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Abstract. We give an l-ary greatest common divisor algorithm in the
ring of integers of any number field with class number 1, i.e., factorial
rings of integers. The algorithm has a quadratic running time in the
bit-size of the input using naive integer arithmetic.

1 Introduction

The greatest common divisor (GCD) of two integers a and b is the largest in-
teger d such that d divides both a and b. The problem of finding the GCD of
two integers efficiently is one of the oldest problems studied in number theory.
The corresponding problem can be considered for two elements α and β in any
factorial ring R. Then λ ∈ R is a GCD of α and β if it divides both elements,
and whenever λ′ ∈ R divides both α and β it also holds that λ′ divides λ. A pre-
cise understanding of the complexity of different GCD algorithms gives a better
understanding of the arithmetic in the domain under consideration.

1.1 Previous Work

The Euclidean GCD algorithm is well known. The basic idea of Euclid is that if
|a| ≥ |b|, then |a mod b| < |b|. Since we always have gcd(a, b) = gcd(a mod b, b),
this means that we can replace a with a mod b without changing the GCD.
Swapping the order of a and b does not change the GCD, so we can repeatedly
reduce |a| or |b| until one becomes zero, at which point the other equals the
GCD of the original inputs. In a more general setting with α and β in a facto-
rial ring R, Euclid’s idea works essentially unchanged if there exists a valuation
v : R → R+ with the following properties for α, β ∈ R. There exists γ, δ ∈ R
with α = γβ + δ and δ = 0 or v(δ) < v(β), if αβ �= 0 then v(α) < v(αβ).
Rings for which there exists such a valuation are called Euclidean. If in an al-
gebraic ring v(α) = |Nα|, where Nα is the algebraic norm of α, the ring is
called norm-Euclidean. Most algebraic rings are not even Euclidean. If we also
want the Euclidean algorithm to terminate there must be a constant k such that
{α | v(α) < k} is finite.

All is however not lost. Kaltofen and Rolletschek [5] devise a GCD algorithm
with quadratic running time for the ring of integers in any quadratic number
field. Their approach is based on the idea to find an integer j such that N(jα mod
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β) < Nβ. This is always possible with |j| bounded essentially by the square root
of the discriminant. We are not aware of any generalization of this approach to
more general rings of integers.

Interestingly, there are alternative approaches to compute the GCD. These
are generalizations of Stein’s binary GCD algorithm [9], which is particularly
well suited for implementation on computers. It is based on the following facts.

gcd(a, b) = 2 gcd(a/2, b/2) if a and b are even,
gcd(a, b) = gcd(a/2, b) if a is even and b is odd, and
gcd(a, b) = gcd((a − b)/2, b) if a and b are odd.

One may always apply one of the rules to reduce the size of elements, while
preserving the GCD. Thus, by simply shifting and subtracting integers, the GCD
of two integers can be computed. Weilert [11] generalizes this algorithm to the
Gaussian integers. Damg̊ard and Skovbjerg Frandsen [3, 4] independently also
generalize the binary algorithm to the Eisenstein and Gaussian integers.

Sorenson [8] give the l-ary algorithm for computing the GCD of integers,
which generalizes the binary algorithm. The l-ary algorithm is based on the result
by Minkowski that given a and b one can find c and d such that ca+db = 0 mod l
for an integer l, where |c| and |d| essentially are bounded by

√
l. Thus, in each

iteration the larger of a and b is replaced by (ca + db)/l. This is an analog to
the binary algorithm, in that in each iteration the size of the largest integer is
reduced roughly by a factor 2

√
l/l. The details of this algorithm is slightly more

involved than the binary algorithm, since the linear expression does not preserve
the GCD. Sorenson also constructs a parallel version of his algorithm. Weilert
[10] generalizes also this algorithm to the Gaussian integers.

Agarwal and Skovbjerg Frandsen [2] introduce an algorithm related to both
the binary and the l-ary algorithms for computing GCD in several complex
quadratic rings. It is interesting to note that one of the rings they consider is
not Euclidean.

Wikström [13] generalizes the l-ary approach to compute the GCD in the ring
of integers in the octic cyclotomic field. This is the first l-ary GCD algorithm in
a non-quadratic ring, and the main inspiration to the current work.

