
On the Security of Mix-Nets and

Hierarchical Group Signatures

DOUGLAS WIKSTRÖM

Doctoral Thesis

Stockholm, Sweden 2005

Skolan för datavetenskap och kommunikation
Kungliga Tekniska högskolan
SE-100 44 Stockholm
SWEDEN

TRITA NA 05-38
ISSN 0348-2952
ISRN KTH/NA/R--05/38--SE
ISBN 91-7178-200-1

c© Douglas Wikström, december 2005

Tryck: Universitetsservice US AB

iii

Abstract

In this thesis we investigate two separate cryptographic notions: mix-nets and hier-
archical group signatures. The former notion was introduced by Chaum (1981). The latter
notion is introduced in this thesis, but it generalizes the notion of group signatures which
was introduced by Chaum and Heyst (1991).

Numerous proposals for mix-nets are given in the literature, but these are presented
with informal security arguments or at best partial proofs. We illustrate the need for a
rigorous treatment of the security mix-nets by giving several practical attacks against a
construction of Golle et al. (2002). Then we provide the first definition of security of
a mix-net in the universally composable security framework (UC-framework) introduced
by Canetti (2001). We construct two distinct efficient mix-nets that are provably secure
under standard assumptions in the UC-framework against an adversary that corrupts any
minority of the mix-servers and any set of senders. The first construction is based on the
El Gamal cryptosystem (1985) and is secure against a static adversary, i.e., an adversary
that decides which parties to corrupt before the execution of the protocol. This is the first
efficient UC-secure mix-net in the literature and the first sender verifiable mix-net that is
robust. The second construction is based on the Paillier cryptosystem (1999) and secure
against an adaptive adversary, i.e., an adversary that decides which parties to corrupt
during the execution of the protocol. This is the first efficient adaptively secure mix-net
in any model. An important subprotocol in the above constructions is a zero-knowledge
proof of knowledge of a witness that a party behaves as expected. There are two known
approaches for constructing such a protocol given by Neff (2002) and Furukawa and Sako
(2002) respectively. We present a third independent approach.

We introduce the notion of hierarchical group signatures. This is a generalization of
group signatures. There are several group managers, and the signers and group managers
are organized in a tree in which the signers are the leaves and the group managers are
internal nodes. Given a signature, a group manager learns if it is an ancestor of the signer,
and if so to which of its immediate subtrees the signer belongs, but it learns nothing else.
Thus, the identity of the signer is revealed in a hierarchical way. We provide a definition
of security of hierarchical group signatures and give two provably secure constructions.
The first construction is secure under general assumptions. It is impractical and of purely
theoretical interest. The second construction is provably secure under standard complexity
assumptions and almost practical.

v

Sammanfattning

Vi undersöker två olika kryptografiska begrepp: mixnät och hierarkiska gruppsigna-
turer. Det första begreppet introducerades av Chaum (1981). Det senare introduceras
i denna avhandling, men det är en generalisering Chaums och Heysts gruppsignaturer
(1991).

Det finns många förslag på hur man konstruerar mixnät i literaturen, men de ges endast
med informella säkerhetsresonemang eller i bästa fall ofullständiga bevis. Vi illustrerar hur
viktigt det är med en rigorös behandling av säkerhet för mixnät genom att presentera flera
olika praktiska attacker mot en konstruktion av Golle et al. (2002). Sedan presenterar vi
den första definitionen av ett mixnät i Canettis (2001) “universally composable security”-
ramverk (UC-ramverket). We konstruerar två effektiva mixnät som är bevisbart säkra i
UC-ramverket. Den första konstruktionen är baserad på El Gamals kryptosystem (1985)
och är säker mot en statisk angripare, dvs en angripare som bestämmer sig för vilka parter
den skall korrumpera innan protokollet börjar köras. Detta är det första kända effektiva
och UC-säkra mixnätet. Det är också det första robusta mixnätet som även är avsändar-
verifierbart. Den andra konstruktionen är baserad på Pailliers kryptosystem (1999) och är
säker mot en adaptiv angripare, dvs en angripare som bestämmer sig för vilka parter den
skall korrumpera under körningen av protokollet. Det är det första effektiva adaptivt säkra
mixnätet i någon modell över huvud taget. Ett viktigt delprotokoll i konstruktionerna är
ett nollkunskapsbevis av kunskap att varje deltagare följer protokollbeskrivningen. Det
finns två kända metoder för att konstruera ett sådant protokoll beskrivna av Neff (2002)
respektive Furukawa och Sako (2002). Vi beskriver ett tredje oberoende alternativ.

Vi inför begreppet hierarkiska gruppsignaturer som är en generalisering av gruppsig-
naturer. Det finns flera gruppchefer, och signatörerna och gruppcheferna är ordnade i ett
träd där signatörerna är löv och gruppcheferna är inre noder. En gruppchef kan given en
signatur avgöra till vilket av dess direkta delträd signatören tillhör, men erhåller ingen an-
nan kunskap om vem signatören är. Alltså avslöjas signatörens identitet på ett hierarkiskt
vis. Vi ger en formell definition av säkerheten hos hierarkiska gruppsignatursystem och
beskriver två bevisbart säkra konstruktioner. Den första konstruktionen är bevisbart säker
under allmänna antaganden, men inte praktisk användbar. Den andra konstruktionen är
säker under standardantaganden och nästan praktisk användbar.

Acknowledgments

First of all I would like to thank my advisor Johan Håstad. It is hard to imagine
a better teacher and guide to the world of science. He has an amazing ability to
quickly understand new ideas and suggest improvements, and I can not recall him
ever saying that he has not the time to discuss an idea. I would also like to express
my deepest gratitude to Nada and Johan for giving me the opportunity to complete
my studies at Nada. I thank Mikael Goldmann for his advise during Johan’s stay
at Princeton.

I am grateful to my co-authors Mårten Trolin and Jens Groth. The work on
hierarchical group signatures is joint work with Mårten, and the construction of
the adaptively secure mix-net is joint work with Jens.

During my first years of study I worked at the Swedish Institute of Computer
Science (SICS). I thank Torsten Ekedahl, Björn Grönvall and Gunnar Sjödin for
many discussions on mix-nets. A special thanks also goes to Torsten for his advise
on computing greatest common divisors and residue symbols in rings of integers.
My work on this topic did not fit in this thesis.

My fellow students Gustaf Hast, Rafael Pass, and Mårten Trolin deserve my
gratitude for listening to my unfinished ideas and sharing their own. Mårten and
Jakob Nordström also deserves my gratitude for proof reading parts of the thesis.
It was a pleasure to share my office with Jesper Fredriksson and Klas Wallenius.
Klas also kindly answered many of my questions about writing in English.

I thank Ran Canetti for explaining the universally composable framework to me
at an early stage and Ronald Cramer for giving me the chance to present my work at
the ECRYPT provable security workshop 2004. I also thank Jun Furukawa, Markus
Jakobsson, and Andrew Neff for answering my questions about their respective
constructions and for interesting discussions on mix-nets in general.

I gratefully acknowledge that my research was funded by the Swedish Research
Institute for Information Technology (SITI), Verket för innovationssystem (VIN-
NOVA), and Vetenskapsrådet (VR).

During my studies I enjoyed the company of numerous other colleagues, both
at SICS and at Nada. I thank all of you for making my everyday life interesting!

Finally, I thank Sofie for her unending support and for believing in me those
days when I did not.

vii

Contents

Contents ix

List of Figures 1

I Background 1

1 Introduction 3
1.1 Cryptographic Protocols . 3
1.2 Provable Security . 5
1.3 Mix-Nets . 7
1.4 Hierarchical Group Signatures . 13
1.5 Organization of the Thesis . 18
1.6 Our Publications . 19

2 Notation and Basic Definitions 21
2.1 Notation and Conventions . 21
2.2 One-Way and Collision-Free Hash Functions 22
2.3 Trapdoor Permutation Families and Hard-Core Bits 23
2.4 Pseudo-Random Generators . 24
2.5 Public Key Cryptosystems . 25
2.6 Signature Schemes . 28
2.7 Statistical Closeness . 29
2.8 Proofs of Knowledge, Proofs, and Zero-Knowledge 29
2.9 Non-Interactive Zero-Knowledge Proofs 36
2.10 The Random Oracle Model . 38

3 Cryptographic Assumptions and Concrete Primitives 41
3.1 The Goldwasser-Micali Cryptosystem 41
3.2 Assumptions On the Distribution of the Primes 42
3.3 The Discrete Logarithm Assumption 43
3.4 The Chaum-van Heijst-Pfitzmann Hash Function 44
3.5 The Decision Diffie-Hellman Assumption 44

ix

x Contents

3.6 The El Gamal Cryptosystem . 46
3.7 The Cramer-Shoup Cryptosystem . 47
3.8 The Strong RSA-Assumption . 47
3.9 The Shamir Hash Function . 50
3.10 The Cramer-Shoup Signature Scheme 51
3.11 The Composite Residuosity Class Assumptions 52
3.12 The Paillier Cryptosystem . 53

4 The Universally Composable Security Framework 55
4.1 Interactive Turing Machines . 56
4.2 The Real Model . 56
4.3 The Ideal Model . 57
4.4 The Hybrid Model . 59
4.5 Corruption of Parties . 60
4.6 The Definition of Security . 62
4.7 The Composition Theorem . 63

II Mix-Nets 65

5 Preliminaries 67
5.1 Previous and Related Work On Mix-Nets 67
5.2 Additional Notation . 68
5.3 Some Ideal Functionalities . 69

6 Some Practical Attacks On Mix-Nets 73
6.1 A Review of “Optimistic Mixing for Exit-Polls” 73
6.2 First Attack: Honest Mix-Servers . 77
6.3 Second Attack: Honest Senders and One Corrupt Mix-Server 79
6.4 Third Attack: Two Corrupt Mix-Servers 81
6.5 Fourth Attack: One Corrupt Mix-Server 83
6.6 Further Applications of the Attacks . 84

7 A Definition of Security of a Mix-Net 87
7.1 Informal Requirements and Previous Definitions 87
7.2 The Ideal Mix-Net . 88

8 A Sender Verifiable Mix-Net 93
8.1 Adversary Model . 93
8.2 On Re-encryption in El Gamal Based Mix-Nets 94
8.3 Our Modification . 94
8.4 Sender Verifiability . 95
8.5 A Technical Advantage . 96
8.6 Additional Ideal Functionalities . 96

xi

8.7 The Mix-Net . 98

9 A New Efficient Proof of A Shuffle 105
9.1 An Informal Description of Our Approach 105
9.2 A Proof of Knowledge of a Shuffle of El Gamal Cryptotexts 107
9.3 Generation of Prime Vectors From a Small Number of Public Coins . . 109
9.4 Security Analysis . 112
9.5 Complexity Analysis . 128
9.6 Universal Verifiability and the Use of Random Oracles 130
9.7 A Proof of Knowledge of a Shuffle of Paillier Cryptotexts 132

10 Secure Realizations of Two Ideal Functionalities 137
10.1 A Proof of Knowledge of a Cleartext 137
10.2 A Proof of Knowledge of a Shuffle of El Gamal Cryptotexts 142

11 An Adaptively Secure Mix-Net Without Erasures 147
11.1 Adversary Model . 147
11.2 Distributed Paillier . 148
11.3 Key Generation . 148
11.4 The Adaptively Secure Mix-Net . 149
11.5 Subprotocols Invoked by the Main Protocol 153
11.6 The Mix-Net . 159
11.7 Security Analysis . 162
11.8 On Adaptively Secure El Gamal Based Mix-Nets 174

12 Conclusions of Part II 179

III Hierarchical Group Signatures 181

13 Introduction of the New Notion and Definitions 183
13.1 Related Work . 183
13.2 The Parties . 185
13.3 The Definition of Security . 185
13.4 Alternative Definitions . 189
13.5 The Main Difficulties . 190
13.6 A Characterization of Anonymous Cryptosystems 191

14 A Construction Under General Assumptions 195
14.1 Preliminaries . 195
14.2 Our Construction . 196
14.3 Security Analysis . 199
14.4 An Alternative Construction . 206
14.5 On Eliminating the Trusted Key Generator 206

xii Contents

15 A Construction Under Standard Assumptions 209
15.1 An Informal Description of Our Construction 209
15.2 Our Construction . 212
15.3 Security Analysis . 215

16 Construction of the Proof of Knowledge 225
16.1 A Simplifying Convention . 226
16.2 Protocols in Groups of Known Prime Order 227
16.3 Protocols in Two Distinct Groups . 236
16.4 Protocols in the Squares Modulo An RSA-modulus 238
16.5 The Complete Protocol . 251
16.6 Complexity Analysis . 254

17 Conclusions of Part III 257

Bibliography 259

A Probability Bounds 273

List of Figures

1.1 A trusted party providing the mix-net functionality. 9
1.2 A re-encryption based mix-net. 12
1.3 A tree of group managers and signers. 17

4.1 A real model in the UC-framework. 57
4.2 A ideal model in the UC-framework. 59
4.3 A hybrid model in the UC-framework. 61

6.1 The relation attack for double-encryption. 78

1.3 A tree of group managers and signers (reproduced). 185
13.1 An illustration of the definition of hierarchical anonymity. 187

14.1 The private and public keys along a path in the tree. 198

15.1 The output of the key generator for a three-level tree. 213

16.1 The protocol for a chain of cryptotexts. 229
16.2 Double-decker exponentiation proof over an RSA-modulus. 243

1

Part I

Background

1

Chapter 1

Introduction

1.1 Cryptographic Protocols

Only 30 years ago, cryptography was still considered a subject almost exclusively
of military interest. Since then not only have the applications changed, but also
the tools. The original application of cryptography was to allow two parties to
communicate secretly over an insecure channel, i.e., no intermediary should be
able to deduce the cleartext despite having access to the cryptotext. Today there
are complex protocols for key exchange, commerce, auctions, elections, contract
signing, etc., each with its own set of security properties.

Diffie and Hellman [60], and Rivest, Shamir and Adleman [132], revolutionized
the subject of cryptography when they introduced public key cryptography. Al-
though the notion was first discovered by Merkle [103], his idea was less practical
and was not published until later. Interestingly, recently de-classified informa-
tion suggests that British governmental organizations discovered public key cryp-
tography already in the beginning of the 70’s. See [137] for an account of this.

The notion of public key cryptography led to a practical way for two parties to
establish a secret channel without any prior agreement. Furthermore, identification
schemes and digital signatures were developed to serve as electronic replacements of
conventional methods for identification and signing. These techniques are used mil-
lions of times each day all over the world to secure and authenticate communication
over the Internet. The new tools were embraced by the scientific community and
Yao [151] initiated the study of multiparty computation, i.e., the study of complex
cryptographic protocols involving multiple parties.

A simple example of a two-party computation problem that was first studied
by Blum [24] is the following. Alice and Bob are planning to go to the movies,
but they disagree on the choice of movie. If they were able to meet physically they
could resolve the problem by tossing a coin and let the outcome decide which movie
to see. Suppose now that they can not meet physically and are only talking to each
other over the telephone. We also assume that they each have a copy of the phone

3

4 Introduction

book. Can they still toss a “joint” random coin? Yes, this can be done as follows.
Alice first tosses a coin. If it comes out heads, she chooses a random name in the
phone book such that the name has an even number of letters, and otherwise she
chooses a random name that has an odd number of letters. Then she reads the
phone number associated with the chosen name to Bob over the phone. Next Bob
tosses a coin and tells Alice the outcome. Finally, Alice tells Bob the name she
chose. This discloses if Alice got heads or tails on her coin toss. The joint random
coin toss is defined to be heads if Alice’s and Bob’s coins are equal and defined to
be tails otherwise. The idea is that Alice can not change her mind after reading
the phone number to Bob, and Bob can not figure out if the name associated with
the phone number he is given has an even number of letters or not, since the phone
book is sorted by name and not by number. Thus, the coin is random as long as one
of them tosses its coin randomly no matter what the other party does. There are of
course attacks against the protocol. Bob may simply call the number he gets from
Alice and ask for the name of the owner, or he may have a phone book sorted by
number and find the name directly. However, if the basic idea is translated into a
cryptographic protocol the security of the protocol can be formalized and analyzed
rigorously, and it can be shown that it suffices if either Alice or Bob follows the
protocol to make the coin essentially random.

In general multiparty computation, a group of parties, each having an input,
wish to compute a function of their inputs in such a way that nobody is given any
information except the output of the function.

An important tool in the construction of such protocols is the notion of zero-
knowledge proofs discovered by Goldwasser, Micali, and Rackoff [77]. A zero-
knowledge proof is a protocol involving two parties: a prover and a verifier. The goal
of the prover is to convince the verifier of some statement without disclosing any
knowledge. This should be contrasted with the traditional way of communicating
proofs, where the prover explains in detail why the statement is true. One import-
ant application of zero-knowledge proofs in cryptography is to allow the parties in
a multiparty computation to prove that they follow a predefined protocol. Thus, if
some party tries to modify the output this is detected.

We illustrate the notion of a zero-knowledge proof with an example adapted
from Goldreich [72]. Consider a large labyrinth contained in a square such that
there is a path from an entry in one corner to an exit in another corner. Alice
claims that she knows a way from the entry through the labyrinth to the exit, but
she is not willing to disclose the path she knows to Bob, since it took her long
to find it. Bob distrusts Alice, so Alice must convince Bob that her claim is true
without disclosing her path. They solve this problem as follows. Alice carries a
flag on a long stick and secretly enters the labyrinth from either the entry or exit.
Then she waves her flag to signify to Bob that she is in the labyrinth. Bob then
tosses a coin, and shouts to Alice to wave the flag, without disclosing herself, at
the entry or the exit of the labyrinth depending on if the coin comes up heads or
tails. Now, if Alice does not know any way from the entry to the exit she can not
wave the flag as required on both outcomes of the coin tossing and must fail with

Provable Security 5

probability at least 1/2. If the experiment is repeated k times the probability that
Alice convinces Bob without knowing the secret path is at most 1/2k, which even
for moderately sized k is very small. Suppose that Ebba drops by Bob, and Bob
claims that he knows a path through the labyrinth. Can Bob convince Ebba? Bob
could video-tape the experiments carried out with Alice and show Ebba the video,
but that would not convince Ebba. Let us see how Bob can make the video without
any help from Alice. He turns on the video-camera, flips a coin and secretly enters
the labyrinth holding the flag from the entry if the coin comes up heads and from
the exit otherwise. Then he waves the flag so that it is captured on video that
somebody is in the labyrinth. He flips another coin and shouts to himself to wave
the flag at the entry if the coin comes up heads and at the exit otherwise. Note
that if the outcomes of the two coins are equal Bob can wave the flag as required,
but if they are different he can not. If the latter event occurs, Bob simply steps out
of the labyrinth the same way he entered it, rewinds the video tape and tries again.
In each attempt he succeeds with probability 1/2. Thus, he will eventually get a
video tape that looks exactly like the video tape he would get from interacting with
Alice. In other words, Bob can not convince Ebba of anything that he could not
already convince her of without interacting with Alice. We say that Bob gains zero
knowledge from the interaction with Alice.

Using zero-knowledge proofs Goldreich, Micali and Wigderson [74], Ben-Or,
Goldwasser, Wigderson [20] and Chaum, Crépeau and Damgård [46] showed that
any function can be securely computed without disclosing anything but the output
of the function. The simple examples above captures the spirit of how cryptograph-
ers construct and reason about protocols. A definition of security of general func-
tion evaluation was sketched in [74], and was formally defined in Goldwasser and
Levin [75], Micali and Rogaway [106], and Beaver [13]. These security frameworks
have been refined since, and many variations have been investigated in numerous
papers.

The constructions [74, 20, 46] mentioned above are very general, but they do
not give practical protocols. Thus, alongside the development of general theory,
researchers have been investigating more practical solutions to specific problems.
In this thesis we consider two such problems: mix-nets and hierarchical group
signatures.

1.2 Provable Security

At this point the reader may rightfully ask in what sense one proves the security
of a complex cryptographic protocol. Although it is often easy to give informal
requirements on cryptographic primitives, e.g., that a cryptosystem should hide
the encrypted message, it is surprisingly difficult to give a correct and rigorous
definition of security.

We must define what a protocol is. A natural model is to assume that each
party is represented by a Turing machine. Thus, a protocol is simply a list of

6 Introduction

Turing machines.
We must also model an adversary. The adversary is a hypothetical party that

tries to extract information or make the protocol diverge from normal execution.
We must decide which parties are controlled by the adversary. When a party is
controlled by the adversary, we say that it is corrupted. We must also decide when
an adversary corrupts a party: is it done before or during the execution of the
protocol? The first type of adversary is called a static adversary and the second
type an adaptive adversary. Furthermore, if an adaptive adversary corrupts a party
during execution, is it given the history of all computations already carried out by
the party, or are any such trace erased during execution? We say that the parties
execute without or with erasures respectively. Since most modern cryptographic
protocols can be broken in theory, given unlimited computational resources, we
must also limit the computing power of the adversary. A natural way to do this
without imposing to many restrictions on the adversary is to assume that it com-
putes in polynomial time in a special parameter called the security parameter. Fi-
nally, we assume that the adversary controls the communication between all parties,
including the parties it has not corrupted. The adversary sees all communicated
messages, it decides when a message is delivered, and it can also introduce fake
messages.

To define security we must pin down what exactly we expect from the protocol.
This is often done by describing an idealized model of the protocol and is best
explained by an example. Consider public key encryption. Alice wishes to secretly
send a message to Bob. To satisfy Alice’s request Bob generates a private key
and a corresponding public key of a cryptosystem, and hands Alice the public key.
Alice then encrypts her message using Bob’s public key and hands the cryptotext
to Bob. Bob finally decrypts the cryptotext using his private key. The ideal model
of public key encryption corresponds to a trusted party with which both Alice and
Bob can communicate secretly. It waits for a message “public key” from Bob, and
then hands a message “Bob’s public key” to Alice. Alice then hands the message she
wishes to transmit directly to the trusted party. Finally, the trusted party forwards
the message to Bob and the length of the transmitted message to the adversary.
Note that in the ideal model of public key encryption the adversary can not extract
any knowledge of the transmitted message except its length, since we assume that
the trusted party communicates secretly with Alice and Bob. We say that a public
key cryptosystem is secure if for each adversary in the real protocol there is an
adversary in the ideal version that has essentially the same advantage. Obviously,
this means that no adversary in the real protocol can extract anything else except
the length of the encrypted message.

In Chapter 4 we review a mathematical definition of a general security frame-
work corresponding to the above that was introduced by Canetti [41]. We analyze
our mix-nets in this framework. We use a different approach to formalize the se-
curity of hierarchical group signatures, but the basic idea is the same.

The current understanding of cryptography only rarely allows a mathematical
proof of security for a primitive or protocol not relying on any assumptions. What

Mix-Nets 7

is normally done instead is to prove security given that some computational as-
sumption holds. Such a proof is sometimes called a security reduction. An example
of a computational assumption is the following. Given a random integer that is a
product of two large primes it is hard to find its factorization. In Chapter 3 we
formalize several such assumptions. In most security proofs we argue by contra-
diction. We assume that there exists an adversary in the real protocol that has
an essentially greater advantage than every adversary in the ideal model. Then we
show that this adversary can be used to contradict a given computational assump-
tion. Thus, if the computational assumption is true we have reached a contradiction
and we conclude that there exists no such adversary for the real protocol.

The amount of details given in security reductions differ. It is common to prove
statements such as “no adversary running in polynomial time in the size of the
security parameter κ can break the scheme X unless it breaks the computational
assumption Y ”. Given such a reduction it is mostly straightforward, albeit time
consuming, to derive a proof of a statement such as “no adversary running in time
T (κ) can break the scheme X unless they break computational assumption Y in
time T ′(κ)”. The latter type of reduction is sometimes referred to as “exact security”
to signify that all parameters are explicit. In this thesis we do not provide exact
reductions.

At this point the reader should be skeptic. What good is a proof if it only holds
in some model of the adversary and under computational assumptions? If attacking
the protocol is a computational problem, why can we not assume that it is hard to
attack from the beginning?

We consider some answers to these questions. A short answer is that this is
the best the cryptographic community can do at the moment, but we think this
answer is too pessimistic. In fact, it is hard to imagine an adversary in the real
world that is as powerful as the one modeled above. Furthermore, the assumptions
about the standard set of problems are based on long experience and experimental
evidence. Any notable progress on any of these problems would be a remarkable and
very surprising mathematical result. The computational problem corresponding to
attacking a new complex protocol on the other hand has not been investigated by
many people. Thus, there exists little or none experimental evidence to suggest
that it is hard to attack. In fact there is plenty of evidence that suggest that a new
protocol without a careful proof of security under standard assumptions is likely to
contain serious flaws.

What should be regarded an acceptable proof of security is under constant
debate in the cryptographic community. For an account of this we refer the reader
to Koblitz and Menezes [98] or Stinson [139].

1.3 Mix-Nets

The main application of mix-nets is for electronic elections. Therefore, before we
proceed we review previous and related work on the problem of constructing an

8 Introduction

electronic election scheme.

1.3.1 Electronic Elections

The conventional election procedure has been refined over many years to be robust
and to ensure correctness of the result. The cast votes are often recounted by
different authorities to verify the result, and even though it may be possible to
forge a single vote, it is very hard to forge a sufficient number of votes to change
the result notably. Furthermore, in many countries the privacy of the voter is
preserved by physical means. The intent is not only to guarantee the privacy of the
voter, but to protect the voter against coercing and to counter vote buying.

Many questions arise when we try to replace the conventional election procedure
with an electronic protocol. In particular, if the objective is to let voters cast their
ballot from their personal computer: How do we identify the voters? How do we
prevent multiple voting? Can the privacy of the voter be guaranteed, and for how
long? Are there ways to coerce voters, or to convince them to sell their vote? Who
verifies that the protocol was executed correctly?

Some of these problems seem impossible to solve completely in practice, e.g. it
can not be guaranteed that there is no virus on the home PC. Other problems, such
as identifying voters, are possible to solve as standalone problems using standard
cryptographic techniques. The challenge is to find practical protocols that solve
all of these problems at the same time, and to give convincing arguments of their
security in reasonable models.

Although there are exceptions, most constructions for electronic voting in the
literature fall into one of two categories. Below we discuss the advantages and
disadvantages of these approaches.

The first type of construction is based on the use of a homomorphic cryptosys-
tem. Such cryptosystems have the remarkable property that, if several crypto-
texts are multiplied, the result is a cryptotext of the product of the cleartexts of
the original cryptotexts. This approach has been studied and refined by several
authors [50, 22, 21], leading up to the work of Cramer, Gennaro, and Schoen-
makers [52]. They give a well analyzed solution based on the El Gamal [71]
cryptosystem. Damgård and Jurik [57], and independently Baudron, Fouque,
Pointcheval, Poupard, and Stern [12], generalized this approach to use the Pail-
lier [121] cryptosystem. The main advantage of this approach is that counting the
votes can be performed very efficiently. A drawback, however, is that the set of
candidates must be fixed in advance, i.e., there can be no write-in votes. This prob-
lem is particularly severe if the El Gamal [71] cryptosystem is used, in which case
only a small number of candidates can be used. If the Paillier [121] cryptosystem
is used the number of candidates can be much larger, but write-in votes can still
not be cast. Another drawback of the homomorphic approach is that voters must
give a relatively complex proof that their ballot contains a vote for a candidate on
the candidate list. Finally, the election laws in some countries or states, e.g. the

Mix-Nets 9

United States of America, require that the actual ballots are stored. This prohibits
the use of the homomorphic approach.

The second approach was introduced by Chaum [45]. His idea is a straight-
forward translation of the conventional voting procedure. Each voter encrypts its
vote and writes it on a bulletin board. Then a mix-net (or anonymous channel in
Chaum’s terminology) is used to mix and decrypt the cryptotexts in such a way
that it is infeasible to find any correspondence between the input cryptotexts and
the output cleartexts. Thus, the mix-net ensures the privacy of the voter. The
main advantage of this approach is that arbitrary write-in votes can be allowed. A
fixed set of candidates can of course also be used.

Interestingly, ideas from the second approach have been used by Hirt and
Sako [84] to counter vote selling in an election protocol of the first type. Kiayias
and Yung [95] also propose an interesting way to combine the two approaches.

1.3.2 What is a Mix-Net?

In this section we give an informal introduction to mix-nets and sketch two basic
constructions. We give some references along the way, but a more complete account
of previous and related work on mix-nets is given in Chapter 5.

Suppose a set of senders S1, . . . , SN each have an input mi, and want to compute
the sorted list (mπ(1), . . . ,mπ(N)) of messages, but keep the identity of the sender
of any particular message mi secret. A trusted party T can provide the service
required by the senders. First it collects all messages. Then it sorts the inputs and
outputs the result. This is illustrated in Figure 1.1.

S1

S2

...

SN

m1

m2

mN

T

mπ(1)

mπ(2)

...
mπ(N)

Figure 1.1: The trusted party T receives a message mi from each sender Si. Then
it outputs the messages but in sorted order (mπ(1), . . . ,mπ(N)).

A protocol, i.e., a list of machines M1, . . . ,Mk, that emulates the service of the
trusted party as described above is called a mix-net, and the parties M1, . . . ,Mk are
referred to as mix-servers. Other terms used for the notion of a mix-net include:
anonymous channel, mix, or shuffle-network. Similarly a mix-server is called a
mix-center or a mixer by some authors.

10 Introduction

The usual assumption is that each sender Si trusts that a certain fraction of
the mix-servers M1, . . . ,Mk are honest. The sender may not want to decide upon
any particular parties Mj to trust, but only how many. This type of trust is
common in the real world. For example the board of a company consists of a group
of individuals. A stockholder does not have to trust each individual to trust the
board as a whole.

1.3.3 Constructions

In his paper [45] Chaum suggests the following construction of a mix-net. Each mix-
serverMj has a public key pk j and a private key sk j of a probabilistic cryptosystem.
We write c = Encpk (m) for the probabilistic encryption of a message m using the
public key pk and Decsk (c) = m for the decryption of a cryptotext c using the
private key sk . To send a message mi the sender Si forms a cryptotext

c0,i = Encpk1
(Encpk2

(. . .Encpkk(mi) . . .))

and writes it on a bulletin board. This gives a list

L0 = (c0,1, . . . , c0,N)

of cryptotexts from the N senders. Then for j = 1, . . . , k, the jth mix-server Mj

decrypts each element cj−1,i by computing dj,i = Decskj (cj−1,i) and forms the list

Lj = (cj,1, . . . , cj,N)

consisting of the elements (dj,1, . . . , dj,N) in sorted order. By construction the
output of Mk is the list of cleartexts, but in sorted order. Note that since each
mix-server reorders the cryptotexts the combined reordering is shared by the mix-
servers. Thus, if at least one mix-server keeps its part of the reordering secret,
essentially no information of the joint reordering is revealed and the anonymity of
the senders is ensured.

The cryptosystem used by Chaum is in fact not probabilistic in itself. The
encrypted message in each layer of encryption is padded with some random bits.
One drawback of the direct implementation of the above method is that the size of
the cryptotext c0,i computed by the sender grows linearly with the number of mix-
servers k. Another, more important problem is that there seems to be no efficient
way to verify that the mix-servers behave honestly. Indeed any of the mix-servers
could replace all of the cryptotexts with other cryptotexts of its choice, or refuse to
decrypt its input at all. A mix-net is sometimes said to be robust if it outputs the
correct result as long as a certain fraction, e.g., the majority of the mix-servers, are
honest.

An advantage of Chaum’s original scheme is that a sender can verify, by look-
ing at the intermediate lists L0, . . . , Lk, that its cryptotext is processed correctly
by the mix-servers. Furthermore, if any mix-server does not process the crypto-
texts properly, the corrupt mix-server can be identified and the sender can easily

Mix-Nets 11

prove that the identified mix-server did not follow the protocol. We say that the
protocol is sender verifiable. Note that sender verifiability does not guarantee the
overall correctness or anonymity of a mix-net. Chaum’s scheme can be said to be
decryption based, since each mix-server decrypts and reorders its input.

Park, Itoh, and Kurosawa [122] show that the problem of linear growth of crypto-
texts and proving correctness can be solved by using a homomorphic cryptosystem
such as the El Gamal cryptosystem [71] or the Paillier cryptosystem [121]. Such
a mix-net is sometimes called length preserving. Suppose we write Encpk (m, r) for
the probabilistic encryption of a message using randomness r. The cryptosystem is
said to be homomorphic if

Encpk (m1, r1) ⋆ Encpk (m2, r2) = Encpk (m1m2, r1 + r2) .

The symbol ⋆ denotes a form of “multiplication” of cryptotexts, and the product
m1m2 and sum r1 + r2 are defined over some groups.

Note that if c = Encpk (m, r) anybody can, without knowledge of the private key
sk , replace the randomness r with fresh randomness by computing c ⋆ Encpk (1, s)
with random s. This property is known as the re-encryption property. For the two
most common cryptosystems, El Gamal [71] and Paillier [121], with this property
it is possible to construct a joint public key pk and a corresponding joint private
key sk . The joint private key is not known by any individual mix-server. Instead
each mix-server is given a secret share, sj , of the key. Furthermore, there exists a
way for the mix-servers to jointly decrypt a cryptotext without revealing their part
of the private key. This set-up is called a distributed cryptosystem, since the power
to decrypt is distributed among the mix-servers.

Sako and Killian [134] construct a mix-net that is similar to [122] but easier
to describe. The sender encrypts its message mi by simply computing c0,i =
Encpk (mi, ri). Note that the cryptotext no longer grows with the number of mix-
servers. Then for j = 1, . . . , k the jth mix-server Mj computes the cryptotexts
dj,i = cj−1,iEpk (1, rj,i) and forms the list

Lj = (cj,1, . . . , cj,N)

consisting of the elements (dj,1, . . . , dj,N) in sorted order. Note that now the output
of Mk is no longer the list of cleartexts. Instead the mix-servers jointly decrypt
each cryptotext ck,i in the output of Mk using their secret shares sj to find the
cleartexts. We construct a mix-net of this type in Chapter 11. This approach is
also illustrated in Figure 1.2.

The advantage of using a homomorphic cryptosystem is that there exists a well
defined algebraic structure that can be used to construct an efficient zero-knowledge
proof of correct behavior. In other words, a mix-server can prove to the other mix-
servers that it formed Lj from Lj−1 as described above without revealing anything
about the randomness rj,i it used. Such a protocol is sometimes called a proof of a
shuffle, or a proof of re-encryption-permutation. The first proof of a shuffle we are
aware of was given by Sako and Killian [134]. Their construction is based on the

12 Introduction

S1

S2

...

SN

Encpk (m1)

Encpk (m2)

Encpk (mN)

c0,1

c0,2

...
c0,N

M1

c1,1

c1,2

...
c1,N

M2
. . . Mk

ck,1

ck,2

...
ck,N

mπ(1)

mπ(2)

...
mπ(N)

Figure 1.2: The figure illustrates a re-encryption based mix-net. Each sender Si
submits an encrypted message c0i. The cryptotexts (c0,1, . . . , c0,N) are repeatedly
re-encrypted and permuted by the mix-servers M1, . . . ,Mk. Finally the mix-servers
jointly decrypt the list (ck,1, . . . , ck,N). This gives the list (mπ(1), . . . ,mπ(N)) con-
sisting of the cleartexts but in sorted order.

cut-and-choose technique and is impractical. The first efficient constructions of a
proof of a shuffle of El Gamal cryptotexts were given by Neff [112] and Furukawa and
Sako [70]. Groth [80] generalized Neff’s protocol to any homomorphic cryptosystem.
In this thesis we give another approach. The idea is that a proof of a shuffle should
give a robust mix-net.

In the first type of length preserving mix-net [122] each mix-server partially
decrypts, re-encrypts and then permutes the cryptotexts in its input. The advant-
age of this approach compared to the re-encryption based approach is that less
communication is needed among the mix-servers. Recently, efficient proofs of a
shuffle have been constructed also for this type of transformation by Neff [113] and
Furukawa et al. [69]. An alternative approach is taken by Wikström [147]. His
protocol is based on a type of secret sharing scheme, but it is only efficient for a
small number of mix-servers.

A drawback of the two main approaches based on a homomorphic cryptosystem
is that sender verifiability is lost. In Chapter 8 we show how to construct a mix-net
which is sender verifiable and still allows efficient proofs of a shuffle.

The problem of constructing an efficient proof of a shuffle was open for several
years. We briefly mention that some authors, e.g. Jakobsson [87, 86], Jakobsson,
Juels, and Rivest [91], and Golle et al. [79] propose mix-nets in which global methods
are used to ensure robustness, i.e., to avoid costly proofs of a shuffle other methods
are used and it is claimed that this guarantees robustness. The constructions in
[87, 86, 79] are known to contain serious flaws. The construction in [91] claims to
achieve a weak form of anonymity and correctness. As far as we know there are no
known attacks against this construction.

Hierarchical Group Signatures 13

1.3.4 On the Need For a Rigorous Treatment

Numerous constructions of mix-nets have been proposed in the literature and have
been claimed to be both privacy preserving and robust, e.g. [66, 122, 134, 117, 2, 87,
86]. There is also a large number of successful attacks [59, 108, 126, 125, 107, 146, 5]
in the literature. This suggests that a rigorous definition of security and detailed se-
curity analyses are needed. To our knowledge the first rigorous definition of security
was given recently by Abe and Imai [5], but they do not present any construction
that satisfies their definition. The first mix-net construction with a complete se-
curity analysis in any model we are aware of was given by Wikström [147]. The
definition of an ideal mix-net in this thesis is taken from this paper, but the con-
structions presented in the thesis are different from that in [147].

In defense of the early works one should keep in mind that the general under-
standing of the security of protocols and composition of protocols in the crypto-
graphic community has increased dramatically since these works appeared.

1.3.5 Summary of Our Contributions

We give several attacks against mix-nets given by Golle, Zhong, Boneh, Jakobsson,
Juels [79], Jakobsson [86], and Jakobsson and Juels [90]. Then we present the first
definition of security of a mix-net in the universally composable security framework.
We also present two mix-net constructions that are provably secure in the univer-
sally composable security framework against adversaries corrupting any minority
under standard computational assumptions. The first construction is the first effi-
cient mix-net with a complete security analysis. This construction is based on the
El Gamal cryptosystem, but our approach is novel in that each mix-server partially
decrypts and permutes its inputs, i.e., no re-encryption is needed. An advantage
of our approach is that a sender can verify non-interactively that each mix-server
processed its cryptotext correctly, and if this is not the case point out the corrupt
mix-server. Our second construction is based on the Paillier cryptosystem and sim-
ilar in structure to the scheme given by Sako and Killian [134]. This is the first
mix-net that is provably secure against an adaptive adversary. We also introduce
a new approach to construct an efficient proof of a shuffle.

1.4 Hierarchical Group Signatures

There exists no previous work on hierarchical group signatures, since they are in-
troduced in the thesis, but hierarchical group signatures is a generalization of group
signatures which in turn is a generalization of ordinary digital signatures. There-
fore, before we proceed we give an informal description of digital signatures and
group signatures. We give some references here, but a more detailed and complete
account on previous and related work on group signatures is given in Chapter 13.

14 Introduction

1.4.1 Digital Signatures

The original concept of digital signatures was discovered by Diffie and Hellman [60],
but the first practical implementation was given by Rivest, Shamir, and Adle-
man [132]. The standard definition of security was introduced by Goldwasser,
Micali and Rivest [78].

A digital signature scheme works as follows. A signer generates a private key
and a public key and the public key is made public. To sign a message at some
later time the signer invokes a signature algorithm on the message and its private
key. The result is called a digital signature (or simply a signature). Anybody
holding the public key can verify that the signer, and nobody else, computed the
signature by invoking a verification algorithm on the message, the signature, and
the public key of the signer. A digital signature scheme is said to be secure if it is
infeasible to compute a digital signature that is considered valid by the verification
algorithm without access to the private key. Thus, digital signatures is an analogue
of ordinary written signatures.

1.4.2 Group Signatures

In this section we give an informal introduction to the group signatures introduced
by Chaum and van Heyst [48]. There is a single group manager M and several
signers S1, . . . , SN . The signers are also called group members. A signer Si can
compute a signature that reveals nothing about the signer’s identity to anybody,
except the group manager, except that he is a member of the group. On the other
hand the group manager M can, given a signature, always reveal the identity of
the signer.

An application of group signatures is anonymous credit cards. The cardholder
wishes to preserve his privacy when he pays a merchant for goods, i.e., he is in-
terested in unlinkability of payments. The bank must obviously be able to extract
the identity of a cardholder from a payment or at least an identifier for an account,
to be able to debit the account. To avoid fraud, the bank, the merchant, and the
cardholder all require that a cardholder cannot pay for goods without holding a
valid card. To solve the problem using group signatures we let the bank be the
group manager and the cardholders be signers. A cardholder signs a transaction
and hands it to the merchant. The merchant then hands the signed transaction to
the bank, which debits the cardholder and credits the merchant. Since signatures
are unlinkable, the merchant learns nothing about the cardholder’s identity. The
bank on the other hand can always extract the cardholder’s identity from a valid
signature and debit the correct account.

The most efficient group signature scheme known today that is secure un-
der standard assumptions in the random oracle model is that of Camenisch and
Groth [33]. More efficient schemes do exist [27, 34], but they are based on bilinear
maps and thus relies on less well-studied assumptions for security.

Hierarchical Group Signatures 15

There are many variations of the notion of group signatures. A group signature
scheme is said to have a static group if it is impossible to change the set of signers
after they have been given their keys. If it is possible to add and possibly revoke
signers the scheme is said to be dynamic.

The first rigorous definition of security for a group signature scheme with static
groups were given by Bellare et al. [17]. For dynamic group signatures the first
proper definitions were given by Kiayias and Yung [94]. They also proved that a
modification of [7] is secure under these definitions. Independently, Bellare et al. [19]
extended the definitions of [17] in a similar way, and presented a scheme that is
secure under general assumptions.

1.4.3 Constructions

The early constructions of group signatures given by Chaum [48], Chen [49], and
Camenisch [32] all suffer from the problem that the size of a signature grows with
the number of signers. The first scheme that does not have this deficiency was given
by Camenisch and Stadler [38]. Their construction turned out to be insecure, but
the general approach is sound.

