En,mn,k0 ,mn,k1 , α0, α1) be the input to An, where b
is randomly chosen, and (α0, α1) = (En(mn,kb

), En(mn,k1−b
)). The circuit An:

1. Computes α = π(t)En(mn).
2. Replaces the elements of α at positions π(t)(k0) and π(t)(k1) by the elements
α0 and α1 respectively. Let the resulting vector be α′.

3. Runs b = Tn(En,mn, α
′), and returns b.

It follows that the GM-security∗ of C is broken. ��
Corollary 1. If C is gGM-secure then, ∀j = {jn}, where jn ∈ {1, . . . , N(n)},
∀πN , ψN ∈ ΣN , ∀m ∈ MN , ∀T ∈ PC, ∀c > 0, ∃n0 such that ∀n > n0:

|Pr[T (E,m, πNE(m)) = j]− Pr[T (E,m,ψNE(m)) = j]| < 1
nc
.

Proof. Assume the contrary. Then there exists j, πN , ψN , and c > 0 such that
for n ∈ N the inequality above does not hold. Consider a fixed n ∈ N . If we set
ζπN = Pr[Tn(En,mn, πN,nEn(mn)) = jn], we have |ζπN − ζψN | ≥ 1

nc .
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We now construct a B = {Bn} ∈ PC that breaks the gGM-security of C. Bn
takes input (En,mn, α), where α = (π−1

N,nψN,n)
bEn(mn), and b ∈ {0, 1} is ran-

domly chosen.
The circuit Bn does the following k(n) times, where k(n) is a polynomial:

It computes α′ = πN,nFn(α), and runs Tn(En,mn, α
′). Then it computes the

fraction s of times Tn returned jn. If |s− ζπN | < |s− ζψN | then it returns 0 and
otherwise it returns 1.

Let Zi be an indicator variable of the event that Tn outputs jn in the i:th
run. Then s is an outcome of the random variable Z(k) = 1

k(n)

∑k(n)
i=1 Zi. Thus:

Var[Z(k)|b = 0] = 1
kVar[Z1|b = 0] = 1

k ζπN (1 − ζπN ), and similarly for ψN . Let
d = 1

2 |ζπN − ζψN |, then we have from Chebychev’s bound that:

Pr[|(Z(k)|b = 0)− ζπN | > d|b = 0] ≤ Var[Z(k)|b = 0]
d2

≤ n2c

k(n)

and similarly for b = 1. Thus if we set k(n) = 2n2c we have:

Pr[Bn(En,mn, (π−1
N,nψN,n)

bEn(mn)) = b] ≥ 1
2

which breaks the gGM-security of C. ��
Lemma 3. For mn ∈ MN

n , denote by ∆i(mn) the set {j|mn,j = mn,i}, and
let ΠN be uniformly distributed in ΣN . If C is GM-secure then ∀i = {in},
where in ∈ {1, . . . , N(n)}, ∀m ∈ MN , ∀T ∈ PC, ∀c > 0, ∃n0 such that ∀n > n0:

∣∣∣∣Pr[T (E,m,ΠNE(m)) ∈ ΠN (∆i(m))] −
|∆i(m)|
N

∣∣∣∣ <
1
nc
.

Proof. Let επN ,j = Pr[JT = j|ΠN = πN ] − Pr[JT = j|ΠN = id], where we
let JT = T (E,m,ΠNE(m)). We write ∆i for ∆i(m), and have:

Pr[JT ∈ ΠN (∆i)] =
∑

πN∈ΣN

1
N !

Pr[JT ∈ ΠN (∆i)|ΠN = πN ]

=
N∑

j=1

∑

πN∈ΣN

1
N !

Pr[JT = j|ΠN = πN ] Pr[JT ∈ ΠN (∆i)|ΠN = πN , JT = j]

=
N∑

j=1

Pr[JT = j|ΠN = id]
∑

πN∈ΣN

1
N !

Pr[JT ∈ ΠN (∆i)|ΠN = πN , JT = j]

+
N∑

j=1

∑

πN∈ΣN

1
N !
επN ,j Pr[JT ∈ ΠN (∆i)|ΠN = πN , JT = j]

=
|∆i|
N

+
N∑

j=1

∑

πN∈ΣN

1
N !
επN ,j Pr[JT ∈ ΠN (∆i)|ΠN = πN , JT = j]
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since
∑

πN∈ΣN

1
N ! Pr[JT ∈ ΠN (∆i)|ΠN = πN , JT = j] = |∆i|

N . Thus we have:

∣∣∣∣Pr[JT ∈ ΠN (∆i)]− |∆i|
N

∣∣∣∣ ≤
N∑

j=1

∑

πN∈ΣN

1
N !

|επN ,j | ≤ N max
πN ,j

{|επN ,j |}

which is negligible since N(n) is polynomial and maxπN ,j{|επN ,j |} by Corollary 1
is negligible. ��

We are now ready to give the proof of Theorem 1.

