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Abstract. Until now no distributed discrete-logarithm key generation
(DKG) protocol is known to be universally composable. We extend Feld-
man’s verifiable secret sharing scheme to construct such a protocol. Our
result holds for static adversaries corrupting a minority of the parties
under the Decision Diffie-Hellman assumption in a weak common ran-
dom string model in which the simulator does not choose the common
random string.

Our protocol is optimistic. If all parties behave honestly, each party
computes O(3.5k) exponentiations, and otherwise each party computes
O(k2) exponentiations, where k is the number of parties. In previous
constructions each party always computes Ω(k2) exponentiations.

1 Introduction

The ability of a group of parties to jointly generate a public key for which
the secret key is shared is a cornerstone of threshold cryptography. Without
a method to do this securely the parties must resort to a preliminary phase
in which a trusted key generating party is present. In some applications no
natural trusted party exists, e.g. electronic voting. When a discrete-logarithm
based cryptographic primitive is used, distributed key generation often amounts
to generating a public key y = gx for which the corresponding secret key x is
secretly and verifiably shared among the parties. Following Gennaro et al. [14]
we call a protocol that does this securely a DKG protocol.

1.1 Previous Work

The problem of constructing a DKG protocol was first investigated by Pedersen
[25]. His basic building block was a new non-interactive verifiable secret sharing
scheme [24] based on ideas of Feldman [8]. Pedersen DKG has been used as a
subprotocol in numerous constructions in the literature, but it has never been
verified that Pedersen DKG composes correctly in general. Indeed, Gennaro et
al. [14] pointed out that the Pedersen DKG may generate a public key which is
biased by the adversary. They also gave a new modified protocol and gave a more
careful analysis. Adaptively secure protocols for DKG where given by Canetti et
al. [6] and Jarecki and Lysyanskaya [21]. Independently, Frankel, MacKenzie and

C. Blundo and S. Cimato (Eds.): SCN 2004, LNCS 3352, pp. 263–277, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



264 D. Wikström

Yung gave key generation protocols secure against adaptive adversaries in several
papers [9, 10, 11, 12]. They also considered threshold variants of RSA. Recently,
Gennaro et al. [13] investigated the security of the original Pedersen DKG, i.e.
how the adversary can benefit from biasing the public key. They show that under
certain circumstances the adversary gains very little from this additional power.

Canetti [5] and independently Pfitzmann and Waidner [26], proposed security
frameworks for reactive processes. We use the former framework, i.e. the Uni-
versally Composable security framework (UC-security). Both frameworks have
composition theorems, and are based on older definitional work. The initial ideal-
model based definitional approach for secure function evaluation is informally
proposed by Goldreich, Micali, and Wigderson in [17]. The first formalizations
appear in Goldwasser and Levin [18], Micali and Rogaway [23], and Beaver [3].
Canetti [4] presents the first definition of security that is preserved under com-
position. See [4, 5] for an excellent background on these definitions.

1.2 Contribution

We give a protocol that securely realizes the ideal DKG functionality in a univer-
sally composable way under the Decision Diffie-Hellman assumption. Thus, our
protocol can be plugged as a subprotocol in any setting where a DKG protocol
is needed. Our result holds in a very weak common random string model in that
the simulator does not choose the common random string.

Let k be the number of parties. Our protocol is optimistic and each party
computes only O(3.5k) exponentiations if all parties behave honestly and O(k2)
otherwise. In previous constructions each party computes Ω(k2) exponentiations.

Pedersen commitments [25] are not used at any point in our protocol. We
think it is particularly nice to see that Feldman’s original ideas can be used
directly.

We note that in work independent of ours, Abe and Fehr [1] have announced
an adaptively UC-secure DKG protocol. Each party computes Ω(k2) exponen-
tiations in their protocol, and the security rests on the DDH-assumption.

1.3 Universally Composable Security

Throughout this paper we employ the universally composable security framework
(UC-framework) of Canetti [5]. Our result does not depend on technicalities of
any particular flavor, but to avoid any ambiguity we review in Appendix A the
precise definitions we use. The idea of UC-security is to define security such that
if a protocol π “securely realizes” a functionality F , then π can be plugged in
as a subprotocol in any setting where a functionality F is needed. Thus, the
model allows modular analysis of the security of protocols, and guarantees that
the security properties of a protocol is preserved regardless of where it is used.

The framework is formalized by defining a real model in which the protocol
π executes, and an ideal model which essentially contains the functionality F
the protocol should realize. The protocol π is said to securely realize F if for
each adversary A in the real model there exists an ideal adversary S in the ideal
model such that no environment Z can distinguish between executions in the
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real and ideal models. A hybrid model is a real model where the protocol π is
given access to additional functionalities F ′. The protocol π′′, where each call
to F ′ is replaced by an invokation of a protocol π′ is called the composition of
π and π′. The UC-composition theorem says that π′′ securely realizes F if π
securely realizes F in the F ′-hybrid model and π′ securely realizes F ′.

1.4 Notation

Throughout, M1, . . . , Mk denote the participating parties, which are modeled as
interactive Turing machines. We abuse notation and use Mj to denote both the
machines themselves and their identity. We writeMk/2 to denote the set of static
polynomial time non-uniform Turing machines that can corrupt a minority of
the parties.