The binary or l-ary GCD algorithm in the ring of integers Z[ζm] of the cy-
clotomic number fields Q(ζm) for m = 2, 3, 4, 8 can be “translated” to compute
the corresponding power residue symbol. Shallit and Sorenson [7] give a binary
algorithm for computing the Jacobi symbol. Weilert [11] generalizes the idea to
compute the quartic residue symbol. Independently, both Damg̊ard and Skovb-
jerg Frandsen [3, 4] and Wikström [12] generalize the idea to compute the cubic
and quartic residue symbols. Wikström [13] also uses the idea to compute octic
residue symbols.

1.2 Contribution

We give a GCD algorithm in the ring of integers OK of any number field K
with class number 1, i.e., rings of integers with unique factorization. Our result
is non-uniform in the sense that we, for each ring, assume that we already know
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an integral basis, fundamental units, and several constants derived from these.
The running time of the algorithm is quadratic in the bit-size of the input.

As far as we know, the only previous generic GCD algorithm with quadratic
running time is given by Kaltofen and Rolletschek [5], and this is only applicable
to quadratic rings. The algorithm in [5] is in some sense “almost Euclidean”,
whereas our algorithm generalizes the l-ary algorithm [8]. As explained in the
introduction, l-ary algorithms have appeared in the literature for specific rings,
but the present work is the first to give a generic description of this approach.

We are confident that our algorithm can be “translated” to compute the m-
th power residue symbol in the ring of integers of the m-th cyclotomic number
field Q(ζm) if it has class number 1.

Proofs of all claims are given in [14], but we try to convey the main ideas
used in each proof here.

2 Notation

We denote the number of elements in a finite set A by #(A). We write Z, Q, R,
and C for the rational integers, the rational numbers, the real numbers, and the
complex numbers. The imaginary unit is denoted by i =

√−1. We denote the
complex absolute value by | · | : C → R, where |a + bi| =

√
a2 + b2. We write α

to denote the complex conjugate of an α ∈ C.
Throughout the paper we use K to denote a number field with class number

1, and we use OK to denote its ring of integers. Since Q is a perfect field K/Q
is a separable extension. The ring OK has an integral basis which we denote by
ω1, . . . , ωg, since OK is the integral closure of Z which is a principal ideal domain.
This means that OK = Zω1 + . . . + Zωg and K = Qω1 + . . . + Qωg. We write
O∗

K to denote the units of OK , i.e., the invertible elements. The corresponding
notation is used also for other domains. We use ε1, . . . , εh to denote a maxi-
mal set of independent fundamental units in OK . We denote the group of roots
of unity by µ(K). We denote by G = HomQ(K, C) the set of Q-embeddings
of K into C, i.e., isomorphisms of K, which keep Q fixed. This implies that
g = #(G). We assume throughout that g ≥ 2. We use multiplicative notation
for the action of an element σ ∈ HomQ(K, C), i.e., σ : α �→ ασ. We denote by
Nα =

∏
σ∈G ασ the algebraic norm of α. For α ∈ O∗

K , we have Nα ∈ Z. We
use the term irreducible only for non-units. One source for the above facts is
Neukirch [6].

The naive complexity model we use in this paper stipulates that addition or
subtraction of positive integers x and y takes time O(log x + log y), and multi-
plication, integer division or computing remainders takes time O(log x log y).

3 Preliminary Results

Before we describe the algorithm and analyze it we need to generalize the results
given in [13].



1192 D. Wikström

3.1 Balanced Elements

Consider the absolute value of the algebraic norm, |Nα| =
∏

σ∈G |ασ|, of an ele-
ment α ∈ OK . It is given by the product of the absolute values of the conjugates
of α. The quotient |ασ|/|ασ′ | of two such absolute values can be arbitrarily large
for elements with a fixed absolute norm |Nα|. However, it follows from Dirich-
let’s Unit Theorem that there exists an associate β of α for which the absolute
values |βσ| are roughly the same size. This is an important observation, since it
allows us to establish a weak triangle inequality. Informally, we could say that
we can balance the complex absolute values of the algebraic conjugates of α. We
use the following definition.

