&

Ak
ZFKTHY

VETENSKAP
32 OCH KONST ¢

R

KTH Numerical Analysis
and Computer Science

Department of Numerical Analysis and Computer Science

On the [-Ary GCD-Algorithm and
Computing Residue Symbols

Douglas Wikstrom

TRITA-NA-0439

%@% & (3)/ Iy

R A
ﬂf’ KTHE Swslzs0
{? VETENSKAP ‘é} fi\ W, e
38 OCH KONST ¢ 7/ 7 o

N
‘%%X£° /‘//7 + S\ﬁ

NADA is a co-operating departement between the
Royal Institute of Technology and Stockholm University

Douglas Wikstrom
On the l-Ary GCD-Algorithm and
Computing Residue Symbols

Report number: TRITA-NA-0439
Publication date: November 15, 2004
E-mail of author: dog@nada.kth.se

Reports can be ordered from:

Numerical Analysis and Computer Science (NADA)
Royal Institute of Technology (KTH)

SE-100 44 Stockholm

SWEDEN

telefax: +46 8 790 09 30
http://www.nada.kth.se/

On the [-Ary GCD-Algorithm and
Computing Residue Symbols

Douglas Wikstrom
November 15, 2004

Abstract

We present an l-ary GCD algorithm for the ring Z[(], where (is a prim-
itive eighth root of unity . A corresponding algorithm for computing the
octic residue symbol is also described. Both algorithms run in time O(n?)
in the bitsize n of the input using naive arithmetic in Z. As far as we know,
this is the first report of a non-Euclidean gcd algorithm for the ring of in-
teger for a non-quadratic number field, and the first octic residue symbol
algorithm which runs in time O(n?).

1 Introduction

Given a and b, the greatest common divisor is the largest integer d such that d | a
and d | b. The corresponding problem can be considered for two elements o and
f in any ring R with unique factorization. The problem of finding the greatest
common divisor of two integers is one of the oldest problems studied in number
theory. A precise understanding of the complexity of different gced algorithms gives
a better understanding of the arithmetic in the domain under consideration. Thus,
our main motivation for studying this problem is its mathematical beauty.

The problem of quadratic residuosity can be described as follows. Given a
prime p and an integer a determine if there exists a solution to the equation
2> =a (mod p), i.e. determine if a is a square in Z?. The Legendre symbol (%)
is defined to be equal to 0 if p | a, equal to 1 if there is a solution to the equation
and equal to —1 if there is no solution to the equation. For a non-prime b with
decomposition b = p;-. . .-ps into primes the Jacobi symbol (%) is defined in terms of
the Legendre symbol by (§) = szl(i) In contrast to the Legendre symbol, the
Jacobi symbol may equal one without there being a solution to 22 = a (mod b).
More generally, for two elements o and 3 in a ring R containing the mth roots of

«

unity, one can define an mth power residue symbol < 6) with similar properties

as the Jacobi symbol. A practical cryptographic applicgtion of a fast algorithm
for computing the [th power residue symbol is to check membership in a group
G, C (Z/pZ)* for prime numbers p and ¢ such that p = lg+1 with [< ¢. Suppose

that p factors into primes p = [[%_, 7; in R. Then a € (Z/pZ)* is contained in

j=1
G, if and only if <7%> = 1. This was our original motivation for studying this

problem [12]. Although the algorithm we present has too large constant factors to
be of immediate practical value, we hope that it is a first step in the program of
finding an efficient practical algorithm.

Algorithmically, the problem of computing residue symbols is intimately con-
nected to the problem of computing the ged of elements, and there exists efficient
algorithms for solving both problems in the integers and in some larger domains. It
is an intriguing research problem to find efficient algorithms for as general domains
as possible. The relation between the two problems make it natural to study them
together.

1.1 Previous Work

The Euclidean ged algorithm is well known. Less known are the alternative algo-
rithms. Stein [8] introduced the binary ged algorithm, which is particularly well
suited for implementation on computers. The binary algorithm is based on the
following facts

ged(a,b) = 2ged(a/2,0/2) if a and b are even
ged(a, b) = ged(a,b/2) if a is odd and b is even
ged(a, b) = ged(a, (a —b)/2) if a and b are odd .

One may always apply one of the rules to reduce the size of elements, while pre-
serving the ged. Thus, by simply shifting and subtracting integers the ged of two
integers can be computed quickly.

Weilert [11] generalized this algorithm to the Gaussian integers. Damgard and
Skjovbjerg Frandsen [2] independently also generalized the binary algorithm to the
Eisenstein integers and the Gaussian integers.

Interestingly, the binary gecd algorithm can be “translated” to compute the
Jacobi symbol. This was first described by Shallit and Sorenson [6]. Weilert [11]
generalized this algorithm to the Gaussian integers. Independently, both Damgard
and Skjovbjerg Frandsen [2] and Wikstrom [12] generalized the binary algorithm
to the Eisenstein integers and the Gaussian integers in slightly different ways.

Kaltofen and Rolletschek [4] devised a ged algorithm for the ring of integers in
any quadratic number field. Their approach is based on the idea of given elements

2

a and (to find an integer j such that the norm of ja mod (is smaller than the
norm of #. It turns out that this is always possible with |j| bounded essentially
by the square root of the discriminant.

Sorenson [7] introduced the [-ary algorithm, which generalizes the binary al-
gorithm. The [-ary algorithm is based on the result by Minkowski that given a
and b one can find ¢ and d such that ca + db = 0 mod [for an integer [, where
lal,|b] < V1. This is an analog to the binary algorithm, in that in each iteration
the size of the largest integer is reduced roughly by a factor 2v/1 /1. The details of
this algorithm is however more involved than the binary algorithm. Sorenson also
constructed a parallel version of his algorithm. Weilert [10] generalized also this
algorithm to the Gaussian integers.

Recently Agarwal and Skovbjerg Frandsen [1] gave an algorithm related to
both the binary and the [-ary algorithms for computing ged in several complex
quadratic rings. Their result is intriguing in that they compute ged in the ring
of integers D = Z[1(—1 4 +/=19)] of Q(v/—19) which is not norm-Euclidean, i.e.
although there exists a Euclidean algorithm in D the height function is not the
norm.

1.2 Contribution

We extend Sorenson’s [7] l-ary algorithm to compute the ged of @ and 3 in Z[(],
where ¢ = (g is a primitive eighth root of unity. Our algorithm runs in time O(n?).
We also construct a corresponding algorithm for computing the octic residue sym-
bol of a modulo 3, with the same running time.

As far as we know, we give the first non-Euclidean ged algorithm in the ring
of integers of a non-quadratic field, and the first algorithm for computing the
octic residue symbol in time O(n?) using naive arithmetic for Z. This should be
compared to the straightforward computation of the residue symbol which takes
time O(n?) in the same model.

Thus, we present some results in the program to find non-Euclidean algorithms
for computing the ged and power residue symbols in as general settings as possible.
The octic case is interesting, since it introduces some, but not all, difficulties found
in the general settings.