We use the term “randomly” instead of “uniformly and independently at
random”. We assume that Gq is a group of prime order q with generator g for
which the Decision Diffie-Hellman Assumption holds, e.g. a subgroup Gq of prime
order q of Z

∗
p for some p = κq+1. We take log p = n to be our security parameter,

and assume that computing an exponentiation in Gq takes time corresponding
to computing at least n multiplications in Gq. This allows us to express the
complexity of our procotol in terms of the number of exponentiations computed.

Assumption 1 (Decision Diffie-Hellman). Let e1, e2, e3 ∈ Zq be randomly
chosen. The (non-uniform) Decision Diffie-Hellman assumption for Gq states
that for all polynomial time non-uniform Turing machines A, ∀c > 0, ∃n0, such
that for n > n0:

|Pr[A(ge1 , ge2 , ge3) = 1]− Pr[A(ge1 , ge2 , ge1e2) = 1]| < 1
nc .

We use CI to denote the ideal communication model. It routes authenticated
messages between the parties, the ideal adversary, and the functionalities. The
first component of a list handed to CI is the identity of the receiver. The ad-
versary decides when CI delivers messages. The notion of a bulletin board is
intuitively clear.

Functionality 1 (Bulletin Board (cf. [28])). The ideal bulletin board func-
tionality, FBB, running with parties M1, . . . , Mk and ideal adversary S.

1. FBB holds a database indexed on integers. Initialize a counter c = 0.
2. On receiving (Mi, Write, mi), mi ∈ {0, 1}∗, from CI , store (Mi, mi) under c

in the database, hand (S, Write, c, Mi, mi) to CI , and set c← c + 1.
3. Upon receiving (Mj , Read, c) from CI check if a tuple (Mi, mi) is stored in the

database under c. If so hand ((S, Mj , Read, c, Mi, m), (Mj , Read, c, Mi, mi))
to CI . If not, hand ((S, Mj , NoRead, c), (Mj , NoRead, c)) to CI .

Goldwasser and Lindell [19] show that authenticated broadcast can be securely
realized with respect to blocking Mk/2-adversaries. On the other hand Lindell,
Lysyanskaya and Rabin [22] show that composable authenticated broadcast can
not be realized for non-blocking MB-adversaries if B > k/3. A non-blocking
adversary is an adversary that never delays the delivery of messages to honest
parties indefinitely. The following lemma follows straightforwardly from [19].
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Lemma 1. There exists a protocol πBB that securely realizes FBB with respect
to blocking Mk/2-adversaries.

In many constructions the parties are assumed to be able to communicate
secretly with each other. In the UC-framework this was modeled by Canetti [5].
Below we give a slightly modified variant, better suited for our setting.

Functionality 2 (Multiple Message Transmission). The ideal multiple
message transmission, FMMT, with parties M1, . . . , Mk and ideal adversary S.

1. In the first activation expect to receive a value (Receiver) from some party
Mj . Then hand ((S, Receiver, Mj), {(Mi, Receiver, Mj)}ki=1) to CI .

2. Upon receiving (Mj , Send, Mi, mj) from CI , hand
((S, Mj , Send, Mi, |mj |), (Mi, Mj , mj)) to CI .

From Claim 16 in Canetti [5] and the fact that the Cramer-Shoup cryptosystem
[7] is chosen ciphertext secure in the sense of Rackoff and Simon [27] under the
Decision Diffie-Hellman assumption in Gq, the lemma below follows.

Lemma 2. There exists a protocol πMMT that securely realizes FMMT under the
Decision Diffie-Hellman assumption in Gq.

A common assumption used in the construction of protocols is the existence
of a common random string (CRS). A common reference string is different from
a CRS in that it may have additional structure, or be generated together with
a trapdoor which allows easy simulation. Previous DKG-protocols require the
existence of a common reference string g, h ∈ Gq such that the simulator knows
logg h. When this is not the case the protocols can not be simulated. We make
no such assumptions. Our simulator is not allowed to choose the CRS. Thus,
our CRS can truly be a random string defined by a physical experiment.

Functionality 3 (Common Random String (CRS)). The ideal common
random string, FCRS, running with parties M1, . . . , Mk and ideal adversary S
simply chooses h1, h2, h3 ∈ Gq randomly and hands
((S, CRS, h1, h2, h3), {(Mj , CRS, h1, h2, h3)}kj=1) to CI .

2 Distributed Key Generation

The functionality below captures the notion defined by Gennaro et al. [14], but
in the language of the UC-framework. A public key y = gx is generated and
given to all parties. Each party also receives a share sj of the secret key x.

Functionality 4 (Distributed Key Generation (DKG)). The ideal Dis-
tributed Key Generation over Gq, FDKG, running with generators M1, . . . , Mk,
and ideal adversary S proceeds as follows. Let t = �k/2− 1�.
1. Wait for (CorruptShares, {j, sj}j∈IM

) from S, where IM is the set of indices
of corrupted parties.
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2. Choose aι ∈ Zq randomly under the restriction a(j) = sj for j ∈ IM , where
a(z) =

∑t
ι=0 aιz

ι. Then define sj = a(j) for j �∈ IM , and set y = ga0 .
3. Hand ((S, PublicKey, y), {(PublicKey, y, sj)}kj=1) to CI .