Definition 1 (∆-Balanced Element) We say that a non-zero α ∈ K is ∆-
balanced if |ασ| ≤ ∆|ασ′ | for all σ, σ′ ∈ HomQ(K, C).

Note that α is ∆-balanced precisely when all of its conjugates are ∆-balanced,
and that the requirement is equivalent to 1

∆ |ασ| ≤ |ασ′ | for all σ, σ′ ∈ G.

3.2 A Weak Triangle Inequality

It would be nice if given α, β ∈ K, we had |N(α + β)| ≤ cmax{|Nα|, |Nβ|}
for a constant c ∈ R, i.e., some type of “triangle inequality”. Unfortunately, for
almost all K there is no such law. Instead we show that there exists a triangle
inequality for balanced elements.

Theorem 1 (Triangle Inequality for ∆-Balanced Elements) Let α and β
be ∆-balanced elements in K, and set g = #(HomQ(K, C)). Then

|N(α + β)| ≤ 2g∆g−1 max{|Nα|, |Nβ|} .

The idea of the proof is to expand the product |N(α+β)| = |∏σ∈G(ασ +βσ)| as
a sum, apply the triangle inequality for the complex absolute value, and bound
each term using the fact that α and β are balanced.

Remark 1 If the conjugates of α can be organized in pairs of complex conjugates
one can give a slightly tighter inequality as is done in [13].

3.3 Linear Combinations

In this section we construct the cofactors of the l-ary approach, but first we
exhibit a large set of elements with relatively small norm. Let l ∈ Z, l > 0,
denote a constant to be determined later and define the set

Sl =
{ g∑

j=1

ajωj

∣∣∣∣ 0 ≤ aj ≤
√

l + 1
}

.

Each σ ∈ G may be described as a Z-linear map in the basis ω1, . . . , ωg. We
denote the matrix corresponding to this map by fσ = (fσ

k,j)1≤k,j≤g, and define
the constant cω = max1≤k,j≤g,σ∈G{|fσ

k,jωk|}. We have the following result.
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Lemma 1 Let γ, γ′ ∈ Sl. Then for all σ ∈ G

|(γ − γ′)σ| ≤ g2cω(
√

l + 1) , and #(Sl) > lg/2 .

The first part of the lemma follows by the linearity of σ, application of the trian-
gle inequality, and the fact that elements in Sl have small positive coefficients.
The second part follows by counting.

Denote by Tl the set of pairwise differences Tl = {γ−γ′ | γ, γ′ ∈ Sl}. We show
that for any ∆-balanced elements α, β ∈ OK , we can find elements γ, δ ∈ Tl such
that l | (γα+ δβ) and still keep |N(γα+ δβ)| relatively small. More precisely we
define Clin(l) = (g2cω(

√
l + 1))g∆g−1 and have the following theorem.

Theorem 2 Let α and β be ∆-balanced elements in OK . Then there exists γ, δ ∈
Tl, with (γ, δ) �= (0, 0), such that l | (γα + δβ), and

|N(γα + δβ)| ≤ Clin(l)max{|Nα|, |Nβ|} .

The idea of the proof is as follows. The existence of the γ and δ follows by the
pigeon-hole principle. The bound follows by an argument similar to that in the
proof of Theorem 1, except that we apply Lemma 1 to bound the norm of the
cofactors γ and δ.

In the following we need a notation to identify the cofactors guaranteed to
exist by the theorem. We write γα,β and δα,β for a pair of cofactors in Tl such
that l | (γα,βα + δα,ββ).

3.4 Spurious Factors

Sorenson [8] notes that gcd(a, b) = gcd(ca + db, b) may not hold for rational
integers a, b, c, d ∈ Z. A similar problem arises for algebraic integers. Fortunately,
the following straightforward lemma explains this completely.

Lemma 2 Let α, β, γ, and δ lie in OK . Then gcd(α, β) | gcd(γα + δβ, β) and
(gcd(γα + δβ, β)/ gcd(α, β)) | γ.

3.5 Approximating the Norm of a ∆-Balanced Element

The norm of an element gives in some sense the “size” of the element. Unfor-
tunately, the way the norm is defined requires multiplication of integers, which
takes time O(n2) in the naive arithmetic model. This is far too expensive to be
done in each iteration of our algorithm, since we are looking for an algorithm
that has a total running time of O(n2). It is natural to try to approximate the
norm, but since elements can have small norm but large representation, i.e.,
be unbalanced, there may be much cancellation during the computation of the
norm.