1.3 Outline of Paper

First we introduce some basic notation. Then we recall some well known facts
about the octic cyclotomic field Q(¢) and its ring of integers D. We continue by
presenting the octic residue symbol and the reciprocity laws it satisfies. Our main
references for this part of the paper are Ireland and Rosen [3] and Chapter 9 in
Lemmermeyer [9].

We proceed by proving a number of results for Q(¢) and D, on which our
algorithms and the analysis of the algorithms are based. This part of the paper is
divided into a number of subsections. First we prove basic facts about the primes
and primary elements in D. Then we define the notion of a balanced element and
establish some properties of such elements. We then prove a weak triangle law for
the ring of integers in any number field. In the three subsections that follow we
consider the problem of given o and [to find elements + and ¢ such that ya + 00
is divisible by [and has relatively small norm. That is, we establish the results
that allow us to generalize Sorenson’s [7] l-ary algorithm.

Similarly to the Euclidean algorithm the [ary algorithm must in each step find
the largest of its inputs, and if necessary swap them. Normally the “size” of an
element is measured by its norm, but the norm is to expensive to compute in each
iteration. Thus, we consider the problem of finding the “size” of elements without
computing their norm. We do this by first introducing the notion of a balanced
element, i.e. an element such that the complex absolute value of all its conjugates
are roughly equal. Then we give a function which upper bounds the norm, and
approximates the norm well for balanced elements (it does not approximate the
norm for general elements). Then we show that this measure can be efficiently
approximated. The idea of balancing elements appears implicitly in the work of
Kaltofen and Rolletschek [4].

Finally, we describe the algorithms in detail and then prove that they are
correct and that their running time is O(n?).

2 Notation

We write Z, Q, R, and C for the rational integers, the rational numbers, the real
numbers, and the complex numbers. The imaginary unit is denoted by i = /—1.
We denote the complex absolute value by |- | : C — R, where |a + bi| = Va? + b2.

3 Naive Bit Complexity

We follow Sorenson [7] and analyze our algorithms in the naive bit complexity
model. This means that we assign the following costs for integer arithmetic where
x and y are integers. Without loss we consider only positive integers.

e Copying the value of z takes time O(log x).
e Computing = + y or z — y takes time O(log x + logy).

e Computing zy, x/y, or x mod y takes time O(logzlogy).

e Comparing x with y takes time O(log z + logy)).

4 The Octic Cyclotomic Field and its Ring of
Integers

In this section we introduce some notation and recall results on the eighth cyclo-
tomic field and its ring of integers.

Write ¢ = e*™/8 = %(\/5 + v/2i). Then ¢ is a primitive eighth root of unity.
We consider the cyclotomic field K formed as K = Q(¢), and write D for the
ring of integers in K. The field K is a biquadratic number field, i.e. it can be
formed by two extensions of degree 2, K = Q(1, \/5) The lattice of subfields of K

is illustrated below.

Furthermore, the integers D is a principal ideal domain, and thus have unique
factorization, since the class number of K is one (cf. Theorem 11.1 in [9]), and
D=Z[)=Z+ 7+ Z¢* + Z¢3.

The relative norm of an extension K/L of an element « in K is defined by the
product Ny, pa = HUGGal(K1) &7 where 0 : a — a“ are the isomorphisms of the
Galois group Gal(K/L) of the extension K/L. We write N to denote the norm
Nkjg- For a € D we have Na € Z. By abuse of notation we write Na = |D/a| to
denote the norm of an ideal a € D, since D is a principal ideal domain.

We say that an element v € D is a unit if there exists an element w such that
vyw = 1, this is equivalent with Ny = 1. Two elements o and 3 in D are said to
be associates if there exists a unit v € D such that o = y3. The units of D are
generated as a multiplicative group by ¢ and € = 1 + /2, i.e. any unit v can be
written v = ¢/’ for j' € [0,7] and j € Z.

An element a € D is said to divide § € D if there exists a v € D such that
[= ary, and this is written « | 5. The greatest common divisor v = ged(«,) of «
and [is only defined up to multiplication by a unit. The element ~ is characterized
by v | @ and 7 | § and that 7' | « and 7' | § implies that 7" | .

An element « € D is said to be prime if « | 87, 3,7 € D implies that a | 5 or
a | 7. An element o € D is called irreducible if it has the property that a =

implies that either § € D or v € D is a unit. For principal ideal domains like D
the two notions coincide. Two elements « and 3 in D are said to be relatively
prime if the ideal (o,) = D, or equivalently ged(c, 3) is a unit.

5 The Octic Residue Symbol

In the previous section we recalled general facts about the field K and its ring
of integers D. In this section we review more specialized definitions and results
about the octic residue symbol.

Definition 1 (Primary). An element o € D is primary if « =1 mod (2 + 2().

The notion of a primary element can be generalized to larger domains. However,
there seems to be no consensus on a general definition. Our definition is taken from
Chapter 9 of [5].

Definition 2 (Octic Residue Symbol). Let « and 3 in D and let 3 be a non-
unit with NG =1 (mod 8).

1. If o and 3 are not relatively prime we define <%> = 0.
2. If o and (8 are relatively prime then

(a) if (B is prime then define (%) to be the unique 8th root of unity such
that

(§)-o s

(b) if B has prime factorization 3 = []’_, 5;7 , then define
«Q Sl a\"”
(ﬁ) B]1:[1 (ﬁj)

Proposition 3. Let a and § in D be relatively prime to v in D and let v be
primary.

1. Then we have

-6

2. If furthermore o = (3 mod =y, then we also have

00
g v

Given an o € D we can write it in different basis, a = a(a) +b(a)i, a = c(a) +
d(a)v/=2, and a = e(a) + f(a)v/2. These expressions correspond to the different

towers of fields in the lattice of subfields of K, and are used in the statement of
the reciprocity laws below.

Theorem 4 (Octic Reciprocity Law). If a and § are relatively prime and
primary non-units, then

D) = (-1 @S (B)-dB)f @) B
I} o]

Theorem 5 (Supplementary Octic Reciprocity Laws). Let a € D be a
primary non-unit. Then

5a—5+5b+18d+b2 —2bd+d?/2
]

=)
(1 + C) _ Ca71+b+6d+gz+2bd+d4/2

a—1+4b+2bd+2d2
1

a—1—2b+2d—2d>
1

= ¢

6 Results On Rings of Integers in Number Fields

This section develops results that allow us to construct and analyze the ged algo-
rithm and the octic residue symbol algorithm in D.

6.1 Primes and Primary Elements

Lemma 6. The prime factorization of 2 is given by

2=(1+Q0+)1+M)A+) =-(1-¢*(1+)* .

Proof. Equality follows by calculation. Let 1+ (= a8 and take the norm on both
sides. Since N(1+4() = NaN = 2, this implies that either & or # must be a unit,
so 1 + (is prime. The other factors on the right are prime for the same reason.
The second equality follows from the fact that 1 +¢° = (1 +¢), 1+ =1-,
14+ ¢7 = ¢T(1+¢), and ¢°¢T = ¢* = —1. 0

Lemma 7. If « € D has even norm Na, then (14+¢7) | a for some j € {1,3,5,7}.