Note that the adversary chooses the shares handed to corrupted parties.
Recall the verifiable secret sharing scheme of Feldman [8]. A dealer shares

a secret a0 ∈ Zq by choosing aι ∈ Zq randomly and forming a polynomial
a(z) =

∑t
ι=0 aιz

ι of degree t. Then it publishes αι = gaι and hands a share
sj = a(j) to the j:th party. This allows the receiver of a share sj to verify
its correctness by checking that gsj =

∏t
ι=0 αjι

ι . If a share is not correct the
receiver complains and forces the dealer to publish a correct share. To recover
the secret the receivers simply publish their shares. This allows anybody to find
a set of correct shares and Lagrange interpolate the secret. The distribution step
of Feldman’s protocol gives a way to share the secret key x corresponding to a
public key α0 = gx.

Next we give an informal description of our protocol. The parties are parti-
tioned into three sets and each set is assigned a random generator hf ∈ Gq. Each
party runs a copy of Feldman’s protocol, but using its set’s generator. Instead of
verifying each individual dealer’s shares and public information, they are com-
bined within each set of parties. This allows efficient verification. The basic idea
behind this trick was taken from Gennaro et al. [15]. If some party is malicious,
the efficient way of verifying shares is abandoned and individual verifications are
performed. From this each party Mj computes a combined share sj , the sum
of all correct shares it received. Then each party publishes βj = gsj . Note that
this time all parties use the common generator g. Then the parties verify the
correctness of the βj ’s and construct a joint key y = gx, for which x is the secret
to which the combined shares sj correspond. If the verification fails each party
is essentially required to prove that its βj is correct. This allows all parties to
agree on a set of correct βj from which the joint key can be constructed.

Let {Ω1, Ω2, Ω3} be a partition of {1, . . . , k} such that ||Ωf | − |Ωf ′ || ≤ 1 for
f �= f ′. Define f(j) to be the value of f such that j ∈ Ωf . All parties always
verify that their input is contained in Gq or Zq as expected by the protocol.

Protocol 1 (Distributed Key Generation (DKG)). Let t = �k/2−1�. The
Distributed Key Generation protocol with generators M1, . . . , Mk.

Preliminary Phase
1. Hand (Receiver) to FMMT.
2. Wait for (Receiver, Ml) for l = 1, . . . , k from FMMT.
3. Wait for (CRS, h1, h2, h3) from FCRS.

Key Generation Phase
4. Define f by j ∈ Ωf . Choose aj,ι ∈ Zq randomly, and define aj(z) =∑t

ι=0 aj,ιz
ι, αj,ι = h

aj,ι

f , and sj,l = aj(l). Hand (Send, Ml, Share, sj,l) to
FMMT for l �= j and (Write, PublicElements, {αj,ι}tι=0) to FBB.

5. Wait until (Ml, PublicElements, {αl,ι}tι=0) appears on FBB and a message
(Ml, Share, sl,j) is received from FMMT for l �= j. Choose a random n-subset
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Aj ⊂ {0, . . . , t} (if t < n then Aj = [k]), compute θj,f,ι =
∏

l∈Ωf
αl,ι for

f = 1, 2, 3 and ι ∈ Aj . Then hand (Write, Products, {θj,f,ι}ι∈Aj ,f∈{1,2,3})
to FBB.

6. Wait until (Ml, Products, {θl,f,ι}ι∈Al,f∈{1,2,3}) appears on FBB for l �= j.
Then verify that θl,f,ι = θl′,f,ι for ι ∈ Al ∩ Al′ . If not go to Step 12. If so
define θf,ι = θl,f,ι for any l such that ι ∈ Al.

7. Verify that h

∑
l∈Ωf

sl,j

f =
∏t

ι=0 θjι

f,ι, for f = 1, 2, 3. If so, hand
(Write, Complaints, ∅) to FBB. Otherwise, go to Step 12.

8. Wait until (Ml, Complaints, ∆l) appears on FBB for l �= j. If all ∆l = ∅ set
I1 = {1, . . . , k}. Otherwise, go to Step 13.

9. Define sj =
∑

l∈I1
sl,j and set βj = gsj . Then hand

(Write, ConstructPublicKey, βj) to FBB.
10. Wait until (Ml, ConstructPublicKey, βl) appears on FBB for l ∈ I1. Verify

that βj =
∏t+1

i=1 β
∏

l�=i
l−j
l−i

i . If so set I2 = {1, . . . , t + 1}. If not, go to Step 15.

11. Define y =
∏

i∈I2
β

∏
l�=i

l
l−i

i and output (PublicKey, y, sj).

Handle Cheating with the sl,i and αl,ι.
12. Verify for l = 1, . . . , k that h

sl,j

f(l) =
∏t

ι=0 αjι

l,ι. Let ∆j be the set of indices l

for which inequality holds. Then hand (Write, Complaints, ∆j) to FBB.
13. Wait until (Ml, Complaints, ∆l) appears on FBB for l �= j. Let Γj = {l | j ∈

∆l}. Then hand (Write, Refutes, {sj,l}l∈Γj ) to FBB.
14. Wait until (Ml, Refutes, {sl,i}i∈Γl

) appears on FBB for l �= j and replace old
values of sl,j with the new. Let I1 be the set of l such that h

sl,i

f(l) =
∏t

ι=0 αiι

l,ι

for all i such that (l, i) ∈ [k]× {j} ∪⋃k
i′=1(∆i′ × {i′}). Then go to Step 9.