We consider a weaker estimate of the size of an element, which we call N+ :
K → R, and prove some useful results about this function. We do not know
how to compute this function quickly, but in contrast to the norm it can be
approximated within a constant factor in linear time for elements in OK .
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Definition 2 Define N+ : K → R by N+α = maxσ∈G{|ασ|}.
It is not hard to see that N+ approximates the norm N arbitrarily badly, but
it turns out to be useful anyway. The next lemma says that if an element is
∆-balanced, then N+ is essentially a good approximation of the norm N .

Lemma 3 Let α ∈ K be ∆-balanced. Then g
√|Nα| ≤ N+α ≤ ∆ g

√|Nα|.
For the lemma to be useful there must be a way to balance an element α without
computing its norm Nα, but we ignore this issue for now. Instead we introduce
a function N ′

+ which approximates N+ within a constant factor.

Definition 3 Define N ′
+ : K → R by N ′

+α = max1≤j≤g{|aj |} for an element
α ∈ K given by α =

∑g
j=1 ajωj with aj ∈ Q.

The function N ′
+ can obviously be evaluated in linear time in the bit-size of the

input when α ∈ OK , since then aj ∈ Z. Next we show that it approximates N+

within a constant factor.
Denote by K∗

C the direct product
∏

σ∈G C∗, and denote by ψ : K → K∗
C

the map given by ψ : α �→ (ασ)σ∈G. We consider K as a g-dimensional Q-
vector space, where elements are represented in the basis ω1, . . . , ωg. Then the
image ψ(K) is an isomorphic Q-vector space from the Q-linearity of the ho-
momorphisms. Denote by (ψσ,j)σ∈G,1≤j≤g the complex valued matrix which
represents the map ψ : K → ψ(K) expressed in the basis ω1, . . . , ωg. De-
note by (ψ′

j,σ)σ∈G,1≤j≤g the complex valued matrices corresponding to the map
ψ−1 : ψ(K) → K expressed in the canonical orthonormal basis {eσ}σ∈G for
KC =

∏
σ∈G C. Define Γ = g max1≤j≤g,σ∈G{|ψσ,j |, |ψ′

j,σ|}. The lemma below
follows straightforwardly from the linearity of ψ and its inverse.

Lemma 4 Let α ∈ K. Then 1
Γ N+α ≤ N ′

+α ≤ ΓN+α.

Corollary 1 Let α ∈ K be ∆-balanced. Then

1
Γ

g
√

|Nα| ≤ N ′
+α ≤ Γ∆ g

√
|Nα| .

3.6 Balancing Elements

In this section we prove a result that allows us to balance elements in OK effi-
ciently. Recall the statement of Dirichlet’s Unit Theorem. It considers a number
field K which has r real embeddings and s pairs of conjugates of complex em-
beddings of K in C, and says that the group of units O∗

K is the direct product
of the group of roots of unity, µ(K), and a free abelian group of rank r + s − 1.
The theorem itself is not strong enough for our purposes, but we can extract a
useful result from the construction used in its proof. We follow the exposition
given in Neukirch [6], but use slightly different notation.

We have already defined the map ψ : K → K∗
C. Denote by vlog : K∗

C →∏
σ∈G R the map given by vlog : (zσ)σ∈G �→ (log |zσ|)σ∈G. Conjugation F : z �→

z in C induces involutions. In K∗
C it acts by F (zσ)σ∈G = (zσ)σ∈G and in

∏
σ∈G R
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it acts by F (xσ)σ∈G = (xσ)σ∈G. We define K∗
R and

[∏
σ∈G R

]+ to be the vector
spaces consisting of fixed points of F in K∗

C and
∏

σ∈G R respectively. If σ is a
real embedding, it is clearly fixed by F , and the complex embeddings comes in
pairs. Since there are s pairs of complex embeddings we see that

[∏
σ∈G R

]+ is
isomorphic to Rr+s.