Proof. Suppose that the prime factorization is given by a = [[;_, v, for s e N
and r; € Z. Taking the norm on both sides and using the multiplicativity of the
norm implies that 2 | Nv; for some j, i.e. Nvy; = (1+)(1+¢*)(1+¢)(14+¢7)o
for some 6. Since 7, is prime, must be a unit. From Lemma 6 we have 2 =
(14+)1+)1+ ¢°)(1+¢"), and the lemma follows. O

Lemma 8. If « € D have odd norm N, then there exists j,1 € {0,1,2,3} such
that (Jéac is primary.

Proof. Let o = ag + a1 + a2C? + az¢3. First we argue that there is a unit ~
such that ya = bmod (2 + 2() for an odd b € Z. Consider the norm Na =
2a2a3 + a3 — 4agaias + aj +4agaias + ag + as + dajataz — dajazasz + 2a3a3. We have
Na = aj + aj + a3 + a3 mod 2. Since the norm is odd by assumption, this implies
that an odd number of the a; for j = 0,1, 2,3 are odd.

If a; is odd but no other, we have that (*~7a = by + by ¢ + ba(? + b33, where by
is odd and ¥; for [= 1,2, 3 are even. Thus, (*7a = by — by + by — bz mod (2 + 2¢),
where we have used that 2¢ = —2 mod (2+2¢). Thus, (*a = bmod (2 + 2¢) for
an odd b € Z.

If a; is even but no other, we have that (* 7o = by+b1{+b2(*+b3¢?, where by is
even. Thus, we have (* o = b, +b;(+b3¢® mod (2+2(), where bj, = by+ b, is odd.
Furthermore, we have e(* 7o = (b)) + by —b3) + (b +b1)C + (b1 +b3)C* + (b3 — b)) (P =
(b + by — bg) — (b + b1) + (b1 + b3) — (bg — b)) = by — by — bz mod (2 + 2¢), where
by — by — bs is odd.

Thus, we may define 3 = €¢?, where b € {0,1} and j € {0,1,2,3} are chosen
such that = b mod (2 + 2¢) for an odd b € Z. If b = 1 mod 4, we are done since
by Lemma 6, (24 2¢) = 2(1+) | 4. Assume that b = 3 mod 4. It suffices to note
that €2 = 3+ 2¢ —2¢3 = 3 mod (2 + 2(), since then €24 =9 = 1 mod (2+2¢). O

Lemma 9. If « € D is primary then No =1 (mod 8).

Proof. Set a = 1+ 2(1 + ¢)3, where 3 = by + by + b2 + b3¢3. Then Na =
1+ 8by — 8bs -+ 128b2b, by -+ 3263+ 32b, b3+ 3262by + 32, by -+ 32b2by — 64bsby by — 32020, —
3202bg — 32b2b1 — 32b2b3 — 64bobzby + 64baboby + 8b3 — 32b2by + 32b5 + 3203 + 64b3b1 by —
3203 — 128b2bsby + 128byb2by — 12862byby + 32bob2 + 24D2 — 32bobs + 242 + 64b2b% +
16Dy + 3263+ 3208 1+ 3254+ 16b, by + 646252 — 32b2b5 + 32byb2 — 3203 1 32,52 + 802 = 1
(mod 8). The reader may wish to verify this using a computer algebra system. [

6.2 Balancing the Complex Absolute Value of Algebraic
Conjugates

Consider the algebraic norm Na = [, cqax/g) @ of an element a € D. Note that
the complex absolute value of ¢ equals that of (7, and the complex absolute value
of ¢* equals that of ¢°. Thus, Na = aaazas = |af? - |as]?, where az = a3, This
suggests that the complex absolute value of an element may give little information
about its norm.

Recall that the group of units in D is generated by ¢ and e = 14+/2 = 14+(—(3.
Set €3 = €7 = 1—+/2, then Ne = Neg = (ee3)? = (—1)? = 1 as expected. However,
we have ¢! = —e3, [e[> =3 +2v2 > 1 and |¢'|> = 3 — 2y/2 < 1. Thus, although
N(e/) = 17 = 1, |¢/| may be arbitrarily large for increasing j. This establishes
what we suspected, that the complex absolute value says little about the norm.

Consider now an arbitrary element a € D. We have that |a| = |a”7| and
|as| = |a?3|, i.e. we may organize the conjugates of a into pairs having the same
complex absolute value. Suppose that |« is much smaller than |a?®|. Then we can
multiply a by € and get Nao = N(ae) = |ae|*|a®®e!|. This implies that |a| < ||
and |a%| > |a“3e®|. We can repeat this procedure until no longer possible, at
which point we know that || and |a”3| are of roughly equal size. If |«| is greater
than |a%3| we instead multiply o by ¢~ 1.

Informally, we could say that we can balance the complex absolute values of
the algebraic conjugates of a. We introduce the following definition for a general
number field K.

Definition 10 (A-Balanced Element). We say that a non-zero « in K is A-
balanced it

for 0,0’ € Gal(K/Q).

Note that « is A-balanced precisely when all of its conjugates are A-balanced,
and that the requirement in the definition is equivalent to % < o

|

For our favorite ring D we have the following lemma.

Lemma 11 (Balancing Lemma in D). Let o € D be non-zero. Then € € D

is €2-balanced, where j is the integer closest to log,. %

Proof. Suppose that a non-zero o € D is not e>-balanced. Then there are 0,0’ €

{01,03,05,07} such that ||§:/|I > ¢2. We can not have 0,0’ € {0y,07} or 0,0’ €
{03,05}, since then ||§:,|| = 1. Recall also that |a;| = |az| and |as| = |as|, so it

suffices to consider the fractions % and %

We have

[
jas|

ae :
el =

jame]~

la”3]
|al

From the definition of j as the integer closest to log.. we have

1 €| 2

€2 7 |ame | T

from which the lemma follows. O

The lemma makes it natural to refer to e2-balanced elements simply as balanced
elements.

Lemma 12. The number of A-balanced units in D is bounded by 4log, A.

Proof. Recall from Section 4 that every unit « is on the form ¢/'¢/ for j' € [0,7]
and j € Z. Similarly to the proof above we need only consider the o3-conjugate.
We have a3 = a® = (7€) = (¥'¢77(~1)7. Thus,

ol _ o

|as|
This implies that |j| is bounded by %. For each value of j there are at most 8
units and the claim follows. O

6.3 A Weak Triangle Inequality

It would be nice if given o, € D, we had N(a +) < cmax{Na, NG} for
a constant ¢, i.e. some type of “triangle inequality”. Unfortunately, no such
inequality exists in D. To see this it suffices to consider the example N (& +¢77) =
|(e/ + e 9)|[* > €%, which gets arbitrarily large for increasing j.

Thus, there is no hope of finding a general triangle inequality. Instead we
establish a triangle inequality for A-balanced elements.