Handle Cheating with the βl.
15. Set cf,j,0 =

∑
l∈Ωf ∩I1

sl,j and choose cf,j,ι ∈ Zq for ι > 0 randomly. Define

cf,j(z) =
∑t

ι=0 cf,j,ιz
ι, γj,ι = gc1,j,ι+c2,j,ι+c3,j,ι , δf,j,ι = h

cf,j,ι

f , and ζf,j,l =
cf,j(l). Then hand (Send, Ml, Share2, (ζ1,j,l, ζ2,j,l, ζ3,j,l)) to FMMT for l ∈ I1
and hand (Write, PublicElements2, {γj,ι, δ1,j,ι, δ2,j,ι, δ3,j,ι}tι=1) to FBB.

16. Wait for (Ml, PublicElements2, {γl,ι, δ1,j,ι, δ2,j,ι, δ3,j,ι}tι=1) on FBB for l ∈
I1. Set γl,0 = βl and δf,l,0 =

∏
i∈Ωf ∩I1

αi,ι. Verify gζ1,l,j+ζ2,l,j+ζ3,l,j =∏t
ι=0 γjι

l,ι and h
ζf,l,j

f =
∏t

ι=0 δjι

f,l,ι. Let ∆′
j be the set of indices for which

the verification fails. Then hand (Write, Complaints2, ∆′
j) to FBB.

17. Wait until (Ml, Complaints2, ∆′
l) appears on FBB for l ∈ I1. Let Γ ′

j = {l |
j ∈ ∆′

l}. Then hand (Write, Refutes2, {ζ1,j,l, ζ2,j,l, ζ3,j,l}l∈Γ ′
j
) to FBB.

18. Wait until (Ml, Refutes2, {ζ1,j,l, ζ2,j,l, ζ3,j,l}i∈Γl
) appears on FBB for l ∈ I1

and replace the old values of ζf,l,j with the new. Let I2 be the lexico-
graphically first set of l such that gζ1,l,i+ζ2,l,i+ζ3,l,i =

∏t
ι=0 γiι

l,ι and hζf,l,i =∏t
ι=0 δiι

f,l,ι for all i such that (l, i) ∈ I1×{j}∪
⋃k

i′=1(∆
′
i′ ×{i′}). Then go to

Step 11.

All shares corresponding to a partition Ωf are verified together. One can also
consider verifying smaller sets together if some cheating is expected. Then if
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cheating is detected, fewer shares have to be verified individually. This changes
the security analysis only slightly.

Remark 1. Theoretically, it suffices that each party chooses an e(n)-subset in
Step 5, where e(n) is a function such that e(n)/ log n = Ω(1).

Theorem 1. The protocol π above securely realizes FDKG with respect toMk/2-
adversaries in the (FBB,FMMT,FCRS)-hybrid model under the DDH-assumption.

If all parties behave honestly, each party computes O(3.5k) exponentiations
in Gq. In the worst case each party computes O(k2) exponentiations.

Corollary 1. If π is composed with πMMT, the result holds in the (FBB,FCRS)-
hybrid model. If also composed with πBB the result holds in the FCRS-hybrid
model for blocking adversaries.

Some intuition behind the construction and for the proof of Theorem 1 fol-
lows. Since the adversary could potentially generate the shares it distributes
after receiving shares from all honest parties, it can choose the shares it dis-
tributes such that the combined shares sj of corrupted parties take on certain
values. This is why we must allow the ideal adversary to do this in the DKG
functionality as well (the distribution of y is unbiased).

Already after the public elements αj,ι are published the simulator can extract
the secrets of corrupt parties, compute the resulting final combined shares, and
feed them to the ideal functionality. To simulate honest dummy parties, the ideal
adversary generates in the second step public elements βj that appear correct
to the corrupt parties, but they are carefully chosen such that the public key
y output by a protocol execution is identical to the public key output by the
ideal functionality. This implies that the αj,ι and βj are inconsistent. This fact
must be hidden from the adversary and environment such that the latter can
not distinguish a simulation from a real execution. This must hold despite that
the environment knows all shares sj at the end of an execution.

The use of three independent generators h1, h2 and h3 in the first phase
ensures that no adversary or environment can check if the final shares sj cor-
respond to the public elements αl,ι. The adversary is essentially given a tuple
(h1, h2, h

e1
1 , he2

2 , (1− b)e3 + b(e1 + e2), where h1, h2 ∈ Gq and e1, e2, e3 ∈ Zq are
random, and must guess b. This problem is related to the DDH-problem as fol-
lows. Consider a tuple (h1, u, v, w), where (u, v, w) = (he1

1 , he2
1 , h

be1e2+(1−b)e3
1 ).

This is a DDH-tuple if b = 1. Define h2 = u = he1
1 , U = hσ

1/v = hσ−e2
1 ,

V = w = h
(1−b)e3+be2
2 , and W = σ for a random σ. Then (h1, h2, U, V, W ) is a

tuple of the first type and b = 1 precisely when (u, v, w) is a DDH-triple. In fact
we have translated an instance of the DDH-problem to an instance of a problem
that the adversary and environment must solve to distinguish a simulation from
a real execution of our protocol.

Although the UC-framework allows it, we have not used any trapdoor for the
common random string in the simulation. In fact the common random string
is not even chosen by the simulator. Thus, we feel that our use of the common
random string is very mild.
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Proof (Theorem 1 and Corollary 1). It is easy to verify the complexity claim in
the non-optimistic case by counting.