Before we can explain their approach we need to review an idea of Fiat and
Shamir [64]. Suppose that a party distributes a public key pk , but keeps the
corresponding private key sk secret. Assume also that the public key is computed
using the private key. This is often the case in practice. Then the owner of pk can
prove, using a zero-knowledge proof of knowledge, that it knows the private key sk

corresponding to pk . A special class of such proofs have the following structure.
The prover sends a message α to the verifier. Then the verifier chooses a random
bit-string c, a so called challenge, and hands it to the prover. Finally, the prover
computes a reply e and hands it to the verifier and the verifier checks the tuple
(pk , α, c, e) in some way to decide if it accepts the proof. When this is the case
one can replace interaction with the verifier by an invocation of a cryptographic
hash function. Thus, instead of asking the verifier to send challenge, the prover
generates a bit-string by computing

c = H(pk , α)

using a cryptographic hash function H . A cryptographic hash function behaves
very much like a randomly chosen function, so this should give a result similar to
running the interactive protocol with the verifier. Finally, the prover sends the
tuple (pk , α, c, e) to the verifier, which checks the proof in the corresponding way,
i.e., by evaluating the hash function. The advantage of the Fiat-Shamir scheme is
that it reduces interaction to a single message. Furthermore, if the prover includes
a message m in its inputs to the hash function, i.e., it computes c = H(m, pk , α),
the result is a signature scheme. This follows since anybody can verify the proof
and as soon as the message m is altered the output of the hash function is very
different from before. Thus, somebody not holding sk is likely to fail to compute a
valid proof.

16 Introduction

We now consider the approach of Camenisch and Stadler. The group manager
M has a private key sk and a public key pk of a probabilistic cryptosystem. Each
signer Si is given an individual private key sk i. The private key sk i is a signature
of a fixed public message in the sense that given a candidate private key sk i it can
be validated that sk i is generated in co-operation with M , and no adversary can
generate a private key sk i on its own that validates in this way. To form a signature
of a message m the signer computes a cryptotext

C = Encpk (sk i)

and then proves to the group manager, using a Fiat-Shamir proof, that it formed
the cryptotext in this way using a valid private key sk i. The signer includes the
message in its invocation of the one-way hash function as described above. In
other words the signer forms the first message α of the proof, computes a challenge
c = H(m, pk , C, α), and finally the reply e following the interactive zero-knowledge
proof of knowledge. This gives a group signature (α, c, e) of m, that can be verified
in the corresponding way. Similarly to the Fiat-Shamir signatures, an adversary is
unlikely to be able to compute a new valid proof if the message m is modified in
any way or if C is not on the expected form.

To summarize, a signature can not be computed unless the signer holds a private
key sk i and encrypts this private key using the public key of the group manager.
The signature does not leak any knowledge on the identity of the signer, since its
identity is encrypted and the proof of knowledge is zero-knowledge.

1.4.4 What is a Hierarchical Group Signature Scheme?

The payment card application described above for group signatures is somewhat
simplified since normally there are many banks that issue cards of the same brand
which are processed through the same payment network. The payment network
normally works as an administrator and routes transactions to several independent
banks. Thus, the merchant hands a payment to the payment network which hands
the payment to the issuing bank. We could apply group signatures here as well
by making the payment network act as the group manager. The network would
send the extracted identity to the issuing bank. Another option is to set up several
independent group signatures schemes, one for each issuer. In the first approach, the
payment network learns the identity of the customer, and in the second approach
the merchant learns which bank issued the customer’s card. A better solution would
reveal nothing except what is absolutely necessary to each party. The merchant
needs to be convinced that the credit card is valid, the payment network must be
able to route the payment to the correct card issuer, and the issuer must be able
to determine the identity of the cardholder.

A solution that comes to mind is to use ordinary group signatures with the
modification that the customer encrypts his identity with his bank’s public key.
Then we have the problem of showing to the merchant that this encryption contains

Hierarchical Group Signatures 17

valid information. The customer cannot reveal the public key of the bank to the
merchant, making such a proof far from trivial.

In this thesis we introduce and investigate the notion of hierarchical group signa-
tures. These can be employed to solve the above problem. When using a hierarchical
group signature scheme there is not one single group manager. Instead there are
several group managers organized in a tree, i.e., each group manager either manages
a group of signers or a group of group managers. This is illustrated in Figure 1.3.

Mρ

Mβ1

Sα1 Sα2

Mβ2

Sα3 Sα4 Sα5 Sα6

Mβ3

Sα7 Sα8 Sα9

Figure 1.3: A tree of group managers and signers, where ρ = {β1, β2, β3}, β1 =
{α1, α2}, β2 = {α3, α4, α5, α6}, and β3 = {α7, α8, α9}.

In the original notion the group manager can always identify the producer of a
signature, but nobody else can distinguish between signatures produced by different
signers. The corresponding property for hierarchical group signatures is more com-
plicated. When opening a signature from a signer in its subtree, a group manager
learns to which of the subtrees directly below it the signer belongs, but nothing else.
Signatures from other signers are indistinguishable. Hence a group manager on the
level directly above the signers can identify its signers, whereas group managers
higher in the hierarchy only learns to which of its immediate subtrees the signer
belongs.

When we use hierarchical group signatures to construct anonymous credit cards
for the more realistic setting we let the payment network be the root manager
that manages a set of group managers, i.e., the issuing banks, and we let the
cardholders be signers. The credit card application also demonstrates what kind of
responsibility model is likely to be used with a hierarchical group signature scheme.
With a valid signature on a transaction, the merchant has a valid demand on the
payment network. If the payment network has a signature that can be shown to
belong to a certain bank, the network has a valid demand on that bank. Thus, it is
in the network’s interest to open the signatures it receives from merchants, and it is
in the issuing banks’ interest to open the signatures they receive from the network.

At a high level the tools we use to construct hierarchical group signatures are
similar to those used to construct ordinary group signatures, but the construction
is far more complicated.

18 Introduction

1.4.5 Summary of Our Contributions

We introduce the notion of hierarchical group signatures. This is a proper general-
ization of group signatures. We provide definitions for the new notion and construct
a scheme that is provably secure given the existence of a family of trapdoor per-
mutations. We also present a construction which is relatively practical, and prove
its security in the random oracle model under standard computational assumptions.

1.5 Organization of the Thesis

The thesis consists of three parts. The first part contains mostly definitions and
constructions taken from the literature, although we modify some of these. Our
results are presented in the second and third parts of the thesis. In this way
the definitions and the constructions taken from the literature are presented in a
systematic way that allows easy reference, and it is easy to distinguish previous
results from our contributions.

The remainder of the first part of the thesis is organized as follows. We con-
clude this chapter with a list of the publications on which the thesis is based. We
introduce notation, primitives, and security definitions in Chapter 2. In Chapter
3 we introduce the computational assumptions on which the security of our proto-
cols rest and the concrete primitives we use. The universally composable security
framework in which we analyze our mix-nets is defined in Chapter 4.

The second part of the thesis contains our results on mix-nets, and is divided
into chapters as follows. In Chapter 5 we give a more technical description of
previous work on mix-nets and introduce notation specific to the second part of
the thesis. In Chapter 6 we describe practical attacks against a mix-net of Golle
et. al [79]. This serves as motivation for the following chapters. In Chapter 7 we
introduce a definition of a secure mix-net. In Chapter 8 we then describe the first
efficient and universally composable mix-net. The mix-net is described in a model
with access to an ideal zero-knowledge proof of knowledge of the cleartext of an
El Gamal cryptotext, and an ideal zero-knowledge proof of knowledge of a witness
of correct behavior of a mix-server. In Chapter 9 we describe a novel approach
to construct a zero-knowledge proof of knowledge of a witness of a correct shuffle.
This is a proof of knowledge in the classical sense, i.e., rewinding is necessary to
extract the witness. We also show in Chapter 10 how this can be turned into an
ideal zero-knowledge proof of knowledge of a witness of correct behavior of a mix-
server. In Chapter 11 we describe the first mix-net that is provably secure against
an adaptive adversary.

The third part of the thesis contains our results on hierarchical group signatures,
and is divided into chapters as follows. In Chapter 13 we discuss related work
on group signatures and define the notion of hierarchical group signatures and its
security. We also discuss the difficulties involved in constructing a hierarchical group
signature scheme. In Chapter 14 we describe a construction of hierarchical group
signatures that is secure under the existence of a trapdoor permutation family.

Our Publications 19

In Chapter 15 we give a construction that is secure and almost practical under
standard computational assumptions. This construction requires a complex zero-
knowledge proof of knowledge, which is presented and analyzed in Chapter 16.

1.6 Our Publications

The thesis is based on the results originally presented in the publications below.
We have reproduced the entries from the bibliography at the end of the thesis.

[146] D. Wikström. Five practical attacks for “optimistic mixing for exit-polls”. In
Selected Areas in Cryptography – SAC 2003, volume 3006 of Lecture Notes in
Computer Science, pages 160–174. Springer Verlag, 2003.

Chapter 6 is based on this paper.

[147] D. Wikström. A universally composable mix-net. In 1st Theory of Crypto-
graphy Conference (TCC), volume 2951 of Lecture Notes in Computer Sci-
ence, pages 315–335. Springer Verlag, 2004.

The definition of a secure mix-net in Chapter 7 and the secure realization of
the proof of knowledge of a cleartext in Chapter 10 are taken from this paper.

[148] D. Wikström. A sender verifiable mix-net and a new proof of a shuffle. In
Advances in Cryptology – Asiacrypt 2005, volume 3788 of Lecture Notes in
Computer Science, pages 273–292. Springer Verlag, 2005. (Full version [149]).

Chapter 8, Chapter 9, and a part of Chapter 10 are based on this paper.

[150] D. Wikström and J. Groth. An adaptively secure mix-net without erasures.
submitted manuscript.

Chapter 11 is based on the results in this paper. The contribution of the
author of the thesis to the paper is approximately 75%.

[141] M. Trolin and D. Wikström. Hierarchical group signatures. In 32nd Inter-
national Colloquium on Automata, Languages and Programming (ICALP),
volume 3580 of Lecture Notes in Computer Science, pages 446–458. Springer
Verlag, 2005. (Full version [140]).

The entire second part of this thesis is based on this paper. The contribution
of the author of the thesis to the paper is approximately 50%.

Chapter 2

Notation and Basic Definitions

In this chapter we first introduce notation that is common for all parts of the thesis.
Then we introduce definitions for the primitives we use and their respective security
properties. Most definitions are taken almost directly from the literature, but the
definition of a computationally convincing proof is non-standard.

2.1 Notation and Conventions

We write N, Z, and R to denote the natural numbers, the integers, and the reals
respectively. We write [a, b] to denote either the set of integers {x ∈ Z | a ≤ x ≤ b}
or the closed subset {x ∈ R | a ≤ x ≤ b} of real numbers. The intended meaning is
hopefully clear from the context. We write A×B for the Cartesian product of two
sets A and B. We denote the set of permutations of N elements by ΣN . We use ∅
to denote both the empty set and the empty string. If s is a string |s| denotes its
bit-size, if S is a set |S| denotes its cardinality, and if a is a number |a| denotes its
absolute value. The intended meaning is always clear from the context. We write
⌈r⌉ to denote the smallest integer n ≥ r and we write ⌊r⌋ to denote the largest
integer n ≤ r.

We say that an element is chosen “randomly” instead of the more cumbersome
“independently and uniformly at random”.

We denote the set of all finite binary strings by {0, 1}∗. Sometimes we say that
an element is chosen randomly from {0, 1}∗ and interpret this as if a sufficiently
long string was chosen randomly. Whenever we do so there exists an explicit bound
on the length needed.

We let φ denote Euler’s φ function, and write gcd(m,n) to denote the greatest
common divisor of two integers m and n. We use Zn to denote the ring of integers
modulo n. Its multiplicative group is denoted by Z∗n, i.e., the group of elements m
such that gcd(m,n) = 1. We use QRn to denote the subgroup of squares of Z∗n.
The notation Gm is reserved for a cyclic subgroup of order m in Z∗n. We denote by

21

22 Notation and Basic Definitions

logg h the logarithm of h in the basis g in a group, e.g. if g, h ∈ Gm then glogg h = h.
The group considered is hopefully clear from the context.

We write log2 n and lnn to denote the binary and natural logarithms of a
number n. We also take the liberty to interpret the result of taking a logarithm as
an integer when convenient. In other words we write log2 q instead of ⌈log2 q⌉ or
⌊log2 q⌋ which ever is appropriate.

We follow common practice in the cryptographic community and say that a
prime p is safe if (p− 1)/2 is a prime. This another way of saying that (p− 1)/2 is
a Sophie Germain prime.

Throughout the thesis κ denotes the main security parameter, but we also use
two additional security parameters κc and κr extensively. We use κc to denote
the number of random bits used in challenges in proofs of knowledge. The value
of κr decides the statistical distance between the distribution of a the view in an
execution of a protocol and a simulated view. The exact interpretation of these
parameters differ slightly depending on the chapter, so the reader should consider
this a convention.

A function f : N → [0, 1] is said to be negligible if for each c > 0 there exists
a κ0 ∈ N such that f(κ) < κ−c for κ > κ0. We say that a function f : N → [0, 1]
is non-negligible whenever it is not negligible, and we say that a function f is
overwhelming if 1 − f(κ) is negligible. The additional security parameters are
defined such that 2−κc and 2−κr are negligible in κ.

All adversaries in this thesis are modeled as polynomial time Turing machines
with non-uniform auxiliary advice string, or equivalently as polynomial size circuit
families. We denote the set of such adversaries by PPT∗.

When we say that n is a κ-bit integer, we implicitly mean that it is contained
in the interval [2κ−1, 2κ − 1].

We say that a distribution ensemble D = {Dκ}κ∈N is efficiently sampleable if
there exists a probabilistic polynomial time algorithm TD that on input 1κ outputs
a random sample distributed according to Dκ.

When we describe experiments we write y ← Alg(x) to denote that y is the
output of the algorithm Alg when executed on input x. When Alg is a probabilistic
algorithm we consider x as sampled with the induced distribution.

Whenever we say that an element is chosen randomly from a set it is possible to
generate an element with distribution statistically close to uniform. For example,
if q is a prime we may choose a random 2 log2 q bit string s and output s mod q to
generate an almost random element in the field Zq.

2.2 One-Way and Collision-Free Hash Functions

Intuitively, a one-way function is a function that is easy to evaluate, but difficult
to invert. This concept was first considered by Diffie and Hellman [60]. A related
notion is that of a collision-free function. This means that it is difficult to find two
elements that map to the same output.

Trapdoor Permutation Families and Hard-Core Bits 23

Below both notions are formalized using collections of functions, but we abuse
notation and refer to such a collection as a “one-way hash function” or a “collision-
free hash function”.

Definition 2.1 (Collection of Functions). A collection of functions (I, F) con-
sists of an infinite index set I and a set of functions F = {fi : Di → {0, 1}∗} with
finite domains Di.

Definition 2.2 (Useful). A collection of functions (I, F) is useful if there ex-
ists two probabilistic polynomial time algorithms Gen, Sample, and a deterministic
polynomial time algorithm Eval such that

1. The output of Gen(1κ) is randomly distributed in I ∩ {0, 1}κ.

2. The output of Sample(i), where i ∈ I ∩{0, 1}κ, is randomly distributed in Di.

3. If i ∈ I ∩ {0, 1}κ and x ∈ Di, then Eval(i, x) = fi(x).

When every function fi ∈ F is a permutation onDi we say that (I, F) is a collection
of permutations.

Definition 2.3 (One-Way). Let (Gen, Sample,Eval) be a useful collection of func-
tions. Define the random variables Iκ = Gen(1κ) and Xκ = Sample(Iκ). The
function collection is one-way if for every adversary A ∈ PPT∗ the probability
Pr[A(Iκ, fIκ(Xκ)) ∈ f−1

Iκ
(fIκ(Xκ))] is negligible in κ.

Definition 2.4 (Collision-Free). Let (Gen, Sample,Eval) be a useful collection of
functions. Define the random variable Iκ = Gen(1κ). The function collection is
collision-free if for every adversary A ∈ PPT∗ the probability Pr[A(Iκ) = (x0, x1)∧
x0 6= x1 ∧ fIκ(x0) = fIκ(x1))] is negligible in κ.

2.3 Trapdoor Permutation Families and Hard-Core Bits

A trapdoor permutation is a permutation that is easy to compute, but difficult to
invert, unless one has access to a special trapdoor. Using the trapdoor it is easy to
invert the permutation. This notion originates from Diffie and Hellman [60]. An
example of a function believed to be a trapdoor permutation is the RSA-function
introduced by Rivest, Shamir, and Adleman [132].

Definition 2.5 (Trapdoor Permutation Family). Let Gen and Sample be prob-
abilistic polynomial time algorithms and let Eval and Invert be deterministic poly-
nomial time algorithms. Denote by Genl the left half of the output of Gen. Then
T PF = (Gen, Sample,Eval, Invert) is a trapdoor permutation family if the following
holds.

1. (Genl, Sample,Eval) is a one-way collection of permutations such that Di =
{0, 1}κ for every possible output (i, t) of Gen(1κ).

24 Notation and Basic Definitions

2. For every possible output (i, t) of Gen(1κ) and every x ∈ Di we have
Invert(t,Eval(i, x)) = x.

Remark 2.6. The above definition restricts the possible domains to {0, 1}κ. This
may be a restriction, but a trapdoor permutation family that fits the above format
can be constructed using an idea of Yao from the known candidates, e.g., the RSA-
function. We refer the reader to Bellare and Micali [16] for a discussion on this.

Even if it is hard to invert a function it is not necessarily hard to find some of
the bits of a pre-image. A hard-core bit is a bit of information of the pre-image
that is hard to compute given only the output of the function. This notion was
introduced by Blum and Micali [26]. They used it to construct pseudo-random
generators which are introduced in the next section. Goldwasser and Micali [76]
use this notion to construct a polynomially indistinguishable cryptosystem.

Definition 2.7 (Hard-Core Bit). Let B : {0, 1}∗ → {0, 1} be a function such
that there exists a polynomial time algorithm that computes B(x) on every possible
input x ∈ {0, 1}∗. Let T PF = (Gen, Sample,Eval, Invert) be a trapdoor permutation
family and define the random variables (Iκ, Tκ) = Gen(1κ) and Xκ = Sample(Iκ).
The function B is a hard-core bit for T PF if for all adversaries A ∈ PPT∗ the
absolute value |Pr[A(Iκ, fIκ(Xκ)) = B(Xκ)]− 1/2| is negligible in κ.

The notion of a hard bit can be defined for any one-way function, but we only
use it in conjunction with trapdoor permutation families.

2.4 Pseudo-Random Generators

Even if a random variable is not uniformly distributed it may appear to be so to
every polynomially bounded observer. An ensemble of random variables is said
to be pseudo-random when this is the case. This notion was first considered by
Yao [151].

Definition 2.8 (Pseudo-Random Ensemble). The ensemble X = {Xκ}κ∈N

of random variables is pseudo-random if there exists a length function l(κ) and
an ensemble U = {Ul(κ)}κ∈N of random variables uniformly distributed in {0, 1}l(κ)

such that for every A ∈ PPT∗ the absolute value |Pr[A(Xκ) = 1]−Pr[A(Ul(κ)) = 1]|
is negligible in κ.

We sometimes abuse notation and talk about an ensemble of random variables as
a random variable. In most cryptographic activities randomness is needed. Random
bits of good quality are often expensive to generate. An alternative is to generate a
short seed of truly random bits and then expand this into a longer string of pseudo-
random bits. An algorithm that does this is called a pseudo-random generator.
This notion was introduced by Blum and Micali [26].

Definition 2.9 (Pseudo-Random Generator). A pseudo-random generator is
a deterministic polynomial-time algorithm PRG such that

Public Key Cryptosystems 25

1. There exists a length function l : N→ N such that l(κ) > κ for all κ ∈ N and
|PRG(s)| = l(|s|) for all s ∈ {0, 1}∗.

2. The random variable {PRG(Uκ)}κ∈N is pseudo-random.

Håstad, Impagliazzo, Levin, and Luby [82] proves that there exists a pseudo-
random generator if there exists a one-way function. There are also more practically
oriented constructions such as that given Håstad, Schrift, and Shamir [83] which is
secure under the factoring assumption. The strong RSA-assumption introduced in
Section 3.8 implies the factoring assumption.

We use a pseudo-random generator in Chapter 9 to reduce the size of the chal-
lenge generated by a verifier in a proof of knowledge.

2.5 Public Key Cryptosystems

A public key cryptosystem is used to communicate secretly. The definition below
is essentially the one given in Micali, Rackoff, and Sloan [105], but we use different
notation.

Definition 2.10 (Public Key Cryptosystem). A public key cryptosystem CS =
(CSKg,Enc,Dec) consists of three probabilistic polynomial-time algorithms.

1. A key generation algorithm CSKg that on input 1κ outputs a public key pk

and a private key sk .

2. An encryption algorithm Enc that on input a public key pk and a message m
outputs a cryptotext c.

3. A decryption algorithm Dec that on input a private key sk and a cryptotext
c outputs a message m.

Furthermore, for each output (sk , pk) of CSKg(1κ) and each m it must hold that
Decsk (Encpk (m)) = m.

The last requirement is sometimes relaxed, i.e. Pr[Decsk (Encpk (m)) = m] may
hold only with overwhelming probability, but the stricter definition is more con-
venient for our purposes. When we want to make the internal randomness used by
Enc explicit we write Encpk (m, r) with r in some randomizer space R(pk ,sk) instead
of writing Encpk (m).

2.5.1 Polynomial Indistinguishability

The first definition of security of public key cryptosystems we use was introduced
by Goldwasser and Micali in their seminal paper [76] on probabilistic encryption.

Consider the following experiment running with an adversary A. The adversary
is given a public key output by the key generator and outputs two messages m0 and

26 Notation and Basic Definitions

m1. The experiment then encrypts mb and hands the cryptotext to the adversary.
Finally, the adversary must output a guess d of the value of b. If the cryptosystem is
polynomially indistinguishable the probability that d = b when b ∈ {0, 1} is random
should be close to 1/2.

Experiment 2.11 (Polynomial Indistinguishability, Expind−b
CS,A (κ)).

(pk , sk) ← CSKg(1κ)

(m0,m1, state) ← A(choose, pk)

c ← Encpk (mb)

d ← A(guess, state, c)

The experiment returns d.

Without loss we implicitly assume above that m0,m1 ∈ M(pk ,sk) and that
A outputs a single bit. The labels choose and guess are only used to signal to
the adversary in which phase of the experiment it is executing. The variable state
denotes the internal state the algorithm wishes to remember between the two phases
of the experiment. Similar conventions are used for all experiments in the thesis.

Definition 2.12 (Polynomial Indistinguishability). A public key cryptosys-
tem CS is polynomially indistinguishable if for all adversaries A ∈ PPT∗ the abso-
lute value |Pr[Expind−0

CS,A (κ) = 1]− Pr[Expind−1
CS,A (κ) = 1]| is negligible in κ.

Micali, Rackoff, and Sloan [105] show that for non-uniform adversaries polyno-
mial indistinguishability is equivalent to semantic security. Thus, we follow com-
mon practice in the literature and use both terms interchangeably. Informally,
semantic security means that no adversary can compute anything about an encryp-
ted cleartext better than guessing.

The following generalization is standard. Denote by Exp
µ1−µ2−ind−b
CS,A (κ) the ex-

periment above except for the following changes. Let µ1(κ) and µ2(κ) be polyno-
mially bounded in κ. The experiment generates a list ((pk1, sk1), . . . , (pkµ1

, skµ1))
of key pairs instead (pk , sk). Then the adversary is given (pk1, . . . , pkµ1

). The ad-
versary then outputs m0 = (m0,1,1, . . . ,m0,µ1,µ2) and m1 = (m1,1,1, . . . ,m1,µ1,µ2).
Finally, the encryption oracle computes c = (Encpki(mb,i,j))

µ1,µ2

i=1,j=1 instead of a
single cryptotext Encpk (mb). The following lemma follows by a straightforward
hybrid argument.

Lemma 2.13. If CS is polynomially indistinguishable, then for all adversaries A ∈
PPT∗ the absolute value |Pr[Exp

µ1−µ2−ind−0
CS,A (κ) = 1] − Pr[Exp

µ1−µ2−ind−1
CS,A (κ) = 1]|

is negligible in κ.

2.5.2 Anonymity

In some applications polynomial indistinguishability is not sufficient. The problem
is that although the adversary can not learn anything about the encrypted cleartext,

Public Key Cryptosystems 27

it may be able to tell which public key was used to compute the cryptotext. A
cryptosystem that hides the public key used for encryption is called anonymous.
This property was discussed by Abadi and Rogaway [1] and studied extensively by
Bellare et al. in [14]. It turns out to be essential in our construction of hierarchical
group signatures in the third part of the thesis. Anonymity is formalized by an
experiment similar to the polynomial indistinguishability experiment.

Experiment 2.14 (Anonymity, Expanon−b
CS,A (κ)).

(pk0, sk0) ← CSKg(1κ)

(pk1, sk1) ← CSKg(1κ)

(m, state) ← A(pk0, pk1)

c ← Encpkb(m)

d ← A(guess, state, c)

The experiment returns d.

Note that compared to the definition of polynomial indistinguishability, the roles
played by public keys and messages are reversed. One could consider a variant
experiment that captures both types of indistinguishability, but we think it is more
natural to think of anonymity as an additional property.

Definition 2.15 (Anonymity). A cryptosystem CS is anonymous if for all A ∈
PPT∗ the absolute value |Pr[Expanon−0

CS,A (κ) = 1]−Pr[Expanon−1
CS,A (κ) = 1]| is negligible

in κ.

The property of anonymity is clearly useless if the cryptosystem is not indis-
tinguishable, since it allows the encryption function to be the identity map. Thus,
anonymity does not imply indistinguishability. To see that the reverse implication
is false, note that if CS is a polynomially indistinguishable cryptosystem, then so is
the cryptosystem where the encryption and decryption functions c = Encpk (m)
and Decsk (c) = m are replaced by (c, c′) = Enc′pk (m) = (Encpk (m), pk) and

Dec′sk (c, c′) = Decsk (c) = m respectively, and this is clearly not anonymous.
The following generalization follows by a similar argument as the generaliza-

tion of polynomial indistinguishability. Denote by Exp
µ1−µ2−anon−b
CS,A (κ) the experi-

ment above except for the following changes. Let µ1(κ) and µ2(κ) be polynomially
bounded in κ. The experiment generates lists ((pk1,b, sk1,b), . . . , (pkµ1,b, skµ1,b))
for b ∈ {0, 1} instead of (pk0, sk0) and (pk1, sk1). Then the adversary is given
(pk1,b, . . . , pkµ1,b) for b ∈ {0, 1}. The adversary outputs m = (m1,1, . . . ,mµ1,µ2).
Finally, the encryption oracle computes c = (Encpki,b(mi,j))

µ1,µ2

i=1,j=1 instead of a
single cryptotext. The lemma below follows by a straightforward hybrid argument.

Lemma 2.16. If CS is polynomially indistinguishable, then for all adversaries A ∈
PPT∗ the absolute value |Pr[Exp

µ1−µ2−anon−0
CS,A (κ) = 1]−Pr[Exp

µ1−µ2−anon−1
CS,A (κ) = 1]|

is negligible in κ.

28 Notation and Basic Definitions

2.5.3 Chosen-Ciphertext Security

When a cryptosystem is used in a protocol a more stringent security property than
polynomial indistinguishability is often needed. Experiment 2.11 above should have
the same unrewarding result for the adversary even if it can ask the experiment
to decrypt arbitrarily many other cryptotexts before and after receiving the chal-
lenge cryptotext. This notion of security was developed by Naor and Yung [111],
Rackoff and Simon [130], and Dolev, Dwork and Naor [61], and a scheme that has
this property is said to be secure against chosen ciphertext attacks (CCA). We
remark that there are some variations of this notion and that we formalize what
is called CCA2-security. Formally, the adversary is given access to a decryption
oracle Decsk (·) during the experiment.

Experiment 2.17 (CCA2-Security, Expcca2−b
CS,A (κ)).

(pk , sk) ← CSKg(1κ)

(m0,m1, state) ← ADecsk (·)(choose, pk)

c ← Encpk (mb)

d ← ADecsk (·)(guess, state, c)

The experiment returns 0 if Decsk (·) was queried on c, and d otherwise.

Definition 2.18 (CCA2-Security). A public key cryptosystem CS is said to
be secure against chosen ciphertext attacks (CCA2-secure) if for all adversaries
A ∈ PPT∗ the absolute value |Pr[Expcca2−0

CS,A (κ) = 1] − Pr[Expcca2−1
CS,A (κ) = 1]| is

negligible in κ.

2.6 Signature Schemes

A signature scheme is the digital equivalent of a written signature. Only the holder
of the private key can sign a message, but anybody can use the public key to verify
the validity of a signature.

Definition 2.19 (Signature Scheme). A signature scheme SS = (Kg, Sig,Vf)
consists of three polynomial-time algorithms

1. A probabilistic key generation algorithm Kg that on input 1κ outputs a public
key pk and a private key sk .

2. A probabilistic signature algorithm Sig that on input a private key sk and a
message m outputs a signature s.

3. A deterministic verification algorithm Vf that on input a public key pk , a
message m, and a signature s outputs a bit b ∈ {0, 1}.

Furthermore, for each output (sk , pk) of Kg(1κ) and each m it must hold that
Vfpk (m, Sigsk (m)) = 1.

Statistical Closeness 29

2.6.1 Security Against Chosen Message Attacks

The standard definition of security of a signature scheme was introduced by Gold-
wasser, Micali and Rivest [78]. A signature scheme is said to be secure against
chosen message attacks (CMA) if no adversary can output a message of its own
choice and a valid signature on the message, even if it can ask for arbitrarily many
signatures of messages of its choice. It is obviously not allowed to output a signa-
ture of a message on which it has requested a signature. Formally, the adversary is
given access to a signature oracle Sigsk (·).

Experiment 2.20 (CMA-Security, Expcma
SS,A(κ)).

(pk , sk) ← Kg(1κ)

(m, s) ← ASigsk (·)(guess, pk)

If Vfpk (m, s) = 1 and Sigsk (·) was never queried on m return 1, else return 0.

Definition 2.21 (CMA-Security). A signature scheme SS is CMA-secure if for
all adversaries A ∈ PPT∗ the probability Pr[Expcma

SS,A(κ) = 1] is negligible in κ.

2.7 Statistical Closeness

One standard metric on the space of random variables is the statistical distance.
We say that two random variables are statistically close if their statistical distance
is negligible. This notion of closeness is useful in cryptography.

Definition 2.22 (Statistical Distance). The statistical distance between random
variables Xκ and Yκ is defined by ∆(Xκ, Yκ) = 1

2

∑

α |Pr[Xκ = α] − Pr[Yκ = α]|,
where the sum is taken over the support of Xκ and Yκ.

Definition 2.23 (Statistical Closeness). Two random variables {Xκ}κ∈N and
{Yκ}κ∈N are statistically close if ∆(Xκ, Yκ) is negligible in κ.

The following lemma is immediate.

Lemma 2.24. If two random variables {Xκ}κ∈N and {Yκ}κ∈N are statistically close
then for all adversaries A ∈ PPT∗ the absolute value |Pr[A(Xκ) = 1]−Pr[A(Yκ) =
1]| is negligible in κ.

2.8 Proofs of Knowledge, Proofs, and Zero-Knowledge

A proof of knowledge can be used by one party P , called the prover, to convince
another party V , called the verifier, that it knows a witness of some fact about a
common object. For example, the prover can prove knowledge of the private key
corresponding to a public key of a cryptosystem. A proof on the other hand allows

30 Notation and Basic Definitions

P to convince V of the validity of a statement about some common object, without
necessarily knowing a witness.

Typically, the proofs of knowledge and the proofs used in cryptographic pro-
tocols are also zero-knowledge. This means that they disclose no knowledge to
the verifier. The concepts of zero-knowledge proofs of knowledge and proofs were
introduced by Goldwasser, Micali, and Rackoff [77].

There are many variations of these concepts and different authors use differ-
ent terms to distinguish between these variations. In informal descriptions and
discussions we use the terms “proof of knowledge”, “proof”, and “zero-knowledge”
to denote any protocol that loosely speaking has the above properties. This con-
vention is common in the literature. In formal statements we use the definitions
introduced below.

Before we continue we recall the definition of an NP-relation and the complexity
class NP.

Definition 2.25 (Polynomially Bounded). A relation R ⊂ {0, 1}∗ × {0, 1}∗ is
polynomially bounded if there exists a polynomial p(·) such that |y| ≤ p(|x|) for all
(x, y) ∈ R.

Definition 2.26 (NP-Relation). A relationR ⊂ {0, 1}∗×{0, 1}∗ is an NP-relation
if it is polynomially bounded and there exists a deterministic polynomial machine
M such that M(x, y) = R(x, y).

Definition 2.27 (Complexity Class NP). A language LR ⊂ {0, 1}∗ belongs to
NP if there exists an NP-relation R such that x ∈ LR if and only if there exists an
y ∈ {0, 1}∗ such that (x, y) ∈ R.

Every relation R considered in this thesis corresponds to a language LR ∈ NP in
the sense of the definition. Given two NP-relations R1 and R2 we denote by R1∨R2

the relation defined by ((x1, x2), w) ∈ R1∨R2 if and only if (x1, w) ∈ R1 or (x2, w) ∈
R2. Similarly we denote by R1 ∧ R2 the relation defined by ((x1, x2), (w1, w2) ∈
R1 ∨R2 if (x1, w1) ∈ R1 and (x2, w2) ∈ R2.

2.8.1 Computationally Convincing Proofs of Knowledge

The standard definition of a proof of knowledge given by Bellare and Goldreich [15]
is too strict for our setting. The standard definition states that there must exist
an algorithm, called the knowledge extractor, which for every x ∈ R and every
prover P ∗ that convinces an honest verifier with non-negligible probability outputs
a witness w such that (x,w) ∈ R in expected polynomial time, using P ∗ as a
blackbox. Several of our protocols do not satisfy this definition, but they satisfy a
relaxed definition that is sufficient in many settings.

Damgård and Fujisaki [55] introduce a definition that captures a weaker form of
a proof of knowledge. They introduce the notion of a “relation generator” that is in-
voked before the protocol between the prover and verifier is executed. The relation

Proofs of Knowledge, Proofs, and Zero-Knowledge 31

generator outputs a relation. Then the prover chooses an instance of the relation,
and the protocol is executed with the verifier. Knowledge extraction should then be
possible with overwhelming probability over the randomness of the relation gener-
ator. A protocol that satisfies this extraction property is called a computationally
convincing proof of knowledge.

We use a variation of this definition. We simplify the definition in that we do not
mention the knowledge error explicitly, since our reductions are not exact anyway.
We also rephrase the definition to allow us to state our results in a more natural
way.

We analyze our protocols in the following setting. Let R be an NP-relation.
The adversary is given a special joint parameter h chosen from a set H and outputs
an instance x. Then the prover and verifier execute the protocol on the joint
input x and the special parameter h. The protocol is said to be a computationally
convincing proof of knowledge for R with regards to the distribution of h if it
holds that if the prover convinces the verifier with non-negligible probability, then
a witness w such that (x,w) ∈ R can be extracted in expected polynomial time with
overwhelming probability over the randomness of h and the internal randomness of
the prover.

More precisely, we denote by IP∗(κ, h, rp) the instance output by the prover
when run on security parameter 1κ, special joint parameter h ∈ H , and internal
randomness rp. We denote by viewVP∗(κ, h, rp, rv) the view of the verifier when
P ∗ is executed on common input IP∗(κ, h, rp), special input h and random input
rp, and V is executed on common input IP∗(κ, h, rp), special input h and random
input rv. Thus, the view contains the special parameter, all messages exchanged
by the prover and verifier, and also the random string of the verifier. It does
not contain the random string of the prover. Denote by AccV a predicate that on
input a view outputs the output of V in the protocol. Finally, define δVP∗(κ, h, rp) =
Prrv [AccV (viewVP∗(κ, h, rp, rv)) = 1]. To simplify the exposition we sometimes omit
the security parameter from our notation.

Definition 2.28 (Computationally Convincing Proof of Knowledge). A
protocol (P, V) is a computationally convincing proof of knowledge for an NP-
relation R with regards to the distribution of h ∈ H if there exists a probabilistic
oracle algorithm X (·) called the knowledge extractor, and a polynomial p(κ) such
that for all P ∗ ∈ PPT∗ the following holds

1. If δVP∗(κ, h, rp) is non-negligible in κ, then XP∗

executes in expected time
O(p(κ)/δVP∗(κ, h, rp)) on input (h, rp).

2. For every constant c, if Prh,rp [δ
V
P∗(κ, h, rp) ≥ κ−c] is non-negligible, then

Pr[(IP∗(κ, h, rp),XP∗

(κ, h, rp)) ∈ R | δVP∗(κ, h, rp) ≥ κ−c]

is overwhelming in κ, where the probability is taken over h, rp and the internal
randomness of XP∗

.

32 Notation and Basic Definitions

We can recover a coarse grained version of the standard definition of a proof of
knowledge as follows.

Definition 2.29 (Proof of Knowledge). A protocol (P, V) is a proof of know-
ledge for an NP-relation R if it is a computationally convincing proof with regards
to every constant distribution on h ∈ H .

2.8.2 Computationally Convincing Proofs

The standard definition of a proof introduced by Goldwasser, Micali, and Rack-
off [77] requires that no adversary can convince the honest verifier of any false
statement with probability exceeding 1/3. Another formulation that is more useful
in cryptography requires the probability to be negligible. Loosely speaking the two
definitions are equivalent, since a protocol that satisfies the first definition can be
repeated sequentially to give a protocol that satisfies the second definition. In any
case these definitions are too strict for our setting.

We consider the same adversarial model as for computational convincing proofs
of knowledge, i.e., the adversary is given a special parameter, outputs an instance,
and then executes the protocol with the verifier. In contrast to the standard defini-
tion soundness does not hold for all common inputs, only with overwhelming prob-
ability for a common input chosen by the adversary. More precisely we use the
following definitions.

Definition 2.30 (Computationally Convincing Proof). A protocol (P, V) is
a computationally convincing proof for an NP-relation R with regards to the dis-
tribution of h ∈ H if for all provers P ∗ ∈ PPT∗ the probability

Pr[AccV (viewVP∗(h, rp, rv)) = 1 ∧ IP∗(h, rp) 6∈ LR]

is negligible in κ.

We can recover the standard definition of a proof as follows.

Definition 2.31 (Proof). A protocol (P, V) is a proof for an NP-relation R if it
is a computationally convincing proof with regards to every constant distribution
on h ∈ H .

Note that a computationally convincing proof is something different than a
computationally sound proof. A computationally sound proof is sound for every
input, but only computationally so.

It turns out that every computationally convincing proof of knowledge is also a
computationally convincing proof. There may however be computationally convin-
cing proofs that are not computationally convincing proofs of knowledge.

Proposition 2.32 (Soundness). If (P, V) is a computationally convincing proof
of knowledge for an NP-language LR with regards to the distribution of h ∈ H, then
it is also a computationally convincing proof for the same parameters.

Proofs of Knowledge, Proofs, and Zero-Knowledge 33

Proof. Consider an arbitrary prover P ∗. We first prove that for every constant c
exists a κ0 such that

Pr[IP∗(h, rp) 6∈ LR ∧ δVP∗(h, rp, rv) ≥ κ−c] < κ−c . (2.1)

If this is not the case there exists a malicious prover P ∗, a constant c and an infinite
index set N such that

Pr[IP∗(h, rp) 6∈ LR ∧ δVP∗(h, rp) ≥ κ−c] ≥ κ−c ,

for κ ∈ N . This implies that Pr[IP∗(h, rp) 6∈ LR | δVP∗(h, rp) ≥ κ−c] ≥ κ−c and
Pr[δVP∗(h, rp) ≥ κ−c] ≥ κ−c. Since the protocol is a proof of knowledge we conclude
that

Pr[(IP∗(h, rp),XP∗(h, rp)) ∈ R | δVP∗(h, rp) ≥ κ−c]
is overwhelming. The union bound implies that

Pr[(IP∗(h, rp),XP∗(h, rp)) ∈ R ∧ IP∗(h, rp) 6∈ LR | δVP∗(h, rp) ≥ κ−c] ≥ 1

2κc
,

which gives Pr[(IP∗(h, rp),XP∗(h, rp)) ∈ R ∧ IP∗(h, rp) 6∈ LR] ≥ 1
2κ2c > 0. This is

obviously a contradiction, since IP∗(h, rp) is either an element in LR or it is not.
Next we prove the statement in the proposition using Equation (2.1). Suppose

that the statement in the proposition is false. Then there exists a malicious prover
P ∗, a constant c and an infinite index set N such that

Pr[AccV (viewVP∗(h, rp, rv)) = 1 ∧ IP∗(h, rp) 6∈ LR] ≥ κ−c

for κ ∈ N . We have

1

κc
≤ Pr[AccV (viewVP∗(h, rp, rv)) = 1 ∧ IP∗(h, rp) 6∈ LR]

= Pr[AccV (viewVP∗(h, rp, rv)) = 1 ∧ IP∗(h, rp) 6∈ LR ∧ δVP∗(h, rp) ≥ 1

2κc
]

+ Pr[AccV (viewVP∗(h, rp, rv)) = 1 ∧ IP∗(h, rp) 6∈ LR ∧ δVP∗(h, rp) <
1

2κc
]

≤ Pr[IP∗(h, rp) 6∈ LR ∧ δVP∗(h, rp) ≥ 1

2κc
] +

1

2κc
.

From this we conclude that Pr[IP∗(h, rp) 6∈ LR ∧ δVP∗(h, rp) ≥ 1
2κc] ≥ 1

2κc . This
contradicts Equation (2.1), and the proposition holds. �

2.8.3 Honest Verifier Statistical Zero-Knowledge

A protocol is zero-knowledge if a verifier’s view of the protocol can be simulated
in a way that is indistinguishable from the verifiers view of a real execution of the
protocol. The concept of zero-knowledge is fundamental in modern cryptography.

34 Notation and Basic Definitions

It was introduced by Goldwasser, Micali, and Rackoff [77]. There are many flavors
of this concept and we only formalize the one we use in this thesis. In all our
applications the verifier is honest. Thus, we only consider honest verifier zero-
knowledge. Informally, this means that we only require that the view of an honest
verifier can be simulated. On the other hand all our protocols are statistical zero-
knowledge. Thus, by indistinguishability of views we mean that their distributions
are statistically close. The strong type of indistinguishability simplifies our security
proofs considerably.