Theorem 13 (Triangle Inequality for A-balanced Elements). Let o, 5 € D
be A-balanced elements. Then we have

N(a+8) < 2*(1+ A)*max{Na, N3} .

Moreover, if a and (8 are balanced we have N(« + () < 187 max{Na, N5}.

10

Proof. Write ag = a”® and (3 = (373. Note that

o3| +laBs| = lal - |Bs] +|as| - 18] < 2max{|al, |as], |5], B[}
< 2Amax{|aas|, |50}

where we use that o and 3 are A-balanced, i.e. % < H:j‘—sl‘ < A. Then using the

triangle inequality and multiplicativity of the complex absolute value, we have

N(a+) (o + B) (a3 + B3)° = |aas + 805 + afs + azf)?
(laxs| + |8Bs| + [fs| + |as3])?
(2(1 + A) max{|aas], |36s]})*

4(1 + A max{Na, NG} .

IA A IA

]

Unfortunately, the inequality is not strong enough to generalize the previous
binary-like algorithms [10, 2, 12] naively. If we could keep the elements balanced in
each step we could use the triangle inequality. However, in each step the difference
of two primary elements is only divisible by 2(1+4) and N(2(1+1)) = 2° = 32 which
is much less than 187. Thus, even for balanced elements the triangle inequality is
simply not strong enough. Even worse, to use the idea that the difference of two
primary elements is divisible by 2(1+-), both elements must also be primary. This
may force us to multiply the elements by €, which would unbalance the elements.

Instead we extend the [-ary algorithm of Sorensen [7], which decreases the size
in each iteration by a factor that we may choose to be large enough in relation to
the constant of the triangle inequality.

6.4 A Certain Set of Elements

In this section we exhibit a relatively large set of elements with relatively small
norm. These are not used directly as co-factors in the [-ary approach, but play
an important role in the construction of such factors. Note that there obviously
exists infinitely many distinct elements with small norm in D (and in most general
settings) since N(e/) = 1 for all j € Z, but we need the elements in our sets to
have special properties.

Consider the set of elements

Sit = {ao + ar€ + asC® + azC® | 0 < a; < I*}\{0} .

We prove that the complex absolute value of any difference of two elements
from S;; is small and that the set S;; contains relatively many elements. More
precisely we have the following lemma.

11

Lemma 14. Let v,y € Sy, wherel > 6 andt > 2, and let v3 = 772 and 5 = +'7%.
Then

1oy =) s — 4l < 2¢/E- 114, and

2. 1S > L.

Proof. The square of the complex complex absolute value of an element a € D,
where o = ag + a1 + a2(? + as(3, is given by

3
’a‘Q = Z a? + \/5(@0(11 — apasz + asas + a1a2) :
=0

Let v = ¢o + c1(+ 2¢* + ¢3¢% and let 7 = ¢ + ¢ + h¢* + 4¢3, Then set
a=7—79"=ao+ a1 + as(® + as(®, where a; = ¢; — ¢j. Since both ¢; and ¢} are
positive, we have |a;| < [t/4. Taking the absolute value on both sides of Equation
1 and using the triangle inequality for the absolute value gives

Mutatis mutandi the argument shows the same thing for v; — 5.

There are at least (I/4 —1)* — 1 elements in S, since each coefficient can take
at least [/* — 1 values and we subtract 1 for the 0. This expression is greater than
% for [> [y for some ly. Numerical checking shows that [y < 6 for t > 2. O

6.5 Linear Combinations

In this section we construct the co-factors of the [-ary approach. Denote by T,
the set of pairwise differences 7;; = {v—+"| 7,7 € Si.:}. We show that for any A-
balanced elements «, 5 € D, we can find elements 7,0 € Tj; such that [| (ya+460)
and still keep N(ya + 03) relatively small. More precisely we have the following
lemma.

Lemma 15. Let o, 3 € D be A-balanced and let | > 6 and t = 2 + log22l' Then
there exists v,0 € D such that

1. 1] (ya+9d0), and
2. N(ya+3) < 64e*(1 4+ A)?l' max{N«o, Nj3}.

12

Proof. Consider the map fo5 : D* — D/(1), fap : (7,0) — ya + 66+ (1) for
a,f € D. We have |D/(1)] = N((1)) > N(I) = I*, and |S?,| > 5§ > I, i.e. the
restriction of fo g to S, is not injective.

Thus, there exists 7/, ¢',7”, 6" € S;4 such that v'a + 68 = v"a + §"F. We set
v=7"—~"and § = ¢ —¢”. Then from linearity of f, 3, (7,0) is in its kernel and
| ya + 6. This proves the first claim.

A weaker version of the second claim follows directly from the triangle inequal-
ity for A-balanced elements, but since this inequality greatly influences the running
time of the algorithms we prove the tighter bound above directly.

Using the multiplicativity of the complex absolute value and Lemma 14 the
second claim follows since

N(ya+68) = |(va+d0)(ysas + d30s)]?
= |yysas 4 003305 + 03005 + vsbas 3]
(Iyysaas| + |003606s] + |vdsaBs] + [vsdas)
(2 max{|yysaazs|, 603655 }
+2max{[y0s, [430]} max{|al, |as|, |8, |53]})°

< 4(4el"? max{|aag|, |365]}

+4el? A max{|oa), |355]})?
= 64€’l'(1+ A)* max{Na, NG} .

]

Remark 1. The definition of ¢ may seem overly complicated, i.e. one could use
any constant 2 < t < 4. But it minimizes the constant factor of our algorithms,
and since these are relatively large we think that the more complicated definition
is justified.

6.6 Spurious Factors

In each iteration of the algorithms, one of the inputs « and [is replaced by
a,ya+ By for v, € T};. Sorenson [7] notes that ged(a, B) = ged(ya+ (v, §) may
not hold. Fortunately, the following lemma explains this completely.

Lemma 16. Let o, 3,7v,0 € D. Then

ang &y +35,5)
ged(a, B)

Proof. This follows from ged(ya + 63, 5) = ged(vay, 3). O

ged(a, B) | ged(yar +06,8)

13

6.7 Approximating the Norm of a A-Balanced Element

The norm of an element gives in some sense the “size” of the element. Unfortu-
nately, the way the norm is defined requires computing a multiplication, which
takes time O(n?) in the naive arithmetic model. This is far too expensive to be
done in each step of our algorithms, since we are looking for an algorithm that has
a total running time of O(n?). It is natural to try to approximate the norm, but
since elements can have small norm but large representation, i.e. be unbalanced,
there may be much cancellation during the computation of the norm. As far as
we know there is no general method for handling cancellation.

We consider a weaker measure, which we call N, : K — R, and prove some
results about this function. This function can not be computed efficiently, but in
contrast to the norm it can be approximated within a constant factor.

6.7.1 The Positive Measure

Let o = ag + a1 + a2(* + a3¢® be an element in D. Since ¢ = 3v/2(1 + 1) we can
by substitution write

1 1
a = Q(Ao,o\/i + A0’1> + 5(141,0\/5 + Al,l)i

where Ago, Ao1,A10,A11 € Z. This can be done in linear time since only a
constant number of additions and subtractions are needed if we keep v/2 as a
formal symbol in the obvious way.