Define NC : KC → C, NC : (zσ)σ∈G �→ ∏
σ∈G zσ and TrR :

∏
σ∈G R →

R, TrR : (xσ)σ∈G �→ ∑
σ∈G xσ. It is shown in [6] that the following diagram

commutes.

K∗ ψ ��

N

��

K∗
R

vlog��

NC

��

[∏
σ∈G R

]+
TrR

��
Q∗ �� R∗ log �� R

Consider the following subgroups.

O∗
K = {ε ∈ OK | Nε = ±1} the units,

S = {y ∈ K∗
R | NCy = ±1} the norm one surface, and

H = {x ∈ [∏
σ∈G R

]+ | TrR(x) = 0} the trace zero hyperplane.

The commutative diagram above induces the homomorphisms

O∗
K

ψ �� S
vlog �� H .

Denote by λ the composed map λ = vlog ◦ ψ, and let L = λ(O∗
K) be the image

of the units in
[∏

σ∈G R
]+. Recall the definition of a lattice.

Definition 4 A lattice in an R-vector space V is a subgroup L = E1Z + . . . +
EhZ, where E1, . . . , Eh are linearly independent vectors in V . It is called com-
plete if E1, . . . , Eh is a basis for V .

It is proved in [6] that the group of roots of unity, µ(K), is isomorphic to the
kernel of λ and that L is a complete lattice in the (r + s− 1)-dimensional vector
space H. Dirichlet’s theorem follows from this. Let h = r + s − 1. To define
the fundamental units ε1, . . . , εh we pick a basis E1, . . . , Eh for L, and define
εj = λ−1(Ej). We also define E′

j = gEj .

Suppose we map an element α into
[∏

σ∈G R
]+ using λ. Let x = (xσ) = λ(α).

Then it is not hard to see that α is balanced when all xσ are of roughly the same
size. Another way to phrase this is that the orthogonal projection of x onto H
is close to the origin. If we multiply α by εj , the image λ(αεj) is translated by
the vector Ej , i.e., λ(αεj) = λ(α) + λ(εj) = x + Ej . To balance an element we
want to find some integer combination of the vectors E1, . . . , Eh that translates
x close to the origin, since this corresponds to multiplying α by the fundamental
units ε1, . . . , εh. We can always write x =

∑h
j=1 rjEj , with rj ∈ R, since L is a

complete lattice, i.e., E1, . . . , Eh is a R-basis for H. Then we pick integers close
to these real coefficients. Below we prove two lemmas that allow us to give a
simple algorithm for balancing elements that is easy to analyze.
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Recall that {eσ}σ∈G denotes the canonical orthonormal basis for the space∏
σ∈G R. We define the max-norm ‖ · ‖ : H → R in terms of this basis by

‖∑
σ∈G xσeσ‖ = maxσ∈G{|xσ|}. It is intuitively clear that if an element x ∈ H is

sufficiently far from the origin, we may reduce its max-norm ‖x‖ by an additive
term t by translating it by a bounded element in the lattice L. We define a
constant cE = maxr1,...,rh∈[−1/2,1/2] ‖

∑h
j=1 rjE

′
j‖, and turn this into a precise

statement as follows. Denote by A(t) the set {x ∈ H | x =
∑h

j=1 rjE
′
j , rj ∈

R, ‖x‖ ≤ t + cE}, and define

w(t) =
1
2

+ max∑ h
j=1 rjE′

j∈A(t)
{|rj |} ,

where rj ∈ R. We prove the following result.

Lemma 5 Let t > 0 and let x ∈ H be an element such that ‖x‖ > t + cE. Then
there exists k1, . . . , kh ∈ Z with |kj | ≤ w(t) such that

∥∥∥∥x +
h∑

j=1

kjE
′
j

∥∥∥∥ ≤ ‖x‖ − t .

Choose t such that Γ 2

2t < 1
2 and define the constants Φ = w(gt) and ∆ =

2
2
g (gt+cE). We translate the above lemma from the space H back to OK and

take care of the lack of precision in our approximation of N+. This gives the
following lemma.

Lemma 6 If α in OK is not ∆-balanced, then there exists k1, . . . , kh ∈ Z with
|kj | ≤ Φ such that

N ′
+

(
α

h∏
j=1

ε
kj

j

)
<

1
2
N ′

+α .