Denote by hviewVP (h, x, w) the view of the verifier when the protocol (P, V) is
executed on special input h, common input x, and the prover is given a witness w
as auxiliary input. In other words we consider the view of an honest verifier when
executing the protocol with the honest prover. If we want to make the randomness
of the verifier explicit we write hviewVP (h, x, w, c).

Definition 2.33 (Honest Verifier Statistical Zero-Knowledge). A protocol
(P, V) is honest verifier statistical zero-knowledge if there exists a probabilistic
polynomial time algorithm S, called the simulator, such that for each special para-
meter h ∈ H and each common input x such that x ∈ LR, the distributions of
hviewVP (h, x, w) and S(h, x) are statistically close in κ. If the distributions are
identical, we say that the protocol is honest verifier perfect zero-knowledge.

2.8.4 Completeness

Let R be an NP-relation. The completeness of a protocol (P, V) is the probability
that an honest verifier outputs 1 after interacting with an honest prover. Denote
by 〈P (h, x, w), V (h, x)〉 the output of V on an interaction with the honest prover
P on special input h ∈ H and a common input x, where P is also given a witness
w such that (x,w) ∈ R.

Definition 2.34 (Completeness). A computationally convincing proof of know-
ledge (P, V) has completeness p if for all special parameters h ∈ H and all (x,w) ∈ R
we have Pr[〈P (h, x, w), V (h, x)〉 = 1] ≥ p where the probability is taken over the
internal randomness of P and V . If p = 1 we say that the protocol has perfect
completeness.

2.8.5 Sigma-Protocols

We consider the set of protocols between a prover P and a verifier V that have
three rounds: P sends a message α to V , V sends a challenge c to P , and P sends
a reply d to V . Furthermore, suppose that c is randomly chosen in some set C. We
call such protocols C-three-move protocols. Note that the view of an honest verifier
V in a C-three-move protocol can be written (x, α, c, d), where x is the common
input, α is the first message sent by P , c is the random challenge of V , and d is
final message sent by P .

Proofs of Knowledge, Proofs, and Zero-Knowledge 35

Definition 2.35 (Special Honest Verifier Statistical Zero-Knowledge). Let
(P, V) be a C-three-move protocol for a language L. We say that (P, V) is special
honest verifier statistical zero-knowledge if there exists a probabilistic polynomial
time algorithm S, called the simulator, such that for each (x,w) ∈ R and c ∈ C,
the distributions of S(κ, x, c) and hviewVP (κ, x, w, c) are statistically close in κ.

The term special is used since the simulator S is not allowed to pick the challenge
c itself, but must be able to compute a valid view when given c together with x as
input.

Suppose the challenge c = (c1, . . . , ck) is randomly chosen from a product set
C1 × · · · × Ck for some constant k and that 1/|Ci| is negligible for i = 1, . . . , k
where κ is the security parameter. Then the following slight generalization of
special soundness makes sense. We get the standard definition of special-sound if
k = 1.

Definition 2.36 (Special Soundness). Let C = C1 × · · · × Ck. A C-three-
move protocol (P, V) for a relation R is C-special-sound if there exists a determ-
inistic polynomial time algorithm that given two accepting views (x, α, c, d) and
(x, α, c′, d′) with ci 6= c′i for i = 1, . . . , k, outputs a witness w such that (x,w) ∈ R.

We use a generalized definition of Σ-protocol along the lines suggested by
Cramer, Damgård, and Schoenmakers [51].

Definition 2.37 (Σ-Protocol). Let C = C1 × · · · × Ck. A C-Σ-protocol is a C-
three-move protocol (P, V) that is statistical special honest verifier zero-knowledge,
C-special-sound, and has overwhelming completeness.

Composition of Sigma-Protocols

There are two natural ways to compose Σ-protocols. Consider a C1-Σ-protocol
π1 and C2-Σ-protocol π2. It is of course possible to run both protocols at the
same time, i.e., the messages in each round are concatenated and sent as a single
message, and the resulting verifier accepts if both verifiers accepts. We call this
parallel composition. If C1 = C2 we assume that a single challenge is used for both
protocols. The following observations follow straightforwardly.

Observation 2.38. Let (Pi, Vi) be a C-Σ-protocol for a language Li for i = 1, . . . , l,
where l is polynomially bounded. Then the parallel composition (P, V) of the
protocols where a single challenge in C is used for all protocols is a C-Σ-protocol
for the language L1 ∧ · · · ∧ Ll(κ).

Observation 2.39. Let (Pi, Vi) be a Ci-Σ-protocol for a language Li for i = 1, . . . , l,
where l is polynomially bounded. Then the parallel composition (P, V) of the
protocols is a C1 × · · · × Cl-Σ-protocol for the language L1 ∧ · · · ∧ Ll(κ).

36 Notation and Basic Definitions

Special Sound Protocols are Proofs of Knowledge

Lemma 2.40. Let l(κ) be polynomially bounded and let (P, V) be a C1 × · · · × Cl-
special-sound protocol, with 1/|Ci| negligible for i = 1, . . . , l, for an NP-language L.
Then (P, V) is a proof of knowledge.

Proof. Note that the random input rp of P ∗ defines the common input IP∗(κ, rp),
and also the first message α of the prover in the protocol. Consider an extractor
XP∗

defined as follows. The extractor repeatedly chooses rv ∈ {0, 1}∗ randomly
and completes the execution of the protocol with P ∗ by executing V using rv as
random input. This gives a tuple (IP∗(κ, rp), α, c, d). The extractor XP∗

continues
until a tuple is found such that

AccV (IP∗(κ, rp), α, c, d) = 1 .

Then the extractor repeatedly chooses rv
′ ∈ {0, 1}∗ randomly and completes the

execution of the protocol with P ∗ by executing V using rv
′ as random input. This

gives a tuple (IP∗(κ, rp), α, c′, d′). The extractor XP∗

continues until a tuple is
found such that

AccV (IP∗(κ, rp), α, c′, d′) = 1 and c′i 6= ci for i = 1, . . . , l.

Suppose now that δVP∗(κ, rp) is non-negligible. In each iteration of the first loop the
probability that a tuple is suitable is δVP∗(κ, rp). Recall that c′ = (c′1, . . . , c

′
l) are

randomly chosen in C1× · · · ×Cl for a polynomially bounded l and that |Ci| ≥ 2κ.
Thus, the probability that ci = c′i is 1/|Ci| and the union bound implies that
the the probability that c′i = ci for some i = 1, . . . , l is at most l(κ)2−κ which is
negligible. Another application of the union bound then implies that the probability
that a suitable second tuple is found is at least δVP∗(κ, rp)/2 in each iteration. This
implies that the expected number of invocations of P ∗ is O(1/δVP∗(κ, rp)). Thus, the
expected execution time of the extractor satisfies the first requirement in Definition
2.29.

It follows immediately from special soundness that the output of the extractor
is a valid witness of the fact that IP∗(κ, rp) ∈ L. Thus, the second requirement in
Definition 2.29 is satisfied. �

2.9 Non-Interactive Zero-Knowledge Proofs

A non-interactive zero-knowledge proof allows a prover to convince a verifier of
a statement by sending a single message, given that both the prover and verifier
have access to a public random string. Furthermore, in this process the prover
leaks no knowledge to the verifier. We do not construct any explicit non-interactive
zero-knowledge proof in the thesis. We only use this notion in a blackbox fashion.

Non-interactive zero-knowledge proofs (NIZK) were introduced by Blum, Feld-
man, and Micali [25]. Several works have refined and extended the notion in various

Non-Interactive Zero-Knowledge Proofs 37

ways. We employ the definition of adaptive zero-knowledge for NIZK introduced
by Feige, Lapidot, and Shamir [62] and we use the notion of simulation soundness
introduced by Sahai [133]. The notion of simulation soundness is strengthened by
De Santis et al. [135].

Definition 2.41 (NIPS). A triple (p(κ), P, V) is said to be an efficient adaptive
non-interactive proof system (NIPS) for a language L ∈ NP with witness relation
R if p(κ) is a polynomial and P and V are probabilistic polynomial time algorithms
such that

1. (x,w) ∈ R and ξ ∈ {0, 1}p(κ) implies V (x, P (x,w, ξ), ξ) = 1.

2. For all computable functions A,
Prξ∈{0,1}p(κ) [A(ξ) = (x, π) ∧ x 6∈ L ∧ V (x, π, ξ) = 1] is negligible in κ.

The string ξ plays the role of the public random bit-string in the definition.
We suppress p in our notation of a NIPS and simply write (P, V). Loosely speak-
ing a non-interactive zero-knowledge proof system is a NIPS, which is also zero-
knowledge, but there are several flavors of zero-knowledge. We need a NIPS which
is adaptive zero-knowledge (for a single statement) in the sense of Feige, Lapidot,
and Shamir [62].

The following experiment formalizes an experiment where the adversary is given
access to an oracle that either computes proofs following the protocol, or by invok-
ing the zero-knowledge simulator, depending on if a bit b equal 0 or 1. Thus, the
adversary chooses adaptively for which instances it wishes to see a proof of member-
ship in the language. Finally, the adversary outputs a guess of the value of b. If the
protocol is zero-knowledge the probability of a correct guess should be negligibly
close to 1/2 when b is chosen randomly.

We only require that proofs of valid statements can be simulated when the
adversary knows the witness. Thus, the adversary is given access to oracles defined
as follows. Denote by S′ the machine that given (x,w, ξ, simstate) as input outputs
S(x, ξ, simstate) if (x,w) ∈ L and ⊥ otherwise. Denote by P ′ the machine that
given (x,w) as input outputs P (x,w, ξ) if (x,w) ∈ L and ⊥ otherwise.

Experiment 2.42 (Adaptive Zero-Knowledge, Expadind−b
(P,V,S),A(κ)).

If (b = 0) do

ξ ← {0, 1}p(κ)

d← AP
′(·,·,ξ)(ξ)

Else If (b = 1) do

(ξ, simstate)← S(1κ)

d← AS
′(·,·,ξ,simstate)(ξ)

End If

The experiment outputs d.

38 Notation and Basic Definitions

Definition 2.43 (Adaptive Zero-Knowledge). A NIPS (P, V) is adaptive zero-
knowledge (NIZK) if there exists a polynomial time algorithm S such that for all
A ∈ PPT∗ the probability |Pr[Expadind−0

(P,V,S),A(κ) = 1] − Pr[Expadind−1
(P,V,S),A(κ) = 1]| is

negligible in κ.

We include S in our notation whenever it plays a role in the analysis, and omit
it otherwise.

In cryptographic proofs one often performs hypothetic experiments where the
adversary is run with simulated NIZKs. If the experiment simulates NIZKs to the
adversary, the adversary could potentially gain the power to compute valid proofs
of false statements. For a simulation sound NIZK this is not possible. Soundness
holds even if the public string ξ is generated by the simulator and the adversary is
allowed to see simulated proofs using this simulated ξ.

Experiment 2.44 (Simulation Soundness, Expsims
(P,V,S),A(κ)).

(ξ, simstate) ← S(1κ)

(x, π) ← AS(·,ξ,simstate)(ξ)

Let Q be the set of proofs returned by the S(·, ξ, simstate) oracle. Return 1 if
π 6∈ Q, x 6∈ L, and V (x, π, ξ) = 1, and 0 otherwise.

Definition 2.45 (Simulation Soundness). A NIZK (P, V) with polynomial time
simulator S for a language L is unbounded simulation sound if for all A ∈ PPT∗

the probability Expsims
(P,V,S),A(κ) is negligible in κ.

In this thesis we abbreviate “adaptive zero-knowledge unbounded simulation
sound efficient adaptive non-interactive proof” by NIZK.

2.10 The Random Oracle Model

In Section 2.2 we formalize two possible requirements on functions (or rather col-
lections of functions). Broadly speaking, these requirements capture the fact that
a function is unpredictable in some specific way. The most unpredictable function
one can imagine is a randomly chosen function.

Sometimes it is not possible, or not known, how to prove the security of a
cryptographic construct under complexity assumptions. This is often the case for
efficient constructions. In such circumstances it is common to analyze the security
in the random oracle model. This means that one, or several, of the hash functions
used in the construction are modeled as randomly chosen functions. The security
analysis is then carried out in this model. When the protocol is deployed the random
oracles are replaced by some functions that are believed to be highly unpredictable
such as the SHA-family [119].

The random oracle hypothesis, first explicitly stated in a paper by Bellare and
Rogaway [18], says that if a construction is secure in the random oracle model, and

The Random Oracle Model 39

the function used when the protocol is deployed is “highly unpredictable” and chosen
“independently of the protocol”, then the protocol is secure even when the random
function is replaced by the unpredictable function. This is not a mathematical
statement. In fact, if it is turned into one it can be shown that the hypothesis is
false [43] if interpreted literally. Thus, a protocol that is analyzed in the random
oracle model can at best be heuristically secure.

On the other hand, all known counterexamples such as [43] are contrived. This
is why many people trust the random oracle model even if it strictly speaking is
false. In particular many people believe that constructing a signature scheme by
applying the Fiat-Shamir heuristic to an identification scheme implies that the res-
ulting signature scheme is in fact secure. We described the Fiat-Shamir heuristic
informally in Section 1.4.3 and give a more formal description below. For an in-
teresting discussion on these issues and provable security in general we refer the
reader to Koblitz and Menezes [98] and Stinson [139].

2.10.1 Zero-Knowledge Proofs of Knowledge in the Random

Oracle Model

One common use of the random oracle model is to prove the security of signature
schemes constructed using the Fiat-Shamir heuristic [64].

This idea can be explained as follows. Let R be an NP-relation and suppose
that one party holds a witness w of some joint input x such that (x,w) ∈ R. Let
(P, V) be a C-Σ-protocol for the language LR. Recall that such a protocol proceeds
as follows. The prover computes a first message α and sends it to the verifier. Then
the verifier chooses a challenge c ∈ C randomly and sends it to the prover. Finally,
the prover sends a reply d and the verifier verifies the triple (α, c, d). Fiat and
Shamir’s idea is to replace the challenge c with the output of a “cryptographic hash
function” H . In other words, the prover computes α, but then instead of waiting
for a challenge from the verifier it computes c = H(x, α). Finally, it computes d
as usual. This gives the prover a triple (α, c, d) that it can send to the verifier.
The verifier checks the triple by verifying the triple (α, c, d) as before and that
c = H(x, α). Thus, the protocol is now non-interactive.

Note that although H may be “highly unpredictable” the output c is not in-
dependently chosen from α. Thus, the soundness of the C-Σ-protocol does not
imply that the non-interactive version is sound. Furthermore, it is no longer zero-
knowledge, but if we replaceH by a randomly chosen function O, a so called random
oracle, both soundness and zero-knowledge holds. It is assumed that the random
oracle is available to both the verifier and the prover. We write PO(·) to denote the
prover that computes c as c = O(x, α) using a random oracle O. We write V O(·) for
the verifier that verifies the triple (α, c, d) as is done in the original C-Σ-protocol,
but also that c = O(x, α).

Suppose that the prover wishes to sign a message m. To do that it computes
(α, c, d) = PO(m,·), i.e., it includes the message to be signed as a prefix to its random
oracle. The signature is verified by checking that V O(m,·)(α, c, d) = 1. Thus, the

40 Notation and Basic Definitions

triple (α, c, d) may be viewed as a signature of m computed by the party holding
a witness w such that (x,w) ∈ R. For this to make any sense it must of course be
infeasible to find a witness w such that (x,w) ∈ R given only x.

In Chapter 15 we analyze a hierarchical group signature scheme in the random
oracle model, and use the above notation.

Chapter 3

Cryptographic Assumptions and

Concrete Primitives

In this chapter we introduce some assumptions and concrete primitives we need to
achieve our results. The reader should at least browse this chapter, since we modify
some primitives slightly and introduce additional notation.

3.1 The Goldwasser-Micali Cryptosystem

Goldwasser and Micali [76] construct a public key cryptosystem based on the exist-
ence of non-approximable trapdoor predicates. This concept is captured in modern
terminology as a hardcore bit of a family of trapdoor permutations.

The cryptosystem CSgm
T PF ,B = (Kggm, E,D) of Goldwasser and Micali [76] us-

ing the family of trapdoor permutations T PF and hardcore bit B can be defined
as follows. The key generator Kggm(1κ) simply runs the permutation generator
(pk , sk) = Gen(1κ) of T PF . To compute a cryptotext Epk (m) of a bit m ∈ {0, 1},
a sample r = Sample(pk) is computed, and (Eval(pk , sk),B(r) ⊕m) is the crypto-
text. To decrypt a cryptotext (c, c′), we compute Dsk (c, c′) = B(Invert(t, c)) ⊕ c′.
Goldwasser and Micali essentially show the following theorem.

Theorem 3.1. If T PF is a trapdoor permutation family with hard-core bit B, then
CSgm
T PF,B is polynomially indistinguishable.

Goldreich and Levin [73] show how to construct a family of trapdoor permuta-
tions T PF with a hard-core bit B from any family of trapdoor permutations. Thus,
we may take B above to be the Goldreich-Levin predicate.

To encrypt a bit-string the encryption function is invoked with a fresh randomly
chosen r for each bit in the natural way. From Lemma 2.13 we know that this is as
secure as the original scheme.

41

42 Cryptographic Assumptions and Concrete Primitives

3.2 Assumptions On the Distribution of the Primes

In the cryptographic literature a prime p is said to be safe if p = 2q+1 with q prime.
This is another way of saying that q is a Sophie Germain prime. For several reasons
safe primes are particularly useful in the construction of cryptographic primitives.
If we require that q also is a safe prime we end up with a chain of primes called a
Cunningham chain.

Definition 3.2 (Cunningham Chain). A sequence q0, . . . , qk−1 of primes is
called a Cunningham Chain1 of length k if qi = 2qi+1 + 1 for i = 0, . . . , k − 2.

In the third part of this thesis the importance of such primes is illustrated.
Before we start using Cunningham chains for cryptography we are obliged to ask
if they exist at all and if they can be found efficiently. Unfortunately, there exists
no proof that there are infinitely many Cunningham chains of any length, not even
of length 2 which correspond to the Sophie Germain primes. One can apply a
heuristic argument and assume that a randomly chosen integer n is prime with
probability roughly 1/ lnn. If we also assume that the event that (n−1)/2 is prime
is independent of the event that n is prime for every prime a randomly chosen prime
should give a Cunningham chain of length k with probability close to 1/ lnk n.

The assumption about independence is clearly false, but the heuristic argument
is still very plausible in our setting and agrees with computational experiments. In
the thesis we use Cunningham chains of length four. In practice it is not hard to
find such chains for primes of the size used in current cryptography (cf. [128], [129]).
Young and Yung [152] have also published some heuristic tricks for finding length-3
Cunningham chains. In the thesis we also use primes on the form apq + 1, where
p and q are safe primes. Such primes also exist under similar plausible heuristic
assumptions.

We make the following assumption.

Definition 3.3 (Distribution of Primes Assumption). The distribution of
primes (DP) assumption states that

1. For each constant k exists constants c and κ0 such that a random κ-bit prime
q0 defines a k-Cunningham chain q0, . . . , qk−1 with probability at least κ−c

for κ > κ0.

2. There exists constants c and κ0 such that if p and q are random safe κ-bit
primes, the probability that there exists a prime apq + 1 with a log2 κ-bit
integer a is at least κ−c for κ > κ0.

We denote by CunnGenk a polynomial-time algorithm that on input 1κ outputs
a Cunningham chain q0, . . . , qk−1 of length k with overwhelming probability.

We remark that assumptions similar to the above are implicit in several papers
in the cryptographic literature.

1This is a chain of the second kind. A chain of the first kind satisfies qi = 2qi+1 − 1.

The Discrete Logarithm Assumption 43

3.3 The Discrete Logarithm Assumption

The discrete logarithm assumption for some cyclic group Gn of order n with gen-
erator g says that given a random element h ∈ Gn it is infeasible to compute the
discrete logarithm logg h of h in the basis g. Note that we by Gn denote a particular
representation of a group. Thus, strictly speaking the discrete logarithm assump-
tion is assumed to hold with regards to a specific representation. An interesting
survey on the discrete logarithm assumption can be found in Odlyzko [118].

It is widely believed that solving discrete logarithms in a subgroup Gn of a
multiplicative group Z∗p modulo a prime p is hard if |Gn| is a product of large
distinct primes. Another example is to define Gn to be an elliptic curve group
of order n. An introduction to elliptic curve based cryptography can be found in
[23, 97].

It is possible to formalize the discrete logarithm assumption in general terms,
but this is not the focus of this thesis. Thus, we define the assumption in a specific
group. There seems to be no consensus on a formal definition of a “standard discrete
logarithm assumption” in a subgroup of the multiplicative group modulo a prime.
Thus, we take the liberty to simply call the specific assumption we define below
“the discrete logarithm assumption” without any special qualifier.

Definition 3.4 (Discrete Logarithm Assumption). The discrete logarithm
(DL) assumption states that the DP-assumption is true and the following.

1. Let q0, . . . , qk be a random length k Cunningham chain for a constant k, where
q0 is a κ-bit prime and let Gqi be the unique subgroup of Z∗qi−1

of order qi
for i = 1, . . . , k. Let gi, hi ∈ Gqi be random elements. Then for i = 1, . . . , k
and all adversaries A ∈ PPT∗ the probability Pr[A(qi, gi, hi) = loggi hi] is
negligible in κ.

2. Let p and q be random κ-bit safe primes such that P = apq + 1 is prime for
some log2 κ-bit integer a. Let Gpq be the unique subgroup of Z∗P of order pq,
let g, h ∈ Gpq be random elements. Then for all adversaries A ∈ PPT∗ the
probability Pr[A(P, a, g, h) = logg h] is negligible in κ.

In each case the probability is taken over the random choice of prime, the random
choice of h and the internal randomness of A.

In our security analyses we often ignore the inputs qi and (P, a) to the adversary
when they are clear from the context.

Before we prove the lemma we introduce a relation. We define RDL to consist
of the pairs ((g, h), x) such that h = gx, where g and h are understood to belong
to a group Gqi or Gn generated as described in the assumption.

Lemma 3.5 (Non-trivial Representation). Suppose that the DL-assumption
holds, and let qi be defined as in Definition 3.4. Choose gi,1, . . . , gi,N ∈ Gqi
randomly. Then for all A ∈ PPT∗, Pr[A(qi, gi,1, . . . , gi,N) = (η1, . . . , ηN) 6= 0 ∧
∏N
j=1 g

ηj
i,j = 1] is negligible in κ.

44 Cryptographic Assumptions and Concrete Primitives

Proof. If the lemma is false there exists an adversaryA, a constant c, and an infinite
index set N such that the probability is greater than or equal to 1/κc for κ ∈ N
and some 1 ≤ i ≤ k. For simplicity we drop the i subscripts in the proof.

Consider the adversary A′ defined as follows. It takes input (q, g, h) and chooses
j ∈ {1, . . . , N} randomly. Then it sets gj = h, and chooses el ∈ Zq randomly
and defines gl = gel for l 6= j. Then it computes (ηl)

N
l=1 = A(Gq , g, (gl)

N
l=1) and

outputs 1
−ηj

∑

l 6=j elηl if ηj 6= 0 and (ηl)
N
l=1 gives a non-trivial representation and

⊥ otherwise.
If ηj 6= 0 we have

∏

l 6=j g
ηl
l = h−ηj and it follows that the output is the logarithm

of h. The probability that ηj 6= 0 conditioned on that A outputs a non-trivial
representation is at least 1/N , since j is chosen uniformly at random and the
distribution of g1, . . . , gN is independent of j. Thus, from independence follows
that A′ outputs logg h with probability at least 1

Nκc , which contradicts the DL-
assumption. �

3.4 The Chaum-van Heijst-Pfitzmann Hash Function

We employ the hash function CHP = (CHPg, DCHP, HCHP) introduced by Chaum,
van Heijst, and Pfitzmann [47]. The function sampling algorithm CHPg takes as
input the representation of a prime q such that 2q + 1 is prime and δ ∈ N and
outputs a list (q, h1, . . . , hδ) where (h1, . . . , hδ) ∈ Gδq are randomly chosen elements.

The domain sampling algorithm DCHP takes as input (q, δ) and outputs a random
element in Zδq. The evaluation algorithm HCHP takes input (q, h1, . . . , hδ) and

(z1, . . . , zδ) and outputs
∏δ
l=1 h

zl
l . The following proposition is given in [47], but it

is also an immediate consequence of Lemma 3.5 above.

Proposition 3.6. Let k be a constant and define CHPgk,i to be the algorithm that
on input (1κ, δ) computes (q0, . . . , qk−1) = CunnGenk(1

κ) and outputs CHPg(qi, δ).
Then the collection of functions (CHPgk,i, D

CHP, HCHP) is one-way and collision-
free under the DL-assumption.

We abuse notation and useHCHP to denote the map computed byHCHP on input
(h1, . . . , hδ) and also to denote the list (h1, . . . , hδ). Thus, we think of HCHP as a

function defined by HCHP(z1, . . . , zδ) =
∏δ
l=1 h

zl
l and represented by (h1, . . . , hδ).

3.5 The Decision Diffie-Hellman Assumption

The Decision Diffie-Hellman (DDH) assumption states that it is infeasible to distin-
guish (gα, gβ , gαβ) from (gα, gβ, gγ) when α, β, γ ∈ Zq are randomly chosen and g
is the generator of a group Gq. This is a decisional version of the Diffie-Hellman as-
sumption [60] which states that it is infeasible to compute gαβ given only gα and gβ

for randomly chosen α, β ∈ Zq. The DDH-assumption is equivalent to the security
of the El Gamal cryptosystem, which is introduced in the next section. Currently

The Decision Diffie-Hellman Assumption 45

the best method to solve the decision Diffie-Hellman problem is to solve the discrete
logarithm problem, but no proof of equivalence between the two problems is known.

Definition 3.7 (Decision Diffie-Hellman Assumption). The decision Diffie-
Hellman assumption states that the DP-assumption is true and the following. Let
q0, . . . , qk be a random length k Cunningham chain for a constant k, where q0 is a
κ-bit prime and let Gqi be the unique subgroup of Z∗qi−1

of order qi for i = 1, . . . , k.
Let gi ∈ Gqi and αi, βi, γi ∈ Zqi be random elements. Then for i = 1, . . . , k and all
adversaries A ∈ PPT∗ the absolute value

|Pr[A(qi, gi, g
αi
i , g

βi
i , g

αiβi
i) = 1]− Pr[A(qi, gi, g

αi
i , g

βi
i , g

γi
i) = 1]|

is negligible in κ.

In our security analyses we often omit the inputs qi and gi when they are clear
from the context. In the second part of the thesis we also use a variant of the
DDH-problem captured below.

Lemma 3.8 (Variant DDH-Assumption). Suppose that the DDH-assumption
is true, and let qi be defined as in Definition 3.7. Let αi, βi, β

′
i, γi, γ

′
i ∈ Zqi be

randomly chosen. Then for i = 1, . . . , k and all adversaries A ∈ PPT∗ the absolute
value

|Pr[A(gαii , g
βi
i , g

αiβi
i , g

β′
i
i , g

αiβ
′
i

i) = 1]− Pr[A(gαii , g
βi
i , g

γi
i , g

β′
i
i , g

γ′
i
i) = 1]|

is negligible in κ.

Proof. We drop the subscript i, since the proof for each i is essentially identical.
Suppose that the lemma is false. Then there exists an adversary A ∈ PPT∗, a
constant c > 0, and an infinite index set N such that

|Pr[A(gα, gβ , gγ , gβ
′

, gγ
′

) = 1]− Pr[A(gα, gβ , gαβ, gβ
′

, gαβ
′

) = 1]| ≥ 1

κc
.

This implies that one of the following inequalities hold

|Pr[A(gα, gβ, gγ , gβ
′

, gγ
′

) = 1]− Pr[A(gα, gβ, gγ , gβ
′

, gαβ
′

) = 1]| ≥ 1

2κc

|Pr[A(gα, gβ, gγ , gβ
′

, gαβ
′

) = 1]− Pr[A(gα, gβ , gαβ, gβ
′

, gαβ
′

) = 1]| ≥ 1

2κc
.

The former is impossible, since given a triple (u, v, w), the tuple (u, gβ, gγ , v, w) for
random β, γ ∈ Zq is identically distributed to the input to A in the right or left
probability in the first equation depending on if (u, v, w) is a DDH-triple or not.
The latter is impossible, since given a triple (u, v, w), the tuple (u, v, w, gβ

′

, uβ
′

),
for a random β′ ∈ Zq, is identically distributed to the input to A to the left or right
probability in the second equation depending on if (u, v, w) is a random triple or if
it is a DDH-triple. Thus, the lemma is true. �

46 Cryptographic Assumptions and Concrete Primitives

3.6 The El Gamal Cryptosystem

The El Gamal [71] public key cryptosystem can be defined in any cyclic group, but
we consider only groups Gq as defined above, i.e., p = 2q + 1 and Gq is the unique
subgroup of order q in Z∗p.

We write CSKgelg for the key generation algorithm that takes as input a prime
q such that 2q + 1 is prime and a generator g in Gq. It then chooses a random
private key x ∈ Zq, computes a public key (g, y), where y = gx, and outputs
(q, (g, y), x). The encryption and decryption algorithm below are given q as part of
their input, but this is omitted throughout the thesis to simplify notation. When
invoked on a public key (g, y) and messagem ∈ Gq the encryption algorithm chooses
r ∈ Zq randomly and outputs (gr, yrm). We denote this E(g,y)(m, r) = (gr, yrm), or
Ey(m, r) = (gr, yrm) when g is fixed. Sometimes we also write E(g,y)(m), when we
do not care about the random input. To decrypt a cryptotext (u, v) using the private
key x the decryption algorithm outputs vu−x. We denote this Dx(u, v) = vu−x.

Note that the cleartext m must be contained in Gq. Thus, to encrypt an ar-
bitrary bit-string there must exist an efficient algorithm that encodes an arbitrary
fixed-size bit-string as an element in Gq. There must of course also exist an efficient
way to recover the message from the encoding. The group we use is in fact equal to
the subgroup of squares in Z∗p, or differently phrased the quadratic residues modulo
p. To encode a bit-string s ∈ {0, 1}κ−t−1 into an element in Gq with log2 q = κ
we repeatedly choose r ∈ [0, 2t − 1] randomly and check if 2κ−tr + s is a quadratic
residue. Checking for quadratic residuosity can be done efficiently [102]. It is of
course easy to decode an element as a bit-string. In practice the encoding works
well, since heuristically we expect that the probability that 2κ−tr+ s is a quadratic
residuosity should be roughly 1/2 for each s.

We are not aware of any encoding that can be analyzed rigorously, so strictly
speaking the message space of the El Gamal cryptosystem in Gq can not be taken
to be the set {0, 1}κ−t for some small t. A similar problem is encountered if Gq is
taken to be an elliptic curve. This is not a problem in practice and we ignore this
issue in the remainder of the thesis.

An interesting property of the El Gamal cryptosystem is that it is homomorphic.
This means that if (u0, v0) = E(g,y)(m0, r0) and (u1, v1) = E(g,y)(m1, r1) then
(u0u1, v0v1) = E(g,y)(m0m1, r0 + r1). This is a straightforward consequence of the
definition, but it implies that a cryptotext (u, v) can be re-encrypted by comput-
ing (ugr, vyr). All El Gamal based mix-nets in the literature are based on this
observation, but in the second part of this thesis we present an alternative.

The following proposition is almost immediate. A proof is given in Tsiounis and
Yung [142].

Proposition 3.9. Let k be a constant and define CSKg
elg
k,i to be the algorithm that

on input 1κ computes (q0, . . . , qk−1) = CunnGenk(1
κ), chooses gi ∈ Gqi randomly

and outputs CSKgelg(qi, gi).

The Cramer-Shoup Cryptosystem 47

Then the El Gamal cryptosystem (CSKg
elg
k,i, E,D) is polynomially indistinguish-

able under the DDH-assumption.

3.7 The Cramer-Shoup Cryptosystem

Cramer and Shoup [53] introduced the first practical CCA2-secure cryptosystem
based on a standard assumptions. The cryptosystem CScs = (Kgcs, Ecs, Dcs), is
defined as follows.

Let (I, F), with F = {fi}i∈I , be a collision-free collection of functions with
corresponding algorithms CF = (Gen, Sample,Eval). Assume that Di ⊃ Gq × Gq
and that fi(Di) ⊂ Zq for all i ∈ I∩{0, 1}log2 q. An example of this is the Chaum-van
Heyst-Pfitzmann function in Section 3.4 with suitable modified security parameter.

The key generation algorithm Kgcs
CF takes as input a prime q such that 2q + 1

is prime. It generates random g1, g2 ∈ Gq and x1, x2, y1, y2, z ∈ Zq and computes
c = gx1

1 gx2
2 , d = gy11 g

y2
2 , and h = gz1 . Then it computes i = Gen(κ) and outputs

((i, q, g1, g2, c, d, h), (i, q, x1, x2, y1, y2, z)). Encryption of a message m ∈ Gq using
the public key Y = (i, q, g1, g2, c, d, h) and randomness r ∈ Zq is given by

Ecs
Y (m, r) = (u, µ, v, ν) = (gr1, g

r
2 , h

rm, crdrEval(i,u,µ,v)) .

Note that (u, v) is an El Gamal cryptotext of the message m using the El Gamal
public key (g1, h), so decryption of a cryptotext (u, µ, v, ν) using the private keyX =
(i, q, x1, x2, y1, y2, z) is given byDcs

X(u, µ, v, ν) = Dz(u, v) = m for valid cryptotexts.
A cryptotext is considered valid if the predicate

T cs
X (u, µ, v, ν) = (ux1+x2Eval(i,u,µ,v)µy1+y2Eval(i,u,µ,v) = ν)

is satisfied. An invalid cryptotext decrypts to ⊥. Throughout the thesis we abuse
notation and omit i and q from the public and private keys when they are clear
from the context.

Theorem 3.10. Let k be a constant and define Kgcs
k,i,CF to be the algorithm that

on input 1κ computes (q0, . . . , qk−1) = CunnGenk(1
κ) and outputs Kgcs

CF (qi).
The Cramer-Shoup cryptosystem (Kgcs

k,i,CF , E
cs, Dcs) is CCA2-secure under the

DDH-assumption if CF is collision-free.

A proof is given in [53]. Note that Proposition 3.6, and the obvious fact that the
first statement of the DL-assumption is true if the DDH-assumption is true, imply
that the cryptosystem is secure under the DDH-assumption if we instantiate the
collision-free hash function CF with the Chaum-van Heijst-Pfitzmann hash function
CHP.

3.8 The Strong RSA-Assumption

The strong RSA-assumption says that it is infeasible to compute any non-trivial
root of a random element in QRN where N is an RSA-modulus, even if allowed

48 Cryptographic Assumptions and Concrete Primitives

to select which root to compute. This assumption was first considered by Barić
and Pfitzmann [11] and differs from the standard RSA-assumption in that the root
to compute is not predetermined. Currently the fastest known method to solve
this problem is to factor N, but it is not known if the strong RSA-assumption is
equivalent to the factoring assumption.

Definition 3.11 (Strong RSA-Assumption). Let p and q be randomly chosen
κ/2-bit primes, define N = pq, and let g ∈ QRN be randomly chosen. The
strong RSA-assumption states that for all adversaries A ∈ PPT∗ the probability
Pr[A(N,g) = (b, e) ∧ e 6= ±1 ∧ be = g mod N] is negligible in κ.

It is easy to see that if the DP-assumption and and the strong RSA-assumption
are true, then the strong RSA-assumption is still true if p and q are randomly
chosen safe primes such that there exists a log2 κ-bit integer a such that apq+ 1 is
prime, since this happens with non-negligible probability for random primes. This
is the setting considered in this thesis.

To simplify some of the proofs in the thesis we prove a useful lemma that give
alternative ways to view the strong RSA-assumption. The proof of the lemma below
follows the proof in Damgård and Fujisaki [55], but our lemma is slightly stronger.
In their analysis it is essential that the bit-size of η0 is smaller than κ/2. We show
that this restriction is not necessary.

Lemma 3.12 (Variants of Strong RSA-Assumption). Assume the strong
RSA-assumption. Let p and q be randomly chosen κ/2-bit safe primes, define
N = pq, and let g,h ∈ QRN be random. Then for all adversaries A ∈ PPT∗ the
probabilities

Pr[A(N,g,h) = (b, η0, η1, η2) ∧ η0 6= 0 ∧ (η0 ∤ η1 ∨ η0 ∤ η2)

∧ bη0 = gη1hη2 mod N]

Pr[A(N,g,h) = (b, η1, η2) ∧ (η1, η2) 6= (0, 0) ∧ gη1 = hη2 mod N]

are negligible in κ.

Before we prove the lemma we introduce a relation. We define RSRSA to consist
of the pairs ((N,g,h), (b, η0, η1, η2)) such that either η0 ∤ η1 or η0 ∤ η2 and bη0 =
gη1hη2 , or η0 = 0 and (η1, η2) 6= (0, 0) and gη1 = hη2 , or η0 | N and |η0| < N.

Proof of Lemma 3.12. Denote by extgcd the extended Euclidean algorithm, i.e.,
given input (η0, η1) it outputs a tuple of integers (f, a, b), where f = gcd(η0, η1)
and f = aη0 + bη1.

Suppose that there exists an adversary A ∈ PPT∗, a constant c, and an infinite
index set N such that

Pr[A(N,g,h) = (b, η0, η1, η2) ∧ η0 6= 0 ∧ (η0 ∤ η1 ∨ η0 ∤ η2)

∧ bη0 = gη1hη2 mod N]

The Strong RSA-Assumption 49

for κ ∈ N . Consider the adversary A′ to the strong RSA-experiment defined as
follows. Denote by κr an additional security parameter large enough to make 2−κr

negligible. The adversary A′ accepts (N,g) as input, chooses e ∈ [0, 2κ+κr − 1]
randomly and defines h = ge mod N. Then it computes (b, η0, η1, η2) = A(N,g,h)
and (f, a, b) = extgcd(η0, η1 + eη2). Finally, it outputs (gabb, η0/f). Note that

(gabb)η0/f = (gaη0gb(η1+eη2))1/f = g(aη0+b(η1+eη2))/f = g .

Thus, we must argue that f 6= ±η0 with non-negligible probability.
We analyze the output conditioned on the event that the output of A has the

property that η0 6= 0 and that η0 does not divide both η1 and η2 and that bη0 =
gη1hη2 . We argue that for any fixed (h, η0, η1, η2) the probability that η0 ∤ (η1+eη2)
is at least 1/4 over the random choice of e, conditioned on h = ge.

To start with we note that if η0 | (η1 + eη2) and η0 | η2 then clearly η0 | η1 as
well, which is a contradiction. Thus, if η0 | η2, the probability that η0 ∤ (η1 + eη2)
is one. Consider now the case where η0 ∤ η2.

Define p′ = (p− 1)/2, q′ = (q− 1)/2, and t = p′q′. We argue that there exists
a prime r such that r | η0 and gcd(r, t) = 1. If this is not the case we may assume
that η0 is on the form ±(p′)a(q′)b for some natural numbers a and b. If a, b > 0,
then we have gη0+1 = g and we could have defined A to simply output (g, η0 + 1).
If a = 0 (or b = 0), then we could have defined A to simply take the lth root of
η0 for a polynomially bounded number of l, check for primality, and thus extract
p′ (or q′). Finally, it could compute t = p′(N/(2p′ + 1) − 1)/2 and output (g, t).
We conclude that there exists a prime r such that r | η0 and gcd(r, t) = 1 with
overwhelming probability.

Let ri such that ri | η0 but ri ∤ η2. It follows from the Chinese remainder
theorem that

Pr
e

[η0 | (η1 + eη2) | h = ge] ≤ Pr[η1 + eη2 = 0 mod ri | h = ge] .

We write e = e′t+ (e mod t). Since gcd(t, ri) = 1 we know that t is a generator in
Zri . This implies that

Pr
e

[η1 + eη2 = 0 mod ri | h = ge]

= Pr
e

[η1 + (e mod t)η2 + e′t = 0 mod ri | h = ge] .

Note that η1 + (e mod t)η2 is constant for a fixed (h, η0, η1, η2), but since t is
a generator in Zri the probability that e′t takes on any given value is at most
1/ri+1/κr ≤ 3/4. It follows that A′ outputs an RSA-root with probability at least
1
4κ
−c.
Suppose that there exists an adversary A ∈ PPT∗, a constant c, and an infinite

index set N such that

Pr[A(N,g,h) = (η1, η2) ∧ (η1, η2) 6= (0, 0) ∧ gη1 = hη2 mod N]

50 Cryptographic Assumptions and Concrete Primitives

for κ ∈ N . Consider the adversary A′ defined as follows. On input (N,g) it chooses
e ∈ [0, 2κ+κr − 1] randomly and defines h = ge mod N. Then it chooses d ∈ {0, 1}
randomly and defines

(g′,h′) = (gdh1−d,g1−dhd) ,

and computes (η1, η2) = A(N,g′,h′). If η1 = ±η2 it outputs (g, η1 +1). Otherwise
it computes (f, a, b) = extgcd(η1, η2) and outputs

((g′)b(h′)a, (dη1 + (1 − d)η2)/f) .

If η1 = ±η2 6= 0 and (g′)η1 = (h′)η2 then (h′/g′)η1 = 1 or (h′g′)η1 = 1. Note that
the probability that g′/h′ or g′h′ does not generate QRN is negligible. This means
that η1 is a multiple of t = (p− 1)(q− 1)/4, and we have gη1+1 = g. We conclude
that the probability that η1 = ±η2 6= 0 and (g′)η1 = (h′)η2 is negligible.

Suppose that η1 6= ±η2 and (g′)η1 = (h′)η2 . Then we have

((g′)b(h′)a)(dη2+(1−d)η1)/f =

{

(hbga)η1/f = g(aη1+bη2)/f = g if d = 0
(gbha)η2/f = g(aη1+bη2)/f = g if d = 1

.

We observe that the distributions of the conditional random variables (N,g′,h′ |
d = 0) and (N,g′,h′ | d = 1) are statistically close. Since d is randomly chosen we
conclude that the probability that (dη1 + (1 − d)η2)/f equals one is at most 3/4.
Thus, A′ outputs a non-trivial RSA-root with probability at least 1

4κ
−c. This is a

contradiction, so the second probability in the lemma is negligible. �

3.8.1 A Simplifying Convention

Consider any computation involving an RSA-modulus N where the inverse of an
element a ∈ ZN must be computed. In principle, it could happen that a is not a unit
in ZN. However, if such an element is encountered with non-negligible probability
in a computation where the factorization of N is not known, we have of course
found one of the factors of N and the strong RSA-assumption is broken.