Definition 17. Let a € D be expressed as described above. We define the positive
measure Ny : K — Q by

1
Nio = 1_6((\A0,0|\/§+ [Aoa])® + (JALolV2 + [A11])%)*

Remark 2. The positive measure is in fact unnecessarily complicated, since the
outermost squaring and the }l—factors do not carry any essential information. We
use the more complicated definition, to allow easy comparison with the norm N.

It is not hard to see that N, is not a norm and in fact approximates the norm
N arbitrarily badly. For example, N, (¢’) gets arbitrarily large for increasing j,
whereas N (e/) = 1 since €/ is a unit. Our interest in the function N, is explained
by the following results.

The first lemma says that if an element is A-balanced, then N, is a good
approximation of the norm N.

Lemma 18. Let o in D be A-balanced with A > 2. Then
Na < N,a< A’Na .

14

Proof. The left inequality is obvious. For the right inequality there are two cases.
Write ag = 1(Afov2 + Aj;) + (A} (V2 + A} ,)i. Recall that v2 = ¢ — ¢ and
note that it is kept fixed by oy and o7, but \/503 = \/505 = —/2.

Suppose that sign(Ago) = sign(A;p) and sign(Ap;) = sign(A; ;). Then it
follows from the action of o3 on /2 that sign(A4jy,) = sign(A4} () and sign(Af,) =
sign(A} ;), and that sign(Ag) # sign(4] o). Thus, we have

Nya = max{|a|!, |as|*} < A’Na |

since « is A-balanced, and the claim follows.
Suppose that sign(Ag) # sign(A;). Then the corresponding inequality holds
also for a3, and we have

1
(Nya)'? < §maX{(|A0,o|\/§+|A0,1|)27(|A1,0|\/§+|A1,1|)2}

< 2’06|2, 2’053‘2 :
Thus, Nya < 4Na, and the claim follows. O

For the above lemma to be useful there must be a way to balance an element «
without computing its norm Na. The next lemma says that €/« is almost balanced
when N, (¢/) is almost minimized over j € Z.

Lemma 19. Let 0 < T < 1 and let « € D. Choose j, € Z such that N, (o) >
. . 1/2
[Ny (e2a) for j # jo. Then €« is (64—_1> -balanced.

e2rt/4 1
Lemma 19. First note that j, is well defined since No = N(é/a) > N, (/) for
all j € Z. Write o =éeaq = %(A0,0\/§+ A0,1> + %(Al,o\/i‘i‘ A1,1>Z'.
Without loss we can assume that A, A;; > 0. Recall that V2 = ¢ — (3, s0
03(v/2) = —v/2. Thus, we have

. 1 1)
aé = (ejaa)ag = 5(_140,0\/54‘ AO,l) + 5(—A1,0\/§+ A1,1)Z .

There are two cases that we treat separately.

If sign(Ag) = sign(A1), then either |o/|* = Nyo/ or |a4|* = Npo/. Without
loss we assume the former. We have N, (o//¢’) = Ny (’)/€e for all j € Z, since ¢
is a real number. This implies that

la’/em[* < TNya' when jr > 1log.(1/T). This implies that we must have
|o4|1e*r = N, (ea’) and by construction of o’ we also have N, (ea’) > T'N,a’. We
conclude that

|o/|/e¥T < TN o/ < €' |ajl*

15

which implies that that % < €Mr < # as claimed.
3

If sign(Ag) # sign(A;), then we assume without loss that | Ago|v/2+|Ag | <
|A10|v/2 + | A11| and consider

1
ANy (ea))t = 62(|Ao,o|\/§+|Ao,1|)2+6—2(\141,0|\/§+|141,1D2
> T/ (ool V2 + [A0al)? + (| AolV2 + [A11])?)

which holds from the construction of /. This inequality implies that

2 _ /4
(A1 olV2 +Ap1])> < =

= F1/4—_€,2(|Ao,0|\/§+ [Aoa])?

Suppose that A; o < 0. Then

Ly N2 62 —F1/4 9
Ao’ < AN < {14 5) (1Aool V2 + [Aoi])
62 —F1/4 112 64_1 /12
S 4<1+F1/4_6_2>’a3‘ :462F1/ _1|&3’ :

The case for Ago < 0 is similar. O

Loosely speaking these results guarantee that if we can compute N, efficiently
and are given an element that is already fairly balanced, we can balance the el-
ement and efficiently compute an approximation of Na within a constant factor

4 1 1/2 .
(ﬁ) efficiently.
Unfortunately, we can not compute N, quickly. But in contrast to the norm

N, it is not hard to approximate N, within a constant factor.

6.7.2 Approximating the Positive Measure

In this section we explain how to approximate N, within a constant factor in time
O(logn). We have the following lemma.

Lemma 20. Let 0 < I' < 1 be constant. Given o € D, an approzimation NLa of
Nyia can be computed in time O(logn), such that

I'Nya < Nia < Nia .

The idea is simple. Since computing N« only involves multiplications and
additions of positive numbers, we can compute with constant precision of only w
bits, say w = 16, and get a result within a constant factor of the true value of
N, «. By using higher precision we can make the constant factor arbitrarily small.
We give the details of this in Appendix A.

16

7 The Algorithms

We are now ready to give the algorithms. The general idea is to extend the [-ary
gcd algorithm for integers to the ring D. We first describe two subroutines used by
both algorithms. Then we describe the main algorithms, but without all details.
Our objective is to emphasize the similarity with the [-ary algorithm of Sorenson
[7], and to improve readability. Finally, we give full details on how each step in
the algorithm is computed.

In the text above we have stated several results with parameters. Computing
with w-bit precision when we approximate N, gives an approximation N, where
['(w) = (1 + 2'7%)73% This follows from Appendix A. Given I' we define

et —1 1/2
AN = <62F1/4—1>

2
log, [

For the algorithm to work, we require that I' and [are chosen such that
64€2A(D)%(1 + AD)HD < 1.

Using 16-bit precision in the computation of NI, we need [> 365. The necessary
value of [does not decrease notably with greater I' when I' is already close to 1.
Here we see that it is useful to have as small ¢(I) as possible (cf. Remark 1).

7.1 Common Subroutines

In this section we describe subroutines invoked by the main algorithms. We state
the main algorithms in terms of subroutine calls to improve readability and simplify
analysis.

Algorithm 1 (Balance Element).
BALANCE(«)

INPUT: a € D.

OUTPUT: (<, jo), where o/ = ¢« is A-balanced.

1. Set ap = ¢, and j = 0.
2. If Nia; < NI(eq;) and Nia; < Ni(e'a;), return (aj, j).

3. If the first inequality is not satisfied, set a; = e 'a;_; and j = j — 1. If the
second inequality is not satisfied, set o; = ea;_; and j = j + 1. Then go to
Step 2.

17

Lemma 21. The output of the BALANCE-algorithm is A-balanced, and the algo-

rithm runs in time O(n|log %).