The optimistic case is not as obvious. In Step 4 we invoke a corollary in Sec-
tion 8.5 in Aho, Hopcroft, and Ullman [2] which says that kth degree polynomial
over Zq can be evaluated in k points using at most k log2 k arithmetic operations
(i.e. +, −, ×, /) in Zq. Thus, this step is performed in time corresponding to
compute k exponentiations.

In Step 5 each party computes n products, each having k factors. This cor-
responds to computing k exponentiations.

In Step 7 the exponents jι are computed iteratively using the recursion jι =
j · jι−1. The cost is at most k multiplications, and ignored. Similarly the cost
of the multiplication of the exponentiated elements is ignored. Thus, the cost of
this step is k/2 exponentiations, since this is how many ordinary exponentiations
are performed.

In Step 10 and Step 11 k ordinary exponentiations are computed, but we
must also consider how to compute the exponents in these products. We note
that the products are almost factorial (here it is in fact necessary to have I2 =
{1, . . . , t+1}), i.e.

∏
l �=i(l−i) = (1−i)(2−i)·. . .·((i−1)−i)((i+1)−i)·. . .·(t+1−i).

We compute all factorials 1!, 2!, 3!, . . . , (t+1)! in Zq and their inverses. Then each
of our exponents can be formed using only 4 multiplications. Thus, all exponents
can be computed using at most O(k) multiplications, and the total cost of the
two steps corresponds to k exponentiations.

In total each party computes O(3.5k) exponentiations.
We construct an ideal adversary S that runs any hybrid adversary A as a

blackbox. Then we show that if S does not imply that the protocol is secure,
the DDH-assumption is broken.

The Ideal Adversary S. Let IM be the set of indices of generators corrupted
by A. The ideal adversary S corrupts the dummy generators M j for j ∈ IM .
The ideal adversary is best described by starting with a copy of the original
hybrid ITM-graph (V, E) = Z ′(H(A, ππ(FBB,FMMT,FCRS)

)) where Z is replaced
by a machine Z ′ that we define below. The adversary S simulates all machines
in V except those in A′, and the corrupted machines Mj for j ∈ IM under A′:s
control.

Simulation of Links (Z,A), (Z, Mj) for j ∈ IM . S simulates Z ′ and M j for
j ∈ IM , such that it appears as if Z and A, and Z and Mj for j ∈ IM are linked
directly.

1. When Z ′ receives m from A, m is written to Z, by S. When S receives m
from Z, m is written to A by Z ′. This is equivalent to that Z and A are
linked directly.

2. When Z ′ receives m from Mj for j ∈ IM , m is written to Z by M j . When
M j , j ∈ IM , receives m from Z, m is written to Mj by Z ′. This is equivalent
to that Z and Mj are linked directly for j ∈ IM .

Extraction from a Corrupt Generator. Note that since the last t generators Mj

which distributes their shares sj,l may be corrupted, the adversary can choose
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sj,l for j ∈ IM such that sj =
∑

l∈I1
sl,j takes on any values of its choice. The

ideal adversary S must somehow extract the sj for j ∈ IM and then hand them
to FDKG to ensure that the shares sj for j = 1, . . . , k that eventually ends up at
the environment are consistent with the output public key y.

When the last (Write, Complaints, ∆j) message before executing Step 9 ap-
pears on FBB for j = 1, . . . , k, interrupt the simulation of FBB.

There are two cases. If there were no complaints, we claim that h

∑
l∈Ωf

sl,j

f =∏t
ι=0(

∏
l∈Ωf

αl,ι)jι

is satisfied for j �∈ IM and f = 1, 2, 3. We argue that θf,ι =∏
l∈Ωf

αl,ι. This is clearly the case if for each ι = 0, . . . , t there exists an honest
party Mj such that ι ∈ Aj . Thus, the probability of failure is bounded by
Pr[∃ι ∈ [0, t],∀j �∈ IM : ι �∈ Aj ] ≤

∑t+1
ι=0 Pr[∀j �∈ IM : ι �∈ Aj ], where we used

the union bound. From independence follows that the latter quantity equals
(t + 1) Pr[ι �∈ Aj ]t+1 (for some arbitrary ι ∈ {1, . . . , t + 1} and j �∈ IM ). By
construction Pr[ι �∈ Aj ] = (1 − n

k−n ), which implies that the probability of
failure is bounded by (t + 1)(1 − n

k−n )k/2 ≤ (t + 1)e−n/2, which is negligible.
Thus, with overwhelming probability, θf,ι =

∏
l∈Ωf

αl,ι. This implies that we

can Lagrange interpolate bf,i =
∑

l∈Ωf
(
∑t+1

j=1 sl,j

∏
l �=j

i−l
j−l ) =

∑
l∈Ωf

sl,i for
f = 1, 2, 3 and compute si = b1,i +b2,i +b3,i for i ∈ IM . If there were complaints,
we have for l ∈ I1 and j �∈ IM that h

sl,j

f(l) =
∏t

ι=0 αjι

l,ι. This implies that the
equation above holds for the new values of sl,j and we can Lagrange interpolate
si =

∑3
f=1

∑
l∈Ωf ∩I1

sl,i similarly to the above. To summarize, S can always
extract sj for j ∈ IM before deciding on βj values.