To simplify the exposition of the protocols and their analysis we assume, without
loss, that all elements in ZN that appear in the simulations in the security analyses
always can be inverted.

3.9 The Shamir Hash Function

Consider the collection of functions (ISh, FSh) defined as follows. Let ISh be the
set of pairs (N,g), where N is a product of two safe primes of the same bit-size
and g is a generator of QRN, and define FSh = {f(N,g) : D(N,g) → {0, 1}∗} by
setting D(N,g) = {0, 1}4κ and f(N,g)(x) = gx mod N, where log2 N = κ. The three

algorithms (Shg, DSh, HSh) required by the definition of a polynomial collection of
functions are defined in the obvious way.

The Cramer-Shoup Signature Scheme 51

The idea to use this construction as a collision-free hash function was proposed
by Shamir. To simplify the exposition we omit N and g from our notation when
they are clear from the context.

Lemma 3.13. The function collection SH = (Shg, DSh, HSh) is collision-free under
the strong RSA-assumption.

Proof. Suppose that there exists an adversary A ∈ PPT∗ such that

Pr[A(N,g) = (x1, x2) ∧ x1 6= x2 ∧ gx1 = gx2]

is non-negligible. Then we can define A′ to be the adversary that on input (N,g)
computes (x1, x2) = A(N,g) and defines (b, η) equal to (g, x1− x2 + 1) or (g, x2 −
x1 + 1) depending on if x1 > x2 or x1 < x2 respectively. Finally, A′ outputs (b, η).
Note that this implies that η 6= ±1 and bη = 1 with non-negligible probability and
A′ breaks the strong RSA-assumption. �

Remark 3.14. The Shamir hash function is in fact secure under the factoring as-
sumption, but in our application we need the strong RSA-assumption anyway.
Thus, there is little point in introducing another assumption and proving a stronger
result.

3.10 The Cramer-Shoup Signature Scheme

Cramer and Shoup [54] introduce a signature scheme based on the strong RSA-
assumption. We describe a slightly modified scheme. The Cramer-Shoup signature
scheme SScs

CF1,CF2
= (SSKgcs

Gen1,Gen2
, Sigcs

Eval1,Eval2
,VfcsEval1,Eval2

) is defined as follows,
where CF1 = (Gen1, Sample1,Eval1) and CF2 = (Gen2, Sample2,Eval2) are collision-
free collections of functions.

On input 1κ the key generation algorithm SSKgcs
Gen1,Gen2

first chooses two κ/2-
bit safe primes p and q randomly such that there exists a log2 κ-bit integer a
such that apq + 1 is prime and defines N = pq, p′ = (p − 1)/2, and q′ =
(q − 1)/2. Then it chooses h, z ∈ QRN and a (κ + 1)-bit prime e′ such that
e′ = 1 mod 4 randomly. Finally, it computes i1 = Gen1(1

κ) and i2 = Gen2(1
κ)

and outputs ((i1, i2,N,h, z, e
′), (i1, i2,N,h, z, e

′,p′,q′)). We also assume that it
on input (1κ, i1) uses this value of i1 instead of generating it.

The signature algorithm Sigcs
Eval1,Eval2

takes as input a message m and a private
key (i1, i2,N,h, z, e

′,p′,q′) and outputs a signature (e,σ,σ′) computed as follows.
The algorithm chooses a random (κ+ 1)-bit prime e such that e = 3 mod 4 and a
random σ′ ∈ QRN and computes

z′ = (σ′)e
′

h−Eval1(i1,m) , and σ =
(

zhEval2(i2,z
′)
)1/e

.

The verification algorithm VfcsEval1,Eval2
takes as input a message m, candidate signa-

ture (e,σ,σ′), and (i1, i2,N,h, z, e
′) and verifies the signature as follows. It verifies

52 Cryptographic Assumptions and Concrete Primitives

that e 6= e′ and that it is an odd integer with at least (3
2κ− 4) and at most (κ+ 1)

bits. Then it computes z′ = (σ′)e
′

h−Eval1(i1,m) and verifies that z = σeh−Eval2(i2,z
′).

If so it outputs 1 and otherwise 0.
We have modified the original scheme slightly by making e′ always equal to 1

modulo 4 and the primes e generated at signing equal to 3 modulo 4. This makes
it easier to prove later in zero-knowledge that e 6= e′. In the original scheme CF1

and CF2 are equal, but in our setting they will be different. This does not affect
the security proof in any way.

Also in our description the exponent e is longer than the modulus, but in the
original description e is shorter than p′ and q′. Below we show that the security
proof still holds.

Theorem 3.15. The signature scheme SScs
CF1,CF2

is CMA-secure under the strong
RSA-assumption and assuming that CF1 and CF2 are collision-free.

Proof. We assume familiarity with [54]. When the length of the exponent is between
κ+ 1 bits and 3

2κ− 4 bits, the proof of [54] holds except for how a Type III forger
is used to break the strong RSA-assumption, where a Type III forger is defined as
a forger that outputs a signature (using our notation) (e,σ,σ′) such that e 6= ei
for all signatures ei it has seen previously with non-negligible probability.

Let us recall their simulator. It accepts an RSA-modulus N and a generator
g ∈ QRN as input and chooses a polynomial number of primes ei distributed as
the prime chosen in the computation of a signature, and defines h = g2e′

Q

i ei .
These primes are used in the simulation of the signature oracle. Then it chooses
a ∈ [0, 2κ+κr − 1] and computes z = ha. It is shown in [54] that this allows the
adversary to simulate the signature oracle perfectly. If the Type III forger outputs
a valid signature (e,σ,σ′) such that for e 6= ei for all i it is concluded in [54] that

σe = zhEval2(i2,z
′) . (3.1)

It is then shown that when e < 2κ/2 this allows extraction of a non-trivial RSA-root
of g. The problem with our variant of the scheme is that we do not guarantee that
e < 2κ/2, and this turns out to be essential in our construction of the hierarchical
group signature scheme in the third part of the thesis.

Fortunately, we can still extract a non-trivial root as follows. We modify the
definition of the simulator such that it accepts (N,g, z) as input, i.e., the simulator
no longer generate z. If the output of the forger is a valid signature (e,σ,σ′)
such that e 6= ei for all i, then the simulator outputs (σ, e, 1,Eval2(i2, z

′)) that
satisfies Equation (3.1). We conclude from Lemma 3.12 that there exists no Type
III adversary. �

3.11 The Composite Residuosity Class Assumptions

Assumptions about the hardness of computing and deciding composite residuosity
classes were first considered by Paillier [121] to prove the security of the Paillier
cryptosystem introduced in the next section.

The Paillier Cryptosystem 53

Let p and q be primes with the same number of bits and define N = pq and
g = N + 1. Define also Eg : ZN × Z∗N → Z∗N2 , Eg : (m, r) 7→ gmrN mod N2. Then
Lemma 3 in [121] states that Eg is a bijection.

Definition 3.16 (Residue Class). The N-th residue class [u]g of u with respect
to g is the unique m ∈ ZN such that there exists an r ∈ Z∗N such that Eg(m, r) = u.

Definition 3.17 (Composite Residuosity Assumption). Let p and q be ran-
domly chosen κ/2-bit primes and define N = pq. Let u ∈ Z∗

N2 be randomly chosen.
The composite residuosity (CR) assumption states that for all adversaries A the
probability Pr[A(N, u) = [u]g] is negligible in κ.

Definition 3.18 (Decisional Composite Residuosity Assumption). Let p

and q be randomly chosen κ/2-bit primes and define N = pq. Let u ∈ Z∗N2

be randomly chosen. The decisional composite residuosity (DCR) assumption
states that for all adversaries A ∈ PPT∗ the absolute value |Pr[A(N, u) = 1] −
Pr[A(N, uN mod N2) = 1]| is negligible in κ.

Under the DP-assumption we may assume that p and q are safe primes. This
is the setting considered in this thesis.

3.12 The Paillier Cryptosystem

Paillier [121] introduces a cryptosystem based on the DCR-assumption that is ad-
ditively homomorphic. The cryptosystem has some important technical properties
that makes it suitable to construct protocols secure against an adaptive adversary.

The scheme is described as follows. On input 1κ the key generator CSKGpai

chooses two κ/2-bit safe primes p and q randomly and defines the public key N = pq.
For notational convenience we define g = N + 1 and f = (p − 1)(q − 1)/4. Then
it chooses a private key d under the restriction d = 0 mod f and d = 1 mod N and
outputs (N, d).

The cryptosystem is based on the algebraic properties of N and g. Recall that
Z∗N2 = GN ×Gf × V , where GN and Gf are groups of order N and f, and V is the
Klein 4-group. Furthermore, g is a generator of GN and each element in Gf×V can
be written rN mod N2 with r ∈ Z∗N. Note that gm = 1 + mN mod N2. We define
L(u) = (u− 1)/N and have L(gm) = m.

To encrypt a message m ∈ ZN a random r ∈ Z∗N is chosen and the cryptotext is
defined by u = EN(m, r) = gmr2N mod N2. To decrypt a cryptotext u the decryptor
computes Dd(u) = L(ud mod N2). To see why this works it suffices to note that
every cryptotext u ∈ GN × Gf and when d = 0 mod f and d = 1 mod N we have
ud mod N2 = gm. In other words exponentiation by d collapses the group Gf , but
keeps GN fixed.

We remark that in the original version of the cryptosystem, encryption is defined
as gmrN mod N2, i.e., we exponentiate with 2N instead of N. It is easy to see that
this does not decrease the security of the scheme. Thus, the following proposition
follows from Paillier [121].

54 Cryptographic Assumptions and Concrete Primitives

Proposition 3.19. The Paillier cryptosystem is polynomially indistinguishable un-
der the DCR-assumption.

An interesting property of the scheme is that given a Paillier cryptotext K1 =
EN(1, R1) = gR2N

1 mod N2 of 1 an alternative way to encrypt a message m is to
compute EK1,N(m, r) = Km

1 r
2N mod N2. This property is essential in the construc-

tion of the adaptively secure mix-net in Chapter 11.
Let gf be a generator of Gf . Then there exists an 2Nth root rf of gf and an

alternative way to encrypt a message is as Egf ,N(m, s) = gmgsf = gm(rsf)
2N mod N2,

where s is chosen randomly in [0, 2κ+κr − 1]. Here κr is an additional security
parameter that is large enough to make 2−κr negligible. This implies that the
distribution of the new type of cryptotext is statistically close to the distribution
of the type we define above and κr decides the statistical distance.

The cryptosystem is homomorphic, i.e., EN(m1)EN(m2) = EN(m1 +m2). As a
consequence it is possible to re-encrypt a cryptotext u using randomness s ∈ Z∗N by
computing uEN(0, s) = EN(m, rs), or alternatively using randomness s ∈ [0, 2κ+κr−
1] as uEgf ,N(0, s) = EN(m, rg

s/2N

f). The distributions of the resulting cryptotexts
are again statistically close. We use the latter type of re-encryption.

We remark that in Section 3.6, where we define the El Gamal cryptosystem, we
use a very similar notation for encryption and decryption. This should not lead to
any misunderstandings, since we never use both cryptosystems in the same context.

Chapter 4

The Universally Composable

Security Framework

Canetti [41], and independently Pfitzmann and Waidner [127] propose security
frameworks for reactive processes. We use the former universal composability (UC)
framework. Both frameworks have composition theorems, and are based on older
definitional work. The initial ideal-model based definitional approach for secure
function evaluation is informally proposed by Goldreich, Micali, and Wigderson
in [74]. The first formalizations appear in Goldwasser and Levin [75], Micali and
Rogaway [106], and Beaver [13]. Canetti [40] presents the first definition of security
that is preserved under composition. See [40, 41] for an excellent background on
these definitions.

In this chapter we give a short review of the universally composable security
framework. This framework is very general, quite complex, and hard to describe
both accurately and concisely. We choose a simplified approach. For a general in
depth discussion, intuition, and more details we refer the reader to Canetti [41].

Canetti assumes the existence of an “operating system” that takes care of the
creation of subprotocols when needed. This is necessary to handle protocols with a
large number of possible trees of calls to subprotocols, but for our purposes we may
assume that all subprotocols are instantiated already at the start of the protocol.

Canetti models an asynchronous communication network, where the adversary
has the power to delete, modify, and insert any messages of his choice. To do this
he is forced to give details for exactly what the adversary is allowed to do. This
becomes quite complex. We instead factor out all aspects of the communication
network into a separate concrete “communication model”-machine. The real, ideal,
and hybrid models are then defined solely by how certain machines are linked.
The adversary is defined as any interactive polynomial time Turing machine, and
how the adversary can interact with other machines follows implicitly from the
definitions of the real and ideal communication models.

Since each protocol or subprotocol communicate through its own copy of the

55

56 The Universally Composable Security Framework

“communication model”, and all protocols are instantiated at the start of the pro-
tocol we need not bother with session ID:s. Such ID:s would clearly be needed if
our protocols would be rewritten in the more general original security framework,
but it is notationally convenient to avoid them.

4.1 Interactive Turing Machines

Following Goldreich [72] and Canetti [41] we define the parties to be probabilistic
polynomial time interactive Turing machines with a history tape. More precisely,
each machine has a read-only input tape, a write-once output tape, a read-only
security parameter tape, a read-only random tape, and a history tape. It executes
in polynomial time in the size of the input on the security parameter tape. At the
start of the execution the security parameter tape contains the security parameter
of the protocol, the random tape contains a sequence of randomly chosen bits, and
the history tape is empty. Whenever a state transition takes place in a machine, the
new state is recorded on the history tape. A protocol is said to be without erasures
if no party ever deletes or overwrites any information written to the history tape.
All our results are given in a model without erasures, but we discuss informally
a protocol with erasures in Chapter 11. We denote the set of interactive Turing
machines by ITM, and we denote the set of finite sequences of interactive Turing
machines by ITM∗.

We also assume that we may connect any pair of machines by a “link” to allow
them to communicate. Such a link is more or less equivalent to the notion of a link
introduced by Goldreich [72]. But the original notion of a link has the problem that
it requires a machine to have a pair of communication tapes for each link, which
is problematic when the number of potential links is unbounded. This is a purely
definitional problem of no importance and we trust the reader to fill in the details
of this in any way he or she chooses. Thus, the following is meaningful.

Definition 4.1 (ITM-Graph). An ITM-graph is a set V = {P1, . . . , Pt} ⊂ ITM
with a set of links E such that (V,E) is a connected graph, and no Pi is linked to
any machine outside V . Let ITMG be the set of ITM-graphs.

During the execution of an ITM-graph, at most one party, called the active
party, change its state in each step. A party can write to exactly one link l in each
activation and then activates the party to which it is linked with l.

4.2 The Real Model

The real communication model models an asynchronous communication network, in
which the adversary can read, delete, modify, and insert any message of its choice.

Definition 4.2 (Real Communication Model). A real communication model C
is a machine with a link lPi , to Pi for i = 1, . . . , k, and a link lA to a real adversary
A. Its program is defined as follows.

The Ideal Model 57

• If m is read on ls, where s ∈ {P1, . . . , Pk}, then (s,m) is written on lA and
A is activated.

• If (r,m) is read on lA, where r ∈ {P1, . . . , Pk}, then m is written on lr, and
r is activated.

The real model is supposed to capture the properties of the real world. The
parties may interact over the real communication model.

Definition 4.3 (Real Model). The real model is defined to be a map R : ITM∗ →
ITMG, where R : (A, P1, . . . , Pk) 7→ (V,E) is given by:

V = {C,A, P1, . . . , Pk} , and E = {(A, C)} ∪
k
⋃

i=1

{(Pi, C)} .

We formalize the environment in which a protocol is executed as a machine Z.
The environment provide the actual data used by the parties in the protocol. Let
(V,E) = R(A, P1, . . . , Pk). Then we write Z(R(A, P1, . . . , Pk)) for the ITM-graph

(V ′, E′) defined by V ′ = V ∪ {Z}, and E′ = E ∪ {(Z,A)} ∪⋃ki=1{(Z, Pi)}. The
setup is illustrated in Figure 4.1.

P1 P2 P3 A

C

Z

bR

Figure 4.1: The real model with a protocol (P1, P2, P3), communication model C,
real adversary A, and environment Z. The environment outputs a single bit bR.

4.3 The Ideal Model

The ideal model formalizes protocol execution in an ideal world where there is an
ideal functionality, i.e., a trusted party that performs some service to the parties.
The trusted party is simply an interactive Turing machine executing a program,
and it communicates with the parties through the ideal communication model.

58 The Universally Composable Security Framework

The ideal communication model below captures the fact that the adversary may
decide if and when it would like to deliver a message from the ideal functionality
to a party, but it cannot read the contents of the communication between parties
and the ideal functionality.

Definition 4.4 (Ideal Communication Model). An ideal communication model
CI is a machine with a link lPi , to Pi for i = 1, . . . , k, and links lF , and lS to an
ideal functionality F and an ideal adversary S respectively. Its program is defined
as follows.

• If a message m is read on ls, where s ∈ {P1, . . . , Pk}, then (s,m) is written
on lF and F is activated.

• If a message (s,m) written on lF is returned unaltered, m is written on ls.

If not, any string read from lF is interpreted as a list ((r1,m1), . . . , (rt,mt)),
where ri ∈ {S, P1, . . . , Pk}. For each mi a random string τi ∈ {0, 1}κ dis-
tinct from 1, . . . , k, and F is chosen, and (ri,mi) is stored under τi. Then
((r1, |m1|, τ1), . . . , (rt, |mt|, τt)), where |mi| is the bit-length of mi, is written
to lS and S is activated.

• Any string read from lS is interpreted as a pair (b, τ), where b ∈ {0, 1} and τ
is an arbitrary string. If b = 1 and (ri,mi) is stored in the database under the
index τ , mi is written on lri and ri is activated. Otherwise (S, τ) is written
to lF and F is activated.

Without loss we assume that the ideal adversary S always requests the messages
mi for which it is given (S, |mi|, τi). Thus, we sometimes say that S receives a list
((S,m), {(ri, |mi|, τi)}) when in reality (S,m) is (S, |m|, τ) for some τ . We also
simply say that S hands (F ,m) to CI , when we should say that it hands (0,F ,m).

A dummy party is a machine that given two links writes any message from one
of the links on the other. There may be many copies of the dummy party. Following
Canetti we write P̃ , for dummy parties. We write P̃ ∗ for the set of finite sequences
of dummy machines.

The ideal model below captures the setup one wishes to realize, i.e., the envir-
onment may interact with the ideal functionality F , except that the adversary S
has some control over how the communication model behaves.

Definition 4.5 (Ideal Model). The ideal model is defined to be a map I : ITM2×
P̃ ∗ → ITMG, where I : (F ,S, P̃1, . . . , P̃k) 7→ (V,E) is given by:

V = {CI ,F ,S, P̃1, . . . , P̃k} , and E = {(S, CI), (CI ,F)} ∪
k
⋃

i=1

{(P̃i, CI)} .

If π̃ = (P̃1, . . . , P̃k), we write I(S, π̃F) instead of I(F ,S, P̃1, . . . , P̃k) to simplify
notation.

The Hybrid Model 59

Let (V,E) = I(F ,S, P̃1, . . . , P̃k). Similarly, to the real model we consider an
environment Z and write Z(I(F ,S, P̃1, . . . , P̃k)) for the ITM-graph (V ′, E′) defined

by V ′ = V ∪ {Z}, and E′ = E ∪ {(Z,S)} ∪⋃ki=1{(Z, P̃i)}. The setup is illustrated
in Figure 4.2. For simplicity we say that an ideal functionality “ignores an input”
when it returns the input to the sender immediately. We also assume that inputs on
forms that are not explicitly considered as inputs are ignored. The same convention
is used for protocols. This simplifies the description of both ideal functionalities
and protocols.

P̃1 P̃2 P̃3 S

CIF

Z

bI

Figure 4.2: The ideal model with dummy parties (P̃1, P̃2, P̃3), ideal communica-
tion model CI , ideal functionality F , ideal adversary S, and environment Z. The
environment outputs a single bit bI .

4.4 The Hybrid Model

A hybrid model is a mix between a number of ideal and real models, and captures
the execution of a real world protocol with access to some ideal functionalities. It is
also a tool to modularize security proofs. It may be viewed as if we “glue” a number
of ideal and real models onto an original real model.

Definition 4.6 (Hybrid Model). Suppose that we are given (V,E) = R(A, π),

π = (P1, . . . , Pk). Let (Vj , Ej) = I(Sj , π̃Fjj), π̃j = (P̃j,1, . . . , P̃j,k) for j = 1, . . . , t,
and (Vj , Ej) = R(Aj , πj), πj = (Pj,1, . . . , Pj,k) for j = t+ 1, . . . , s.

We denote by H(A(S1,...,St,At+1,...,As), π(π̃
F1
1 ,...,π̃

Ft
t ,πt+1,...,πs)) the hybrid model

60 The Universally Composable Security Framework

defined as the ITM-graph (V ′, E′), where

V ′ = V ∪
s
⋃

j=1

Vj , and

E′ = E ∪
s
⋃

j=1

Ej ∪
t
⋃

j=1

(

{(Sj ,A)} ∪
k
⋃

i=1

{(Pi, P̃j,i)}
)

∪
s
⋃

j=t+1

(

{(Aj ,A)} ∪
k
⋃

i=1

{(Pi, Pj,i)}
)

.

Similarly as above we consider an environment Z and write

Z(H(A(S1,...,St,At+1,...,As), π(π̃
F1
1 ,...,π̃

Ft
t ,πt+1,...,πs)))

to denote the ITM-graph (V ′′, E′′) defined by V ′′ = V ′ ∪ {Z}, and E′′ = E′ ∪
{(Z,A)} ∪⋃ki=1{(Z, Pi)}. Note that all real subprotocols πj , for j = t + 1, . . . , s,
above may be integrated into the original real protocol π. Thus, a hybrid model
with no ideal functionalities involved is equivalent to a real model, except that it
may use several communication models. One may either augment the definition of
a real model to allow this, or only use communication models with the property
that two communication models can be simulated using a single communication
model. The real communication model above, Definition 4.2, has this property. A
hybrid model is illustrated in Figure 4.1.

The concept of hybrid models is generalized in the natural way, e.g. we write

H(A(A
S11
1 ,A

S21
2), π(π

π̃F
11

1 ,π
π̃F
21

2)) for a hybrid model that executes two subprotocols,
where each subprotocol has access to a separate copy of the ideal functionality F .
Some care needs to be taken when defining the adversary for such models. If an
adversary corrupts a party, it is reasonable in our applications that it automatically
corrupts all its sub-parties that are involved in subprotocols. We remark that this
rule may be relaxed in other settings, e.g. it may be assumed that some subprotocol
is executed on a smartcard that can not be corrupted.

Remark 4.7. In protocols in the real world it is often the case that one party waits
for some input from another party. When we model such a party or such an
ideal functionality we sometimes say that it “waits” until some event occurs or for
some input. Since at most one party is active, this can not be interpreted literally.
Instead, we assume that the party or ideal functionality checks if the event occurred
and if not activates the adversary, e.g. by sending the empty message to itself.
When the party is activated again execution starts at the point it was left off.

4.5 Corruption of Parties

Intuitively, a party is corrupted if it is under the control of the adversary, and
adversary should be able to corrupt parties in each of the three models described

Corruption of Parties 61

P̃1 P̃2 P̃3

CI
S

F

P1 P2 P3 A

C

Z

bH

Figure 4.3: The hybrid model with a protocol (P1, P2, P3), communication model
C, real adversary A, dummy parties (P̃1, P̃2, P̃3), ideal functionality F , ideal sub-
adversary S, and environment Z. The environment outputs a single bit bH .

above. We describe one possible formalization of this.

We assume that the execution of any model starts with the unique adversary
linked to the environment activated, and formalize corruptions by requiring a cer-
tain behavior of communication models, real parties, and dummy parties.

If in the hybrid model a party is corrupted, then so should all its subparties and
super parties as well. Furthermore, their history tapes and the control over their
future execution should be given to the adversary.

Denote by links(Pi) the set of links of a party Pi. We consider first the problem
of collecting the history tapes of the corrupted party and its superparties and
subparties.

When a party Pi receives a message (corrupt) on a link ls 6= lZ it does the
following. It initializes a string hhistory with the contents of its history tape. On
each link lt ∈ links(Pi) \ {ls, lC , lZ}, in some canonical order, it writes (corrupt),
waits until a string (history, h) is returned on lt, and appends h to hhistory. Then it
writes (history, hhistory) on the link ls. We also assume that a party Pi never writes
(corrupt) or (history, h) for any h on any link if it has not received (corrupt) on
a link ls 6= lZ . This prohibits the environment or a party to corrupt other parties
or itself.

Finally, from this point on it behaves as follows. If Pi receives a message on the
form (RemoteSend, s,m) on the link ls 6= lZ it writes m on the link ls. If a message
m on any other form is received on a link ls it writes (A, s,m) on the link to C.

62 The Universally Composable Security Framework

This gives the adversary the control over the corrupted party’s links. To avoid that
Z or some other party controls the links of another party, we also assume that no
party ever writes (RemoteSend, s,m) with any s and m on any link unless it has
already received (Corrupt) on a link ls 6= lZ .

The requirement on the ideal model follows by replacing Pi with P̃i, A with
S, and C with CI above, except that (corrupt) is written also on lCI . The reason
we require interaction with the ideal communication model is that each ideal func-
tionality should be informed each time one of its dummy parties is corrupted. We
ensure this as follows. We require that each copy CI of the ideal communication
model on input (corrupt) on a link ls 6= lS writes (corrupt, s) on the link lF to
its ideal functionality. Then it waits until (corrupt, s) is returned from F and
then writes (history, ∅) on ls. If F writes any other message on lF the message is
simply returned to F on lF . Note that the ideal functionality is informed, but it is
not allowed to communicate with any other party during the activation.

If all parties in a protocol are corrupted no protocol is secure in any interesting
way. Thus, the power of the adversary is limited in terms of how many parties it
may corrupt and when it they are corrupted.

We say that an adversary is static if it never receives a message on the form
(Pi, history, h) with h 6= ∅ from C or correspondingly for a dummy party P̃i and CI .
This means that every corrupted party is corrupted before it is activated. When a
party is not static it is called adaptive, since it may choose which parties to corrupt
during the execution of the protocol.

Throughout the thesis we abuse notation and simply say that a party is corrup-
ted, instead of saying that the adversary hands a corrupt message to the commu-
nication model.

4.6 The Definition of Security

We write Zz to denote that the environment Z takes auxiliary input z. The fol-
lowing definition is somewhat sloppy in that we have not defined the notion of
M-adversaries rigorously. We trust the reader to resolve this, and assume that M
is some class of adversaries.

Definition 4.8 (Secure Realization). Let F be an ideal functionality. Let π =
(P1, . . . , Pk), and let π̃j = (P̃j,i, . . . , P̃j,i) be the corresponding dummy parties for
Fj, for j = 1, . . . , t.

Then π(π̃
F1
1 ,...,π̃

Ft
t) securely realizes π̃F with regards to M-adversaries if for all

M-adversaries A(S1,...,St) there exists a M-adversary S such that for all environ-
ments Z with auxiliary input z = {zκ}

|Pr[Zz(I(S, π̃F)) = 1]− Pr[Zz(H(A(S1,...,St), π(π̃
F1
1 ,...,π̃

Ft
t))) = 1]|

is negligible in the security parameter κ. Since the dummy parties merely play the
role of handles for the links and keepers of the history of the messages that were

The Composition Theorem 63

transmitted on the link we also say that π realizes F in the (F1, . . . ,Ft)-hybrid
model.

4.7 The Composition Theorem

Canetti [41] proves a powerful composition theorem. Loosely speaking it says that
if a protocol π securely realizes some functionality F , then the protocol can be used
instead of the ideal functionality regardless of how the functionality F is employed.

The general composition theorem can handle polynomially many instances of
a constant number of ideal functionalities, but we only need the following weaker
special case.

Theorem 4.9 (Composition Theorem). Suppose that π(π̃
F1
1 ,...,π̃

Ft
t) securely real-

izes π̃F , and that π
(π̃

Fi1
i1 ,...,π̃

Fiti
iti

)

i securely realizes π̃Fii , for i = 1, . . . , l, with regards
to M-adversaries, and assume that l is a constant.

Then π(π
(π̃

F11
11

,...,π̃
F1t1
1t1

)

1 ,...,π
(π̃

Fl1
l1

,...,π̃
Fltl
ltl

)

l
,π̃

Fl+1
l+1

,...,π̃
Ft
t) securely realizes π̃F with re-

gards to M-adversaries.

Note that the hybrid protocol can be transformed into a hybrid protocol in the
(F11, . . . ,F1t1 , . . . ,Fl1, . . . ,Fltl ,Fl+1, . . . ,Ft)-hybrid model by contracting all the
real subparties linked to each party linked to the environment. Thus, the theorem
is in fact very general.

Proof of Theorem 4.9. For completeness we give a simple proof of the theorem. A
proof of the more general statement can be found in Canetti [41].

If the theorem is false there exists an M-adversary

AH = A(A
(S11 ,...,S1t1

)

1 ,...,A
(Sl1,...,Sltl

)

l ,Sl+1,...,St)

such that for each ideal adversary S there exists an environment Z with auxiliary
input z = {zκ} such that

|Pr[Zz(H(AH, π
(π

(π̃
F11
11 ,...,π̃

F1t1
1t1

)

1 ,...,π
(π̃

Fl1
l1

,...,π̃
Fltl
ltl

)

l ,π̃
Fl+1
l+1 ,...,π̃

Ft
t))) = 1]

− Pr[Zz(I(S, π̃F)) = 1]|

is non-negligible, which implies that

|Pr[Zz(H(AH, π
(π

(π̃
F11
11 ,...,π̃

F1t1
1t1

)

1 ,...,π
(π̃

Fl1
l1

,...,π̃
Fltl
ltl

)

l ,π̃
Fl+1
l+1 ,...,π̃

Ft
t))) = 1]

− Pr[Zz(H(AH, π
π̃
F1
1 ...,π̃

Ft
t))) = 1]|

64 The Universally Composable Security Framework

is non-negligible, which by a standard hybrid argument implies that there exists a
fixed 0 < i ≤ l such that

|Pr[Zz(H(AH, π
(π

(π̃
F11
11

,...,π̃
F1t1
1t1

)

1 ,...,π
(π̃

Fi1
i1

,...,π̃
Fiti
iti

)

i ,π̃
Fi+1
i+1 ,...,π̃

Ft
t))) = 1]

− Pr[Zz(H(AH, π
(π

(π̃
F11
11

,...,π̃
F1t1
1t1

)

1 ,...,π
(π̃

Fi−1,1
i−1,1

,...,π̃
Fi−1ti−1
i−1,ti−1

)

i−1 ,π̃
Fi
i ,...,π̃

Ft
t))) = 1]|

is non-negligible.
If we denote by Z ′ the environment that simulates all machines in the latter

model except Fi, Si, π̃i, and their corresponding ideal communication model, then

we conclude that there exists a M-adversary A(Si1,...,Siti)
i such that for each M-

adversary Si there exists an environment Z ′ with auxiliary input z = {zκ}κ∈N such
that

|Pr[Z ′z(H(A(Si1,...,Siti)
i , π

(π̃
Fi1
i1 ,...,π̃

Fiti
iti

)

i)) = 1]− Pr[Z ′z(I(Si, π̃Fii)) = 1]|

is non-negligible. This contradicts the security of the hybrid protocol π
(π̃

Fi1
i1 ,...,π̃

Fiti
iti

)

i

and the theorem follows. �

Remark 4.10. It is interesting to note that the key idea of the composition theorem
can be presented in such a simple way compared to the complex proof of the more
general statement.

Part II

Mix-Nets

65

Chapter 5

Preliminaries

In this chapter we first give a more detailed account of previous and related work
on mix-nets. Then we introduce additional notation and introduce some ideal
functionalities used only in the second part of the thesis.

5.1 Previous and Related Work On Mix-Nets

Although electronic elections perhaps is the most spectacular application of mix-
nets, Chaum proposes the notion as a general means for a group of senders to send
messages without revealing their identity, and then presents electronic elections as
an interesting application.

Chaum’s original “anonymous channel” [45] enables a sender to securely send
mail to a receiver anonymously, and also to securely receive mail from this recipient
without revealing the sender’s identity. This type of application is also considered by
Ogata, Kurosawa, Sako, and Takatani [120]. Several authors have refined Chaum’s
idea and used it to construct electronic election schemes, e.g. Fujioka, Okamoto, and
Ohta [66], Park, Itoh, and Kurosawa [122], Sako and Killian [134], and Niemi and
Renvall [117]. In all such constructions the mix-net is used to ensure the anonymity
of the voters. Less common applications of mix-nets are to ensure privacy in the
construction of electronic cash systems as proposed by Jakobsson and M’Raihi [92],
or for general function evaluation as proposed by Jakobsson and Juels [89]. Thus,
a mix-net is a useful primitive in constructing cryptographic protocols, and of par-
ticular importance in the construction of electronic election systems.

Abe gives an efficient construction of a general mix-net [2], and argues about
its properties. Jakobsson has written (partly with Juels) a number of more general
papers on the topic of mixing [87, 86, 88] also focusing on efficiency, of which the
first appeared at the same time as Abe’s construction.

An alternative approach to achieve robustness was proposed by Jakobsson and
Juels [90] and further refined by Golle et al. [79]. They give an optimistic pro-
tocol that is more efficient than protocols in which each mix-server proves in zero-

67

68 Preliminaries

knowledge that it performs its computations correctly. Another approach is to
relax the requirement on correctness such that a mix-server could conceivably cor-
rupt the output on a small scale, but not on a larger scale. This idea was proposed
by Jakobsson, Juels and Rivest [91].

There are two known efficient approaches to proving knowledge of a witness of
the correctness of the transformation computed by a mix-server. These are intro-
duced by Neff [112, 113] and Furukawa et al. [70, 69, 68] respectively. Groth [80]
generalizes Neff’s protocol to form an abstract protocol for any homomorphic
cryptosystem. In Chapter 9 we give an alternative approach originally presented in
[149, 148]. In independent work, Peng, Boyd, and Dawson [124] gave yet another
approach, but they do not prove that their construction is a proof of knowledge,
which seems to be an essential property.

There has also been a surprisingly large number of successful attacks on mix-
nets. Desmedt and Kurosawa [59] describe an attack on a protocol by Jakobsson [87]
based on the fact that mix-servers are not forced to use the output of the previous
mix-server in the mixing-chain as input. Mitomo and Kurosawa [108] exhibit a
weakness in another protocol by Jakobsson [86]. Pfitzmann has given some general
attacks on mix-nets [126, 125], based on the malleability of cryptosystems. Michels
and Horster give additional attacks in [107].

In Chapter 6 we describe some attacks, taken from Wikström [146], against
a protocol by Golle et al. [79]. We also give attacks against the protocols by
Jakobsson [86] and Jakobsson and Juels [90]. Abe and Imai [5] have independently
found related attacks.

Several informal and ad hoc definitions of security are proposed in the literature.
The first formal definition is given by Abe and Imai [5], but as far as we know there
exists no protocol that is shown to satisfy this definition. Nguyen, Safavi-Naini
and Kurosawa [114, 115] translate [70] to the Paillier cryptosystem and provide
non-standard definitions of security of a proof of a shuffle. They do not provide a
definition of security of a mix-net.

The first mix-net with a complete security proof with regards to a rigorous
definition is given in Wikström [147]. The definitions in Chapter 7 and the zero-
knowledge proof of knowledge of the cleartext of an El Gamal cryptotext in Chapter
10 are taken from this paper. The construction in [147] is only efficient as long as
the number of mix-servers is small. This deficiency is eliminated in different ways
in our constructions in Chapter 8 and Chapter 11. These constructions are taken
from Wikström [148] and Wikström and Groth [150] respectively. We remark that
independently of us, Camenisch and Mityagin [37] claim to reach similar results as
those in [148].

5.2 Additional Notation

Throughout the second part of the thesis S1, . . . , SN denote senders andM1, . . . ,Mk

mix-servers. All parties are modeled as interactive Turing machines with a history

Some Ideal Functionalities 69

tape. This means that each machine records its new state on a special history tape
each time a state transition takes place. Thus, when a machine is corrupted its
entire execution history is available to the adversary unless the machine erases the
history tape. We abuse notation and use Si and Mj to denote both the machines
themselves and their identity. We denote by Sort the algorithm that given a list of
strings as input outputs the same set of strings in lexicographical order. We denote
by k′ = ⌈(k + 1)/2⌉ the number of mix-servers needed for majority.

We assume that all protocols always verify that their input is on the required
form. This is an important part of any cryptographic protocol, since the security
claims only holds under this assumption. For an explicit example of what can go
wrong if this rule is not taken seriously we refer the reader to the third attack
in Chapter 6. There is a simple trick to avoid verifications during mixing if the
mix-net is employed in some particular groups. This trick is described in detail in
Wikström [145]. We use this trick in Chapter 11, but we do not discuss it explicitly.

5.3 Some Ideal Functionalities

In this section we introduce some ideal functionalities that we assume to exist
throughout the second part of the thesis. In this thesis we do not study how
to securely realize these functionalities in the UC-framework. This means that
presently one must invoke general methods to securely realize these functionalities.
Canetti, Lindell, Ostrovsky, and Sahai [44] prove that essentially any functionality
can be securely realized in a hybrid model with an ideal authenticated broadcast
channel in the common random string model. Their constructions are based on the
work Goldreich, Micali, and Wigderson [74]. The common random string model
assumes that all parties have access to a randomly generated string. However, there
are efficient secure realizations in other security models than the UC-framework that
are a natural starting point to securely realize the functionalities below. We point
to some interesting work below each ideal functionality.

All mix-net constructions given in the literature assume the existence of an
authenticated bulletin board, but this assumption is rarely formalized. Below we
define this notion as an ideal functionality. Recall from the previous chapter that
CI denotes the communication model.

Functionality 5.1 (Bulletin Board). The ideal bulletin board functionality,
FBB, running with parties P1, . . . , Pn and ideal adversary S proceeds as follows.
FBB holds two databases D1 and D2 indexed on integers. Initialize two counters
c1 = 0 and c2 = 0.

• Upon receiving (Pi, Write,mi), mi ∈ {0, 1}∗, from CI , store (Pi,mi) in D2 by
the index c2 in the database, set c2 ← c2 + 1, and hand (S, Input, c2, Pi,mi)
to CI .

70 Preliminaries

• Upon receiving (S, AcceptInput, c) from CI check if a tuple (Pi,mi) is stored
in the database D2 under c. If so, then store (Pi,mi) in D1 under the index
c1, set c1 ← c1 + 1, and hand (S, AcceptInput, c) to CI .

• Upon receiving (Pj , Read, c) from CI check if a tuple (Pi,mi) is stored in the
database D1 under c. If so hand ((S, Pj , Read, c, Pi,m), (Pj , Read, c, Pi,mi))
to CI . If not, hand ((S, Pj , NoRead, c), (Pj , NoRead, c)) to CI .

This definition differs from that in [147] in that the adversary is given the power
to decide if and when a message submitted for publication on the bulletin board
actually appears there.

We sometimes ignore the index c and simply say that a machine waits until a
message on a certain form appears on the bulletin board. Whenever we do so it
is assumed that the waiting party polls the bulletin board, so a message “appears”
when it is successfully received from the bulletin board (recall that the adversary
may block the delivery of a message that is contained in the database D1).

When protocols are executed with multiple verifiers it is useful to have an ideal
coin-flipping functionality.

Functionality 5.2 (Coin-Flipping). The ideal Coin-Flipping functionality, FCF,
with mix-servers M1, . . . ,Mk, and adversary S proceeds as follows. Set Jκ, = ∅ for
all κ.

• On receipt of (Mj , GenerateCoins, κ) from CI , set Jκ ← Jκ∪{j}. If |Jκ| = k,
then set Jκ ← ∅ choose c ∈ {0, 1}κ randomly and hand
((S, Coins, c), {(Mj, Coins, c)}kj=1) to CI .

We sometimes use the coin-flipping functionality as if it outputs elements in
specific groups. Whenever we do this there is a standard way to transform a
random bit-string of suitable length into an element in the group. For example,
if we compute in the subgroup Gq of squares modulo a prime 2q + 1, a random
element in Zq can be transformed into a random element in Gq by simply squaring
s modulo 2q + 1.

We also need an ideal functionality that generates an RSA-modulus N and
random elements g,h ∈ QRN.

Functionality 5.3 (RSA Common Reference String). The ideal RSA Com-
mon Reference String, FRSA, with mix-servers M1, . . . ,Mk and ideal adversary S
proceeds as follows. Generate two random κN/2-bit primes p and q such that
(p − 1)/2 and (q − 1)/2 are prime and compute N = pq. Then choose g and h

randomly in QRN. Finally, hand ((S, RSA,N,g,h), {(Mj, RSA,N,g,h)}kj=1) to CI .
There are special purpose protocols [28, 65] for generating a joint RSA-modulus,

but these are not analyzed in the UC-framework, so for technical reasons we cannot
apply these directly.

In several places in the thesis we need an ideal zero-knowledge proof of knowledge
functionality that can be parameterized by any NP-relation R.

Some Ideal Functionalities 71

Functionality 5.4 (Zero-Knowledge Proof of Knowledge). Let LR be a lan-
guage given by a binary relation R. The ideal zero-knowledge proof of knowledge
functionality FRZK of a witness w to an element x ∈ LR, running with provers
P1, . . . , Pk, verifiers V1, . . . , Vl and ideal adversary S proceeds as follows

• Upon receipt of (Pi, Prover, x, w) from CI , store w under the tag (Pi, x) and
ignore further messages from Pi. Let I be the set of indices j such that (Pi, x)
is stored under the tag Vj . Delete these entries and hand
((S, Pi, Prover, x, R(x,w)), {(Vj , Verifier, Pi, x, R(x,w))}j∈I) to CI .

• Upon receipt of (Vj , Question, Pi, x) from CI such that nothing is stored
under the tag Vj , check if there is a witness w stored under the tag (Pi, x).
If so, hand ((S, Vj , Verifier, Pi, x, R(x,w)), (Vj , Verifier, Pi, x, R(x,w))) to
CI . If not, store (Pi, x) under the tag Vj .