Proof. From Lemma 20 we know that the algorithm finds an j, such that the
inequality N, (¢/a) > I'N, (e¢’>«) for j # jo. Lemma 19 then implies that e/« is
A-balanced. O

Consider the set of non-unit elements that divide some § € Tj,. This set is
clearly infinite, since each element in D has an infinite number of associates. This
makes it natural to consider the following set instead

F: = {weD : w|d, €T, wis non-unit, primary, prime and balanced}

U{,1+¢1-¢} .

Note that we include I, which has NI =1, in F};. We also include 1+ ¢ and 1 —¢
which are prime but with even norm. This is notationally convenient. The set £,
is bounded and we denote its elements by Fj; = {w1,...,ws, . We write Fj; { «
to denote the fact that w{ « for all w € Fp;.

Algorithm 2 (Extracting Small Factors).

SMALL(a)

INPUT: o € D.

OUTPUT: (¢, (j1, -, Jsp)), where a = o' [[°E, wj and Fi; { o',

The algorithm is the trivial one. Find o/, and j; by trial division.

Lemma 22. Let « € D and suppose (¢, (j1,...,Jsp)) = SMALL(«t). Then the
running time of the SMALL-algorithm on input o is O((>_;=, ji)n).

Proof. Trial division by an integer is done by trial division with all coefficients a;
of an element o = ag+a;¢ + a¢%+as¢3. This can obviously be done in time O(n).
Note that v | a if and only if N~ | %a. Thus, trial division by an element in
D is reduced to trial division by an integer in time O(n).
It now suffices to note that |Fj;| is constant and each trial division can be
carried out in time O(n). O

7.2 Greatest Common Divisor

The main algorithm first calls the SMALL-algorithm to find all common factors
from the set Fj;. Then it invokes a subroutine IGCD, which assumes inputs
without such factors. In each call to the subroutine IGCD it strips its first input
from all factors in F;;. Then it finds a linear combination with small factors that
is divisible by [and calls itself recursively.

18

Algorithm 3 (Greatest Common Divisor).
GCD(a,)

INPUT: o, € D

OUTPUT: The greatest common divisor of o and (3.

1. Compute (ag, (j1,---,Jsp)) = SMALL(«) and
(Bo, (J1,-- -, Js,)) = SMALL(S).

2. Compute (ay,-) = BALANCE(qy) and (f1,-) = BALANCE(f).
3. Compute (A, -) = SMALL(IGCD(ay, £1)).
4. Return A[;7, w?in{jk’j’;}.

Algorithm 4.
IGCD(a,)
INPUT: o, 8 € D where F}; 1 [3.

OUTPUT: ged(a, B) [175, wi’g for some j7.
1. If @ = 0 return 3.
2. Compute (ayp,-) = BALANCE(«).
3. If NLag > NI then set (aq, 81) = (8, ap) and otherwise (av, 1) = (o,).
4. Compute v,d € T}, such that [| (yoq + 551).
5. Return IGCD((yay + 051)/1, B1).

7.3 Octic Residue Symbol

The algorithm for the octic residue symbol is similar to the GCD-algorithm, but in
each step we keep track of the octic symbol of the factors that are factored out from
«. This becomes quite complex, but it is essentially just repeated application of
the reciprocity laws, Theorem 4 and Theorem 5. Readers interested in the precise
details of the calculations are referred to Section 7.4 and the proof of Proposition
24 below.

Algorithm 5 (Octic Residue Symbol).

OCTIC(a,)

INPUT: a, 8 € D, where 3 is a primary non-unit with NG =1 (mod 8).
OUTPUT: The octic residue symbol (%) of @ modulo g.

1. Compute (ag, (j1,---,Jsp)) = SMALL(«) and

19

2. If jp > 0 and j;, > 0 for any k, return 0.

3. Compute (a1, jo) = BALANCE(«y), and set
€ —Ja SF <wk)jk
so=1|— — :
’ (5) ,E 8

4. If ay is a unit, return sq (%)

5. Compute je, jc € {0,1,2,3} such that ay = €/*(%q is primary and set

(B ©))

6. Compute s, such that (%) = 89 <ﬁ>

as

7. Compute (31, j3) = BALANCE(f), and set

€ —Jjg SF wk>jk
s3= | — i
() (S
8. Return s¢s1595310CTIC(Sy, ag).

Algorithm 6.
IOCTIC(a,)
INPUT: «, 8 € D, where 3 is primary and Fj; { (.

OUTPUT: The octic residue symbol (%) of a modulo £.

1. If @ =0 return 0.

2. Compute (g, (J1,---,7sp)) = SMALL(«) and set

i)

k=1

3. Compute (a1, jo) = BALANCE(qy), and set
€ _ja
S1 = (E) .

20

4. If a4 is a unit, return sgps; (%)

5. Compute je, jc € {0,1,2,3} such that ay = €/*(%qy is primary and set

SOXON

6. If NY oy < N1 then set (ag,f3) = (8, a2) and otherwise (g, 83) = (a2, 8).
Then compute s3 such that

()3

7. Compute 7,6 € T, such that [| (yas + 6033) and set

-1
e
B3
8. Return s0s159535410CTIC(yas + 03, B3).

Remark 3. In the octic residue algorithm it seems necessary to include a call to
SMALL in every call made by IOCTIC. The problem is that if intermediate o and
[are not relatively prime, then we can not safely apply the reciprocity law.

7.4 Details of the Algorithms

The description of the GCD-algorithm is fairly easy to understand, but it may not
be clear to all readers how each step of the OCTIC-algorithm is computed.

Consider the evaluation of expressions on the form %k . There are several
cases. If wy equals 14+ ¢ or 1 — (. Then we apply Proposition 5 to compute (%)

If wp = 1 we write [= (1 +)" (1 —)%’ where 1 +(,1 — ¢ {1’ Then we apply

L Loy,
Proposition 3 and conclude (%) = (%) <I—EC> (%) Theorem 4 then gives an

s such that <%> = s (5). The last residue equals (—ﬁ mod 1

a constant number of such residues, so this can be computed in constant time.
Otherwise, Nwy is primary. Thus, (ﬂ) =5 <£> = (M> for some

B W Wi
s computed in constant time using Theorem 4. There are a constant number
of residues of the last type since Nwy is an integer. Thus, this residue can be
computed in constant time.

), and there are at most

21

Consider next expressions on the forms (%) and <%> Such expressions can

be evaluated using Theorem 5. Again we need only compute modulo 8, so this can
be done in constant time.

In Step 4 of IOCTIC we must check if an element a7 is a unit. Since «; is
A-balanced we may invoke Lemma 12 and conclude that we need only check if a;
is one of the constant number of possible A-balanced units. If it is not, we know
that it is a non-unit.

Next we consider how to perform Step 6. From Lemma 20 we know that we
can compute NYa; and N1/ in time O(logn). The value of s3 can be computed
in constant time using Theorem 4, since we need only compute modulo 8.