The ideal adversary S hands (CorruptShares, {j, sj}j∈IM
) to FDKG. FDKG

then returns (PublicKey, y). Below we describe the computations performed by
S before the simulation of FBB continues.

Simulation of an Honest Generator. The next problem facing the ideal adversary
S is how to simulate the honest generators Mj for j �∈ IM such that the corrupt
generators Mj for j ∈ IM output the same public key y as that output by the
dummy generators M j for j �∈ IM . The latter generators are beyond S’s control
and simply forwards the output from FDKG. Intuitively, S must “lie” at some
point, since it is already committed to a public key by the public αj,ι elements
on FBB. The “lie” must be carefully constructed such that the adversary can
not identify it, and it must be constructed not knowing logg y.

First it computes β′
j = gsj for j ∈ IM and sets β′

0 = y and I ′
M = IM ∪ {0}.

These are the β′
j for j ∈ IM that should later be published by the corrupted

generators if they behave honestly. Then S computes β′
j =

∏
i∈I′

M
(β′

i)
∏

l�=i
j−l
i−l ,

for j �∈ IM , and replace βj with β′
j in the simulation of the honest generators Mj

for j �∈ IM . The construction ensures that β′
j =

∏t+1
i=1(β

′
i)

∏
l�=i

l−j
l−i . The simulated

honest parties Mj for j �∈ IM are instructed not to complain if βi = β′
i for

i �∈ IM .
However, it may be the case that β′

i �= βi for i ∈ IM , in which case the
honest generators must also simulate the handling cheating with the βi. This is
done using the same technique as above. S chooses ζf,j,l randomly for l ∈ IM
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and sets ζf,j,l = 1 for j �∈ IM . Then it replaces the original values of γj,l and

δf,j,l for j �∈ IM by γj,l =
∏

i∈I′
M

γ

∏
i′ �=i

l−i′
i−i′

j,i and δf,j,l =
∏

i∈I′
M

δ

∏
i′ �=i

l−i′
i−i′

f,j,i . This

ensures that gζ1,l,j+ζ2,l,j+ζ3,l,j =
∏t

ι=0 γjι

l,ι and h
ζf,l,j

f =
∏t

ι=0 δjι

f,l,ι, for j ∈ IM .
The simulated honest generators are instructed to not complain despite that
the above equations does not hold for their values of ζj,l, when j, l �∈ IM . This
implies that no ζf,j,l for any j �∈ IM is ever published. Regardless if βj for j ∈ IM

are correct or not we have y =
∏

i∈I2
β

∏
l�=i

l
l−i

i where y is the value output by
FDKG. At this point the simulation of FBB is continued.

Reaching a Contradiction. Suppose that S does not imply the security
of the protocol. Then there exists a hybrid adversary A′ = A(SBB,SMMT,SCRS),
an environment Z with auxiliary input z = {zn}, a constant c > 0 and an
infinite index set N ⊂ N such that for n ∈ N : |Pr[Zz(I(S, πFDKG)) = 1] −
Pr[Zz(H(A′, π(πFBB

1 ,π
FMMT
2 ,π

FCRS
3 ))) = 1]| ≥ 1

nc , where S runs A′ as a black-box
as described above, i.e. S = S(A′).

Defining the Distinguisher. We are now ready to define a distinguisher D that
contradicts the DDH assumption. D is confronted with the following test. An
oracle first chooses e1, e2, e3 ∈ Zq and a bit b ∈ {0, 1} randomly and defines
(u, v, w) = (he1

1 , he2
1 , h

be1e2+(1−b)e3
1 ). Then D is given (u, v, w) and must guess b.

There exists j �= i such that i, j �∈ IM and f(i) �= f(j). Without loss we
assume that 1, 2 �∈ IM and f(1) = 1 and f(2) = 2.

D does the following. It sets h2 = u, and generates a random h3. Then it
simulates all machines and ideal functionalities as described above, except that

1. The simulation of M1 and M2 is special and depends on (u, v, w).
S chooses sj,l randomly and defines ωj,l = h

sj,l

j for j = 1, 2 and l ∈ IM .
Then it chooses σ randomly in Zq and sets ω1,0 = hσ

1/v and ω2,0 = w.
Then it computes s(1,2),l = s1,l + s2,l for l ∈ IM and sets s(1,2),0 = σ. This
allows the definition of s(1,2),l =

∑
i∈I′

M
s(1,2),i

∏
j �=i

l−i
j−i , for l �∈ IM . Set

s1,l = logh1
ω1,l and s2,l = logh2

ω2,l for l �∈ IM (inclusive l = 0). These
values are not known by S, but we can still consider the equation system
(sj,l)l∈I′

M
= (lι)l∈I′

M ,ι∈[0,t](aj,ι)ι∈[0,t]. Denote by (dl,ι)l∈I′
M ,ι∈[0,t] the inverse

of (lι)l∈I′
M ,ι∈[0,t]. Then aj,ι =

∑
l∈I′

M
dl,ιsj,l, for j = 1, 2.

D sets αj,ι =
∏

l∈I′
M

ω
dl,ι

j,l . Then the simulation is carried through as de-
scribed above, except that Mj for j �∈ IM replace s1,j + s2,j in the sum
sj =

∑
l∈I1

sl,j by s(1,2),j (recall that S does not even know s1,j or s2,j).
2. In the simulation of FDKG, D instructs it to use the values sj extracted from

corrupt generators, and the values sj generated by S in the simulation.