Remark 5.5. Note that each prover is allowed to prove at most one statement, and
that a verifier only is allowed to verify one proof at a time. This is to simplify our
analysis.

Chapter 6

Some Practical Attacks On Mix-Nets

In this chapter we motivate a rigorous treatment of mix-nets. We do this by describ-
ing several independent practical attacks against the mix-net proposed by Golle,
Zhong, Boneh, Jakobsson, and Juels [79] at Asiacrypt 2002. Our attacks illus-
trate that a protocol without a rigorous definition of security and a careful and
detailed security proof should not be trusted, even if it is proposed by professional
cryptographers in one of the major conferences.

The first attack breaks the privacy of any given sender without corrupting any
mix-server. This attack is related to an attack of Pfitzmann [126, 125]. The second
attack is similar to the attack of Desmedt and Kurosawa [59] and breaks the privacy
of all senders. It requires that all senders are honest and that the last mix-server
is corrupted. The third attack may be viewed as a novel combination of the ideas
of Anderson [6], Lim and Lee [99] and Pfitzmann [126, 125]. Johan Håstad inspired
us to find this attack. The attack breaks the privacy of any given sender and
requires that the first and last mix-servers are corrupted. This attack breaks also
Jakobsson [86], including the fixed version of Mitomo and Kurosawa [108]. The
fourth attack breaks the robustness in a novel way. It requires corruption of some
senders and the first mix-server. This attack breaks also the hybrid mix-net of
Jakobsson and Juels [90].

The attacks in this paper are taken from Wikström [146]. In independent work
Abe and Imai [5] report an attack similar to our first attack. Their paper predates
[146], but not the publicly available technical report [144] referenced in [5]. We
remark that Abe and Imai also give an attack against the protocol of Jakobsson
and Juels [90] that is unrelated to our attacks.

6.1 A Review of “Optimistic Mixing for Exit-Polls”

We present a short review of the relevant parts of the protocol of Golle et al. [79].
The description given here is as close as possible to the original, but we avoid details

73

74 Some Practical Attacks On Mix-Nets

irrelevant to our attacks and change some notation to simplify the exposition of the
attacks. For details we refer the reader to [79].

6.1.1 Parties and Setup

The protocol assumes the existence of a bulletin board. The parties of the protocol
are N senders, and a relatively small number of mix-servers, M1, . . . ,Mk. Each
sender encrypts its message, and writes it on the bulletin board. The mix-servers
then execute the mix-net protocol.

The protocol employs an El Gamal [71] cryptosystem in a subgroup Gq of prime
order q of the multiplicative group modulo a prime p, i.e. Z∗p. The El Gamal
cryptosystem is described in Section 3.6.

In the setup stage each mix-server Mj is somehow given a random xj ∈ Zq,
and yl = gxl for l 6= j. The value xj is also shared with the other mix-servers
using a threshold verifiable secret sharing scheme. Golle et al. [79] discuss different
variants for sharing keys, but we choose to present a simple variant, since it has
no impact on our attacks. If any mix-server Mj is deemed to be cheating the
other mix-servers can verifiably reconstruct its private key xj . The mix-servers

can also compute y =
∏k
j=1 yj , which gives a joint public key (g, y), with secret

corresponding private key x =
∑k

j=1 xj .
A practical advantage of the mix-net is that it can be used to execute several

mix-sessions using the same set of keys, i.e. the El Gamal keys are not changed
between mix-sessions. To be able to do this the proofs of knowledge below are
bound to a mix-session identifier id that is unique to the current mix-session.

6.1.2 Sending a Message to the Mix-Net

A typical honest sender, Alice, computes the following to send a message m to the
mix-net:

(u, v) = E(g,y)(m), w = h(u, v), and

α = [E(g,y)(u), E(g,y)(v), E(g,y)(w)] = [(µ1, µ2), (ν1, ν2), (ω1, ω2)] ,

where h : {0, 1}∗ → Gq is a hash function modeled by a random oracle.
Then Alice computes a zero-knowledge proof of knowledge πid(u, v, w), in the

random oracle model of u, v and w, which depends on the current mix-session
identifier id. Finally, Alice writes (α, πid(u, v, w)) on the bulletin board. We reserve
the notation above for the tuple of Alice and use it in the attacks below.

6.1.3 Execution of the Mix-Net

First the mix-servers remove any duplicate inputs to the mix-net and discard input
tuples that contain components not in the subgroup Gq. The mix-servers then
discard all input tuples where the proof of knowledge is not valid for the current

A Review of “Optimistic Mixing for Exit-Polls” 75

mix-session. Let L0 = {[(a0,i, b0,i), (c0,i, d0,i), (e0,i, f0,i)]}Ni=1 be the resulting list of
triples of El Gamal pairs. The mixing then proceeds in the following stages.

First Stage: Re-Randomization and Mixing

This step proceeds as in all re-randomization mix-nets based on El Gamal. One by
one, the mix-servers M1, . . . ,Mk randomize all the inputs and their order. (Note
that the components of triples are not separated from each other during the re-
randomization.) In addition, each mix-net must give a proof that the product of
the plaintexts of all its inputs equals the product of the plaintexts of all its outputs.
The protocol proceeds as follows.

1. Each mix-server Mj reads from the bulletin board the list Lj−1 output by the
previous mix-server.

2. The mix-server then chooses rji, sji, tji ∈ Zq, for i = 1, . . . , N , randomly and
computes the re-randomized list

{[(grjiaj−1,i, y
rjibj−1,i), (g

sjicj−1,i, y
sjidj−1,i), (g

tjiej−1,i, y
tjifj−1,i)]}Ni=1

of triples. The above list of triples is then randomly permuted, and the
resulting list: Lj = {[(aj,i, bj,i), (cj,i, dj,i), (ej,i, fj,i)]}Ni=1 is written on the
bulletin board.

3. Define aj =
∏N
i=1 aj,i, and define bj, cj , dj , ej, and fj correspondingly.

The mix-server proves in zero-knowledge that logg aj/aj−1 = logy bj/bj−1,
logg cj/cj−1 = logy dj/dj−1, and logg ej/ej−1 = logy fj/fj−1. This implies
that Dx(aj , bj) = Dx(aj−1, bj−1), and similarly for the pairs (cj , dj) and
(ej , fj), i.e. the component-wise product of the inner triples remains un-
changed by the mix-server.

Remark 6.1. Since logy bj/bj−1 = logg aj/aj−1 =
∑N

i=1 rji, and Mj knows the
latter sum, the proof in Step 3) can be implemented by a zero-knowledge proof
of knowledge in the random oracle model, and similarly for the pairs (cj , dj), and
(ej , fj).

Second Stage: Decryption of the Inputs

1. A quorum of mix-servers jointly decrypt each triple of cryptotexts in Lk to
produce a list L on the form L = {(ui, vi, wi)}Ni=1. Since the method used to
do this is irrelevant to our attacks, we do not present it here.

2. All triples for which wi = h(ui, vi) are called valid.

3. Invalid triples are investigated according to the procedure described below.
If the investigation proves that all invalid triples are benign (only senders
cheated), we proceed to Step 4. Otherwise, the decryption is aborted and we
continue with the back-up mixing.

76 Some Practical Attacks On Mix-Nets

4. A quorum of mix-servers jointly decrypt the cryptotexts (ui, vi) for all valid
triples. This successfully concludes the mixing. The final output is defined
as the set of plaintexts corresponding to valid triples.

Special Step: Investigation of Invalid Triples

The mix-servers must reveal the path of each invalid triple through the various
permutations. For each invalid triple, starting from the last server, each server
reveals which of its inputs corresponds to this triple, and how it re-randomized this
triple. One of two things may happen:

- Benign case (only senders cheated): if the mix-servers successfully produce
all such paths, the invalid triples are known to have been submitted by users.
The decryption resumes after the invalid triples have been discarded.

- Serious case (one or more servers cheated): if one or more servers fail to
recreate the paths of invalid triples, these mix-servers are accused of cheating
and replaced, and the mix-net terminates producing no output. In this case
the inputs are handed over to the back-up mixing procedure below.

Back-Up Mixing

The outer-layer encryption of the inputs posted to the mix-net is decrypted by a
quorum of mix-servers. The resulting list of inner-layer cryptotexts becomes the
input to a standard re-encryption mix-net based on El Gamal (using, for example
Neff’s scheme described in [112]). Then the output of the standard mix-net is given
as output by the mix-net.

Remark 6.2. It is infeasible to find two lists {(ui, vi)}Ni=1 6= {(u′i, v′i)}Ni=1 such that
∏N
i=1 h(ui, vi) =

∏N
i=1 h(u

′
i, v
′
i), if the product is interpreted in a group where

the discrete logarithm problem is hard. This is stated as a theorem by Wag-
ner [143], who credits Wei Dai with this observation, and appears as a lemma
in Golle et al. [79].

During the re-encryption and mixing stage each mix-server proves in zero-
knowledge that it leaves the component-wise product (

∏

ui,
∏

vi,
∏

wi) of the in-
ner triples (ui, vi, wi) unchanged, but individual triples may still be corrupted.
Then invalid triples are traced back. This leaves only valid inner triples in the
output and the proofs of knowledge of each server are used to conclude that the
component-wise product of these valid inner triples was left unchanged by the mix-
net. Golle et al. [79] then refer to the lemma and conclude that the set of valid
triples in the output is identical to the set of valid triples hidden in the double
encrypted input to the mix-net.

Unfortunately, this intuitively appealing construction is flawed as we explain in
Section 6.5. Furthermore, our second attack in Section 6.3 shows that it is possible
to behave maliciously without changing the set of inner triples.

First Attack: Honest Mix-Servers 77

The goal of the adversary is to break the privacy of our typical honest sender
Alice and to alter the output without detection. Each of our attacks illustrates a
separate weakness of the protocol.

6.2 First Attack: Honest Mix-Servers

We show that the adversary can break the privacy of the typical sender Alice.
All that is required is that it can send two messages to the mix-net which is a
natural assumption in most scenarios. In the following we use the notation for the
cryptotext of Alice introduced in Section 6.1.2. The attack is illustrated in Figure
6.1, and the details are as follows. Recall that [(µ1, µ2), (ν1, ν2), (ω1, ω2)] is the
tuple sent by Alice. The adversary does the following:

1. It chooses δ and γ randomly in Zq, and computes:

wδ = h(µδ1, µ
δ
2), αδ = (E(g,y)(µ

δ
1), E(g,y)(µ

δ
2), E(g,y)(wδ)) , and

wγ = h(µγ1 , µ
γ
2), αγ = (E(g,y)(µ

γ
1), E(g,y)(µ

γ
2), E(g,y)(wγ)) .

Then it computes the corresponding proofs of knowledge πid(µδ1, µ
δ
2, wδ) and

πid(µγ1 , µ
γ
2 , wγ). This gives the adversary two perfectly valid input tuples

(αδ, πid(µδ1, µ
δ
2, wδ)), (αγ , πid(µ

γ
1 , µ

γ
2 , wγ)), that it sends to the bulletin board

(possibly by corrupting two senders).

2. It waits until the mix-net has successfully completed its execution. During the
execution of the mix-net the mix-servers first jointly decrypt the “outer layer”
of the double encrypted messages. After benign tuples have been removed
the result is a list of valid triples

((u1, v1, w1), . . . , (uN , vN , wN)). (6.1)

The final output of the mix-net is the result of decrypting each inner El Gamal
pair (ui, vi) and results in a list of cleartext messages (m1, . . . ,mN).

3. It computes the list

(m′1, . . . ,m
′
N) = (m

δ/γ
1 , . . . ,m

δ/γ
N) ,

and then finds a pair (i, j) such that mi = m′j. From this it concludes that

with very high probability mj = uγ . Then it computes z = m
1/γ
j , and finds

a triple (ul, vl, wl) in the list (6.1) such that z = ul. Finally it concludes that
with very high probability ml was the message sent by Alice to the mix-net.

Remark 6.3. At additional computational cost it suffices for the adversary to send 2
messages to break the privacy of t senders. Suppose for example that the adversary
wants to break the privacy also of Bob and Camilla.

78 Some Practical Attacks On Mix-Nets

L0

...

...

...

...

...

(µ11,µ12),E(v1),E(w1)

E(µδ11),E(µδ12),E(wδ)

E(µγ11),E(µγ12),E(wγ)

(µN1,µN2),E(vN),E(wN)

Mix
&

Decrypt

L

...

...

...

...

(uπ−1(1),vπ−1(1),wπ−1(1))

(µγ11,µ
γ
12,wγ)

(µδ11,µ
δ
12,wδ)

(u1,v1,w1)

(uπ−1(N),vπ−1(N),wπ−1(N))

Decrypt

cleartext

...

...

...

...

mπ−1(1)

uγ1

uδ1

m1

mπ−1(N)

...

...

...

...

m
δ/γ

π−1(1)

uδ1

u
δ2/γ
1

m
δ/γ
1

m
δ/γ

π−1(N)

Figure 6.1: The figure illustrates the first attack. The leftmost column L0 is the
list of tuples with valid proofs of knowledge of the inner triple, the middle column
L is the output of the outer decryption stage, and the rightmost columns are the
cleartext and the exponentiated cleartexts respectively. The adversary follows the
arrows to identify the cleartext m1 belonging to Alice.

We assume that Bob sent m′ encrypted as

(u′, v′) = E(g,y)(m
′), w′ = h(u′, v′), and

α′ = [E(g,y)(u
′), E(g,y)(v

′), E(g,y)(w
′)] = [(µ′1, µ

′
2), (ν

′
1, ν
′
2), (ω

′
1, ω
′
2)] ,

and that Camilla sent m′′ encrypted as

(u′′, v′′) = E(g,y)(m
′′), w′′ = h(u′′, v′′), and

α′′ = [E(g,y)(u
′′), E(g,y)(v

′′), E(g,y)(w
′′)] = [(µ′′1 , µ

′′
2), (ν′′1 , ν

′′
2), (ω′′1 , ω

′′
2)] ,

The first step of the attack is unchanged except that the adversary replaces (µ1, µ2)
by (µη1(µ′1)

η′µ′′1 , µ
η
2(µ′2)

η′µ′′2), where η, η′ ∈ Zq are randomly chosen. The adversary
proceeds with the attack as before until it has computed z.

At this point in the original attack the adversary identifies an inner triple
(ul, vl, wl) such that z = ul and concludes that ml was the message sent by Alice.

In the generalized attack the adversary instead identifies three triples (ul, vl, wl),

(ul′ , vl′ , wl′) and (ul′′ , vl′′ , wl′′) such that z = uηl u
η′

l′ ul′′ . Then it concludes that ml

was the message sent by Alice, ml′ the message sent by Bob, and ml′′ the message
sent by Camilla.

The approach is generalized to higher dimensions in the natural way to break
the privacy of t senders.

Second Attack: Honest Senders and One Corrupt Mix-Server 79

6.2.1 Why the Attack is Possible

The attack exploits two different flaws of the protocol. The first is that the sender
of a message, e.g. Alice, proves only knowledge of the inner El Gamal pair (u, v)
and the hash value w = h(u, v), and not knowledge of the message m. The second
flaw is that identical El Gamal keys are used for both the inner and outer El Gamal
system.

Anybody can compute a single encrypted message (µδ1, µ
δ
2) = (grδ, yrδuδ) =

E(g,y)(u
δ, rδ) of a power uδ of the first component u of the inner El Gamal pair

(u, v) of the triple α sent by Alice. Anybody can also compute a proof of knowledge
of (µδ1, µ

δ
2) and wδ = h(µδ1, µ

δ
2) (and similarly for (µγ1 , µ

γ
2) and ωγ).

The first flaw allows the adversary to input triples of El Gamal pairs with such
proofs of knowledge to the mix-net. The second flaw allows the adversary to use
the mix-net to decrypt (µδ1, µ

δ
2), and thus get its hands on uδ (and similarly for

uγ). The adversary can then identify (u, v) as the inner El Gamal pair of Alice and
break her privacy.

6.3 Second Attack: Honest Senders and One Corrupt

Mix-Server

In this section we assume that all senders and all mix-servers, except the last mix-
server Mk, are honest. The last mix-server Mk is corrupted by the adversary and
performs the attack. The attack breaks the privacy.

To simplify our notation we write L0 = {αi}Ni=1 for the input list, where we
define αi = [(a0,i, b0,i), (c0,i, d0,i), (e0,i, f0,i)] to be the tuple sent by sender Si.
Instead of following the protocol, Mk proceeds as follows in the first stage.

1. It computes the following tuples

(a′, b′, . . . , f ′) = (ak−1/a0, bk−1/b0, . . . , fk−1/f0), and

α′1 = [(a′a0,1, b
′b0,1), (c

′c0,1, d
′d0,1), (e

′e0,1, f
′f0,1)] .

2. Then it forms the list

L′k−1 = {α′1, α2, . . . , αN} ,

i.e. a copy of L0 with the first tuple α1 replaced by α′1.

3. When Mk is supposed to re-randomize and permute the output Lk−1 of Mk−1

it instead simulates the actions of an honest mix-server on the corrupted input
L′k−1. The output list written to the bulletin board by the simulated mix-
server is denoted Lk.

4. It waits until the inner layer has been decrypted and uses its knowledge of
the permutation that relates Lk to L0 to break the privacy of all senders.

80 Some Practical Attacks On Mix-Nets

We show that the attack goes undetected, i.e. the mix-servers decrypt the inner
layer. This implies that the attack succeeds.

Firstly, consider the proof of knowledge that mix-server Mk produces during
the re-encryption and mixing stage. Define

a′k−1 = (a′a0,1)

N
∏

i=2

a0,i ,

and similarly for for b′k−1, c
′
k−1, d

′
k−1, e

′
k−1, and f ′k−1. In Step 3 above, the simu-

lated honest mix-server outputs proofs of knowledge of the following equalities of
logarithms

logg ak/a
′
k−1 = logy bk/b

′
k−1 ,

logg ck/c
′
k−1 = logy dk/d

′
k−1 , and

logg ek/e
′
k−1 = logy fk/f

′
k−1 .

By construction we have that

a′k−1 = (a′a0,1)

N
∏

i=2

a0,i = a′
N
∏

i=1

a0,i =
ak−1

a0
a0 = ak−1 ,

and similarly for bk−1, ck−1, dk−1, ek−1, and fk−1. This implies that the proof of
knowledge produced by Mk is deemed valid by the other mix-servers.

Secondly, consider the investigation of invalid inner triples. Tracing back invalid
triples is difficult to Mk, since it does not know the re-encryption exponents and
the permutation relating Lk−1 and Lk. We show that there are no invalid inner
triples. Suppose we define the sums

r =

k−1
∑

j=1

N
∑

i=1

rji, s =

k−1
∑

j=1

N
∑

i=1

sji, and t =

k−1
∑

j=1

N
∑

i=1

tji .

i.e. we form the sum of all re-encryption exponents used by all mix-servers except
the last, for the first second and third El Gamal pairs respectively. Since all mix-
servers except Mk are honest, we have

(a′, b′, c′, d′, e′, f ′) = (gr, yr, gs, ys, gt, yt) ,

which implies that α′1 is a valid re-encryption of α1. Thus Mk does not corrupt
any inner triple by simulating an honest mix-server on the input L′k−1. Since all
senders are honest and the set of inner triples hidden in L0 and L′k−1 are identical,
there are no invalid inner triples. Thus cheating is not detected.

We conclude that the mix-servers decrypt the inner triples, i.e. the privacy of
all senders is broken.

Third Attack: Two Corrupt Mix-Servers 81

6.3.1 Why the Attack is Possible

The second attack above exploits that the last mix-server Mk is not forced to take
the output Lk−1 of the next to last mix-server as input. This allows Mk to use a
slightly modified version of L0 instead, which breaks the privacy of all senders.

6.4 Third Attack: Two Corrupt Mix-Servers

In this section we assume that the first and last mix-servers, M1 and Mk, are
corrupted. We give an attack that breaks the privacy of any given sender Alice.
Let L0 = {αi}Ni=1, where αi = [(a0,i, b0,i), (c0,i, d0,i), (e0,i, f0,i)]. Without loss we
let α1 and α2 be the tuples sent by Alice and Bob respectively. Let Z∗p = Gq ×Gκ
and let 1 6= ζ ∈ Gκ. Thus ζ is an element outside of the group Gq. The adversary
corrupts M1 and Mk, and they proceed as follows.

1. M1 computes two modified elements

α′1 = [(ζa0,1, b0,1), (c0,1, d0,1), (e0,1, f0,1)] , and

α′2 = [(ζ−1a0,2, b0,2), (c0,2, d0,2), (e0,2, f0,2)] .

Then it forms the modified list L′0 = {α′1, α′2, α3, . . . , αN} and instructs M1

to simulate an honest mix-server on input L′0. Note that the first component
of α′1 and α′2 respectively is no longer contained in Gq.

2. Mk simulates an honest mix-server on input Lk−1, but it does not write the
output Lk of this simulation on the bulletin board. Let Lk = {βi}Ni=1, where
βi = [(ak,i, bk,i), (ck,i, dk,i), (ek,i, fk,i)]. Mk finds l, l′ ∈ {1, . . . , N} such that

aqk,l = ζq, and aqk,l′ = ζ−q .

Then it computes the tuples

β′l = [(ζ−1ak,l, bk,l), (ck,l, dk,l), (ek,l, fk,l)] , and

β′l′ = [(ζak,l′ , bk,l′), (ck,l′ , dk,l′), (ek,l′ , fk,l′)] ,

form the list

L′k = {β1, . . . , βl−1, β
′
l, βl+1, . . . , βl′−1, β

′
l′ , βl′+1, . . . , βN} ,

and writes L′k on the bulletin board.

3. The mix-net outputs (m1, . . . ,mN) and the adversary concludes that Alice
sent ml.

Since all mix-servers except M1 and Mk are honest there exists l, l′ ∈ {1, . . . , N}
and r, r′ ∈ Zq such that

ak,l = grζa0,1, and ak,l′ = gr
′

ζ−1a0,2 .

82 Some Practical Attacks On Mix-Nets

This implies that

aqk,l = ζq(gra0,1)
q = ζq, and a−qk,l′ = ζ−q .

since βq = 1 for any β ∈ Gq. We have ζq 6= 1 6= ζ−q, since the order of ζ does
not divide q. On the other hand we have aqk,i = 1 for i 6= l, l′, since ak,i ∈ Gq for
i 6= l, l′. Thus the adversary successfully identifies Alice’s cryptotext if the cheating
of M1 and Mk is not detected.

Clearly, the values of b1, c1, d1, e1, and f1 are not changed by replacing L0 with
L′0 in Step 1. Neither is a1, since

(ζa0,1)(ζ
−1a0,2)

N
∏

i=3

a0,i =

N
∏

i=1

a0,i = a1 .

Similarly, bk, ck, dk, ek, and fk are not changed by replacing Lk with L′k in Step

2. Neither is ak, since (ζ−1ak,l)(ζak,l′)
∏N
i6=l,l′ ak,i =

∏N
i=1 ak,i. Similarly as in the

attack of Section 6.3, we conclude that the proofs of knowledge produced by M1

andMk are deemed valid by the other mix-servers. If we assume that Alice and Bob
are honest, their inner triples are never traced back and cheating is not detected.

If ζ = ζ−1 the adversary can only conclude that Alice sent a message from the
set {ml,ml′}. This breaks the privacy of Alice, but the adversary can also identify
Alice’s message uniquely by choosing Bob to be a corrupted sender.

Remark 6.4. Our attack may be viewed as a novel combination of the ideas in
Anderson [6], Lim and Lee [99] and Pfitzmann [126, 125] in that we use elements
in Z∗p\Gq to execute a “relation attack”.

Both [6] and [99] focus on key recovery attack. The idea is to trick the holder of
a private key x to compute v = ux for some element u outside Gq and then recover
some bits of x by solving the logarithm of vq in the basis uq in Gκ. Lim and Lee
explicitly propose to avoid their attacks by using the subgroup Gq of prime order
q of Z∗p, where p = 2q + 1 is a strong prime. They argue that this is safe, since the
adversary can only recover a single bit.

Our attack is quite different. We do not try to recover the key, but use ζ to
mark elements and track them through the protocol. Thus, our attack illustrate
that unless it is explicitly proved that elements can be allowed to live outside Gq,
the protocol must ensure that this is the case.

6.4.1 Why the Attack is Possible

The attack exploits that a mix-server Mj does not verify that all elements in its
input Lj−1 are in Gq. M1 uses this to “tag” elements in L0, which lets them be
identified by the last mix-server Mk.

Fourth Attack: One Corrupt Mix-Server 83

6.5 Fourth Attack: One Corrupt Mix-Server

In Proposition 3 of Golle et al. [79] the authors claim that their protocol satisfies
the following strong definition of public verifiability if there is a group Gq in which
the discrete logarithm problem is hard.

Definition 1. (Public Verifiability (cf. [79])) A mix net is public verifiable if there
exists a polynomially bounded verifier that takes as input the transcript of the mixing
posted on the bulletin board, outputs “valid” if the set of valid outputs is a permuted
decryption of all valid inputs, and otherwise outputs “invalid” with overwhelming
probability. Note that to prove public verifiability, we consider an adversary that
can control all mix-servers and all users.

Unfortunately, Proposition 3 in [79] is false. The following is a counter-example.
Suppose that there are 4 senders, and that the adversary corrupts two of the

senders and the first mix-server M1. Let

(ui, vi, wi) = (gri , yrimi, h(ui, vi)), and

αi = ((a0,i, b0,i), (c0,i, d0,i), (e0,i, f0,i)) = (Ey(ui), Ey(vi), Ey(wi))

for i = 1, 2, 3, 4. Then define

α′3 = ((a0,3, b0,3), (c0,3, ad0,3), (e0,3, f0,3)), and

α′4 = ((a0,4, b0,4), (c0,4, a
−1d0,4), (e0,4, f0,4))

for some 1 6= a ∈ Gq. Suppose that α1 and α2 are sent to the mix-net by honest
senders, and α′3 and α′4 are sent to the mix-net by the corrupted senders with
corresponding proofs of knowledge.

M1 replaces α′3, and α′4 with α3 and α4. This does not change the value of
the component-wise product d1 = v1v2v

′
3v
′
4 since v′3v

′
4 = v3v4, and the cheating is

not detected since α3 and α4 corresponds to valid inner triples and thus not traced
back. On the other hand the tuples α′3 and α′4 correspond to invalid inner triples

(u3, v3, aw3), and (u4, v4, a
−1w4) .

We conclude that the sets of valid inner triples in the input and output respectively
differ, public verifiability is broken, and Proposition 3 of [79] is false.

Some may argue that this is not important since the adversary may only choose
to correct invalid messages which it has previously prepared for this particular
purpose. We do not agree. Note that the adversary may choose whether to correct
α′3 and α′4. If it chooses not to correct invalid triples they are simply traced back
and considered benign.

The following application shows the importance of this subtlety. We use the
mix-net construction to run two independent elections (using different keys). First
all votes for both elections are collected, and after some time both elections are
closed. Then the mix-net is executed for the first election. Finally the mix-net is

84 Some Practical Attacks On Mix-Nets

executed for the second election. In this scenario the adversary can insert specially
prepared invalid triples (i.e. votes) in the second election and then decide whether
to correct these triples based on the outcome of the first election. This should clearly
not be allowed, but may be acceptable in certain non-voting scenarios.

6.5.1 Why the Attack is Possible

The attack exploits the fact that the first mix-server can choose whether to correct
specially prepared invalid inner triples or not without detection.

6.6 Further Applications of the Attacks

All the attacks described above work also if Z∗p ⊃ Gq are replaced by any other
similarly related groups, e.g. elliptic curves.

The attacks of Section 6.2 and 6.3 exploit the particular structure of the protocol
of Golle et al. [79]. We have found no other protocol vulnerable to these attacks.

In Section 6.6.1 below we sketch how the attack of Section 6.4 can be applied
to break the privacy of “Flash Mix” by Jakobsson [86], including the fixed protocol
proposed by Mitomo and Kurosawa [108]. We note that the latter proposal is given
without security claims.

In Section 6.6.2 below we sketch how the attack of Section 6.5 breaks the ro-
bustness of Jakobsson and Juels [90].

6.6.1 Attack for “Flash Mix”

In this section we assume that the reader is familiar with Jakobsson [86] and sketch
how this protocol can be broken by a natural adaptation of the novel attack of
Section 6.3.

The attack is employed during the “second re-encryption”. The adversary cor-
rupts the first and the last mix-servers, M1 and Mk, in the mix-chain. During the
“second re-encryption” M1 “tags” two arbitrary El Gamal pairs in its input by mul-
tiplying their first components with ζ and ζ−1 respectively (similarly as in Section
6.3). Then the honest mix-servers perform their re-encryption and mixing. When
the last mix-server Mk is about to re-encrypt and mix the output of the previ-
ous mix-server Mk−1 it identifies the “tagged” El Gamal pairs, removes the “tags”
by multiplying the first components by ζ−1 and ζ respectively, and then finally
re-encrypts and mix the resulting list honestly.

After the verification of the “first re-encryption” this breaks the privacy of some
randomly chosen sender, if the cheating goes undetected. Although the attack is
weak, it does break privacy.

Cheating is detected if one of two things happen; the adversary by chance
chooses a “dummy element” that is later traced back through the mix-chain, or if
M1 or Mk fails to play its part in the computation of the “relative permutations”
correctly. The first event is very unlikely since by construction there are very

Further Applications of the Attacks 85

few “dummy elements”. Since the “tags” are removed by Mk, and both M1 and
Mk follow the protocol except for the use of the tags, it follows that the cheating
is not detected. It is easy to see that the changes introduced by Mitomo and
Kurosawa [108] do not prevent the above attack.

6.6.2 Attack for “An optimally robust hybrid mix network”

Jakobsson and Juels [90] presents a hybrid mix-net. We assume familiarity with
their protocol and sketch how it is broken using the attack of Section 6.5.

Suppose that there are four senders, and that the i:th sender forms a cryptotext

(c
(i)
0 , µ

(i)
0 , y

(i)
0) of a message mi. The adversary corrupts the last two senders and

modifies their cryptotexts as follows before they hand them to the mix-net. It

replaces y
(3)
0 by y

(3)
0 = ay

(3)
0 by and y

(4)
0 by y

(4)
0 = a−1y

(4)
0 for some a 6= 1.

The adversary corrupts M1. M1 then replaces y
(3)
0 by y

(3)
0 and y

(4)
0 by y

(4)
0

and simulates an honest M1 on the modified input. Similarly as in the original

attack this does not change the component-wise product P0 = y
(1)
0 y

(2)
0 y

(3)
0 y

(4)
0 =

y
(1)
0 y

(2)
0 y

(3)
0 y

(4)
0 . The VerifyComplaint procedure is never invoked, since all crypto-

texts are valid. Thus the cheating is not detected.
We conclude that the set of cleartext messages corresponding to the set of valid

cryptotexts in the input differs from the set of cleartext messages in the output of
the mix-net. This breaks the robustness, i.e. Definition 4(b) of [90].

Chapter 7

A Definition of Security of a Mix-Net

In this chapter we define what it means for a mix-net to be secure. We first discuss
some informal security requirements on mix-nets. Then we formalize security in
the UC-framework and describe an ideal mix-net functionality. We also argue that
our definition captures the notion of a mix-net in a natural way. This chapter is
based on the results in the papers Wikström [147] and Wikström [148].

7.1 Informal Requirements and Previous Definitions

The foremost security requirements a mix-net must satisfy are privacy and robust-
ness. A mix-net is said to be private (or secure) if it preserves the anonymity of
each sender. A mix-net is robust if it outputs the correct result despite that some
parties are corrupted.

In most papers that propose mix-net constructions informal definitions of pri-
vacy and robustness are given, but the only rigorous definition we are aware of
that predates our work is given by Abe and Imai [5]. They propose a definition
of a mix-net and corresponding experiments that are meant to capture robustness
and anonymity. The idea is to view a mix-net as a form of generalized decryption
oracle and define privacy similarly as chosen ciphertext security of cryptosystems.
Unfortunately, they do not provide any example of a mix-net that satisfies their
definitions. Furthermore, they do not adress the issues of using a mix-net as a
subprotocol, i.e., if it can be composed securely with other protocols. Thus, it is
hard to say if these definitions are useful.

An additional security requirement apart from privacy and robustness is uni-
versal verifiability. A mix-net is universally verifiable if anybody can verify the
correctness of an execution. In other words a mix-net is universally verifiable if the
adversary can not modify the output without this being noticed even if it corrupts
all mix-servers. We remark that universal verifiability does not imply the anonym-
ity of the senders. If all zero-knowledge proofs in the protocol have the property
that all messages of the verifiers are random strings, one can assume the existence

87

88 A Definition of Security of a Mix-Net

of a trusted source of random bits and let the mix-servers prove that they follow the
protocol using the trusted random bits as challenges. Then the protocol becomes
universally verifiable. Alternatively, we can simply require that the transcript of an
execution of the mix-net is a non-interactive zero-knowledge proof of correctness of
the execution, but this still requires a trusted source of a long random string. Fur-
thermore, it is not known how to construct efficient non-interactive zero-knowledge
proofs. An efficient non-interactive zero-knowledge proof can be constructed in the
random oracle model. In short, universal verifiability requires the assumption of
a trusted party, either a trusted source of random bits or a random oracle. Our
constructions can be made universally verifiable, but we do not investigate this in
great detail in this thesis. This is for several reasons.

It is far from obvious where to get hold of a trusted source of random bits. In
practice a protocol for generation of such bits would have to be implemented using
cryptographic techniques. Then security only holds under computational assump-
tions and/or assumptions on how many parties can be corrupted, and universal
verifiability is lost. This is in fact essentially what we do in our constructions.

An alternative is to use the random oracle model, but as explained in Section
2.10 the random oracle model only gives heuristic security and should be avoided
when possible. Furthermore, each party that wishes to verify the correctness of
an execution must implement their own verifier, or at least fully understand an
implementation on a very low level. Otherwise it can simply trust the provider of
the implementation. Due to the complexity of proofs of shuffle and the level of
skill needed to understand these protocols, we do not expect many organizations
to implement verification software, and those that do can easily be handled by
interactive protocols.

We believe that sender verifiability, i.e., the possibility for a sender to verify
that its individual cryptotext is processed correctly in a simple way is far more
important in practice to convince skeptic users of the correctness of an execution.
In particular in the voting application. The protocol we propose and analyze in
Chapter 8 has this property.

7.2 The Ideal Mix-Net

We take a different approach than Abe and Imai [5], and formalize the security of
a mix-net in the UC-framework, which is described in Chapter 4.

There are several advantages of this approach. Firstly, it is relatively easy
to define an ideal functionality that performs the service we expect from a “per-
fect” mix-net. Thus, it is easier to convince oneself that the “right” definition has
been found. This should be contrasted with the complex experiments in [5] and
previous informal ad-hoc definitions. Secondly, although many variations of the
UC-framework have evolved, the UC-model we use is natural, robust and general.
Thirdly, the requirements that must be satisfied by a protocol to securely realize an
ideal functionality are very demanding. Thus, we expect that a UC-secure mix-net

The Ideal Mix-Net 89

is secure according to most natural definitions of security with only minor modi-
fications. Finally, if we manage to prove the security of a mix-net protocol in the
UC-framework, it can be used as a subprotocol in any setting.

We remark that not all notions are easily cast as ideal functionalities. In-
deed, the ideal functionality for digital signatures first proposed by Canetti [41]
was flawed. The corrected functionalities proposed by Backes and Hofheinz [9] and
Canetti [42] are prohibitively complicated.

7.2.1 The Ideal Gq-Based Mix-Net

The definition of an ideal mix-net functionality presented below is essentially taken
from Wikström [147] and geared towards an El Gamal based mix-net, but we use
slightly different notation. The El Gamal cryptosystem is described in Chapter 3.
The definition formalizes a trusted party that waits for messages in a group Gq
from senders, and then when a majority of the mix-servers request it, outputs these
messages but in lexicographical order. We prove the security of the El Gamal based
mix-net in Chapter 8 with regards to this definition.

Functionality 7.1 (Gq-Based Mix-Net). The ideal functionality for a Gq-based
mix-net, FMN, running with mix-serversM1, . . . ,Mk, senders S1, . . . , SN , and ideal
adversary S proceeds as follows

1. Initialize a list L = ∅, a database D, a counter c = 0, and set JS = ∅ and
JM = ∅.

2. Repeatedly wait for inputs

• Upon receipt of (Si, Send,mi) with mi ∈ Gq and i 6∈ JS from CI , store
this tuple inD under the index c, set c← c+1, and hand (S, Si, Input, c)
to CI .
• Upon receipt of (Mj , Run) from CI , store (Mj , Run) in D under the index
c, set c← c+ 1, and hand (S,Mj , Input, c) to CI .
• Upon receipt of (S, AcceptInput, c) such that something is stored under

the index c in D do

a) If (Si, Send,mi) with i 6∈ JS is stored under c, then append mi to
L, set JS ← JS ∪ {i}, and hand (S, Si, Send) to CI .

b) If (Mj , Run) is stored under c, then set JM ← JM ∪ {j}. If |JM | >
k/2, then sort the list L lexicographically to form a list L′, hand
((S,Mj , Output, L

′), {(Ml, Output, L
′)}kl=1) to CI and ignore further

messages. Otherwise, hand CI the list (S,Mj , Run).

The functionality differs from the one in [147] in that the adversary can prohibit
senders and mix-servers to give input to the functionality. This modification is
necessary when the bulletin board functionality is defined as in Section 5.3 instead
of as in [147].

90 A Definition of Security of a Mix-Net

The functionality accepts only one input from each sender, and it can not handle
several sessions, i.e., after it has output the messages in lexicographical order it
halts. This is to give a more natural and simple definition, but it is not difficult to
modify the definition to allow more than one input from each sender and to execute
several sessions. Furthermore, the constructions in Chapter 8 and Chapter 11 are
easily modified to satisfy the modified definitions.

The functionality is not completely general. In fact it is meant to define an
ideal mix-net functionality that can be securely realized by an El Gamal based
mix-net protocol executing in a group Gq. Thus, the input messages are expected
to be in Gq. Formally, Gq is a fixed family {Gqκ}κ∈N of groups, where log2 qκ = κ.
Thus, when the ideal functionality is run on input 1κ it expects inputs in Gqκ . An
alternative definition would be to allow inputs in {0, 1}κ, but this does not bring
any additional security and only makes the functionality more complicated. It
also makes it harder to securely realize the functionality using an El Gamal based
mix-net. The problem is that in the mix-net protocol a sender must prove that
its cryptotext contains a message that is contained in {0, 1}κ, since otherwise the
adversary can easily distinguish between an execution of the real protocol, where
inputs in Gq that can not be encoded as elements in {0, 1}κ, and interacting with
the ideal functionality.

Another variation is to let the ideal mix-net functionality choose the group Gqκ
randomly when executed with security parameter 1κ. For example, the ideal mix-
net could choose a random (κ+ 1)-bit safe prime p = 2q + 1, and define Gq as the
unique subgroup of order q in Z∗p. Using this definition the mix-net would output a
representation of Gq before accepting any inputs. The advantage of this variant is
that it allows a weaker DDH-assumption. The ideal functionality above is geared
towards a mix-net protocol that is secure under the DDH-assumption in a specific
family of groups, whereas the variation is geared towards a mix-net protocol that
is secure under the DDH-assumption of a randomly chosen group.

We use the definition above for ease of exposition. Our results are easily modified
to hold with regards to the variant definition. The only essential difference is that
the mix-net protocol must jointly generate a random input to the algorithm that
generates the random group.

7.2.2 The Ideal Relaxed Mix-Net

To prove the security of the Paillier based mix-net of Chapter 11 we use a slightly
relaxed definition of the ideal mix-net. The definition is relaxed in that corrupt
senders may input messages with κ bits whereas honest senders may only input
messages with κ−κr bits. In the final output all messages are truncated to κ−κr.
Here κr is an additional security parameter. In the protocol this security parameter
is used to decide the completeness and the statistical zero-knowledge. It is chosen
such that 2−κr is negligible in κ.

The Ideal Mix-Net 91

Functionality 7.2 (Relaxed Mix-Net). The relaxed ideal mix-net, FRMN, run-
ning with mix-servers M1, . . . ,Mk, senders S1, . . . , SN , and ideal adversary S pro-
ceeds as follows

1. Initialize a list L = ∅, a database D, a counter c = 0, and set JS = ∅ and
JM = ∅.

2. Repeatedly wait for new inputs and do

• Upon receipt of (Si, Send,mi) from CI do the following. If i 6∈ JS and
Si is not corrupted and mi ∈ {0, 1}κ−κr or if Si is corrupted and mi ∈
{0, 1}κ then store this tuple in D under the index c, set c← c+ 1, and
hand (S, Si, Input, c) to CI . Otherwise the input is ignored.

• Upon receipt of (Mj , Run) from CI , store (Mj , Run) in D under the index
c, set c← c+ 1, and hand (S,Mj , Input, c) to CI .
• Upon receipt of (S, AcceptInput, c) such that something is stored under

the index c in D do

a) If (Si, Send,mi) is stored under c and i 6∈ JS , then append mi to
the list L, set JS ← JS ∪ {i}, and hand (S, Si, Send) to CI .

b) If (Mj , Run) is stored under c, then set JM ← JM ∪ {j}. If |JM | >
k/2, then truncate all strings in L to κ− κr bits and sort the result
lexicographically to form a list L′. Sort the list L to form a list
L′′. Then hand ((S,Mj , Output, L

′′), {(Ml, Output, L
′)}kl=1) to CI .

Otherwise, hand CI the list (S,Mj , Run).

It is hard to imagine a situation where the relaxation is a real disadvantage, but
if it is, it may be possible to eliminate this beauty flaw by an erasure-free proof of
membership in the correct interval is used in the submission phase of the protocol.
This is discussed further in Remark 11.7 in Chapter 11.

Chapter 8

A Sender Verifiable Mix-Net

In this chapter we introduce a new type of El Gamal based mix-net in which each
mix-server only decrypts and permutes its input. No re-encryption is necessary.
This allows an individual sender to verify non-interactively that its message was
processed correctly, and point out the corrupted mix-server when this is not the
case. We call this property sender verifiability. Although some older constructions
have this property, our is the first provably secure scheme.