The idea of the proof is the following. Suppose α is not balanced and consider the
element β = αg/Nα. Note that β is “normalized” in the sense that x = λ(β) ∈ H
(we may have β �∈ OK though). Up to a constant factor, the element α is balanced
if and only if β is balanced. This implies that x ∈ H is far from the origin. We
then apply Lemma 5 to translate x closer to the origin. Since we do this using the
basis E′

1, . . . , E
′
h this translates to multiplying β by a product of the fundamental

units εj . When this is no longer possible, x is close to the origin, which implies
that β, and thus α, are balanced.

4 The Algorithm

In this section we describe the algorithm. We divide it into subroutine calls to
improve readability.
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4.1 Subroutines

Consider the set of non-unit elements that divide some δ in the set of cofactors
Tl. This set is clearly infinite, since each element in OK has an infinite number
of associates. This makes it natural to consider the following set instead

Fl = {π ∈ OK : π | l or π | δ ∈ Tl, and π is ∆-balanced and irreducible} .

The set Fl is bounded and we denote its elements by Fl = {π1, . . . , πsF
}. We

write Fl � α to denote the fact that π � α for all π ∈ Fl. For clarity we state trial
division as an algorithm below.

Algorithm 1 (Extract Small Factors)

SMALL(α)
Input : α ∈ OK .

Output : (α′, (k1, . . . , ksF
)), where α = α′ ∏sF

j=1 π
kj

j and Fl � α′.
The algorithm is the trivial one. Find α′, and kj by trial division.

Lemma 7 Let α ∈ OK and suppose (α′, (k1, . . . , ksF
)) = SMALL(α). Then the

running time of the SMALL-algorithm on input α is O(n(1 + log |Nα|
|Nα′| )).

Note that π | α if and only if Nπ | Nπ
π α. Since Nπ

π ∈ OK this reduces, in linear
time, trial division in OK to trial division in Z.

Next we consider the problem of ∆-balancing elements. The algorithm below
repeatedly applies Lemma 6 to find an increasingly balanced associate of the input.
When this is no longer possible, we know that the current associate is ∆-balanced.

Algorithm 2 (Balance Element)

BALANCE(α)
Input : α ∈ OK .
Output : a ∆-balanced associate β of α.
β ← α
Do

α ← β
For (k1, . . . , kh) ∈ [−Φ,Φ]h Do

If N ′
+

(
β

∏h
j=1 ε

kj

j

)
< 1

2N ′
+β Then

β ← β
∏h

j=1 ε
kj

j

End If
End For

While N ′
+β < N ′

+α
Return α

Lemma 8 The output of the BALANCE-algorithm is ∆-balanced, and the al-
gorithm runs in time O

(
n(1 + log(maxσ,σ′∈G

|ασ|
|ασ′ | ))

)
.
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Identify OK/(l) with the set of representatives
∑g

j=1 ajωj , with 0 ≤ aj < l.
Then let (γα′,β′ , δα′,β′)α′,β′∈OK/(l) be the table of elements from Tl guaranteed
to exist by Theorem 2, i.e., elements such that l | (γα′,β′α′+δα′,β′β′). For clarity
we state finding the cofactors as an algorithm.

Algorithm 3 (Find γ and δ)

GAMMADELTA(α, β)
Input : α, β ∈ OK .
Output : (γ, δ) ∈ T 2

l , such that l | (γα + δβ).
Compute α′ = α mod (l) and β′ = β mod (l). Then output (γα′,β′ , δα′,β′).

Lemma 9 The algorithm is correct and runs in time O(n).

4.2 Greatest Common Divisor

Finally, we are ready to give the algorithm for computing a greatest common
divisor of two elements α and β in OK . The special case where one of the inputs
is zero is treated in the first two lines. Then we extract all small factors of
both inputs and store these. This allows us to determine all small factors in a
GCD. Then we make sure that β is balanced. Consider now the while-loop of the
algorithm. In each iteration α is balanced. This ensures that when we compute
N ′

+α and N ′
+β the results are in fact approximations of g

√|Nα| and g
√|Nβ|.