Proof (of Theorem 1). First the easy direction of the proof. Suppose that CH is
a secure RMC, but C = KN(CH) is not a GM-secure RPKC for some polyno-
mial N . Then ∃m0,m1 ∈ M, ∃T ∈ PC, ∃c > 0 and an infinite index set N such
that for n ∈ N :

∣∣∣∣Pr[T (E,m0,m1, E(mb), E(m1−b)) = b]− 1
2

∣∣∣∣ ≥
1
nc
.

The family A = {An}, where An given input (En, Fn, En(mn,0,mn,1), (α0, α1))
returns the pair (0, Tn(En,mn,0,mn,1, α0, α1)) shows that CH is not secure.

To prove the other direction, we assume that KN(CH) is semantically secure
for all polynomials N , but CH is not secure. Then, using the notation of Defi-
nition 6, there exists an A ∈ PC, an infinite index set N , and a c > 0 such that
for n ∈ N :

|Pr[ρ(Ln, L′
n, IAn , JAn) = T ]− Pr[ρ(Ln, L′

n, IAn , Jn) = T ]| ≥
1
nc
.

We abuse notation and write ρ(I, J) instead of the correct ρ(Ln, L′
n, I, J). A

probabilistic argument gives that there exists a fixed m ∈ MN such that for
n ∈ N : |Pr[ρ(IAn , JAn) = T |Mn = mn]− Pr[ρ(IAn , Jn) = T |Mn = mn]| ≥ 1

nc .
We define: ζA,i = Pr[ρ(IAn , JAn) = T |Mn = mn, IAn = i] and similarly

ζi = Pr[ρ(IAn , Jn) = T |Mn = mn, IAn = i] to simplify notation in the following.
For some 1 ≤ t ≤ N(n) we have:

1
nc

≤ |Pr[ρ(IAn , JAn) = T |Mn = mn]− Pr[ρ(IAn , Jn) = T |Mn = mn]|

=

∣∣∣∣∣∣

N(n)∑

i=1

pIAn
(i)(ζA,i − ζi)

∣∣∣∣∣∣
≤ N(n)pIAn

(t)|ζA,t − ζt| .

We construct a T ∈ PC that contradicts Lemma 3. The circuit Tn gets
input (En, Fn,mn, l

′
n), where l

′
n is an outcome of L′

n, computes ln = E(mn),
runs (i, j) = An(E,F, ln, l′n), and if i = t it returns j, and otherwise it returns
the outcome of a random variable Jn, which is uniformly and independently
distributed over {1, . . . , N(n)}.
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Using the notation of Lemma 3 we have ζt =
|∆t|
N which gives:

Pr[JTn ∈ ΠN(n)(∆t)] =
∑

i�=t
pIAn

(i)
|∆t|
N

+ pIAn
(t)ζA,t

=
|∆t|
N

+ pIAn
(t)(ζA,t − ζt) .

Thus |Pr[JTn ∈ ΠN(n)(∆t)]− |∆t|
N | = pIAn

(t)|ζA,t − ζt| ≥ 1
N(n)nc , which contra-

dicts Lemma 3. ��
In the proof above we implicitly use an extended version of Definition 7 that

is applicable to an RPKC, and use that Lemma 2, Corollary 1, and Lemma 3
hold correspondingly (see Section 3.1).

For completeness we give a proof of Lemma 1.

Proof (of Lemma 1). Suppose that a PKC C is not secure according to Defi-
nition 2, and let T = {Tn} be the family of circuits that shows this. Then the
family of circuits T ′ = {T ′

n}, where T ′
n simulates Tn on the first component

of its input and returns b if Tn returns mb is clearly not secure according to
Definition 3.

For the other direction, suppose that a PKC C is not secure according to
Definition 3. Then ∃m0,m1 ∈ M, ∃T ′ ∈ PC, and an infinite index set N , such
that for each n ∈ N :

pbd = Pr[T ′(E,m0,m1, E(mb), E(md)) = 1]
1
nc

≤ |p01 − p10| = |p01 − p11 + p11 − p10| ≤ 2|pt,1−t − p11|

for some t = {tn}, where tn ∈ {0, 1}. Set γt = α and γ1−t = E(m1). Then T runs
b = T ′(E,m0,m1, γ0, γ1) and returns mb. It follows that T breaks the security
according to Definition 2. ��
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