Our mix-net is provably secure in the UC-framework against static adversar-
ies corrupting any minority of the mix-servers. This holds under the decision
Diffie-Hellman assumption, and assuming an ideal bulletin board and an ideal zero-
knowledge proof of knowledge of a correct shuffle and an ideal proof of knowledge
of the cleartext of an El Gamal cryptotext.

This chapter is based on the results in Wikström [148].

8.1 Adversary Model

In this chapter we consider a static adversary, i.e., the adversary chooses which
parties to corrupt before the mix-net is executed.

Definition 8.1 (Static Mix-Net Adversaries). We define Ml to be the set of
static adversaries that corrupt less than l out of k parties of the mix-server type,
and arbitrarily many parties of the sender type.

Note that there are no requirements on the number of corrupted senders. In
this respect the adversarial model is very strong. On the other hand we require
that the adversary only corrupts a minority of the mix-servers. One could consider
a stronger adversary with regards to the number of corrupted mix-servers, e.g.
assuming the existence of a single honest mix-server. It seems that any mix-net
secure against such an adversary requires the senders to be present during the
phase when all cryptotexts are shuffled and decrypted. The problem is that if all
mix-servers are needed to process a cryptotext, then if a single mix-server behaves

93

94 A Sender Verifiable Mix-Net

badly, all senders must resend their message using another public key and prove
that their newly submitted message is identical to the original. This follows since
otherwise the corrupted mix-servers can complete the computation on their own,
and anonymity can not be guaranteed. The requirement that senders must be
present during the execution of the protocol is a severe drawback in electronic
elections. The semantics of the mix-net also changes, e.g. a sender may decide not
to resend its message and potentially this can be done based on the set of originally
submitted messages if the adversary corrupts the mix-server that first learns the
output of the mix-net. This type of semantics may not be adequate for electronic
elections.

We believe that most of our methods are applicable to the above setting as well,
but we have not investigated this in detail.

8.2 On Re-encryption in El Gamal Based Mix-Nets

In recent El Gamal based mix-nets, e.g. [113, 69, 147], the mix-servers form a
chain, and each mix-server randomly permutes, partially decrypts, and re-encrypts
the output of the previous mix-server. In most older constructions decryption is
instead carried out jointly at the end of the chain. Our construction is different in
that each mix-server partially decrypts and sorts the output of the previous mix-
server. Thus, no cryptotext is re-encrypted and the permutation is not random,
but determined by the lexicographical order of the cryptotexts.

Let us consider why re-encryption is often considered necessary. In several
previous mix-nets each mix-server Mj holds a private key xj ∈ Zq corresponding

to a public key yj = gxj . A joint public key y =
∏k
j=1 yj is used by a sender Si

to compute a cryptotext (u0,i, v0,i) = (gri , yrimi) of a message mi for a random
ri ∈ Zq. The mix-servers take turns and compute

(uj,i, vj,i)
N
i=1 =

(

gsj,iuj−1,πj(i),

(k
∏

l=j+1

yl

)sj,i

vj−1,πj(i)u
−xj
j−1,πj(i)

)N

i=1

,

for random sj,i ∈ Zq and πj ∈ ΣN , i.e., each mix-server permutes, partially de-
crypts and re-encrypts its input. In the end (vk,i)

N
i=1 = (mπ(i))

N
i=1 for some random

joint permutation π. The reason that re-encryption is necessary with this type of
scheme is that otherwise the first component u0,i of each cryptotext remains un-
changed during the transformation, which allows anybody to break the anonymity
of all senders. For the older type of construction it is obvious why re-encryption is
necessary.

8.3 Our Modification

We modify the El Gamal cryptosystem to ensure that also the first component
uj−1,i is changed during partial decryption. Each mix-server is given a private key

Sender Verifiability 95

(wj , xj) ∈ Z2
q and a corresponding public key (zj , yj) = (gwj , gxj). To partially

decrypt and permute its input it computes

(u
1/wj
j−1,i, vj−1,iu

−xj/wj
j−1,i)Ni=1 , (8.1)

from Lj−1, and sorts the result lexicographically. The result is denoted by Lj =
(uj,i, vj,i)

N
i=1. Note that both components of each cryptotext are transformed using

the private key of the mix-server. For this transformation to make any sense we
must also modify the way the joint key is formed. We define

(z̄k+1, ȳk+1) = (g, 1) and (z̄j , ȳj) = (z̄
wj
j+1, ȳj+1z̄

xj
j+1) . (8.2)

The joint keys must be computed jointly by the mix-servers. A sender encrypts
its message using the public key (z̄1, ȳ1), i.e., (u0,i, v0,i) = (z̄ri1 , ȳ

ri
1 mi) for some

random ri. The structure of the keys is chosen such that a cryptotext on the form
(uj−1,i, vj−1,i) = (z̄rij , ȳ

ri
j mi) given as input to mix-server Mj satisfies

(u
1/wj
j−1,i, vj−1,iu

−xj/wj
j−1,i) = (z̄

ri/wj
j , ȳrij z̄

−rixj/wj
j mi)

= ((z̄
1/wj
j)ri , (ȳj z̄

−xj/wj
j)rimi) = (z̄rij+1, ȳ

ri
j+1mi) .

Thus, each mix-server Mj transforms a cryptotext (uj−1,i, vj−1,i) encrypted with
the public key (z̄j , ȳj) into a cryptotext (uj,i, vj,i) encrypted with the public key
(z̄j+1, ȳj+1). Note that Sort({vk,i}Ni=1) = Sort({mi}Ni=1), since ȳk+1 = 1.

There are several seemingly equivalent ways to set up the scheme, but some of
these do not allow a reduction of the security of the mix-net to the DDH-assumption.
In fact the relation in Equation (8.1) is carefully chosen to allow such a reduction.

8.4 Sender Verifiability

An important consequence of our modification is that a sender can compute a
pair (z̄rij+1, ȳ

ri
j+1mi) and verify that this pair is contained in Lj for j = 1, . . . , k.

Furthermore, if this is not the case the sender can easily prove to any outsider that
its message was tampered with. We call this sender verifiability, since it allows a
sender to verify non-interactively that its cryptotext is processed correctly by the
mix-servers. This is not a new property. In fact Chaum’s original construction [45]
has this property, but our construction is the first provably secure scheme with this
property.

We think that sender verifiability is an important property that deserves more
attention. The verification process is unconditional and easily explained to anybody
with only a modest background in mathematics, and a verification program can
be implemented with little skills in programming. This means that in the main
application of mix-nets, electronic elections, a sender can convince herself that her
vote was processed correctly without a deep understanding of cryptography. We
stress that this verification does not guarantee anonymity or correct processing of

96 A Sender Verifiable Mix-Net

any other cryptotext. Thus, a proof of the overall security of the mix-net is still
required.

The reader may worry that sender verifiability allows a voter to point out its
vote to a coercer. This is the case, but the sender can do this in previous mix-
nets as well by pointing at its message in the original list L0 of cryptotexts and
revealing the randomness used during encryption, so this problem is not specific to
our scheme. Furthermore, our scheme becomes coercion-free whenever the sender
does not know the randomness of its cryptotext, as other El Gamal based mix-nets,
but sender verifiability is then lost.

8.5 A Technical Advantage

There is also an important technical advantage of the lack of re-encryption in the
mixing process. The witness of our shuffle relation consists of a pair (wj , xj), which
makes it easy to turn our proof of knowledge into a secure realization of the ideal
functionality FRDP

ZK . This should be contrasted with all previous shuffle relations,
where the witness contains a long list of random exponents used to re-encrypt the
input that must somehow be extracted by the ideal adversary in the UC-setting.

A potential alternative to our approach is to formalize the proof of a shuffle as a
proof of membership [116] in the UC-framework. However, a proof of membership
is not sufficient for the older constructions where decryption is carried out jointly
at the end of the mixing chain. The problem is that the adversary could corrupt
the last mix-server Mk and instruct it to output L0 instead of a re-encryption and
permutation of Lk−1. This would obviously break the anonymity of all senders.
The malicious behavior is not detected, since the ideal proof of membership only
expects an element in the language and no witness from corrupted parties, and L0

is in fact a re-encryption and permutation of Lk−1. In Chapter 11 we show that a
proof of knowledge in the classical sense with rewinding is sufficient to construct a
universally composable mix-net.

It is an open question if a proof of membership suffices for mix-nets where each
mix-server partially decrypts and then re-encrypts and permutes its input.

8.6 Additional Ideal Functionalities

We describe the mix-net in a hybrid model as defined in the UC-framework. This
means that the mix-servers and senders have access to a set of ideal functionalities
introduced in this section.

We assume the existence of an ideal authenticated bulletin board functionality
FBB as defined in Functionality 5.1 in Section 5.3. Recall that all parties can write
to it, but no party can erase any message from it.

We also assume an ideal functionality corresponding to the key set-up sketched
in Section 8.3. This is given below.

Additional Ideal Functionalities 97

Functionality 8.2 (Special El Gamal Private Key Sharing). The ideal Spe-
cial El Gamal Private Key Sharing functionality over Gq, FSKG, with mix-servers
M1, . . . ,Mk, senders S1, . . . , SN , and ideal adversary S proceeds as follows.

1. Initialize sets Jj = ∅ for j = 0, . . . , k.

2. Until |J0| = k, repeatedly wait for inputs. If (Mj , MyKey, wj , xj) is received
from CI such that wj , xj ∈ Zq and j 6∈ J0. Set J0 ← J0 ∪ {j} compute
zj = gwj and yj = gxj , and hand (S, PublicKey,Mj, wj , zj) to CI .

3. Set (z̄k+1, ȳk+1) = (g, 1) and (z̄j , ȳj) = (z̄
wj
j+1, ȳj+1z̄

xj
j+1). Then hand

((S, PublicKeys, (z̄j , ȳj, zj , yj)kj=1), {(Si, PublicKeys, (z̄j , ȳj, zj , yj)kj=1)}Ni=1,

{(Ml, Keys, wl, xl, (z̄j , ȳj, zj , yj)
k
j=1)}kl=1) to CI .

4. Repeatedly wait for inputs. If (Mj , Recover,Ml) is received from CI , set
Jl ← Jl ∪ {j}. If |Jl| > k/2, then hand ((S, Recovered,Ml, wl, xl),
{(Mj , Recovered,Ml, wl, xl)}kj=1) to CI , and otherwise hand
(S,Mj , Recover,Ml) to CI .

The above functionality can be securely realized by letting each mix-server secret
share its private key using Feldman’s [63] verifiable secret sharing scheme. Note
that the functionality explicitly allows corrupted mix-servers to choose their keys
in a way that depends on the public keys of uncorrupted mix-servers. The special
joint keys would then be computed iteratively using Equation (8.2), and during
this process each mix-server would prove that it does this correctly. We do not
investigate this solution in detail, but general methods can be used [44] to securely
realize the functionality in the common random string model.

Each mix-server partially decrypts each cryptotext and sorts the resulting list
of cryptotexts. Thus, proving correct behavior corresponds to proving knowledge
of a private key (w, x) such that the cryptotexts (ui, vi) input to a mix-server are
related to the cryptotexts (u′i, v

′
i) it outputs by the following relation.

Definition 8.3 (Knowledge of Correct Decryption-Permutation). Define
for each N a relation RDP ⊂ (G3

q ×G2N
q ×G2N

q)× (Zq × Zq), by

((g, z, y, {(ui, vi)}Ni=1, {(u′i, v′i)}Ni=1), (w, x)) ∈ RDP

precisely when z = gw, y = gx and (u′i, v
′
i) = (u

1/w
π(i), vπ(i)u

−x/w
π(i)) for i = 1, . . . , N and

some permutation π ∈ ΣN such that the list {(u′i, v′i)}Ni=1 is sorted lexicographically.

To avoid a large class of “relation attacks” [126, 125, 146] no sender can be
allowed to construct a cryptotext of a message related to the message encrypted
by some other sender. To ensure this each sender is required to prove knowledge of
the randomness it uses to form its cryptotexts. This corresponds to the following
relation.

98 A Sender Verifiable Mix-Net

Definition 8.4 (Knowledge of Cleartext). Define a relation RC ⊂ G4
q × Zq by

((z̄, ȳ, u, v), r) ∈ RC precisely when logz̄ u = r.

Formally, we need the ideal zero-knowledge functionality given as Functionality
5.4 in Section 5.3 parameterized by the two relations above, i.e., we need the func-
tionalities FRDP

ZK and FRC

ZK . The first functionality is securely realized in Chapter
10.2 and the second in Chapter 10.1.

8.7 The Mix-Net

We now give the details of our mix-net. It executes in the (FBB,FPKG,FRDP

ZK ,FRC

ZK)-
hybrid model.

Protocol 8.5 (El Gamal Based Mix-Net). The mix-net protocol πMN =
(S1, . . . , SN ,M1, . . . ,Mk) consists of senders Si, and mix-servers Mj.

Sender Si. Each sender Si proceeds as follows.

1. Wait for (PublicKeys, (z̄j , ȳj , zj, yj)
k
j=1) from FSKG.

2. Wait for an input (Send,mi), mi ∈ Gq. Then choose ri ∈ Zq randomly and
compute (ui, vi) = E(z̄1,ȳ1)(mi, ri) = (z̄ri1 , ȳ

ri
1 mi).

3. Hand (Prover, (z̄1, ȳ1, ui, vi), ri) to FRC

ZK .

4. Hand (Write, (ui, vi)) to FBB.

Mix-Server Mj. Each mix-server Mj proceeds as follows.

1. Choose wj , xj ∈ Zq randomly and hand (MyKey, wj , xj) to FSKG.

2. Wait for (Keys, (wj , xj), (z̄j , ȳj, zj , yj)
k
j=1) from FSKG.

3. Wait until an input (Run) is received or more than k/2 different mix-servers
have written Run on FBB. If the first event occurs, then hand (Write, Run) to
FBB.

4. Wait until more than k/2 different mix-servers have written Run on FBB, and
let the last entry of this type be (cRun,Mi, Run).

5. Form the list L∗ = {(uγ , vγ)}γ∈I∗ , for some index set I∗, by choosing for
γ = 1, . . . , N the entry (c, Sγ , (uγ , vγ)) on FBB with the smallest c < crun

such that uγ , vγ ∈ Gq, if present. To do this read all entries on FBB with
index less than crun.

6. For each γ ∈ I∗ do the following,

a) Hand (Question, Sγ , (z̄1, ȳ1, uγ , vγ)) to FRC

ZK .

b) Wait for (Verifier, Sγ , (z̄1, ȳ1, uγ , vγ), bγ) from FRC

ZK .

The Mix-Net 99

Then form L0 = {(u0,i, v0,i)}N
′

i=1 consisting of pairs (uγ , vγ) such that bγ = 1.

7. For l = 1, . . . , k do

a) If l = j, then compute

Lj = {(uj,i, vj,i)}N
′

i=1 = Sort({(u1/wj
j−1,i, vj−1,iu

−xj/wj
j−1,i)}N ′

i=1) ,

Finally hand (Prover, (g, zj, yj , Lj−1, Lj), (wj , xj)) to FRDP

ZK , and hand
(Write, (List, Lj)) to FBB.

b) If l 6= j, then do

i. Wait until an entry (c,Ml, (List, Ll)) appears on FBB, where Ll is
on the form {(ul,i, vl,i)}N

′

i=1 for ul,i, vl,i ∈ Gq.
ii. Hand (Question,Ml, (g, zl, yl, Ll−1, Ll)) to FRDP

ZK , and wait for

(Verifier,Ml, (g, zl, yl, Ll−1, Ll), bl) from FRDP

ZK .

iii. If bl = 0, then hand (Recover,Ml) to FSKG, and wait for
(Recovered,Ml, (wl, xl)) from FSKG. Then compute

Ll = {(ul,i, vl,i)}N
′

i=1 = Sort({(u1/wl
l−1,i, vl−1,iu

−xl/wl
l−1,i)}N ′

i=1) .

8. Output (Output, Sort({vk,i}N
′

i=1)).

The number of mix-servers actually doing any shuffling of cryptotexts can be
reduced to ⌊k/2⌋+1 without any loss in security, thus reducing the overall complex-
ity. This follows since any set of ⌊k/2⌋+ 1 mix-servers can recover all the private
keys anyway. We state the protocol in a symmetrical way for sake of simplicity.

Theorem 8.6. The ideal functionality FMN is securely realized by πMN in the
(FBB,FSKG,FRC

ZK ,FRDP

ZK)-hybrid model with respect to Mk/2-adversaries under the
DDH-assumption in Gq.

Proof. We describe an ideal adversary S(·) that runs any hybrid adversary A as a
black-box. Then we show that if S(A) does not simulate A sufficiently well, we can
break the DDH-assumption.

The Ideal Adversary S. Let IS and IM be the set of indices of parties corrupted
by A of the sender type and the mix-server type respectively. The ideal adversary
S corrupts the dummy parties S̃i for which i ∈ IS , and the dummy parties M̃i for
which i ∈ IM . The ideal adversary is best described by starting with a copy of the
original hybrid ITM-graph

(V,E) = Z ′(H(A, π(π̃
FBB
1 ,π̃

FSKG
2 ,π̃

F
RC
ZK

3 ,π̃
F
RDP
ZK

4))) ,

where Z is replaced by a machine Z ′.

100 A Sender Verifiable Mix-Net

The adversary S simulates all machines in V except the corrupted machines Si
for i ∈ IS and Mi for i ∈ IM under A’s control. We now describe how each machine
is simulated.
S simulates the machines Si, i 6∈ IS and the ideal functionalities FBB, FRC

ZK and
FSKG honestly. All Mj for j 6∈ IM are also simulated honestly, except for Ml, where
l is chosen as the maximal index not in IM , i.e. the last honest mix-server. The
machine Ml plays a special role.

Simulation of Links (Z,A), (Z, Si) for i ∈ IS , and (Z,Mj) for j ∈ IM . S simulates

Z ′, S̃i, for i ∈ IS , and M̃j for j ∈ IM , such that it appears as if Z and A, Z and
Si for i ∈ IS , and Z and Mj for j ∈ IM are linked directly.

1. When Z ′ receives m from A, m is written to Z, by S. When S receives m
from Z, m is written to A by Z ′. This is equivalent to that Z and A are
linked directly.

2. When Z ′ receives m from Si for i ∈ IS , m is written to Z by S̃i. When S̃i,
i ∈ IS , receives m from Z, m is written to Si by Z ′. This is equivalent to
that Z and Si are linked directly for i ∈ IS .

3. When Z ′ receives m from Mj for j ∈ IM , m is written to Z by M̃j . When

M̃j , j ∈ IM , receives m from Z, m is written to Mj by Z ′. This is equivalent
to that Z and Mj are linked directly for j ∈ IM .

Extraction from Corrupt Mix-Servers and Simulation of Honest Mix-Servers. When
a corrupt mix-server Mj , for j ∈ IM , writes Run on FBB, S must make sure that

M̃j sends (Run) to FMN. Otherwise it may not be possible to deliver an output to

honest mix-servers at a later stage. If an honest dummy mix-server M̃j , for j 6∈ IM ,
receives (Run) from Z, S must make sure that Mj receives (Run) from Z ′. In both
instances S must do this in two steps, first sending and then instructing FMN to
accept the submitted message. If an honest mix-server Mj, for j 6∈ IM , outputs

(Output, L′), S must make sure that M̃j does the same. This is done as follows.

1. Let j ∈ IM . If FBB receives (Mj , Write, Run), then S continues the simu-
lation until FBB is about to hand (A, c,Mj , Run) to CI . Then the simula-

tion of FBB is interrupted and M̃j hands (Run) to FMN. When S receives
(tildeMj, Input, c

′) from CI it stores the pair (c, c′) and continues the simu-
lation of FBB.

2. Let j 6∈ IM . If S receives (S, Input, c′, M̃j) from CI , then Z ′ hands (Run) to
Mj and continues the simulation until FBB is about to hand

(A, c, Input, M̃j , Run) to CI . Then the pair (c, c′) is stored and the simulation
is continued.

3. If FBB receives (A,Mj , AcceptInput, c) the simulation of FBB is interrupted.
If there is a pair (c, c′) for some c′, then S hands (FMN, AcceptInput, c

′) to

The Mix-Net 101

CI and waits until it receives (S, M̃j , Run) or ((S, M̃j , Output, L
′),

{(M̃l, τl)}kl=1) from CI . Then the simulation of FBB is continued.

4. Let j 6∈ IM . If Z ′ receives (Output, L′) from Mj, S sends (1, τj) to CI , i.e. S
instructs CI to deliver (Output, L′) to M̃j .

Extraction from Corrupt Senders and Simulation of Honest Senders. If a corrupt
sender Si, for i ∈ IS , in the hybrid protocol produces a cryptotext and informs
FRC

ZK such that its input is deemed valid, then S must instruct S̃i to hand this as
input to FMN .

When an honest dummy sender S̃i, for i 6∈ IS , receives a message mi from Z, S
must ensure that Si receives some message m′i from Z ′. But S cannot see mi, and
must therefore hand some other message m′i 6= mi to Si, and then later correct this
flaw in the simulation before A or Z notice it. This is done as follows.

1. Let i ∈ IS . Until S receives ((S,Mj , Output, L
′), {(Ml, τl)}kl=1) from CI .

a) If FRC

ZK receives a message (Si, Prover, (z̄1, ȳ1, ui, vi), ri) such that
((z̄1, ȳ1, ui, vi), ri) ∈ RDP, then consult the first database of FBB and
look for a pair (c, Si, (ui, vi)).

b) If FBB receives (Si, Write, (ui, vi)) then look if FRC

ZK stored ri under
(Si, (z̄1, ȳ1, ui, vi)) such that ((z̄1, ȳ1, ui, vi), ri) ∈ RDP.

If such a pair [(c, Si, (ui, vi)), (Si, (z̄1, ȳ1, ui, vi), ri)] is found then S̃i sends
mi = viȳ

−ri
1 to FMN and S waits until it receives (S, S̃i, Input, c′) from CI .

Then (c, c′) is stored and the simulation, of FRC

ZK or FBB respectively, is con-
tinued.

2. Let i 6∈ IS . When S receives (S, S̃i, Input, c′) then Z ′ hands a randomly
chosen message m′i ∈ Gq to Si. By definition Si chooses a random r′i ∈ Zq

and forms its cryptotext as (ui, vi) = (z̄
r′i
1 , ȳ

r′i
1 m

′
i). Note that this corresponds

to a pair of random elements in Gq. Then the simulation is interrupted when
FBB is about to hand (A, Input, c, Si, (ui, vi)) to CI . Then S stores (c, c′)
and continues the simulation.

3. If FBB receives (A, Si, AcceptInput, c) the simulation of FBB is interrupted.
If there is a pair (c, c′) for some c′, then S hands (FMN, AcceptInput, c

′) to
CI and waits until it receives (S, S̃i, (ui, vi)). Then the simulation of FBB is
continued.

How Ml and FRDP

ZK correct the flaw in the simulation. S must make sure that the
faulty messages m′i 6= mi introduced during simulation of honest senders, because
it does not know the real messages mi of the honest dummy parties S̃i for i ∈ IS ,
are not noticed. This is done by modifying Ml and FRDP

ZK as follows.

102 A Sender Verifiable Mix-Net

1. If FRDP

ZK receives a tuple (Mj , Question,Ml, (g, zl, yl, Ll−1, Ll)) it verifies that
a tuple on the form (Ml, Prover, (g, zl, yl, Ll−1, Ll), ·) has been received. If so
it sets b = 1 and otherwise b = 0. Finally, it hands
((A,Mj , Verifier,Ml, (g, zl, yl, Ll−1, Ll), b),
(Mj , Verifier,Ml, (g, zl, yl, Ll−1, Ll), b)) to CI .

2. Note that by construction S has received ((S,Mj , Output, L
′), . . .), i.e. it

knows the output L′. Let {mπ(i)}N
′

i=1 be the messages in L′, where mπ(i) is
the message sent by Si for all i ∈ IS . Note that S knows ri and mi for all
i ∈ IS , since it simulated the handing of these to FMN itself. On the other
hand the simulator has no further knowledge of π.

Ml does the following instead of Step 7a in the protocol. It chooses ri ∈ Zq
randomly, for i 6∈ IS , and computes the list

Ll = {(ul,i, vl,i)}N
′

i=1 = Sort
(

{(

z̄ril+1, ȳ
ri
l+1mi

)}N ′

i=1

)

.

Finally it hands (Prover, (g, zl, yl, Ll−1, Ll), ·) to FRDP

ZK , and it hands
(Write, (List, Ll)) to FBB.

The first step ensures that FRDP

ZK plays along with Ml and pretends to other Mj

that Ml did prove his knowledge properly. The second step ensures that Ml corrects
the flaw in the simulation introduced by S at the point when it did not know the
messages sent by honest dummy parties S̃i, for i 6∈ IS .

Note that the cryptotexts of all corrupted parties are identically distributed as
in the real protocol. The same randomness ri is used to encrypt the message mi

sent by Si for i ∈ IS .
This concludes the definition of the ideal adversary S.

Reaching a Contradiction. Next we show, using a hybrid argument, that if
the ideal adversary S defined above does not imply the security of Protocol 8.5,
then we can break the DDH-assumption.

Suppose that S does not imply the security of the protocol. Then there exists
a hybrid adversary A, an environment Z with auxiliary input z = {zκ}, a constant
c > 0 and an infinite index set N ⊂ N such that for n ∈ N

|Pr[Zz(I(S, π̃FMN)) = 1]− Pr[Zz(H(A′, π(π̃
FBB
1 ,π̃

FSKG
2 ,π̃

F
RC
ZK

3 ,π̃
F
RDP
ZK

4))) = 1]| ≥ 1

nc

where S runs A as a black-box as described above, i.e. S = S(A).

Defining the Hybrids. Without loss we assume that {1, . . . , N}\IS = {1, . . . , η},
and define an array of hybrid machines T0, . . . , Tη. Set T0 = Zz(I(S(A), π̃FMN)),
and then define Ts by the following modification to T0.

1. When S receives (S̃i, Send) from FMN, for i 6∈ IS , it checks if i ∈ {1, . . . , s}.

The Mix-Net 103

a) If so it consults the storage of FMN to find the message mi sent by S̃i.
Then Z ′ sends mi to Si and treats i as if i ∈ IS in the simulation of Ml.
This means that ri = r′i, and m′i = mi.

b) Otherwise Z ′ sends a random message m′i ∈ Zq to Si, as in the original
simulation.

By inspection of the constructions we see that the output of Tη is identically

distributed to the output of Zz(H(A′, π(π̃
FBB
1 ,π̃

FSKG
2 ,π̃

F
RC
ZK

3 ,π̃
F
RDP
ZK

4))) since the only
essential difference is that Ml does not hand knowledge of his transformation to
FRDP

ZK , but FRDP

ZK ignores Ml’s inability so this is not discovered by A or Z.
If we set ps = Pr[Ts = 1], we have 1

κc ≤ |p0 − pη| ≤
∑η

i=1 |ps−1 − ps|, which
implies that there exists some fixed 0 < s ≤ η such that |ps−1 − ps| ≥ 1

ηκc ≥ 1
Nκc .

Defining a Distinguisher. We are now finally ready to define a distinguisher D for
the experiment considered in Lemma 3.8, i.e., a variation of the DDH-experiment.

D is confronted with the following test. An oracle first chooses r, w, r′, x, r′′ ∈ Zq
and a bit b ∈ {0, 1} randomly.

1. If b = 0, then it defines (a, y, u, z, v) = (gr, gw, gr
′

, gx, gr
′′

).

2. If b = 1, then it defines (a, y, u, z, v) = (gr, gw, grw, gx, grx).

The distinguisher D must guess the value of b, i.e., which type of input it gets.
It also replaces (zl, yl) by (z, y) in Ml’s key generation and instructs FSKG not

to complain about the lack of corresponding secret keys (wl, xl). This does not
change the distribution of this key and thus does not change any of the hybrids.

D computes z̄j and ȳj as follows. It computes z̄l = z
Qk
j=l+1 wj

l , and for j 6= l it

computes z̄j = z̄
wj
j+1 as usual. It computes ȳl = ȳl+1y

Qk
j=l+1 wj

l , and for j 6= l it

computes ȳj = ȳj+1z̄
xj
j+1 as usual. Note that the scheme is chosen to allow the

simulator to generate z̄j and ȳj without knowledge of w or x.

Since Ml appears to behave honestly (with the help of FRDP

ZK), the fact that Ml

does not know w = logg zl or x = logg yl is never revealed, and since less than k/2
mix-servers are corrupted w or x is never be recovered. The reader should think
of r as the randomness of a sender, w as wl and x as xl. D simulates Ts until Ss
receives the message (Send,ms), at which point it forms a cryptotext

(us, vs) =
(

u
Q

j 6=l wj , a
P

j 6=l xj
Qk
j′=j+1

wj′ v
Qk
j=l+1 wjms

)

.

Note that if b = 1, we have (us, vs) = (z̄r1 , ȳ
r
1ms). The sender Ss is modified to hand

(Write, (us, vs)) to FBB, and the tuple (Prover, (z̄1, ȳ1, us, vs), 1) to FRC

ZK . Further-

more, FRC

ZK is modified to a handle this message as if we had ((z̄1, ȳ1, us, vs), 1) ∈ RC,
i.e. it lies on Si’s behalf. Finally, we must change the way Ml forms its output.
Suppose that (uj,l−1, vj,l−1) corresponds to the input (us, vs), which can be verified

104 A Sender Verifiable Mix-Net

as above. Then instead of decrypting this pair Ml replaces it by

(u′s, v
′
s) =

(

a
Qk
j=l+1 wj , a

Pk
j=l+1 xj

Qk
j′=j+1

wj′ms

)

= (z̄rl+1, ȳ
r
l+1ms) .

D then continues the simulation of Ts until it outputs a bit b′, which is then output
by D.

If b = 0, then u and v are random elements in Gq. This implies that (us, vs)
is identically distributed to the corresponding cryptotext in the simulation and the
output of D is identically distributed to the output of Ts−1.

If b = 1, then (us, vs) is a valid encryption of ms with randomness r, and (u′s, v
′
s)

is a partial decryption of (us, vs) using the private keys wl = w and xl = x. This
implies that the output of D is identically distributed to the output of Ts.

We conclude that

|Pr[D(gr, gw, grw, gx, grx) = 1]− Pr[D(gr, gw, gr
′

, gx, gr
′′

) = 1]|

= |ps−1 − ps| ≥
1

Nnc
.

Lemma 3.8 in Section 3.5 shows that this contradicts the DDH-assumption. �

Chapter 9

A New Efficient Proof of A Shuffle

In this chapter we present a new approach to construct an efficient zero-knowledge
proof of knowledge of a witness of a correct decryption-permutation of El Gamal
cryptotexts. This protocol is then used in Chapter 10 to securely realize the ideal
decryption-permutation functionality FRDP

ZK . Our approach is not a variation of
existing methods [112, 70, 80]. It is based on a novel idea of independent interest,
and we argue that it is at least as efficient as previous constructions. We also give a
zero-knowledge proof of knowledge of correct re-encryption of Paillier cryptotexts.

This chapter is based on the results in Wikström [148].

9.1 An Informal Description of Our Approach

The protocol for proving the relation RDP is complex, but the underlying ideas are
simple. To simplify the exposition we follow the example of Neff [112, 113] and
consider the problem of proving that a list of elements in Gq are exponentiated
and permuted. We also omit numerous technical details. In particular we remove
several blinding factors, hence the protocols are not zero-knowledge as sketched
here. More precisely, let y, u1, . . . , uN , u

′
1, . . . , u

′
N ∈ Gq be defined by y = gx and

u′i = uxπ(i) for a permutation π. Only the prover knows x and π and it must show
that the elements satisfy such a relation.

9.1.1 Extraction Using Linear Independence

Recall that the security parameter κr denotes the size of the random padding in
proofs of knowledge over groups of unknown order. We also denote by κp an
additional security parameter, which is used as follows. The verifier chooses a list
P = (pi)

N
i=1 ∈ [2κp−1, 2κp − 1]N of random primes and computes U =

∏N
i=1 u

pi
i .

Then it requests that the prover computes U ′ =
∏N
i=1(u

′
i)
pπ(i) , proves that U ′ = Ux

and that it knows a permutation π such that U ′ =
∏N
i=1(u

′
i)
pπ(i) .

105

106 A New Efficient Proof of A Shuffle

The idea is then that if a prover succeeds in doing this it can be rewound and
run several times with different random vectors Pj , giving different Uj and U ′j,

until a set P1, . . . , PN of linearly independent vectors in ZNq are found. Linear

independence implies that there are coefficients al,j ∈ Zq such that
∑N
j=1 al,jPj

equals the lth unity vector el, i.e., the vector with a one in the lth position and all
other elements zero. We would then like to conclude that

uxl =

(N
∏

j=1

U
al,j
j

)x

=
N
∏

j=1

(U ′j)
al,j =

N
∏

j=1

(N
∏

i=1

(u′i)
pj,π(i)

)al,j

= u′π−1(l) , (9.1)

since that would imply that the elements satisfy the shuffle-relation.

9.1.2 Proving a Permutation of Prime Exponents

The prover can use standard techniques to prove knowledge of integers ρ1, . . . , ρN
such that U ′ =

∏N
i=1(u

′
i)
ρi , but it must also prove that ρi = pπ(i) for some per-

mutation π.
Suppose that

∏N
i=1 pi =

∏N
i=1 ρi over Z. Then unique factorization in Z implies

that each ρi equals some product of the pi and −1. If in addition we demand that
ρi ∈ [−2κp + 1, 2κp − 1], no such product can contain more than one factor. This
implies that every product must contain exactly one factor. Thus, ρi = ±pπ(i) for

some permutation π. If we also have
∑N
i=1 pi =

∑N
i=1 ρi, then we must clearly have

ρi = pπ(i).
We observe that proving the above is relatively simple over a group of unknown

order such as the group QRN of squares modulo an RSA modulus N. The prover
forms commitments

b0 = g , (bi,b
′
i)
N
i=1 = (htib

pπ(i)

i−1 ,h
t′igpπ(i))Ni=1 ,

with random ti and t′i and proves, using standard methods, knowledge of ρi, τi, τ
′
i

such that

U ′ =

N
∏

i=1

(u′i)
ρi , bi = hτib

ρi
i−1 , and b′i = hτ

′
igρi . (9.2)

Note that bN = hτg
QN
i=1 ρi for some τ , so the verifier can check that

∏N
i=1 ρi =

∏N
i=1 pi by asking the prover to show that it knows τ such that bN/g

QN
i=1 pi =

hτ . Under the strong RSA-assumption equality then holds over the integers, since
otherwise one may extract a non-trivial RSA-root as defined in Definition 3.11.
We then note that a standard proof of knowledge over a group of unknown order
also gives an upper bound on the bit-size of the exponents, i.e., it implicitly proves
that ρi ∈ [−2κp+κr + 1, 2κp+κr − 1]. If κr < κp this is sufficient to conclude that

ρi = ±pπ(i). Finally, since
∏N
i=1 b′i = hτ

′

g
PN
i=1 ρi for a τ ′ =

∑N
i=1 τ

′
i , the verifier

can check that
∑N

i=1 ρi =
∑N
i=1 pi by asking the prover to show that it knows τ ′

such that
∏N
i=1 b′i/g

PN
i=1 pi = hτ

′

.

A Proof of Knowledge of a Shuffle of El Gamal Cryptotexts 107

9.1.3 Fixing a Permutation

In Equation (9.1) above it is assumed that a fixed permutation π is used for all
prime vectors P1, . . . , PN . Unfortunately, this is not necessarily the case, i.e., the
permutation used in the jth proof may depend on j and we should really write πj .

To solve this technical problem we force the prover to commit to a fixed per-
mutation π before it receives the prime vector P . The commitment is on the form
(wi)

N
i=1 = (gr

′
igπ−1(i))

N
i=1, where g, g1, . . . , gN ∈ Gq are randomly chosen gener-

ators of Gq. The verifier then computes W =
∏N
i=1 w

pi
i and the prover proves

that W = gr
′ ∏N

i=1 g
ρi
i in addition to Equations (9.2). The idea is that the prover

must use π to permute the ρi or find a non-trivial representation of 1 ∈ Gq using
g, g1, . . . , gN , which is infeasible under the DL-assumption.

9.2 A Proof of Knowledge of a Shuffle of El Gamal

Cryptotexts

In this section we describe our proof of a shuffle in detail. Although we consider
a decrypt-permutation relation, our approach can be generalized to a proof of a
shuffle for the other shuffle relations considered in the literature. In Section 9.7 we
adapt the proof to prove a re-encryption shuffle of Paillier cryptotexts. In [149] we
also consider the two standard types of El Gamal based shuffle relations.

We introduce several security parameters. We use κ to denote the number of
bits in q, the order of the group Gq, and similarly κN to denote the number of
bits in the RSA-modulus N. We use κp to denote the number of bits used in
the random primes mentioned above. At some point in the protocol the verifier
hands a challenge to the prover. We use κc to denote the number of bits in this
challenge. At several points exponents must be padded with random bits to achieve
statistical zero-knowledge, as is standard for proofs of knowledge of exponents over
groups of unknown order. We use κr to denote the number of additional random
bits used to do this. We assume that the security parameters are chosen such that
κp + κc + κr < κ, κN, and κr < κp − 2. Below the protocol we explain how the
informal description above relates to the different components of the protocol.

Protocol 9.1 (Proof of Decryption-Permutation). The common input con-
sists of an RSA-modulus N and g,h ∈ QRN, generators g, g1, . . . , gN ∈ Gq, a
public key (z, y) ∈ G2

q , and two lists L = (ui, vi)
N
i=1 and L′ = (u′i, v

′
i)
N
i=1 in G2N

q .
The private input to the prover consists of (w, x) ∈ Z2

q such that (z, y) = (gw, gx)

and (u′i, v
′
i) = (u

1/w
π(i), vπ(i)u

−x/w
π(i)) for a permutation π ∈ ΣN such that L′ is lexico-

graphically sorted.

1. The prover chooses r′i ∈ Zq randomly, computes (wi)
N
i=1 = (gr

′
igπ−1(i))

N
i=1,

and hands (wi)
N
i=1 to the verifier.

2. The verifier chooses random primes p1, . . . , pN ∈ [2κp−1, 2κp − 1], and hands
(pi)

N
i=1 to the prover.

108 A New Efficient Proof of A Shuffle

3. Both parties compute (U, V,W) = (
∏N
i=1 u

pi
i ,
∏N
i=1 v

pi
i ,
∏N
i=1 w

pi
i).

4. The prover chooses the following elements randomly k1, k2, k3, k4, k5 ∈ Zq,
l1, . . . , l7, lr′ , l1/w, lx/w, lw, lx ∈ Zq, ti, t

′
i ∈ [0, 2κN+κr − 1],

si, s
′
i ∈ [0, 2κN+κc+2κr − 1], ri ∈ [0, 2κp+κc+κr − 1] for i = 1, . . . , N ,

s ∈ [0, 2κN+Nκp+κc+κr+log2N − 1], and s′ ∈ [0, 2κN+κr+κc+log2N − 1]. Then
the prover computes

(b1, b2) = (gk1U1/w, gk2Ux/w) (9.3)

(b3, b4, b5) = (gk31 g1/w, gk41 bx3 , g
k5
1 bw3) (9.4)

(β1, β2) =
(

gl1U l1/w , gl2U lx/w) (9.5)

(β3, β4) = (gl31 g
l1/w , gl61 g

lx/w) (9.6)

(β5, β6, β7, β8, β9) = (gl41 b
lx
3 , g

lx , gl51 b
lw
3 , g

lw , gl71
)

(9.7)

(α1, α2, α3) =

(

gl1
N
∏

i=1

(u′i)
ri , g−l2

N
∏

i=1

(v′i)
ri , glr′

N
∏

i=1

grii

)

(9.8)

b0 = g (9.9)

(bi,b
′
i)
N
i=1 = (htib

pπ(i)

i−1 ,h
t′igpπ(i))Ni=1 (9.10)

(γi,γ
′
i)
N
i=1 = (hsibrii−1,h

s′igri)Ni=1 (9.11)

(γ,γ′) = (hs,hs
′

) , (9.12)

and ((bi)
5
i=1, (βi)

9
i=1, (α1, α2, α3), (bi,b

′
i)
N
i=1, (γi,γ

′
i)
N
i=1, (γ,γ

′)) is handed to
the verifier.

5. The verifier chooses c ∈ [2κc−1, 2κc − 1] randomly and hands c to the prover.

6. Define t = tN + pπ(N)(tN−1 + pπ(N−1)(tN−2 + pπ(N−2)(tN−3 + pπ(N−3)(. . .))),

t′ =
∑N

i=1 t
′
i, r
′ =

∑N
i=1 r

′
ipi, k6 = k4 + k3x, and k7 = k5 + k3w. The prover

computes

(fi)
7
i=1 = (cki + li)

7
i=1 mod q

f1/w = c/w + l1/w mod q

fx/w = cx/w + lx/w mod q

fw = cw + lw mod q

fx = cx+ lx mod q

fr′ = cr′ + lr′ mod q

(ei, e
′
i)
N
i=1 = (cti + si, ct

′
i + s′i)

N
i=1 mod 2κN+κc+2κr

(di)
N
i=1 = (cpπ(i) + ri)

N
i=1 mod 2κp+κc+κr

e = ct+ s mod 2κN+Nκp+κc+κr+log2N

e′ = ct′ + s′ mod 2κN+κr+κc+log2N

Generation of Prime Vectors From a Small Number of Public Coins 109

and hands (((fi)
7
i=1, f1/w, fx/w, fw, fx, fr′), (ei, e

′
i)
N
i=1, (di)

N
i=1, (e, e

′)) to the
verifier.