This gives us a good idea of which of the elements is the larger. The if-statement
swaps α and β such that the norm of α is larger or at least within a constant
factor of the norm of β. Then a linear expression is formed using the special

Algorithm 4 (Greatest Common Divisor)

GCD(α, β)
Input : α, β ∈ OK , with either α or β non-zero.
Output : The greatest common divisor of α and β.
If α = 0 Return β
If β = 0 Return α
(α, (k1, . . . , ksF

)) ← SMALL(α)
(β, (k′

1, . . . , k
′
sF

)) ← SMALL(β)
β ← BALANCE(β)
While α �= 0 Do

α ← BALANCE(α)
If N ′

+α < N ′
+β Then

(α, β) ← (β, α)
End If
(γ, δ) ← GAMMADELTA(α, β)
(α, ·) ← SMALL((γα + δβ)/l)

Done

Return β
∏sF

j=1 π
min{kj ,k′

j}
j
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cofactors of bounded norm, and the result is divided by l. This reduces the norm
of α. During the iterations of the while-loop spurious factors from the set Fl may
be introduced into the current β. These are removed in the subroutine call, and
the output is formed in the obvious way.

In each iteration, α, perhaps after swapping with β, is replaced by the
expression (γα + δβ)/l. We must obviously choose l large enough such that
|N((γα + δβ)/l)| < |Nα|. But, we must also take into account the lack of exact-
ness in the approximation N ′

+ of the norm used when deciding which of α and
β is the larger. For simplicity we choose l such that the norm of α is guaranteed
to be reduced by a factor of two in each iteration. More precisely we choose l
as the smallest integer that satisfies the inequality Clin(l)/lg < 1/(2Γ 2g∆g). We
can choose l to satisfy this inequality since Clin(l) = O(lg/2).

5 Analysis

In this section we prove the correctness of the algorithm and bound its running
time. To simplify the exposition we denote by αj and βj , and α′

j and β′
j the

values of α and β before and after the if-statement in the jth iteration of the
while-loop.

Lemma 10 The jth iteration, j > 1, runs in time O
(
n(1+log |Nαj |·|Nβj |

|Nαj+1|·|Nβj+1| )
)
.

To see why the lemma is true, note that from the triangle inequality of the
complex absolute value follows that in each iteration, max{|ασ

j+1|} can only be
a constant factor larger than max{|(α′

j)
σ|}. This means that if αj+1 is very

unbalanced, then |Nαj+1| must also be much smaller than |Nα′
j |. The lemma

then follows from Lemma 7 and Lemma 8.

Theorem 3 Algorithm 4 computes the greatest common divisor of its inputs in
time O(n2) in the bit-size n of its input using naive arithmetic in Z.

The proof of correctness is straightforward except from the handling of spu-
rious factors. Since all small factors are removed from both inputs and stored
before the while-loop, any small factors found in the while-loop can safely be dis-
carded. By Lemma 2, replacing α by (γα+ δβ)/l preserves the GCD up to small
factors. Since all small factors are removed by the call to the SMALL-algorithm
the GCD of α and β is preserved and the output of the algorithm is correct.
The bound of the running time is explained as follows. We have chosen l such
that the absolute norm of one of the elements is reduced at least by a factor
1/2 in each iteration. Since the norm is an integer and the algorithm halts when
α = 0, the algorithm executes at most d = O(n) iterations. The subroutine calls
made outside of the while-loop can be done in time O(n2). The running time of
each iteration is bounded in Lemma 10. Thus, it remains to argue that the com-
bined execution time

∑d
j=2 O(n log |Nαj |·|Nβj |

|Nαj+1|·|Nβj+1| ) of all subroutine calls sum
to O(n2), but this follows by calculation.
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6 On the Existence of Practical Algorithms

In this paper we focus on conceptual simplicity, and not on minimizing the
constants in the running time. In particular the three subroutines SMALL,
BALANCE, and GAMMADELTA are trivial brute force algorithms. Thus, an
interesting line of future research is to device more efficient specialized ver-
sions of these subroutines, e.g., it should be possible to use lattice reduction
techniques to balance elements. Another line of research is to exploit specific
properties of OK when #(G) is relatively small. In addition to the complex
rings mentioned in the introduction, this seems possible for some real quadratic
rings [1].
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