Concluding the Proof. If (u, v, w) is a DDH-triple, then s1,l = logh1
ω1,0 = σ −

e2 and s2,l = logh2
ω2,0 = e2. Thus, s1,l + s2,l = s(1,2),l, which gives sj =∑

l∈I1
sl,j . This implies that the distribution of the output of D is identical to

the distribution of Zz(H(A′, π(πFBB
1 ,π

FMMT
2 ,π

FCRS
3 ))), since all inputs to A during
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the simulation are identically distributed to the corresponding inputs in a real
execution.

If on the other hand (u, v, w) is not a DDH-triple, then s1,l = logh1
ω1,0 =

σ − e2 and s2,l = logh2
ω2,0 = e3, which implies that s1,l + s2,l is independently

distributed from s(1,2),l for l �∈ IM . Since the former is used in the construction
of αj,ι for j = 1, 2 and the latter is used to compute sj , βj and thereby y are
independently distributed from αj,ι. This is precisely the situation in the ideal
model. Thus, the distribution of D in this case is identical to the distribution of
Zz(I(S, πFDKG)).

This implies that the DDH-assumption is broken (Definition 1), and the
theorem is true. The corollary follows from Lemma 2 and Lemma 1 by use of
the composition theorem of the UC-framework (Theorem 2 in Appendix A).
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A Review of the UC-Security Framework

In this section we give a short review of the universally composable security
framework of Canetti [5]. This framework is very general, quite complex, and
hard to describe both accurately and concisely. We have chosen to use a slightly
simplified approach. For a general in depth discussion, intuition, and more details
we refer the reader to Canetti [5]. Note that we consider only static adversaries.

Following Goldwasser, Micali and Rackoff [20] we define the parties to be
interactive Turing machines, and denote the set of interactive Turing machines
by ITM.
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Canetti assumes the existence of an “operating system” that handles the cre-
ation of subprotocols. This is necessary to handle protocols with a large number
of possible trees of calls to subprotocols, but for our purposes we may assume
that all subprotocols are instantiated already at the start of the protocol.

Canetti models an asynchronous communication network, where the adver-
sary has the power to delete, modify, and insert any messages of his choice. To
do this he is forced to give details for exactly what the adversary is allowed
to do. This becomes quite complex in the hybrid model. We instead factor out
all aspects of the communication network into a separate concrete “communica-
tion model”-machine. The real, ideal, and hybrid models are then defined solely
on how certain machines are linked. The adversary is defined as any ITM, and
how the adversary can interact with other machines follows implicitly from the
definitions of the real and ideal communication models.

Since each protocol or subprotocol communicate through its own copy of
the “communication model”, and all protocols are instantiated at the start of
the protocol we need not bother with session ID:s. Such ID:s would clearly be
needed if our protocols would be rewritten in the more general original security
framework, but it is notationally convenient to avoid them.

We also assume that we may connect any pair of machines by a “link”. Such
a link is more or less equivalent to the notion of a link as defined by Goldreich
[16]. Thus, the following is meaningful.

Definition 1. An ITM-graph is a set V = {P1, . . . , Pt} ⊂ ITM with a set of
links E such that (V, E) is a connected graph, and no Pi is linked to any machine
outside V . Let ITMG be the set of ITM-graphs.

During the execution of an ITM-graph, at most one party is active. An active
party may deactivate itself and activate any of its neighbors, or it may halt, in
which case the execution of the ITM-graph halts.

The real communication model models an asynchronous communication net-
work, in which the adversary can read, delete, modify, and insert any message
of its choice.

Definition 2. A real communication model C is a machine with a link lPi , to
Pi for i = 1, . . . , k, and a link lA to a real adversary A, defined as follows.

1. If m is read on ls, where s ∈ {P1, . . . , Pk}, then (s, m) is written on lA and
A is activated.

2. If (r, m) is read on lA, where r ∈ {P1, . . . , Pk}, then m is written on lr, and
r is activated.

The ideal communication model below captures that the adversary may de-
cide if and when to deliver a message from an ideal functionality to a party, but
it can not read the contents of the communication.

Definition 3. An ideal communication model CI is a machine with a link lPi ,
to Pi for i = 1, . . . , k, and links lF , and lS to an ideal functionality F and an
ideal adversary S respectively. Its program is defined as follows.
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1. If a message m is read on ls, where s ∈ {P1, . . . , Pk}, then (s, m) is written
on lF and F is activated.

2. If a message (s, m) written on lF is returned unaltered1, m is written on ls.
If not, any string read from lF is interpreted as a list ((r1, m1), . . . , (rt, mt)),
where ri ∈ {S, P1, . . . , Pk}. For each mi a random string τi ∈ {0, 1}n is
chosen, and (ri, mi) is stored under τi. Then ((r1, |m1|, τ1), . . . , (rt, |mt|, τt)),
where |mi| is the bit-length of mi, is written to lS and S is activated.

3. Any string read from lS is interpreted as a pair (b, τ), where b ∈ {0, 1} and τ
is an arbitrary string. If b = 1 and (ri, mi) is stored in the database under the
index τ , mi is written on lri and ri is activated. Otherwise (S, τ) is written
to lF and F is activated.

An adversary can normally corrupt some subset of the parties in a protocol.
A dummy party is a machine that given two links writes any message from one of
the links on the other. There may be many copies of the dummy party. We write
P for dummy parties. The ideal model below captures the setup one wishes to
realize, i.e. the environment may interact with the ideal functionality F , except
that the adversary S has controls the communication.