7. The verifier checks that bi, βi, αi ∈ Gq, and that L′ is lexicographically sorted
and that

(bc1β1, b
c
2β2) = (gf1Uf1/w , gf2Ufx/w) (9.13)

(bc3β3, b
c
4β4) = (gf31 g

f1/w , gf61 g
fx/w) (9.14)

(bc4β5, y
cβ6) = (gf41 b

fx
3 , g

fx) (9.15)

(bc5β7, z
cβ8, (b5/g)

cβ9) = (gf51 b
fw
3 , gfw , gf71) (9.16)

(bc1α1, (V/b2)
cα2,W

cα3) =

(

gf1
N
∏

i=1

(u′i)
di , g−f2

N
∏

i=1

(v′i)
di , gfr′

N
∏

i=1

gdii

)

(9.17)

(bciγi, (b
′
i)
cγ′i)

N
i=1 = (heibdii−1,h

e′igdi)Ni=1 (9.18)

(g−
QN
i=1 pibN)cγ = he (9.19)

(

g−
PN
i=1 pi

N
∏

i=1

b′i

)c

γ ′ = he
′

. (9.20)

Equations (9.3)–(9.7) are used to prove (b1, V/b2) = (gκ1U1/w, g−κ2V U−x/w)
using standard Schnorr-like proofs of knowledge of logarithms. Equations (9.10)
contain commitments corresponding to those in the outline of our approach. Equa-
tions (9.11) are used to prove knowledge of exponents τi, τ

′
i , ρi such that (bi,b

′
i) =

(hτibρii−1,h
τ ′
igρi). We remark that the verifier need not check that the elements

bi,b
′
i,γi,γ

′
i,γ,γ

′ ∈ QRN for our analysis to go through. Equations (9.12) are

used to prove that
∏N
i=1 ρi =

∏N
i=1 pi and

∑N
i=1 ρi =

∑N
i=1 pi, i.e., that ρi in fact

equals pπ(i) for some permutation π. Equations (9.8) is used to prove that (b1, V/b2)

also equals (gk1
∏N
i=1(u

1/wj
i)pi , g−k2

∏N
i=1(viu

−xj/wj
i)pi). If the two ways of writing

b1 and b2 are combined we have

(U1/w, V U−x/w) =

(N
∏

i=1

(u
1/wj
i)pi ,

N
∏

i=1

(viu
−xj/wj
i)pi

)

,

which by the argument in Section 9.1 implies that ((g, z, y, L, L′), (w, x)) ∈ RDP.

9.3 Generation of Prime Vectors From a Small Number of

Public Coins

In our protocol the verifier must generate vectors in ZNq such that each component is
a “randomly” chosen prime in [2κp−1, 2κp−1]. In our application this must be done

110 A New Efficient Proof of A Shuffle

openly, i.e., the randomness used to define the random primes must be generated
jointly by the mix-servers.

We describe two algorithms PGenc and PGen for doing this. Both takes a list
of integers and random bits used as internal randomness as input and then try to
extract a list of primes.

We define PGenc as follows. Let p(n) be the smallest prime at least as large as n.
Our generator PGenc takes as input N random integers n1, . . . , nN ∈ [2κp−1, 2κp−1]
and internal randomness r, and defines pi = p(ni). To find pi it first redefines ni
such that it is odd by incrementing by one if necessary. Then it executes the
Miller-Rabin primality test for ni, ni + 2, ni + 4, . . . until it finds a prime.

We put an explicit bound on the running time of the generator by bounding the
number of integers it considers and the number of iterations of the Miller-Rabin test
it performs in total. If the generator stops due to one of these bounds it outputs
⊥.

The generator is not allowed to test more than N ′ = lnn(N +
√

Nκp) integers,

and it is not allowed to do more than N ′′ = Nκp + 2(N ′ +
√

N ′κp) iterations of
the Miller-Rabin test in total.

Let pN(n1, . . . , nN ′) denote the first N primes in the list of integers n1, . . . , nN ′

if they exist. We define PGen as follows. It takes as input N ′ random integers
n1, . . . , nN ′ ∈ [2κp−1, 2κp − 1] and internal randomness r and then executes the
Miller-Rabin primality test for n1, n2, . . . until it has found N probable primes. We
bound the running time of PGen in the same way we bound the running time of
PGenc.

The generator PGenc (or PGen) can be used to turn the protocol above into
a protocol where all messages of the verifier are random strings. The verifier
sends (n1, . . . , nN , r) (or (n1, . . . , nN ′ , r)) to the prover instead of p1, . . . , pN and
the prover and verifier generates the primes used in the protocol by computing
(p1, . . . , pN) = PGenc(n1, . . . , nN , r) (or (p1, . . . , pN) = PGen(n1, . . . , nN ′ , r)).

The primes output by PGen are randomly distributed by definition, but the
primes output by PGenc may be biased. A result by Baker and Harman [10] implies
that the bias is relatively small.

Theorem 9.2 (cf. [10]). For large integers n there exists a prime in [n−n0.535, n].

Corollary 9.3. For large κp it holds that for every prime p in the interval
[2κp−1, 2κp − 1] we have Pr[p(n) = p] ≤ 2−0.465(κp−1), where the probability is taken
over a random choice of n ∈ [2κp−1, 2κp − 1]

The corollary gives a very pessimistic bound. It is commonly believed that the
theorem is true with 0.465 replaced by any constant less than one. Furthermore,
Cramér argues probabilistically that there is a prime in every interval [n− log2 n, n].
See Ribenboim [131] for a discussion on this.

We must argue that the generators fail with negligible probability. There are
two ways the generators can fail. Either they output p1, . . . , pN , where pi 6= p(ni)
for some i, or they output ⊥.

Generation of Prime Vectors From a Small Number of Public Coins 111

Lemma 9.4. The probability that PGenc(n1, . . . , nN , r) 6= (p(n1), . . . , p(nN)) con-
ditioned on PGenc(n1, . . . , nN , r) 6= ⊥ is negligible. Similarly, the probability that
PGen(n1, . . . , nN ′ , r) 6= p(n1, . . . , nN ′) conditioned on PGen(n1, . . . , nN ′ , r) 6= ⊥ is
negligible.

Proof. We prove the first claim. The proof of the second claim is almost identical
and omitted. Suppose that PGenc(n1, . . . , nN , r) 6= ⊥. Then PGenc outputs a list
of integers (p1, . . . , pN) and for each integer n between ni and pi an iteration of the
Miller-Rabin primality test has found a witness that n is composite. Thus, there
exists no primes between ni and pi. The probability that pi is considered to prime
despite that it is not, is bounded by 2−κp since κp iterations of the Miller-Rabin
test are executed. The union bound implies that the probability that pi 6= p(ni)
for any i is bounded by N2−κp , which is negligible. �

Using the prime number theorem it is not hard to bound the probability that
PGen(n1, . . . , nN ′ , r) = ⊥. Unfortunately, the current understanding of the dis-
tribution of the primes does not allow a strict analysis of the probability that
PGenc(n1, . . . , nN , r) = ⊥. Instead we give a heuristic analysis in Cramér’s prob-
abilistic model of the primes defined below.

Definition 9.5 (Cramér’s Model). For each integer n, let Xn be an independent
binary random variable such that Pr[Xn = 1] = 1/ lnn. An integer n is said to be
prime∗ if Xn = 1.

The idea is to consider the primality of the integers as a typical outcome of
the sequence (Xn)n∈Z. Thus, when we analyze the generator we assume that the
primality of an integer n is given by Xn, and our analysis is both over the internal
randomness of PGenc and the randomness of Xn.

The lemma below follows by a standard argument, but we need a precise bound
to estimate the complexity of the protocol.

Lemma 9.6. In Cramér’s model the probability that PGenc(n1, . . . , nN , r) = ⊥ is
negligible. The probability that PGen(n1, . . . , nN ′ , r) = ⊥ is negligible.

Proof. We prove the first claim. The second claim follows similarly using the prime
number theorem.

We must bound the probability that the generator needs too many invocations
of Miller-Rabin or too many iterations in total.

Denote by Yi the event that the integer tested in the ith invocation of Miller-
Rabin is a prime. For simplicity we assume that no integer is tested twice for

primality. Thus, we may assume that the Yis are independent. Set Y =
∑N ′

i=1 Yi.

Then E[Y] = N ′

lnn = N +
√

Nκp. We bound the probability that the generator fails
by having to check to many integers by

Pr [Y ≤ N] = Pr
[

Y ≤ E[Y]−
√

Nκp

]

≤ e−2κp .

112 A New Efficient Proof of A Shuffle

Suppose now that at least N of the Yi are ones. We must bound the probability
that the generator need more than N ′′ iterations in the Miller-Rabin test. At
most N primes are tested and for each such prime κp iterations are needed giving
Nκp iterations for the primes. Along the way a number of composite numbers are
tested. Our bound stipulates that at most 2(N ′ +

√

N ′κp) iterations can be spent
on composites, and at most N ′ integers can be tested at all. Denote by Zi the
indicator variable for the event that the ith iteration of the Miller-Rabin test, when

run on a composite outputs “composite”. Define Z =
∑2(N ′+

√
N ′κp)

i=1 Zi. In each
iteration of the Miller-Rabin test on a composite the test outputs “composite” with
probability at least 1/2 so Pr[Zi] ≥ 1

2 and E[Z] ≥ N ′ +
√

N ′κp.
The probability of failure is bounded by the probability that the generator is

not allowed to perform more Miller-Rabin tests despite that there are more integers
to be tested. This probability is captured below.

Pr [Z ≤ N ′] = Pr
[

Z ≤ E[Z]−
√

N ′κp

]

≤ e−2κp .

Thus, it follows that the probability that the generator outputs ⊥ negligible. �

Although we now have a protocol it requires many random bits. This can be
avoided by use of a pseudo-random generator PRG as suggested by Groth [81]. In-
stead of choosing (n1, . . . , nN , r) (or (n1, . . . , nN ′ , r)) randomly and sending these
integers to the prover, the verifier chooses a random seed s ∈ [0, 2κ − 1] and hands
this to the prover. The prover and verifier then computes (n1, . . . , nN , r) = PRG(s)
(or (n1, . . . , nN ′ , r) = PRG(s)) and computes the primes from the integers as de-
scribed above using PGenc (or PGen). The output (p1, . . . , pN) may not appear
to the prover as random, since it has access to the seed s. We prove that if we
define Pj = PGenc(PRG(s)) (or Pj = PGen(PRG(s))) and let P1, . . . , Pj−1 ∈ ZNq be
any linearly independent vectors, the probability that Pj ∈ Span(P1, . . . , Pj−1) or
pj,i = pj,l for some i 6= l is negligible for all 1 ≤ j ≤ N . This is all we need in our
application.

9.4 Security Analysis

Formally, the security properties of our protocol are captured by the following
propositions. The zero-knowledge property is relatively straightforward, so most of
our effort is spent on analyzing the soundness of the protocol.

Proposition 9.7 (Zero-Knowledge). Protocol 9.1 is honest verifier statistical
zero-knowledge.

Proof. The simulator chooses p1, . . . , pN and c honestly. Then it chooses ran-
dom elements f1, . . . , f7, f1/w, fx/w, fw, fx, fr′ ∈ Zq, (ei, e

′
i)
N
i=1 ∈ [0, 2κN+κc+2κr −

1]N , (di)
N
i=1 ∈ [0, 2κp+κc+κr − 1]N , e ∈ [0, 2κN+Nκp+κc+κr+log2N − 1], and e′ ∈

[0, 2κN+κr+κc+log2N − 1]. It also chooses b1, . . . , b5 ∈ Gq and bi,b
′
i ∈ QRN ran-

domly. Finally, the simulator defines, (β1, . . . , β9) by Equations (9.13)–(9.16),

Security Analysis 113

(α1, α2, α3) by Equations (9.17), γi and γ ′i by Equations (9.18), γ by Equation
(9.19), and γ′ by Equation (9.20) respectively. It is easy to see that the distribu-
tion of the elements is statistically close to the distribution of the corresponding
elements in the protocol. �

The protocol could be modified by adding a first step, where the verifier chooses
(N,g,h) and (g1, . . . , gN). This would give a computationally sound proof of know-
ledge, but in our application we wish to choose these parameters jointly and only
once, and then let the mix-servers execute the proof with these parameters as com-
mon inputs. Thus, there may be a negligible portion of the parameters on which
the prover can convince the verifier of false statements. Because of this we can-
not hope to prove that the protocol is a proof of knowledge in the formal sense.
Damgård and Fujisaki [55] introduce the notion of a computationally convincing
proof of knowledge to deal with situations like these. In Section 2.8 we introduce
the definition of computationally convincing proofs of knowledge that we use here.

Proposition 9.8. Protocol 9.1 is a computationally convincing proof of knowledge
for the relation RDP with regards to the distribution of (N,g,h) and (g1, . . . , gN).

Proposition 9.9. Protocol 9.1 has overwhelming completeness, also if PGen is used
for prime generation. If PGenc is used instead, then this holds in Cramér’s model
of the primes.

Proof. The honest verifier accepts a proof of an honest prover if prime vector gener-
ation succeeds and there is no modular reduction in the computation of ei, e

′
i, di, e, e

′

in the proof. We know from Lemma 9.4 and Lemma 9.6 that prime vector gener-
ation fails with negligible probability. A modular reduction in the computation of
a single value occurs with probability 2−κr . The claim now follows from the union
bound. �

9.4.1 Proof of Proposition 9.8

Recall the setting of computationally convincing proofs of knowledge from Section
2.8.1. We consider a malicious prover P ∗ which is given Γ = (N,g,h) and g =
(g, g1, . . . , gN) as input and is run with internal randomness rp. The prover outputs
an instance IP∗(Γ, g, rp), i.e., public keys z, y ∈ Gq and two lists L,L′ ∈ G2N

q

and then interacts with the honest verifier on the common input consisting of
(Γ, g, z, y, L, L′). Recall that viewVP∗(Γ, g, rp, rv) denotes the view of the honest
verifier when it executes with the malicious prover P ∗ and that the predicate AccV
takes a view T as input and outputs 1 if the transcript is accepting and 0 otherwise.
Let LRDP be the language corresponding to the decryption-permutation relation
RDP.

Although our proof of a shuffle is complex the analysis is similar in structure
to most analyses of proofs of knowledge. First we identify conditions on a set of
related transcripts that allow us to extract the knowledge held by the prover. This

114 A New Efficient Proof of A Shuffle

corresponds to finding a “fork” in standard Schnorr-like proofs of knowledge of a
logarithm. Then we describe how such transcripts can be generated by interacting
with a prover.

Notation

We need to consider many transcripts and be able to distinguish between these. We
denote the jth view of the honest verifier in a list by Tj = (Ij ,Wj , Pj , Cj , cj , Rj)
where Ij denotes the common input, Wj denotes the list of commitments wi, and

Pj = (pj,1, . . . , pj,N)

Cj = ((bj,i)
5
i=1, (βj,i)

9
i=1, (αj,1, αj,2, αj,3), (bj,i,b

′
j,i)

N
i=1, (γj,i,γ

′
j,i)

N
i=1, (γj ,γ

′
j))

Rj = ((fj,i)
7
i=1, fj,1/w, fj,x/w, fj,w, fj,x, fj,r′), (ej,i, e

′
j,i)

N
i=1, (dj,i)

N
i=1, (ej , e

′
j)) .

Since Ij and Wj are fixed for all j in most of our analysis we do not introduce any
notation indexed on j for their parts. We think of (Pj , Cj , cj , Rj) as “the primes”,
“the commitments”, “the challenge” and “the reply” in the jth transcript.

Extraction From Suitable Transcripts

Recall that for standard Schnorr-like proofs of knowledge it suffices to find a “fork”,
i.e., two accepting transcripts with identical commitments from the prover, but
distinct challenges from the verifier, to extract the knowledge held by the prover.

Our protocol has a similar, but more complicated property. The lemma below
shows that given 2N transcripts of a special form, we can either extract a witness
of the decryption-permutation relation, or one of a small number of special cases
occur.

In a later section we show that if one of the special cases occur with non-
negligible probability we can break a standard complexity assumption, so the reader
should think of the lemma as saying that we can extract a witness for the decryption-
permutation relation.

Lemma 9.10. Let T1, . . . , T2N be accepting transcripts such that

1. (I1,W1) = (I2,W2) = . . . = (IN ,WN) and I1 = (g, z, y, L, L′),

2. (Pj , Cj) = (Pj+N , Cj+N) and cj 6= cj+N , and

3. Span(P1, . . . , PN) = ZNq and pj,i 6= pj,l for i 6= l.

Then we can find elements of one of the following types in polynomial time

1. Main Conclusion. Elements w, x ∈ Zq and a permutation π ∈ ΣN s.t.

((g, z, y, L, L′), (w, x)) ∈ RDP .

Security Analysis 115

2. An element b ∈ QRN, and integers η0 6= 0, and η1, η2, not both zero such
that one of the following holds.

a) The integer η0 does not divide both η1 and η2, and bη0 = hη1gη2 .

b) The integer η0 does not divide η1, and bη0 = hη1 = 1.

3. Integers η1, η2, not both zero, such that hη1gη2 = 1.

4. Elements ρ′i and ρ′i,j in Zq such that wi = gρ
′
i
∏N
j=1 g

ρ′i,j
j , and such that

(ρ′ij)
N
i,j=1 is not a permutation matrix.

5. Elements η0, . . . , ηN ∈ Zq, not all zero, such that gη0
∏N
i=1 g

ηi
i = 1.

Proof. The proof is quite complex and is divided into a number of cases, some of
which are subdivided into sub-cases. The main track of the proof leads to the main
conclusion. To aid the reader we adopt the convention that whenever the proof
divides into two sub-cases it is always the first sub-case that leads to the main
conclusion.

We first analyze the integer commitments of the protocol, and only then proceed
with the analysis of the components in Gq. Our integer commitments are not
standard, since the bases bj,i are chosen by the adversary during the protocol, and
we compose commitments in various ways. This said, we do use ideas from Fujisaki
and Okamoto [67] and Damgård and Fujisaki [55].

The Prover Can Open bj,i and b′j,i To Some ρi. We consider Equations (9.18)
iteratively for i = 1, . . . , N . For a given i, the equations imply that

b
cj+N−cj
j,i = hej+N,i−ej,ib

dj+N,i−dj,i
j,i−1 , and

(b′j,i)
cj+N−cj = he

′
j+N,i−e

′
j,igdj+N,i−dj,i .

There are several cases to consider.

1. If cj+N − cj divides ej+N,i − ej,i, dj+N,i − dj,i and e′j+N,i − e′j,i, we set τi =
(ej+N,i − ej,i)/(cj+N − cj), τ ′i = (e′j+N,i − e′j,i)/(cj+N − cj) and

ρi = (dj+N,i − dj,i)/(cj+N − cj) , (9.21)

and conclude that

bj,i = hτib
ρi
j,i−1 , and b′j,i = hτ

′
igρi . (9.22)

We apply the equalities iteratively and get

bj,N = hτg
QN
i=1 ρi

where τ = τN + ρN (τN−1 + ρN−1(τN−2 + ρN−2(τN−3 + ρN−3(. . .))).

116 A New Efficient Proof of A Shuffle

2. Suppose now that cj+N −cj divides ej+N,i−ej,i, e′j+N,i−e′j,i and dj+N,i−dj,i
for all i < l, but not for i = l. Then we can only conclude that

bj,l−1 = hτ∗g
Ql−1
i=1 ρi

where τ∗ = τl−1 +ρl−1(τl−2 +ρl−2(τl−3 +ρl−3(τl−4 +ρl−4(. . .))). This implies
that

b
cj+N−cj
j,l = hτ∗(dj+N,l−dj,l)+(ej+N,l−ej,l)g(

Ql−1
i=1 ρi)(dj+N,i−dj,i) .

Remark 9.11. To readers familiar with the proof in Damgård and Fujisaki [55],
we point out that here it seems impossible to conclude that one of the ex-
ponents on the left is not divisible by the exponent on the right, which is
necessary to reach a contradiction to the strong RSA-assumption. This is dif-
ferent from [55], where no additional factors corresponding to τ∗ and

∏l−1
i=1 ρi

are present. The sole purpose of the b′j,i commitments is to handle this prob-
lem. Thus, if the problem could be solved otherwise this would simplify the
protocol and improve its efficiency somewhat.

There are two cases to consider.

a) If cj+N − cj does not divide e′j+N,l − e′j,l and dj+N,l − dj,l, then set
b = b′j,l, η0 = cj+N − cj , η1 = e′j+N,l− e′j,l, and η2 = dj+N,l − dj,l. This
implies that bη0 = hη1gη2 and η0 does not divide both η1 and η2, i.e.
Conclusion 2a of the lemma is satisfied.

b) If cj+N − cj divides e′j+N,i − e′j,i and dj+N,l − dj,l, then set

b = bj,l

(

hτ∗g
Ql−1
i=1 ρi

)−
dj+N,l−dj,l
cj+N−cj

,

η0 = cj+N − cj , and η1 = ej+N,l − ej,l. By assumption η0 does not
divide η1. This implies that bη0 = hη1 and η0 does not divide η1, i.e.
Conclusion 2b of the lemma is satisfied.

There is no need to consider Case 2 further, but we must show that Case 1 leads
to one of the conclusions in the lemma.

Each ρi Equals a Prime pj,πj(i) Up to Sign For Some πj ∈ ΣN . Equation
(9.19) implies that

(g−
QN
i=1 pjibj,N)cj+N−cj = hej+N−ej .

There are two cases to consider.

1. If cj+N−cj divides ej+N−ej we set τ∗ = (ej+N−ej)/(cj+N−cj) and conclude
that

bj,N = hτ∗g
QN
i=1 pji .

There are two sub-cases to consider.

Security Analysis 117

a) If (τ∗,
∏N
i=1 pji) = (τ,

∏N
i=1 ρi), then it follows from unique factorization

in Z that ρi =
∏

l∈Γi
pj,l for some subset Γi ⊂ {1, . . . , N}. We also

have cjρi ∈ [−2κp+κc+κr + 1, 2κp+κc+κr − 1] by definition. Since cj ∈
[2κc−1, 2κc − 1], this is only possible if ρi ∈ [−2κp+κr + 1, 2κp+κr − 1].
We know that pj,l ∈ [2κp−1, 2κp − 1] and κr < κp − 2 so no product of
more than one prime can be contained in [−2κp+κr + 1, 2κp+κr − 1], i.e.
|Γi| ≤ 1. This implies that each ρi has at least one factor. We conclude
that ρi = ±pj,πj(i) for some permutation πj ∈ ΣN .

b) If (τ∗,
∏N
i=1 pji) 6= (τ,

∏N
i=1 ρi), we have

hτ−τ∗g
QN
i=1 ρi−

QN
i=1 pji = 1 .

If we set η1 = τ − τ∗, and η2 =
∏N
i=1 ρi −

∏N
i=1 pji, these integers satisfy

Conclusion 3 of the lemma.

2. If cj+N − cj does not divide ej+N − ej , then set b = g−
QN
i=1 pjibj,N , η0 =

cj+N − cj , and η1 = ej+N − ej. Then bη0 = hη1 and η0 does not divide η1,
i.e., Conclusion 2a of the lemma is satisfied.

The only case we must consider further is Case 1a.

All ρi Are Positive. Equation (9.22) implies that

N
∏

i=1

b′j,i = h
PN
i=1 τ

′
ig

PN
i=1 ρi . (9.23)

From Equation (9.20) we conclude that

(

g−
PN
i=1 pj,i

N
∏

i=1

b′j,i

)cj+N−cj

= he
′
j+N−e

′
j .

There are two cases to consider.

1. If cj+N − cj divides e′j+N − e′j, we define τ ′ = (e′j+N − e′j)/(cj+N − cj) and
conclude that

N
∏

i=1

b′j,i = hτ
′

g
PN
i=1 pj,i .

There are two sub-cases to consider.

a) If (τ ′,
∑N

i=1 pj,i) = (
∑N

i=1 τi,
∑N

i=1 ρi), we conclude that ρi is positive.
To see this, note that pj,i > 0 and ρi = ±pj,πj(i) 6= 0. Thus, if any ρi is

negative we have
∑N
i=1 pj,i >

∑N
i=1 ρi.

118 A New Efficient Proof of A Shuffle

b) If (τ ′,
∑N

i=1 pj,i) 6= (
∑N

i=1 τi,
∑N

i=1 ρi), we have

hτ
′−

PN
i=1 τig

PN
i=1 pj,i−

PN
i=1 ρi = 1 .

If we set η1 = τ ′ −∑N
i=1 τi and η2 =

∑N
i=1 pj,i −

∑N
i=1 ρi, these integers

satisfy Conclusion 3 of the lemma.

2. If cj+N − cj does not divide e′j+N − e′j , then set b = g−
PN
i=1 pj,i

∏N
i=1 b′j,i,

η0 = cj+N − cj, and η1 = e′j+N − e′j. This implies that bη0 = hη1 and η0 does
not divide η1, i.e., Conclusion 2b of the lemma is satisfied.

We have now established that either we have ρi = pj,πj(i) for some permutation
πj , or one of the Conclusions 2a, 2b, or 3 of the lemma holds. We stress that we
do not necessarily have πj = πj′ for j 6= j′.

From this point on we compute in Gq, and q is prime so the exponents live in
the finite field Zq, i.e., every non-zero element can be inverted.

The Commitments wi Are On The Expected Form. We now argue that the
commitments wi are a commitment of a permutation π. From Equation (9.17) we
have

W
cj+N−cj
j = gfj+N,r′−fj,r′

N
∏

i=1

g
dj+N,i−dj,i
i .

We define γ′j = (fj+N,r′ − fj,r′)/(cj+N − cj) and conclude that

N
∏

i=1

w
pj,i
i = gγ

′
j

N
∏

i=1

g
pj,πj(i)

i . (9.24)

Since the vectors P1, . . . , PN are linearly independent over ZNq by assumption,
this means that for each i there exists coefficients ai,1, . . . , ai,N ∈ Zq such that
∑N
j=1 ai,jPj = (δi,1, . . . , δi,N) with δi,j = 0 for j 6= i and δi,i = 1. This implies that

wi =
N
∏

j=1

(

N
∏

l=1

w
pj,l
l

)ai,j

=
N
∏

j=1

(

gγ
′
j

N
∏

l=1

g
pj,πj(l)

l

)ai,j

= gρ
′
i

N
∏

l=1

g
ρ′i,l
l ,

where ρ′i =
∑N

j=1 γ
′
jai,j and ρ′i,l =

∑N
j=1 pj,πj(l)ai,j .

We expect that

ρ′11 ρ′12 · · · ρ′1N
ρ′21 ρ′22 · · · ρ′2N
...

...
. . .

...
ρ′N1 ρ′N2 · · · ρ′NN

is a permutation matrix. If it is not, then Conclusion 4 is satisfied, so we assume
it is a permutation matrix such that

wi = gρ
′
igπ−1(i) . (9.25)

Security Analysis 119

All Permutations Used Are Equal. We must show that all permutations πj
are equal. If πj 6= π, we have from Equation (9.24) and (9.25) that

gγ
′
j

N
∏

i=1

g
pj,πj(i)

i =

N
∏

i=1

w
pj,i
i = g

PN
i=1 ρ

′
ipj,i

N
∏

i=1

g
pj,π(i)

i

with some pj,πj(i) − pj,π(i) 6= 0, since pj,i 6= pj,l if i 6= l by assumption. Then

setting η0 = γ′j −
∑N
i=1 ρ

′
ipj,i and ηi = pj,πj(i)− pj,π(i) implies gη0

∏N
i=1 g

ηi
i = 1 and

Conclusion 5 of the lemma is satisfied.

The Common Input (g, z, y, L, L′) Satisfies ((g, z, y, L, L′), (w, x)) ∈ RDP. From
the above we may assume that πj = π for all j = 1, . . . , N , so we drop the subscript
and simply write π from now on. Equations (9.13) and (9.14) imply that

b
cj+N−cj
1 = gfj+N,1−fj,1U

fj+N,1/w−fj,1/w
j ,

b
cj+N−cj
2 = gfj+N,2−fj,2U

fj+N,x/w−fj,x/w
j ,

b
cj+N−cj
3 = g

fj+N,3−fj,3
1 gfj+N,1/w−fj,1/w , and

b
cj+N−cj
4 = g

fj+N,6−fj,6
1 gfj+N,x/w−fj,x/w .

Define

ω′ = (fj+N,1/w − fj,1/w)/(cj+N − cj) ,
ξ′ = (fj+N,x/w − fj,x/w)/(cj+N − cj) ,
κ1 = (fj+N,1 − fj,1)/(cj+N − cj) , (9.26)

κ2 = (fj+N,2 − fj,2)/(cj+N − cj) , (9.27)

κ3 = (fj+N,3 − fj,3)/(cj+N − cj) , and (9.28)

κ6 = (fj+N,6 − fj,6)/(cj+N − cj) . (9.29)

Then we have

b1 = gκ1Uω
′

j , (9.30)

b2 = gκ2U ξ
′

j , (9.31)

b3 = gκ3
1 gω

′

, and (9.32)

b4 = gκ6
1 gξ

′

. (9.33)

Equations (9.15) and (9.16) imply that

b
cj+N−cj
4 = g

fj+N,4−fj,4
1 b

fj+N,x−fj,x
3 , (9.34)

ycj+N−cj = gfj+N,x−fj,x , (9.35)

b
cj+N−cj
5 = g

fj+N,5−fj,5
1 b

fj+N,w−fj,w
3 , (9.36)

zcj+N−cj = gfj+N,w−fj,w , (9.37)

(b5/g)
cj+N−cj = g

fj+N,7−fj,7
1 . (9.38)

120 A New Efficient Proof of A Shuffle

Define

ω = (fj+N,w − fj,w)/(cj+N − cj) ,
ξ = (fj+N,x − fj,x)/(cj+N − cj) ,
κ4 = (fj+N,4 − fj,4)/(cj+N − cj) , (9.39)

κ5 = (fj+N,5 − fj,5)/(cj+N − cj) , and (9.40)

κ7 = (fj+N,7 − fj,7)/(cj+N − cj) . (9.41)

Then we have gx = y = gξ and gw = z = gω, so ξ = x and ω = w. This means that
we have

b4 = gκ4
1 bx3 (9.42)

b5 = gκ5
1 bw3 (9.43)

b5 = gκ7
1 g (9.44)

If we combine Equation (9.32) and Equation (9.43) we get

b5 = gκ5
1 gwκ3

1 gwω
′

. (9.45)

There are two cases

1. If ω′ = 1/w we conclude that

b3 = gκ3

1 g1/w , and (9.46)

b4 = g
κ4+x/κ3

1 gx/w . (9.47)

If ξ′ 6= x/w, we set η0 = κ4+xκ3−κ6 and η1 = x/w−ξ′. This gives gη0gη11 = 1,
i.e., Conclusion 5 is satisfied. Thus, we may assume that ξ′ = x/w. Combined
with Equations (9.30) and (9.31) this gives

b1 = gκ1U
1/w
j , and (9.48)

b2 = gκ2U
x/w
j . (9.49)

2. If ω′ 6= 1/w we define η0 = wω′− 1 and η1 = κ5 +wκ3− κ7. From Equations
(9.45) and (9.44) we conclude that gη0gη11 = 1, i.e., Conclusion 5 is satisfied.

From Equation (9.17) we have

b
cj+N−cj
1 = gfj+N,1−fj,1

N
∏

i=1

(u′i)
dj+N,i−dj,i , and

(Vj/b2)
cj+N−cj = g−(fj+N,2−fj,2)

N
∏

i=1

(v′i)
dj+N,i−dj,i .

Security Analysis 121

Our definitions of κ1 and κ2 in Equations (9.26) and (9.27), and the definition of
ρi, which equals pj,π(i) in Equation (9.21) imply that

b1 = gκ1

N
∏

i=1

(u′i)
pj,π(i) , and

Vj/b2 = g−κ2

N
∏

i=1

(v′i)
pj,π(i) .

If we combine Equations (9.48) and (9.49) with the two equations above we have

N
∏

i=1

(u
1/w
i)pji = U

1/w
j =

N
∏

i=1

(u′i)
pj,π(i) , and (9.50)

N
∏

i=1

(viu
−x/w
i)pji = VjU

−x/w
j =

N
∏

i=1

(v′i)
pj,π(i) , (9.51)

for j = 1, . . . , N . We apply the coefficients al,1, . . . , al,N ∈ Zq introduced above to
the Equations (9.50) and (9.51) and conclude that

u
1/w
l =

N
∏

j=1

(N
∏

i=1

(u
1/w
i)pji

)al,j

=

N
∏

j=1

(N
∏

i=1

(u′i)
pj,π(i)

)al,j

= u′π−1(l) , and

vlu
−x/w
l =

N
∏

j=1

(N
∏

i=1

(viu
−x/w
i)pji

)al,j

=

N
∏

j=1

(N
∏

i=1

(v′i)
pj,π(i)

)al,j

= v′π−1(l) .

This concludes the proof. �

Random Prime Vectors are Linearly Independent

We show that given linearly independent vectors P1, . . . , Pj−1 ∈ ZNq , a random
prime vector Pj is contained in the subspace spanned by P1, . . . , Pj−1 with negli-
gible probability as long as j ≤ N and pj,i equals any fixed prime with negligible
probability.

Lemma 9.12. Let P1, . . . , Pj−1 ∈ ZNq be linearly independent vectors. If Pj =
(pj,1, . . . , pj,N) is a list of independently and identically distributed primes such
that Pr[pj,i = p] ≤ ǫ for every prime p, we have

Pr[Pj ∈ Span(P1, . . . , Pj−1)] ≤ ǫN−j+1 .

Proof. The vectors P1, . . . , Pj−1 form a matrix

P =

p1,1 p1,2 · · · p1,j−1 p1,j · · · p1,N

p2,1 p2,2 · · · p2,j−1 p2,j · · · p2,N

...
...

. . .
...

...
. . .

...
pj−1,1 pj−1,2 · · · pj−1,j−1 pj−1,j · · · pj−1,N

.

122 A New Efficient Proof of A Shuffle

Suppose that we replace P1, . . . , Pj−1 with a set of rows P ′1, . . . , P
′
j−1 formed by

elementary row operations. Then clearly Pr[Pj ∈ Span(P1, . . . , Pj−1)] = Pr[Pj ∈
Span(P ′1, . . . , P

′
j−1)], since Span(P ′1, . . . , P

′
j−1) = Span(P1, . . . , Pj−1). Given a per-

mutation π of N elements, we denote by P πi the vector with permuted components
defined as (pi,π(1), pi,π(2), . . . , pi,π(N)). Since the primes pj,1, . . . , pj,N are identically
and independently distributed we conclude that

Pr[Pj ∈ Span(P1, . . . , Pj−1)] = Pr[Pj ∈ Span(P π1 , . . . , P
π
j−1)]

for every permutation π of N elements.

Thus, we can by elementary row operations and by permuting the columns in
the matrix form a new matrix P ′ from P on the form

P ′ =

P ′1
P ′2
...

P ′j−1

=

1 0 · · · 0 p′1,j · · · p′1,N
0 1 · · · 0 p′2,j · · · p′2,N
...

...
. . .

...
...

. . .
...

0 0 · · · 1 p′j−1,j · · · p′j−1,N

,

with Pr[Pj ∈ Span(P1, . . . , Pj−1)] = Pr[Pj ∈ Span(P ′1, . . . , P
′
j−1)]. We have Pj ∈

Span(P ′1, . . . , P
′
j−1) if and only if

j−1
∑

i=1

pj,ip
′
i,l = pj,l

for l = j, . . . , N . From independence we conclude that the probability of this event
is at most ǫN−j+1, which concludes the proof. �

Corollary 9.13. Let P1, . . . , Pj−1 ∈ ZNq be linearly independent vectors and let
s ∈ [0, 2κ − 1] be a randomly chosen seed.

If Pj = PGenc(PRG(s)), Pr[Pj ∈ Span(P1, . . . , Pj−1)] is negligible in Cramér’s
model. If Pj = PGen(PRG(s)), then Pr[Pj ∈ Span(P1, . . . , Pj−1)] is negligible.

Proof. We prove the first claim. The second follows by a similar argument. Suppose
that Pr[Pj ∈ Span(P1, . . . , Pj−1)] ≥ 1/κc for some linearly independent vectors
P1, . . . , Pj−1 ∈ ZNq and κ in some infinite set N of security parameters. Con-
sider the distinguisher A that is given (n1, . . . , nN , r) generated either by choos-
ing ni ∈ [0, 2κp − 1] randomly, or by choosing s ∈ [0, 2κ − 1] randomly and
computing (n1, . . . , nN , r) = PRG(s). The distinguisher simply checks if Pj ∈
Span(P1, . . . , Pj−1) and outputs 1 or 0 depending on the result. It follows from
Lemma 9.12 that A can distinguish uniformly and independently generated in-
tegers from pseudo-randomly generated integers. This contradicts the fact that
PRG is a pseudo-random generator as in Definition 2.9. �

Security Analysis 123

A Non-Permutation Matrix Does Not Behave Like One

Lemma 9.14. Let B = (bij) be an N×N -matrix over Zq and let X = (X1, . . . , XN)
consist of independently and identically distributed random variables such that
Pr[Xi = xi] ≤ ǫ for all xi ∈ Zq. Then if B is not a permutation matrix

Pr[∃π ∈ ΣN s.t. BX = Xπ] ≤ Nǫ .

Proof. The set of permutation matrices are characterized as the matrices such that
in each row and in each column exactly one element equal one and the rest are zero.
We say that a column or row is bad if it does not have the above property. Thus,
if B is not a permutation matrix, it must have a bad row or a bad column.

Suppose first that there is a bad row. Without loss we assume that the first row
is bad. We have

Pr[∃π ∈ ΣN s.t. BX = Xπ] ≤ Pr

[

∃1 ≤ j ≤ N s.t.

N
∑

l=1

b1lXl −Xj = 0

]

≤
N
∑

j=1

Pr

[

N
∑

l=1

b1lXl −Xj = 0

]

≤ Nǫ .

where we use the union bound, and the fact that Pr[
∑N

l=1 bilXl−Xj = 0] ≤ ǫ, since

the expression
∑N
l=1 bilXl −Xj is not identically zero for any j.

Suppose now that no row is bad. Then there are exactly N ones in total in the
matrixB, so if some column is bad there must be an all zero column as well. Suppose
that the jth column is an all zero column, i.e., bi,j = 0 for i = 1, . . . , N . This implies

that Pr[
∑N
l=1 bilXl = Xj] ≤ ǫ for all i, since Xj is independent of all expressions

∑N
l=1 bilXl for i = 1, . . . , N . Thus, it follows that Pr[∃π ∈ ΣN s.t. BX = Xπ] ≤

Nǫ also in this case. �

Corollary 9.15. Let B = (bij) be an N ×N -matrix over Zq, let s ∈ [0, 2κ − 1] be
a randomly chosen seed, and let B be a non-permutation matrix.

If P = PGenc(PRG(s)), then Pr[∃π ∈ ΣN s.t. BP = P π] is negligible in
Cramér’s model. If P = PGen(PRG(s)), then Pr[∃π ∈ ΣN s.t. BP = P π] is
negligible.

Proof. The proof is almost identical to the proof of Corollary 9.13 and omitted. �

Generation of Suitable Transcripts

We describe how the adversary can extract transcripts that satisfy Lemma 9.10.
We consider the transcript from the interaction of P ∗ with an honest verifier as
a list of functions viewVP∗ = (IP∗ ,WP∗ , P, CP∗ , c, RP∗), where IP∗ is the part of
the common input constructed by P ∗, WP∗ is the first commitments computed
by P ∗, P is the list of N primes chosen by the verifier, CP∗ is the second set of

124 A New Efficient Proof of A Shuffle

commitments of the prover, c is the challenge chosen by the verifier, and RP∗ is the
reply of the prover. Denote by rp and rv the random input of the prover and verifier
respectively. Then viewVP∗ is clearly a function of Γ = (N,g,h), g = (g, g1, . . . , gN),
rp, and rv, but not all parts depend on all variables. If we divide rv in two parts
rv
′ and rv

′′, where the former is used to construct the list of primes P , and the
latter is used to construct the challenge c the dependencies are given by

viewVP∗(Γ, g, rp, rv) =
(

IP∗(Γ, g, rp),WP∗(Γ, g, rp), P (rv
′), CP∗(Γ, g, rp, rv

′),

c(rv
′′), RP∗(Γ, g, rp, rv

′, rv
′′)
)

.

Recall our notation from Section 2.8

δVP∗(Γ, g, rp) = Pr
rv

[AccV (viewVP∗(Γ, g, rp, rv)) = 1] .

This is the probability that the view of the honest verifier is accepting when inter-
acting with P ∗ on a fixed special parameter (Γ, g) and fixed random string rp of
P ∗. The probability is taken over the random choices of the honest verifier.

Denote by B the distribution defined by Prb←B[b = 1] = δVP∗(Γ, g, rp)/32.
This distribution can be sampled efficiently without knowledge of δVP∗(Γ, g, rp) by
choosing rv ∈ {0, 1}∗ and n ∈ {1, . . . , 32} randomly and outputting 1 if we have
AccV (viewV

P∗(Γ, g, rp, rv)) = 1 and n = 1, and 0 otherwise.
We define an algorithm FFP∗ , called the fork-finder, that given (Γ, g), rp, and

a list (P1, . . . , Pj−1) of vectors in ZNq outputs a pair of transcripts (Tj , Tj+N) such
that AccV (Tj) = 1, AccV (Tj+N) = 1, (Ij ,Wj , Pj) = (Ij+N ,Wj+N , Pj+N), and
cj 6= cj+N . Furthermore, we have Pj 6∈ Span(P1, . . . , Pj−1) and pj,i 6= pj,l for i 6= l.
Note that this is a fork in the sense of the forking lemma.

Algorithm 9.16 (Fork Finder).
FFP∗(Γ, g, rp, (P1, . . . , Pj−1))
Loop

Do {

rv
′, rv

′′ ← {0, 1}∗
Tj ← viewVP∗(Γ, g, rp, rv

′, rv
′′)

} While (AccV (Tj) = 0 or Pj ∈ Span(P1, . . . , Pj−1)
or ∃i, l : i 6= l and pj,i = pj,l)

Do {

rv
′′′ ← {0, 1}∗ , b← B

Tj+N ← viewVP∗(Γ, g, rv
′, rv

′′′)
} While ((AccV (Tj+N) = 0 or cj+N = cj) and b 6= 1)
If (AccV (Tj+N) = 1 and cj+N 6= cj) Then

Return (Tj , Tj+N)
EndIf

EndLoop

Security Analysis 125

Lemma 9.17. Consider an execution of FFP∗ on input (Γ, g, rp, (P1, . . . , Pj−1)).
If δVP∗(Γ, g, rp) is non-negligible the expected number of times it invokes P ∗ is
O(1/δVP∗(Γ, g, rp)).

Proof. Consider a fixed iteration of the outer loop. By definition, the first condition
in the first while-loop is satisfied with probability δVP∗(Γ, g, rp). Corollary 9.13 and
Corollary 9.3 imply that the second and third conditions are satisfied with over-
whelming probability. The union bound then implies that all conditions are satisfied
with probability at least δVP∗(Γ, g, rp)/2. Thus, the expected number of iterations
of the loop and the number of invocations of P ∗ is bounded by 2/δVP∗(Γ, g, rp).