To find suitable v and § in Step 7 we only need to compute modulo [. Reducing
a and # modulo | can be done in time O(n). Then finding v and § is done in
constant time.

The residue symbol (%) is computed by factoring v = HZLl wi’“, applying
Proposition 3, i.e. (%) =TI <%>]k, and computing each of these symbols as
outlined above.

This completes the description of the algorithms.

8 Analysis

In this section we analyze the algorithms. First we prove correctness of each
algorithm provided they halt at all. Then we bound the running time of the
algorithms.

Proposition 23. If the GCD-algorithm halts, it outputs the greatest common di-
visor of its inputs o and 3.

Proof. Suppose that ged(a, 3) = A*, and consider the GCD algorithm. By Lemma
21 and the definition of the BALANCE-algorithm we have o = a7y [[}2, wi* and
B=0010, wi’“ for some units v, d, where Fj; { oy and Fj; { ;.

Thus, if A\ = ged(ay, 1), then * = Ao [}7, w?m{”’j‘“}. By Lemma 21 this
holds if IGCD(ay, 31) is on the form ged(ay, B1) [[;2, wi* for some ji. We conclude
that GCD is correct if IGCD is correct.

If @« = 0 the ged is B and if « is a unit the ged is a unit, so in this case
IGCD is correct. Since ag = atp for some unit ¢ we have ged(ag, 8) = ged(a, ().
Changing the order of ap and § does not change the ged. Finally, by Lemma 16,
we know that ged((yay + d61)/1, 1) = ged(au, B1) [TiE, wi* for some jy, so the
[OCTIC-algorithm is correct if it halts.

This implies that the OCTIC-algorithm is correct if it halts. O

22

Proposition 24. If the OCTIC-algorithm halts, it outputs the octic residue symbol
of a modulo 3.

Proof. If o and (has a common factor in Fj; this is discovered in Step 2 of the
OCTIC-algorithm, and the output is 0, which is correct.

In general, when we turn a residue symbol on its head, we always ensure that
both operands are primary. By Lemma 9 this implies that their norms equal 1
modulo 8, i.e. both residue symbols are well defined.

Suppose that IOCTIC(8;, as) = <%> Then we have

—jp SF Jk
8081828310CTIC(Q1,0@) = 505182 (i) H (ﬂ) (&)
(67 (6% (6%}

2 k=1

= 505152 <£> = SpS1 (%)
Q2 5
. . —1
Je J¢
g g 6
—Ja SF Jk
o € Wk a1
== S _— = — [— _
0(5) (ﬁ) ,E(ﬁ) (ﬁ)
g
Here we use Theorem 4 and Proposition 3 repeatedly. We conclude that OCTIC

is correct if IOCTIC is correct.
We prove this similarly to the above. If & = 0 the output is 0 which is correct.

Otherwise we note that
a1 N () _pp (e (@) _ ([«
3051(5) SO(ﬂ) (6>_,H(ﬁ> (6>_<6>

Thus, if 1 is a unit, the result is correct, and otherwise we need only show that

825384IOCTIC(’}/043 + (5ﬂ3, 63) = (%) .

This can be seen as follows.
o (255) < o) () (3)
B3 s B3 s
- (5)-(6)()) ®)-()
p p g B B

Thus, the algorithm is correct if IOCTIC(yaz + 6033, 83) = (%) = (%)’ and
we are done. 0

23

At this point we have established that the algorithms are correct if they halt at
all. All that remains is to analyze their complexity. We only analyze the OCTIC-
algorithm. It is easy to see that the running time of this algorithm strictly bounds
the running time of the GCD-algorithm.

Lemma 25. Consider o and oy # 0 in an invocation of IOCTIC. The run-
ning time of the invocation excluding the running time of the recursive call is

O(nlog Nao)

Proof. First note that in Section 7.4 above we show that if we ignore the running
time of the two subroutine calls, an invocation runs in time O(n). Next we consider
the two subroutine calls.

Recall that o = o [[}7, wk Taking the norm on both sides and dividing by
Nay gives

NOéo Hka

We know that Nw > 2 for all w € Fj4, since w is prime in D which implies that
Nw is prime in Z. Thus,

108;2 N Z Jilogy N Z Tk -

Lemma 21 now implies that the claim is true if we ignore the cost of the invocation
of the BALANCE-algorithm. Thus, it now suffices to prove that this invocation
runs in time O(nlog 2> o) as well.

We have Naw =]04] |of’3\2 Without loss we assume |a| > |a?3| and |ag| > |ag?],
since this is one of the two symmetric difficult cases. We have |ag| < |o| since
dividing by primes can only decrease the complex absolute value. We now have

|| ot A’Na A’Na- ||t (A*Na)?
< < =
loag? |t T ag® [t T gt Jaol® - Jag?|t T (Na)?

The claim now follows from Lemma 21, since the BALANCE-algorithm runs in

|ovo]

time O(nlog o gd‘) and A is constant. O

Write o) to denote the value of a in the jth recursive call to IOCTIC, and
similarly for the other variables.

Lemma 26. For 7 > 1 we have
Na® < (64A*(1 + APINa{ ™ | and

, 2 A2 27t ‘
NOZ(()j) < (646 A (l14+ A) [) Na(()]_g) '

24

Proof. From Lemma 21 we know that agj)is A-balanced. By construction, N ozgj) =

N oz(()j) Tt follows from Lemma 15 and the fact that | | o) (except for the the very
first call) that

NaW < (64 (14 A)%1") max{Naf ", NgUV}, and

, 42 (1 + A2l
Noz(()]) < 66(;)

max{Naéj_l),Nﬁ(jfl)} , (1)

By construction and Lemma 18 we also have
NBU—Y < A2Na§j—2) _ A2Noz((]j_2) _

Thus, it remains to show that Nozéj_l) < AQNa((Jj_2) when Nozéj_l) > NGU-b.
By translating Equation 1 above we have

64€*(1 + A)2l

7 max{Nozéij),Nﬁ(j*Q)} ,

NBU-D < Na(()jfl)

but when Na[()jfl) > NBUY we must have NGU=2 < A2NBU-D and | was

chosen such that w < 1. Thus, we must have max{Na{ 2, NgU-2} =
N oz(()j % which concludes the proof. O

Proposition 27. The GCD-algorithm and the OCTIC-algorithm run in time
O(n?).

Proof. As explained above it suffices to show that the running time of the OCTIC-
algorithm is O(n?).

It is easy to see that the computations done in OCTIC is done in time O(n?)
if we ignore the call to IOCTIC. The interesting part is what happens in each call
to IOCTIC.

Set C' = 64¢*A?(1 + A)?l*. The second inequality of Lemma 26 implies that
every other recursive call max{N«, NS} has been reduced at least by a factor
C/1* < 1. Thus, the IOCTIC-algorithm makes at most m = O(n) recursive calls.

We ignore the cost of the very last call if a(()m) = (, since no computations are done
in this case. This allows us to assume that N 04(()]) > 1 for all j.
We can now bound the running time 7'(n) of the algorithm by

Nal) N @)
T(n) = O|nlog——= | =0 |nlog —
=30 (neazg) =0 (e (7))

J=1

Note that we needed to show that the algorithms halts for the above expression
to have meaning.