Definition 4. The ideal model is defined to be a map I : ITM2 × ITM
∗ →

ITMG, where I : (F ,S, P 1, . . . , P k) �→ (V, E) is given by:
V = {CI ,F ,S, P1, . . . , Pk} and E = {(S, CI), (CI ,F)} ∪⋃k

i=1{(Pi, CI)}.
If π = (P 1, . . . , P k), we write I(S, πF ) instead of I(F ,S, P 1, . . . , P k) to ease
notation. The real model is supposed to capture the properties of the real world.
The parties may interact over the real communication model.

Definition 5. The real model is defined to be a map R : ITM∗ → ITMG,
where R : (A, P1, . . . , Pk) �→ (V, E) is given by: V = {C,A, P1, . . . , Pk} and
E = {(A, C)} ∪⋃k

i=1{(Pi, C)}.
Let (V, E) = I(F ,S, P 1, . . . , P k). Then we write Z(I(F ,S, P 1, . . . , P k)) for

the ITM-graph (V ′, E′) defined by V ′ = V ∪ {Z}, and E′ = E ∪ {(Z,S)} ∪⋃k
i=1{(Z, P i)}. We use the corresponding notation in the real model case.
A hybrid model is a mix between a number of ideal and real models, and

captures the execution of a real world protocol with access to some ideal func-
tionalities. It is also a tool to modularize security proofs. It may be viewed as if
we “glue” a number of ideal and real models onto an original real model.

Definition 6. Suppose that we are given (V, E) = R(A, π), π = (P1, . . . , Pk).
Let (Vj , Ej) = I(Sj , π

Fj

j ), πj = (P j,1, . . . , P j,k) for j = 1, . . . , t, and (Vj , Ej) =
R(Sj , πj), πj = (Pj,1, . . . , Pj,k) for j = t + 1, . . . , s.

We denote by H(A(S1,...,St), π(πF1
1 ,...,π

Ft
t ,πt+1,...,πs)) the hybrid model defined

as the ITM-graph (V ′, E′), where V ′ = V ∪⋃t
j=1 Vj and

E′ = E ∪⋃t
j=1 Ej ∪

⋃k
i=1

(
{(Si,A)} ∪⋃t

j=1{(Pi, P j,i)}
)

1 This special rule simplifies security proofs.
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Similarly as above we write Z(H(A(S1,...,St), π(πF1
1 ,...,π

Ft
t ,πt+1,...,πs))) to denote

the ITM-graph (V ′′, E′′) defined by V ′′ = V ′ ∪ {Z}, and E′′ = E′ ∪ {(Z,A)} ∪⋃k
i=1{(Z, Pi)}.
Note that all real subprotocols πj , for j = t + 1, . . . , s, above may be in-

tegrated into the original real protocol π. Thus a hybrid model with no ideal
functionalities involved is equivalent to a real model, except that it may use
several communication models.

The concept of hybrid models is generalized in the natural way, e.g. we write

H(A(AS11
1 ,A

S21
2 ), π(π

πF
11

1 ,π
πF
21

2 )) for a hybrid model for a real protocol that executes
two subprotocols, where each subprotocol has access to a separate copy of the
ideal functionality F . Some care needs to be taken when defining the adversary
for such models. If an adversary corrupts a party, it automatically corrupts all
its sub-parties that are involved in subprotocols2.

We also write Zz to denote that Z takes auxiliary input z, and always assume
that in any execution of such an ITM-graph, Z is activated first.

The following definition is somewhat sloppy in that we have not defined the
notion ofM-adversaries rigorously, but it is a class of adversaries.

Definition 7 (Secure Realization). Let F be an ideal functionality. Let π =
(P1, . . . , Pk), and let πj = (P j,i, . . . , P j,i) be the corresponding dummy parties
for Fj, for j = 1, . . . , t.

Then π(πF1
1 ,...,π

Ft
t ) realizes πF securely with regards to M-adversaries if for

allM-adversaries A(S1,...,St) with auxiliary input z = {zn}, ∃S ∈ ITM such that
∀c > 0, ∃n0, such that ∀n > n0:
|Pr[Zz(I(S, πF )) = 1]− Pr[Zz(H(A(S1,...,St), π(πF1

1 ,...,π
Ft
t ))) = 1]| < 1

nc .

Since the dummy parties are of no real importance we also say that π realizes
F in the (F1, . . . ,Ft)-hybrid model.

Canetti [5] proves a powerful composition theorem that can handle polyno-
mially many instances of a constant number of ideal functionalities, but we only
need the following weaker special case.

Theorem 2 (Composition Theorem). Suppose that π(π̃F1
1 ,...,π̃

Ft
t ) securely re-

alizes π̃F , and that π
(π̃Fi1

i1 ,...,π̃
Fiti
iti

)
i securely realizes π̃Fi

i , for i = 1, . . . , l, with
regards to M-adversaries.

Then π(π
(π̃

F11
11 ,...,π̃

F1t1
1t1

)

1 ,...,π
(π̃

Fl1
l1 ,...,π̃

Fltl
ltl

)

l ,π̃
Fl+1
l+1 ,...,π̃

Ft
t ) securely realizes π̃F with

regards to M-adversaries.

2 The most general definition allows some violations of this rule.
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