25

Then we apply the first inequality of Lemma 26 and get

m NOz(j) .) m C’Na(j_2) . Na(l)Na(2)
[< Vo'Vt [——— <" —
i1 Nag = Nag Noy "Naoy

< C™ 2max{NaW NpgW}? .
This implies that
T(n)=0 <n log (C™? max{Na', Nﬂ(l)})Q) =O0(n(m+2+n))=0(n?) ,

which concludes the proof. O]

9 Further Applications

No essential changes are needed to give ged algorithms similar to our ged algorithm
for the ring of integers Oy = Z+ Zw in any quadratic number field Q(v/d). In fact,
our algorithm can be used directly when d = —1,2, -2, since Q(4), Q(v/2), and
Q(v/—2) are subfields of Q(¢). For other d our claim follows since there is at most
one fundamental unit ¢4 in Oy, and we may define N (ap+a1w) = (Jag| + |a1||w])?,
which is easily approximated. This gives a result similar to that of Kaltofen and
Rolletschek [4] but using the l-ary approach.

Furthermore, we see no reason why our approach would not work in the ring of
integers of any biquadratic extension of Q which has only one fundamental unit.
In particular it is possible to compute the ged in Z[(5], where (5 is a primitive fifth
root of unity. It is also be possible to compute the quintic residue symbol.

10 Future Work

An interesting open problem is to what extent the [-ary algorithm can be general-
ized further. There are two main problems. One must be able to balance elements
quickly when there are several fundamental units, and there must be a function
with similar properties as N, , which can be approximated quickly.

Another interesting problem is to determine if [, which is constant in our algo-
rithm, can be made an increasing function of the input size as in Sorenson [7]. It
seems difficult to do this when computing the residue symbol, since we can not al-
low the two elements to have any common factors if we want to use the reciprocity
law to a symbol on its head, but for the ged algorithm it is probably possible.

26

11 Acknowledgments

I am most grateful to my supervisor Johan Hastad for many fruitful suggestions
and remarks. I am also grateful to Torsten Ekedahl who essentially played the role
of an extra advisor during this work.

References

1]

2]

[10]

[11]

S. Agarwal, G. Skjovbjerg Frandsen, Binary GCD Like Algorithms for Some
Complex Quadratic Rings, ANTS 2004, LNCS 3076, pp. 57-71, 2004.

I. Damgard, G. Skjovbjerg Frandsen, Efficient Algorithms for gcd and Cubic
Residuosity in the Ring of Fisenstein Integers, BRICS Technical Report, ISSN
0909-0878, BRICS RS 03-8, 2003.

K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory,
2nd edition 5:th printing, Springer-Verlag 1998, ISBN 0-387-97329-5.

E. Kaltofen, H. Rolletschek, Computing greatest common divisors and
factorizations in quadratic number fields, Mathematics of Computation,
53(188):697-720, 1989.

F. Lemmermeyer, Reciprocity Laws, ISBN 3-540-66957-4, Springer-Verlag,
2000.

J. Shallit, J. Sorenson, A binary algorithm for the Jacobi symbol, ACM
SIGSAM Bulletin, 27 (1), pp. 4-11, 1993.

J. Sorenson, Two Fast GCD Algorithms, Journal of Algorithms, 16(1):110-
144, 1994.

J. Stein, Computational problems associated with Racah algebra, Journal of
Computational Physics No. 1, pp. 397-405, 1969.

L. Washington, Introduction to Cyclotomic Fields, ISBN 0-387-90622-3,
Springer-Verlag New York, 1982.

A. Weilert, Asymptotically fast GCD computation in Z[i], In Algorithmic num-
ber theory (Leiden, 2000), LNCS 1838, pp. 595-613, 2000.

A. Weilert, (1+1i)-ary GCD computation in Z[i] as an analogue to the binary
GCD algorithm, Journal of Symbolic Computation, 30(5):605-617, 2000.

27

[12] D. Wikstrom, On the Security of Miz-Nets and Related Problems, Licentiate
thesis, Department of Numerical Analysis and Computer Science, Royal Insti-
tute of Technology, TRITA NA 04-06, ISSN: 0348-2952, ISRN KTH/NA /R~-
04/06--SE, ISBN 91-7283-717-9, May, 2004.

A Details of the Approximation of the Positive
Measure

Given a poiitive number H = Z;L:foo h;27 in binary basis, i.e. h; € {0,1}, we
denote by H the number Zh h;27. Thus, H is simply H, but truncated to

j=h—w

w-bit precision. Similarly V2 is v/2 truncated to w-bit precision.

P

We define addition and multiplication on such numbers by H®H=H+H
and Ho H = HH , 1.e. we simply compute with precision w. We also define
exponentiation with precision w in the natural way by H®®) = szl H.

We have the following lemma.

Lemma 28. Let H, H' > 2% be positive integers, and define © = O(w) = 14217,
Then

1 ~
—H < H <H
@ — — Y

1 ~
g +H)< HOH <H+H ., and
1 ~
glH's HoH <HH' .

Proof. The right inequalities are obvious. For the first left inequality we have
H=3 ", o h2+ 30" 02l < H+ 2wt < (1+27%)H = ©H. The
other inequalities follows by repeated application of the first. We have H 4 H' <
OH+H)<O*H® H')and HH' < ©’HH' < ©3H 0 H). O

We are finally ready to define the measure Nf(w) of the size of elements that
we use in the algorithm.

Definition 29. Given o € D we define the approximation Nf(w)a of Nya by
©(2)

o 1 o~ Noe® . Noe®
NI = 16 <|A0,0’ oV2e |A0,1|> ® (\A1,0| OV2® \A1,1|) :

where we assume that w > 4.

28

Lemma 30. When w s constant, Nfa can be computed in time O(logn), where
n 1s the bitsize of a € D.

Proof. The lemma is true, since to compute Nf we need only keep track of the
number of trailing zeros in each number and perform constant w-precision arith-
metic. O

Lemma 31. Let oo € D and w > 3. Then

1
@NJra < Nf?a < N;«

Proof. The right inequality is obvious. The left inequality follows by repeated
application of Lemma 28.

1
Nia = 1_6<(|A0,0’\/§+ [A011)* + (|10l V2 + [A14])%)

1 e~ = — ~=
—(05(|Aop| ® V2 + [Ap1])? + O%(|A1o] © V2 + |Ar1])?)?

<
- 16
1 —~— — —~— —_—~— — e
< L@ 0 Ve mn)e® + 05(@l o V2 [A)°e)?
< 6%N%

]

Recall that © = 1 + 2'7%. Thus we can make ©3° arbitrarily close to 1 by
choosing a sufficiently large w. This concludes the proof of Lemma 20, and explains
our abuse of notation when writing NJE to denote the approximation within a
factor 0 < I' < 1. A value of w = 16 gives a sufficiently good approximation for
all practical purposes.

29