Consider now the second while-loop. Denote by Iheavy the set of rv
′ such that

Pr
rv

[AccV (viewVP∗(Γ, g, rp, rv)) = 1 ∧ Pj 6∈ Span(P1, . . . , Pj−1)

∧ (i 6= l ⇒ pj,i 6= pj,l) | rv′ ∈ Iheavy] ≥ δVP∗(Γ, g, rp)/4 .

An averaging argument implies that

Pr
rv

[rv
′ ∈ Iheavy | AccV (viewVP∗(Γ, g, rp, rv)) = 1 ∧ Pj 6∈ Span(P1, . . . , Pj−1)

∧ (i 6= l⇒ pj,i 6= pj,l)] ≥ 1/2 .

Thus, with probability 1/2 the value of rv
′ fixed in the first loop belongs to Iheavy.

By definition of the distribution B we have Pr[b = 1] = δVP∗(Γ, g, rp)/32. Thus,
if the first condition of the while-loop is removed the expected number of iterations
is 32/δVP∗(Γ, g, rp), and the probability that more than 16/δVP∗(Γ, g, rp) iterations

are needed is at least (1 − δVP∗(Γ, g, rp)/32)16/δ
V
P∗ (Γ,g,rp). Set δ = δVP∗(Γ, g, rp)/32.

Then this can be bounded by (1− δ)1/2δ ≥ (e−δ−δ
2/2)1/2δ ≥ e−3/4 ≥ 2/5

The number of iterations in the unmodified while-loop is obviously also bounded
by 32/δVP∗(Γ, g, rp). Thus, the expected number of invocations of P ∗ in the second
while-loop is bounded by 64/δVP∗(Γ, g, rp), since one invocation is needed in the
construction of the transcript and one invocation in the sampling of B.

We must estimate the probability that the last if-statement is satisfied, con-
ditioned on rv

′ ∈ Iheavy. We estimate the probability that the second while-loop
is terminated by the first condition. The probability that cj+N = cj is 2κc−1.
Thus, the union bound implies that the first condition is satisfied, conditioned on
rv
′ ∈ Iheavy, with probability at least δVP∗(Γ, g, rp)/8. If the second condition of the

while-loop is removed the expected number of iterations would then be bounded by
8/δVP∗(Γ, g, rp) and the probability that more than 16/δVP∗(Γ, g, rp) iterations are
necessary is at most 1/2 by Markov’s inequality. This implies that the probabil-
ity that the second loop is terminated by the first condition is at least 1

2
2
5 = 1

5 ,
conditioned on rv

′ ∈ Iheavy.
We have argued that the expected number of invocations in a single iteration of

the outer loop is O(1/δVP∗(Γ, g, rp)) and the probability that the return statement
is reached in such an iteration is at least 1

2
1
5 = 1

10 , and the claim follows. �

126 A New Efficient Proof of A Shuffle

Algorithm 9.18 (Transcript Finder).
TFP∗(Γ, g, rp)
For (j = 1, . . . , N) Do

(Tj , Tj+N)← FFP∗(Γ, g, rp, (P1, . . . , Pj−1))
EndLoop

Return (T1, . . . , T2N)

Corollary 9.19. Consider an execution of the algorithm TFP∗ on input (Γ, g, rp).
If δVP∗(Γ, g, rp) is non-negligible, the expected number of times it invokes P ∗ is at
most O(N/δVP∗(Γ, g, rp)). The output satisfies the hypothesis of Lemma 9.10.

Proof. This follows immediately from Lemma 9.17. �

Concluding the Proof

Denote by CMAIN, CRSA, CRSA′ , CREP, and CREP′, the algorithms that given tran-
scripts T1, . . . , T2N that satisfy the hypothesis of Lemma 9.10 try to extract values
corresponding to Conclusion 1, 2, 3, 4, and 5 respectively. If this is not possible
the algorithms output ⊥.

We define the extractor X required by definition of a computationally convincing
proof of knowledge as the algorithm that on input (Γ, g, rp) outputs the output
of CMAIN(TFP∗(Γ, g, rp)). Recall the definition of a computationally convincing
proof of knowledge from Section 2.8.1. The first requirement on a computationally
convincing proof of knowledge now follows from Corollary 9.19 and the fact that
CMAIN is a polynomial-time algorithm.

Suppose that the second requirement is not satisfied. Then there exists an
adversary P ∗, a constant c, and an infinite index set N such that

Pr[δVP∗(Γ, g, rp) ≥ κ−c] ≥ κ−c (9.52)

Pr[(IP∗(Γ, g, rp),XP∗

(Γ, g, rp)) 6∈ RDP | δVP∗(Γ, g, rp) ≥ κ−c] ≥ κ−c .

for κ ∈ N . This implies that

Pr[CRSA(TFP∗(Γ, g, rp)) 6= ⊥ ∨ CRSA′(TFP∗(Γ, g, rp)) 6= ⊥ (9.53)

∨ CREP(TFP∗(Γ, g, rp)) 6= ⊥ ∨ CREP′(TFP∗(Γ, g, rp)) 6= ⊥
| δVP∗(Γ, g, rp) ≥ κ−c] ≥ κ−c .

We show that this leads to a contradiction. Denote by TF′P∗ the algorithm that
simulates TFP∗ except that if it invokes P ∗ more than 2Nκ2c it halts and outputs
⊥. Corollary 9.19 and Markov’s inequality implies that

Pr[TF′P∗(Γ, g, rp) = ⊥ | δVP∗(Γ, g, rp) ≥ κ−c] ≤ 1

2κc
. (9.54)

Claim 1. Both Pr[CRSA(TFP∗(Γ, g, rp)) 6= ⊥ | δVP∗(Γ, g, rp) ≥ κ−c]
and Pr[CRSA′(TFP∗(Γ, g, rp)) 6= ⊥ | δVP∗(Γ, g, rp) ≥ κ−c] are negligible under the
strong RSA-assumption.

Security Analysis 127

Proof. We prove the first statement. The second statement follows in a similar
way. Suppose that the claim is false. Then we define an algorithm RSA that breaks
the strong RSA-assumption. It accepts Γ = (N,g,h) as input and chooses rp and
g = (g, g1, . . . , gN) randomly. Then it outputs CRSA(TF′P∗(Γ, g, rp)).

Equation (9.54) and the union bound implies that

Pr[CRSA(TF′P∗(Γ, g, rp)) 6= ⊥ | δVP∗(Γ, g, rp) ≥ κ−c] ≥ 1

2κc
.

Combined with Equation (9.52) this gives Pr[CRSA(TF′P∗(Γ, g, rp)) 6= ⊥] ≥ 1
2κ2c .

This means that

Pr[RSA(N,g,h) = (b, η0, η1, η2) ∧ η0 6= 0 ∧ (η0 ∤ η1 ∨ η0 ∤ η2)

∧ bη0 = gη1hη2 mod N] ≥ 1

2κ2c
.

Lemma 3.12 implies that this breaks the strong RSA-assumption. �

Claim 2. Pr[CREP(TFP∗(Γ, g, rp)) 6= ⊥ | δVP∗(Γ, g, rp) ≥ κ−c] is negligible under the
DL-assumption.

Proof. Suppose that the claim is false. Then we define an algorithm DLOG that
breaks the DL-assumption. It accepts g = (g, g1, . . . , gN) as input and chooses
Γ = (N,g,h) and rp randomly. Then it outputs CREP(TF′P∗(Γ, g, rp)).

Equation (9.54) and the union bound implies that

Pr[CREP(TF′P∗(Γ, g, rp)) 6= ⊥ | δVP∗(Γ, g, rp) ≥ κ−c] ≥ 1

2κc
.

Combined with Equation (9.52) this gives Pr[CREP(TF′P∗(Γ, g, rp)) 6= ⊥] ≥ 1
2κ2c ,

which means that

Pr[DLOG(g, g1, . . . , gN) = (η1, . . . , ηN) 6= 0 ∧ gη0
N
∏

j=1

g
ηj
j = 1] ≥ 1

2κc
.

Lemma 3.5 implies that this contradicts the DL-assumption in Gq. �

We combine Equation (9.53) with Claim 1 and Claim 2 and apply the union
bound. This gives

Pr[CREP′(TFP∗(Γ, g, rp)) 6= ⊥ | δVP∗(Γ, g, rp) ≥ κ−c] ≥ 1

2κc
. (9.55)

under the strong RSA-assumption and the DL-assumption. We construct an al-
gorithm DLOG′ that outputs a non-trivial representation of 1 ∈ Gq with notable
probability. On input g = (g, g1, . . . , gN) it chooses Γ = (N,g,h) and rp ran-
domly and computes (ρ′, (ρ′ij)) = CREP′(TF′P∗(Γ, g, rp)). Denote by FF′P∗ the al-
gorithm that simulates FFP∗ , except that it outputs ⊥ if FFP∗ invokes P ∗ more

128 A New Efficient Proof of A Shuffle

than 4κ2c times. The algorithm DLOG′ computes (T2N+1, T2N+2) = FF′P∗(Γ, g, rp)

and defines η0 =
∑N
i=1 ρ

′
ip2N+1,i − γ′2N+1 and (ηj)

N
j=1 ← (

∑N
i=1 ρ

′
i,jp2N+1,i −

p2N+1,π2N+1(j))
N
j=1. Finally, it returns (ηj)

N
j=0.

From Equation (9.55), Lemma 9.17, and Markov’s inequality we have

Pr[CREP′(TF′P∗(Γ, g, rp)) 6= ⊥ | δVP∗(Γ, g, rp) ≥ κ−c] ≥ 1

2κc
, and

Pr[FF′P∗(Γ, g, rp) = ⊥ | δVP∗(Γ, g, rp) ≥ κ−c] ≤ 1

4κc
.

The union bound implies that

Pr[CREP′(TF′P∗(Γ, g, rp)) 6= ⊥ ∧ FF′P∗(Γ, g, rp) 6= ⊥ | δVP∗(Γ, g, rp) ≥ κ−c] ≥ 1

4κc

Consider an execution of DLOG′. If the outputs satisfy CREP′(TF′P∗(Γ, g, rp)) 6=
⊥ and FF′P∗(Γ, g, rp) 6= ⊥, then Equation (9.24) in the proof of Lemma 9.10 implies
that

gγ
′
2N+1

N
∏

i=1

g
p2N+1,π2N+1(i)

i =

N
∏

i=1

w
p2N+1,i

i =

N
∏

i=1

gρ
′
i

N
∏

j=1

g
ρ′i,j
j

p2N+1,i

= g
PN
i=1 ρ

′
ip2N+1,i

N
∏

j=1

g
PN
i=1 ρ

′
i,jp2N+1,i

j .

Corollary 9.15 and Corollary 9.3 imply that the probability that
∑N

i=1 ρ
′
i,jp2N+1,i =

p2N+1,π2N+1(j) for j = 1, . . . , N is negligible. Thus, we conclude that

Pr

[

DLOG′(g, g1, . . . , gN) = (η0, . . . , ηN) 6= 0 ∧
N
∏

j=0

g
ηj
j = 1

]

≥ 1

8κ2c
.

Lemma 3.5 implies that this contradicts the DL-assumption in Gq.

9.5 Complexity Analysis

Comparing the complexity of protocols is delicate, since any comparison must take
place for equal security rather than for equal security parameters. The only rig-
orous method to do this is to perform an exact security analysis of each protocol
and choose the security parameters accordingly. Various optimization and pre-
computing techniques are also applicable to different degrees in different protocols
and in different applications. We do not perform a complete exact analysis, but
we estimate the computational complexity of the protocol without and also with
optimizations. We also take the liberty to focus on the solution based on PGenc in
our estimates.

Complexity Analysis 129

Denote by tEXP the time it takes to compute an exponentiation in Gq, i.e.,
with an κ-bit exponent modulo a κ-bit integer. If the exponent instead has κ bits,
we assume that computing the exponentiation takes time κ

κ tEXP. We must also
relate the time it takes to compute an exponentiation with a κ-bit exponent and
modulus to tEXP. We assume that this takes time (κκ)3tEXP. This is reasonable
since exponentiation normally takes cubic time in the bit-size of the inputs for
inputs of practical size. We use the same conventions for exponentiation in QRN

with κ replaced by κN.
We use the same convention as Furukawa [68] when we estimate the effect of

standard optimization techniques [102], i.e., simultaneous exponentiation reduces
the cost by a factor of 1/3, and fixed base exponentiation reduces the cost by a factor
of 1/12. Furukawa [68] estimates the complexity of previous shuffle-proofs, and
claims that his protocol is the most efficient and that it requires the least amount
of rounds for a shuffle that involves decryption, namely 5 rounds. It requires 8N
and 6N exponentiations for the prover and verifier respectively. Using standard
optimizations, such as fixed-base exponentiation and simultaneous exponentiation
[102], this corresponds to less than 2N general exponentiations in Gq for each party.

Our protocol requires 5 rounds as well. We estimate the complexity of our
proof of a shuffle without any optimizations and then with the same optimizations
as Furukawa [68] uses.

First we consider the theoretical requirements. For simplicity we set κ = κN.
Recall that, using the number field sieve, discrete logarithms modulo an κ-bit prime
can be solved in time exp(O(κ1/3 log κ)) ≤ exp(O(κ2/5)). Thus, from a theoretical
point of view we may assume that κp = κ2/5 to balance the security parameters.
We count all terms which do not contribute terms with complexity o(κ). It can be
seen that the cost for the prover and verifier is roughly 5N and 2N exponentiations
respectively. With optimizations the corresponding estimates would be roughly
N/2 and N/5.

To give the reader an idea of the practical complexity of our protocol we estimate
the complexity for some common parameters. We set κ relatively large to ensure
long term security, e.g. κ = 2048. A much smaller value of κN suffices, since it
need only guarantee security during the execution of the protocol, e.g. κN = 1024.
A small challenge suffices since the protocol is run interactively, e.g. κc = 160. The
size of the primes need only guarantee that prime vectors are linearly independent
with high probability, e.g. κp = 100. Finally, a small value of κr suffices to ensure
the statistical zero-knowledge of the protocol, e.g. κr = 50. With these parameters
the complexity is less than 2.5N and 1.6N exponentiations in Gq for the prover and
verifier. With optimizations as in [68] this corresponds to 0.5N and 0.8N general
exponentiations in Gq. This indicates that our scheme is at least as efficient as
previous protocols.

Our estimates for the practical complexity of the protocol follows from the
Scheme program below. We have simply counted the number of exponentiations
using the assumptions above. Each function veriStepi computes the complex-
ity of verifier in the ith step of the protocol and correspondingly for the prover

130 A New Efficient Proof of A Shuffle

Parameters Non-Optimized Optimized
κ κN κc κp κr Prover Verifier Prover Verifier
1024 1024 160 100 50 7.8N 8.2N 1.4N 4.8N
2048 1024 160 100 50 2.4N 1.5N 0.4N 0.8N
2048 2048 160 100 50 6.4N 3.7N 0.9N 1.1N
3072 2048 160 100 50 2.9N 1.4N 0.4N 0.4N
3072 3072 160 100 50 5.9N 3.0N 0.7N 0.6N

Table 9.1: The table gives estimates of the complexity, without and with optimiz-
ation, of the prover and verifier in terms of general exponentiations in Gq for some
common security parameters.

and proStepi. In Table 9.1 we give the estimated complexity for some common
parameters.

9.6 Universal Verifiability and the Use of Random Oracles

Several authors propose turning their proofs of a shuffle into non-interactive zero-
knowledge proofs in the random oracle model using the Fiat-Shamir heuristic. This
allows any outsider to check, non-interactively, that a mix-server behaves correctly.
If the verification involves no trusted parameters the resulting mix-net is called
“universally verifiable”.

The Fiat-Shamir heuristic can be applied to our protocol as well, but we do not
see how the prover can generate the RSA-parameters (N,g,h) by itself and not
know the factorization of N or a non-trivial root. Thus, a verifier must trust that
the RSA-parameters are generated in a secure way, and the resulting mix-net is not
really universally verifiable.

We believe that universal verifiability can be achieved under the root assumption
in class groups with prime discriminant. A class group is defined by its discriminant
∆. It is conjectured that finding non-trivial roots in a class group with discriminant
∆ = −p for a prime p is infeasible (cf. Hamdy [85]). In other words if G∆ is such
a class group and g ∈ G∆ is randomly chosen no adversary can find a b ∈ G∆ and
η 6= ±1 such that bη = g with non-negligible probability. The idea is to generate a
prime p of suitable size from random coins handed to the prover by the verifier in
the first round. Then the integer part of the protocol is executed in the class group
defined by ∆ = −p instead of over the group of squares modulo the RSA-modulus
N. With this modification the protocol gives a universally verifiable mix-net in the
random oracle model.

It is important to understand that universal verifiability in the random oracle
model only gives heuristic security because of the dependence of the random oracle
model. Furthermore, in practice we expect only a handful of outsiders to implement
software to verify the actions of the mix-servers, and given the efficiency of the proof

Universal Verifiability and the Use of Random Oracles 131

; Load file with (load “complexity.scm”)

; Compute complexity with e.g.
; (comp 2048 1024 160 100 50 (/ 1 12) (/ 1 3))

(define (veriStep2 k kN kc kpri kr fixbasefak simulfak)
(/ (* 6 kc kc kc kc) (* k k k)))

(define (veriStep3 k kN kc kpri kr fixbasefak simulfak)
(* simulfak 3 (/ kc k)))

(define (veriStep7 k kN kc kpri kr fixbasefak simulfak)

(+ (* simulfak 3 (/ (+ kc kpri kr) k))
(* (/ (* kN kN kN) (* k k k))

(+ (+ (* fixbasefak (/ (+ kN kpri (* 2 kr)) kN))
(/ (+ kc kpri kr) kN))

(* fixbasefak

(+ (/ (+ kN kpri (* 2 kr)) kN) (/ (+ kc kpri kr) kN)))
(/ kc kN)))))

(define (veri k kN kc kpri kr fixbasefak simulfak)
(float (+ (veriStep2 k kN kc kpri kr fixbasefak simulfak)

(veriStep3 k kN kc kpri kr fixbasefak simulfak)
(veriStep7 k kN kc kpri kr fixbasefak simulfak))))

(define (proStep1 k kN kc kpri kr fixbasefak simulfak)

fixbasefak)

(define (proStep3 k kN kc kpri kr fixbasefak simulfak)

(veriStep3 k kN kc kpri kr fixbasefak simulfak))

(define (proStep4 k kN kc kpri kr fixbasefak simulfak)
(+ (* simulfak 3 (/ (+ kc kpri kr) k))

(* (/ (* kN kN kN) (* k k k))

(+ (* fixbasefak (/ (+ kN kr) kN))
(/ kc kN)

(* fixbasefak (+ (/ (+ kN kr) kN) (/ kc kN)))
(* fixbasefak (/ (+ kN kpri (* 2 kr)) kN))

(/ (+ kc kpri kr) kN)
(* fixbasefak

(+ (/ (+ kN kpri (* 2 kr)) kN)

(/ (+ kc kpri kr) kN)))))))

(define (pro k kN kc kpri kr fixbasefak simulfak)
(float (+ (proStep1 k kN kc kpri kr fixbasefak simulfak)

(proStep3 k kN kc kpri kr fixbasefak simulfak)

(proStep4 k kN kc kpri kr fixbasefak simulfak))))

Table 9.2: Scheme program for estimation of the complexity of the protocol.

132 A New Efficient Proof of A Shuffle

of a shuffle the mix-servers can readily answer such requests interactively. In an
interactive proof the outsider can choose the RSA parameters, since the protocol
is statistically zero-knowledge as long as g is in the group generated by h. For this
to hold the outsider must prove that g is contained in the group generated by h.

9.7 A Proof of Knowledge of a Shuffle of Paillier

Cryptotexts

Recall that we define the Paillier cryptosystem in Section 3.12. In this section we
show how a re-encryption shuffle for the Paillier cryptosystem can be constructed
by a small modification to the protocol described above. This protocol is then used
in Chapter 11.

Recall that to re-encrypt a cryptotext u ∈ Z∗N using the public key N and gener-
ator gf of the group of 2Nth residues, one can compute ugsf mod N2 for a randomly
chosen integer s ∈ [0, 2κ+κr − 1]. Here we assume that N is a κ-bit Paillier mod-
ulus. The re-encryption-permutation relation corresponding to the transformation
computed by each mix-server in a mix-net using the re-encryption-permutation
approach is then defined as follows.

Definition 9.20 (Knowledge of Correct Re-encryption-Permutation).
Define for each N and N a relation RN

RP ⊂ ((Z∗N)N × (Z∗N)N)× [0, 2κ+κr − 1]N , by

(({ui}Ni=1, {u′i}Ni=1), (a, (xi)
N
i=1)) ∈ RN

RP

precisely when a <
√

N/4 equals one or is prime and (u′i)
a = g

xπ(i)

f uaπ(i) mod N2

for i = 1, . . . , N and some permutation π ∈ ΣN such that the list {ūi}Ni=1 is sorted
lexicographically.

Note that when a <
√

N/4, a is relatively prime to N, since we assume that the
factors of N are safe primes. Thus, a is invertible in ZN and u′i and ui encrypts
identical messages. The reason for introducing a is to allow extraction of other
witnesses than the witness used by the prover. This simplifies the analysis.

Protocol 9.21 (Proof of Re-encryption-Permutation). The common input
consists of an RSA-modulus N and g,h ∈ QRN, generators g, g1, . . . , gN ∈ Gq, a
public key N, and two lists L = (ui)

N
i=1 and L′ = (u′i)

N
i=1 such that u′i = g

xπ(i)

f uπ(i)

mod N2 for some permutation π of N elements. The private input to the prover
consists of (xi)

N
i=1, where xi ∈ [0, 2κ+κr − 1].

1. The prover chooses r′i ∈ Zq randomly, computes (wi)
N
i=1 = (gr

′
igπ−1(i))

N
i=1,

and hands (wi)
N
i=1 to the verifier.

2. The verifier chooses random primes p1, . . . , pN ∈ [2κp−1, 2κp − 1], and hands

(pi)
N
i=1 to the prover. Then the prover defines xs =

∑N
i=1 xipi.

3. Both parties compute (U,W) = (
∏N
i=1 u

pi
i ,
∏N
i=1 w

pi
i).

A Proof of Knowledge of a Shuffle of Paillier Cryptotexts 133

4. The prover chooses k1 ∈ [0, 2κ+κr−1], k2 ∈ [0, 2κN+κr−1], k3 ∈ [0, 2κN+κr−1],
l1 ∈ [0, 2κ+κc+2κr − 1], l2 ∈ [0, 2κN+κc+2κr − 1], l3 ∈ [0, 2κN+κc+2κr − 1],
ls ∈ [0, 2κ+κc+κp+2κr+log2N − 1], and lr′ ∈ Zq randomly. Then it chooses
ti, t
′
i ∈ [0, 2κN+κr − 1], si, s

′
i ∈ [0, 2κN+κc+2κr − 1], and ri ∈ [0, 2κp+κc+κr − 1]

for i = 1, . . . , N randomly. Then it chooses s ∈ [0, 2κN+Nκp+κc+κr+log2N −1],
and s′ ∈ [0, 2κN+κr+log2N − 1] randomly and computes

(b1, b2, b3) = (gk1f gxsf ,hk2gk1 ,hk3gxs) (9.56)

(β1, β2, β3) =
(

gl1f glsf ,h
l2gl1 ,hl3gls) (9.57)

(α1, α3) =

(

gl1f

N
∏

i=1

(u′i)
ri , glr′

N
∏

i=1

grii

)

(9.58)

b0 = g (9.59)

(bi,b
′
i)
N
i=1 = (htib

pπ(i)

i−1 ,h
t′igpπ(i))Ni=1 (9.60)

(γi,γ
′
i)
N
i=1 = (hsibrii−1,h

s′igri)Ni=1 (9.61)

(γ,γ′) = (hs,hs
′

) , (9.62)

and ((b1, b2, b3), (β1, β2, β3), (α1, α2, α3), (bi,b
′
i)
N
i=1, (γi,γ

′
i)
N
i=1, (γ,γ

′)) is
handed to the verifier.

5. The verifier chooses c ∈ [2κc−1, 2κc − 1] randomly and hands c to the prover.

6. The prover defines t = tN + pπ(N)(tN−1 + pπ(N−1)(tN−2 + pπ(N−2)(tN−3 +

pπ(N−3)(. . .))), and t′ =
∑N
i=1 t

′
i, r
′ =

∑N
i=1 r

′
ipi, and computes

f1 = ck1 + l1 mod 2κ+κc+2κr

f2 = ck2 + l2 mod 2κN+κc+2κr

f3 = ck3 + l3 mod 2κN+κc+2κr

fs = cxs + ls mod 2κ+κp+2κr+log2N

fr′ = cr′ + lr′ mod q

(ei, e
′
i)
N
i=1 = (cti + si, ct

′
i + s′i)

N
i=1 mod 2κN+κc+2κr

(di)
N
i=1 = (cpπ(i) + ri)

N
i=1 mod 2κp+κc+κr

e = ct+ s mod 2κN+Nκp+κc+κr+log2N

e′ = ct′ + s′ mod 2κN+κc+κr+log2N

Then it hands ((f1, f2, fs, fr′), (ei, e
′
i)
N
i=1, (di)

N
i=1, (e, e

′)) to the verifier.

134 A New Efficient Proof of A Shuffle

7. The verifier checks that L′ is lexicographically sorted and that

(bc1β1, b
c
2β2, b

c
3β3) = (gf1f g

fs
f ,h

f2gf1 ,hf3gfs) (9.63)

((b1U)cα1,W
cα3) =

(

g
f1
f

N
∏

i=1

(u′i)
di , gfr′

N
∏

i=1

gdii

)

(9.64)

(bciγi, (b
′
i)
cγ′i)

N
i=1 = (heibdii−1,h

e′igdi)Ni=1 (9.65)

(g−
QN
i=1 pibN)cγ = he (9.66)

(

g−
PN
i=1 pi

N
∏

i=1

b′i

)c

γ′ = he
′

. (9.67)

Security Analysis

The protocol satisfies similar security properties as Protocol 9.1.

Proposition 9.22. Protocol 9.21 is honest verifier statistical zero-knowledge.

Proposition 9.22. The simulator chooses p1, . . . , pN and c honestly. Then it chooses
f1 ∈ [0, 2κ+κc+2κr − 1], f2 ∈ [0, 2κN+κc+2κr − 1], f3 ∈ [0, 2κN+κc+2κr − 1], fs ∈
[0, 2κ+κc+κp+2κr+log2N − 1], fr′ ∈ Zq, e ∈ [0, 2κN+Nκp+κc+κr+log2N − 1], e′ ∈
[0, 2κN+κc+κr+log2N − 1], (ei, e

′
i)
N
i=1 ∈ [0, 2κN+κc+2κr − 1]N , and a list (di)

N
i=1 ∈

[0, 2κp+κc+κr − 1]N randomly. It also chooses b1, b2, b3 ∈ Gq and bi,b
′
i ∈ QRN

randomly. Finally, the simulator defines, (β1, β2, β3) by Equations (9.63), (α1, α3)
by Equations (9.64), γi and γ ′i by Equation (9.65), γ by Equation (9.66), and γ′ by
Equation (9.67) respectively. It is easy to see that the distribution of the resulting
elements is statistically close to the distribution of the corresponding elements in a
real execution of the protocol. �

Proposition 9.23. Protocol 9.21 is a computationally convincing proof of know-
ledge for the relation RN

RP with regards to the distribution of the special parameters
(N,g,h) and (g, g1, . . . , gN).

Proposition 9.24. Protocol 9.21 has overwhelming completeness, also if PGen is
used for prime generation. If PGenc is used instead, then this holds in Cramér’s
model of the primes.

The proof of this proposition is almost identical to the proof of Proposition 9.9
and omitted.

9.7.1 Proof Sketch of Proposition 9.23

The generation of suitable transcripts is almost identical to how this is done in
the proof of Proposition 9.8. Lemma 9.14 on permutation matrices can be applied
unchanged. Lemma 9.12 and Corollary 9.13 holds with minor modifications. One

A Proof of Knowledge of a Shuffle of Paillier Cryptotexts 135

must argue that a random prime vector is linearly independent both over Zq and
over ZN, but this follows straightforwardly. The argument why the protocol is
a computationally convincing proof of knowledge is unchanged except that the
relation RDP is replaced by RN

RP. The only essential modification needed is in
Lemma 9.10 and we give the details.

We denote the jth view in a list of views of the honest verifier by Tj =
(Ij ,Wj , Pj , Cj , cj , Rj) where Ij denotes the common input, Wj denotes the list
of commitments wi, and

Pj = (pj,1, . . . , pj,N)

Cj = ((bj,1, bj,2, bj,3), (βj,1, βj,2, βj,3), (αj,1, αj,3),

(bj,i,b
′
j,i)

N
i=1, (γj,i,γ

′
j,i)

N
i=1, (γj,γ

′
j))

Rj = ((fj,1, fj,2, fj,3, fj,x, fj,s, fj,r′), (ej,i, e
′
j,i)

N
i=1, (dj,i)

N
i=1, (ej, e

′
j)) .

Lemma 9.25. Lemma 9.10 holds also for Protocol 9.21, but with the modified nota-
tion and with the main conclusion replaced by

1. Main Conclusion. A prime integer a <
√

N/4, elements x1, . . . , xN ∈ Z
such that

((La, (L′)a), (xi)
N
i=1) ∈ RN

RP ,

where we by La and (L′)a mean term-wise exponentiation.

Proof. The proof is identical to the proof of Lemma 9.10 except for the last section
of the proof. This must be replaced by the following.

The Common Input (L,L′) Satisfies ((L,L′), (a, (xi)
N
i=1)) ∈ RN

RP. From the
above we may assume that πj = π for all j = 1, . . . , N , so we drop the subscript
and simply write π from now on. Equations (9.63) imply that

b
cj+N−cj
1 = g

fj+N,1−fj,1
f g

fj+N,s−fj,s
f ,

b
cj+N−cj
2 = hfj+N,2−fj,2gfj+N,1−fj,1 , and

b
cj+N−cj
3 = hfj+N,3−fj,3gfj+N,s−fj,s .

If cj+N−cj does not divide fj+N,1−fj,1, fj+N,2−fj,2, fj+N,3−fj,3, and fj+N,s−fj,s
Conclusion 2a of the lemma is satisfied similarly as in the proof of Lemma 9.10.

Thus, we may assume that it does and define

κ1 = (fj+N,1 − fj,1)/(cj+N − cj) , (9.68)

κ2 = (fj+N,2 − fj,2)/(cj+N − cj) , (9.69)

κ3 = (fj+N,3 − fj,3)/(cj+N − cj) , and (9.70)

ξj,s = (fj+N,s − fj,s)/(cj+N − cj) . (9.71)

Then we have

b1 = gκ1

f g
ξj,s
f . (9.72)

136 A New Efficient Proof of A Shuffle

From Equation (9.64) we have

(b1Uj)
cj+N−cj = g

fj+N,1−fj,1
f

N
∏

i=1

(u′i)
dj+N,i−dj,i .

Our definitions of κ1 and κ2 in Equations (9.68) and (9.69), and the definition of
ρi, which equals pj,π(i) in Equation (9.21) imply that

b1Uj = gκ1

f

N
∏

i=1

(u′i)
pj,π(i) .

If we combine Equation (9.72) with the equation above we have

g
ξj,s
f

N
∏

i=1

u
pji
i = g

ξj,s
f Uj =

N
∏

i=1

(u′i)
pj,π(i) . (9.73)

for j = 1, . . . , N . Here we can not apply the coefficients al,1, . . . , al,N ∈ Zq in-
troduced in the proof of Lemma 9.10. The problem is that we need that the lists
P1, . . . , PN are linearly independent as vectors over ZNf , since Nf is the order of the
group Z∗

N2 . The problem with this is that in most natural applications of the proof
of a shuffle we must be able to extract a witness without knowledge of f. In other
words we do not know how to invert elements in ZNf .

Despite this we can perform Gauss elimination over the integers and start
with column l. This gives a list of integers al,1, . . . , al,N such that

∑N
j=1 al,jPj =

(δl,1, . . . , δl,N) with δl,j = 0 for j 6= l and δl,l = pl,l for some integer a. We apply
these coefficients to Equation (9.73) and conclude that

g

PN
j=1 ξj,sal,j

f u
pl,l
l =

N
∏

j=1

(

gξj,s
N
∏

i=1

u
pji
i

)al,j

=
N
∏

j=1

(N
∏

i=1

(u′i)
pj,π(i)

)al,j

= (u′π−1(l))
pl,l .

This concludes the proof, since we can set xl =
∑N

j=1 ξj,sal,j . �

Chapter 10

Secure Realizations of Two Ideal

Functionalities

To complete the construction and analysis of the mix-net presented in Chapter 8
we must securely realize the ideal functionality, FRDP

ZK , of a proof of knowledge of

a correct decryption-permutation, and the ideal functionality, FRC

ZK , for a proof of
knowledge of the cleartext of an El Gamal cryptotext.

We have in fact done most of the work needed to solve the first problem in
Chapter 9. The second problem is solved using ideas of Feldman [63] and Abe,
Cramer, and Fehr [3].

Since the protocols in this chapter are used as subprotocols in the mix-net of
Chapter 8, the adversary model we consider is taken from that chapter.

10.1 A Proof of Knowledge of a Cleartext

In this section we securely realize the ideal functionality for a zero-knowledge proof
of knowledge of a cleartext of an El Gamal cryptotext.

We observe that we may view the verifiable secret sharing scheme (VSS) of Feld-
man [63] as a multi-verifier proof of knowledge of a logarithm. A similar approach
is used by Abe, Cramer, and Fehr [3].

Intuitively, the protocol works as follows. A prover shares his witness to the
relation RC, and uses a semantically secure cryptosystem over the authenticated
bulletin board FBB to distribute the shares. The verifiers check their shares, and
write the result of their verification on the bulletin board. Each verifier then checks
that all verifiers accepted their shares.

An alternative way to securely realize FRC

ZK is to use the double-cryptotext trick
of Naor and Yung [111]. The drawback of this approach is that the prover must
interact with the verifiers. In Chapter 11 we solve the problem of extracting a
Paillier cleartext in this way. Interaction can be eliminated in the random oracle
model, but then security is only heuristic. We do not follow this path.

137

138 Secure Realizations of Two Ideal Functionalities

The protocol below has both provers and verifiers. In our applications the
verifiers correspond to mix-servers. The provers on the other hand may be either
senders or mix-servers depending on the application. Recall that k′ = ⌈(k + 1)/2⌉
denotes the number of mix-servers needed for majority.

Protocol 10.1 (Zero-Knowledge Proof of Knowledge of Cleartext).
The zero-knowledge proof of knowledge of a cleartext protocol
π = (S1, . . . , SN ,M1, . . . ,Mk) consists of provers Si, and verifiers Mj.

Prover Si.

1. Wait until (·,Mj , Keys, yj,1, . . . , yj,N) appears on FBB for j = 1, . . . , k.

2. Wait for input (Prover, (g, y, ui, vi), ri), where g, y, ui, vi ∈ Gq and ri ∈ Zq.
If ui 6= gri set ri = 0. Then proceed as follows.

a) Choose ai,l ∈ Zq randomly, define pi(x) = r+
∑k′−1
l=1 ai,lx

l, and compute

αi,l = gai,l , for l = 1, . . . , k′ − 1 ,

si,j = pi(j), for j = 1, . . . , k , and

Ci,j = Eyj,i(si,j), for j = 1, . . . , k .

b) Then hand (Write, Proof, (g, y, ui, vi), (αi,1, . . . , αi,k′−1, Ci,1, . . . , Ci,k))
to FBB.

Verifier Mj.

1. Generate El Gamal keys (xj,i, yj,i) for i = 1, . . . , N , and hand
(Write, Keys, yj,1, . . . , yj,N) to FBB.

2. Repeatedly wait for an input (Question, Si, (g, y, ui, vi)) and then do

a) Wait until (·, Si, Proof, (g, y, ui, vi), (αi,1, . . . , αi,k′−1, Ci,1, . . . , Ci,k)) ap-
pears on FBB.

b) Compute si,j = Dxj,i(Ci,j), and verify that gsi,j = ui
∏k′−1
l=1 αj

l

i,l. If so
set bj,i = 1, and otherwise bj,i = xj,i. Hand (Write, Judgement, Si, bj,i)
to FBB.

c) Wait until (·,Ml, Judgement, Si, bl,i) appears on FBB for l = 1, . . . , k.

d) Do the following for l = 1, . . . , k:

i. If bl,i = 1, then set b′l,i = 1.

ii. If bl,i 6= 1 then check if yl,i = gbl,i . If not set b′l,i = 1. If so compute

s′i,j = Dbl,i(Ci,l), and verify that gs
′
i,j = ui

∏k′−1
ι=1 αl

ι

i,ι. If so set
b′l,i = 1 and otherwise set b′l,i = 0.

e) If
∑k

l=1 b
′
l,i = k set b = 1 and otherwise 0. Then output

(Verifier, Si, (g, y, ui, vi), b).

A Proof of Knowledge of a Cleartext 139

Theorem 10.2. Protocol 10.1 securely realizes the ideal functionality FRC

ZK in the
FBB-hybrid model with respect to Mk/2-adversaries under the DDH-assumption.

The above protocol differs from the original protocol of Feldman [63] in that it
does not require any interaction from the prover. To achieve this each verifier must
generate an El Gamal key for each prover. The number of keys can be reduced
to one key for each mix-server if we use a CCA2-secure cryptosystem, but then
the mix-servers can not simply reveal their secret key to substantiate a complaint.
Instead, a complaining mix-server would have to prove that its complaint was valid.

A CCA-secure cryptosystem that has the property that a decryptor can show
directly to a third party the contents of a cryptotext without revealing its key
would also solve the problem. Such a cryptosystem can be constructed under
strong assumptions (cf. [39]). We do not use this solution, since we wish to use as
weak assumptions as possible.

Proof of Theorem 10.2. We describe an ideal adversary S(·) that runs any hybrid
adversary A′ = ASBB as a black-box. Then we show that if S does not imply that
the protocol is secure, then we can break the DDH-assumption.

The Ideal Adversary S. Let IS and IM be the set of indices of parties corrupted
by A of the sender type and the mix-server type respectively. The ideal adversary
S corrupts the dummy parties S̃i for which i ∈ IS , and the dummy parties M̃j for
which j ∈ IM . The ideal adversary is best described by starting with a copy of the
original hybrid ITM-graph

(V,E) = Z ′(H(A′, ππ̃FBB
) ,

where we have replaced Z by a machine Z ′.
The adversary S simulates all machines in V except for those in A′, and the

corrupted machines Si for i ∈ IS and Mi for i ∈ IM under A′:s control.
The ideal adversary S simulates the ideal functionality FBB honestly.

Simulation of Links (Z,A), (Z, Si) for i ∈ IS , and (Z,Mj) for j ∈ IM . S simulates

Z ′, S̃i, for i ∈ IS , and M̃j for j ∈ IM , such that it appears as if Z and A, Z and
Si for i ∈ IS , and Z and Mj for j ∈ IM are linked directly.

1. When Z ′ receives m from A, m is written to Z, by S. When S receives m
from Z, m is written to A by Z ′. This is equivalent to that Z and A are
linked directly.

2. When Z ′ receives m from Si for i ∈ IS , m is written to Z by S̃i. When S̃i,
i ∈ IS , receives m from Z, m is written to Si by Z ′. This is equivalent to
that Z and Si are linked directly for i ∈ IS .

3. When Z ′ receives m from Mj for j ∈ IM , m is written to Z by M̃j . When

M̃j , j ∈ IM , receives m from Z, m is written to Mj by Z ′. This is equivalent
to that Z and Mj are linked directly for j ∈ IM .

140 Secure Realizations of Two Ideal Functionalities

Simulation of Honest Verifiers. When an honest verifier M̃j , for j 6∈ IM , re-
ceives (Question, Si, (g, y, ui, vi)) from Z, S must ensure that the simulated hon-
est verifier Mj receives (Question, Si, (g, y, ui, vi)) from Z ′. When the simulated
honest verifier Mj hands (Verifier, Si, (g, y, ui, vi), b) to Z ′, S must ensure that

(Verifier, Si, (g, y, ui, vi), b) is delivered to M̃j. This is done as follows.

1. Let j 6∈ IM . If S receives ((S, M̃j , Verifier, S̃i, (g, y, ui, vi), b), (M̃j , τj)) from

FRC

ZK , Z ′ hands (Question, Si, (g, y, ui, vi)) to Mj .

2. Let j 6∈ IM . If Z ′ receives (Verifier, Si, (g, y, ui, vi), b) from Mj , S hands

(1, τj) to CI , i.e. S instructs CI to deliver (Verifier, S̃i, (g, y, ui, vi), b) to

M̃j .

Simulation of Honest Provers. If an honest dummy prover S̃i, for i 6∈ IS , receives
a message (Prover, (g, y, ui, vi), ri), with ui = gri , from Z, S must ensure that
Si constructs a simulated proof deemed valid by the verifiers Mj despite that S
does not know ri. To be able to do this S must ensure that the simulated honest
mix-servers Mj, for j 6∈ IM , do not complain. This is done as follows.

1. Let j 6∈ IM . Mj follows its program except that if i 6∈ IS the ideal adversary

S checks if it has received (S, S̃i, Prover, (g, y, ui, vi), b). If so Mj sets bj,i = 1
in Step 2b without decrypting anything. Otherwise it is simulated honestly.

2. Suppose that S receives (S, S̃i, Prover, (g, y, ui, vi), b) from FRC

ZK for i 6∈ IS . If
b = 0, then it hands (Prover, (g, y, ui, vi), 0) to Si which is simulated honestly.

If b = 1, then it hands (Prover, (g, y, ui, vi), ·) to Si, where Step 2a in the
program of Si is replaced by the following.

Without loss we assume that IM = {1, . . . , kcorr}, where kcorr ≤ k′ − 1.
S chooses si,j ∈ Zq randomly for j = 1, . . . , k′ − 1. We must now define

αi,1, . . . , αi,k′−1 such that gsi,j = ui
∏t
l=1 α

jl

i,l for j ∈ IM . Set si,0 = r,
but note that r is not known by S and not used in the simulation. Using
Lagrange’s interpolation formula we define ai,1, . . . , ai,k′−1 by

∑t
l=0 ai,lz

l =
∑k′−1

j=0 si,j
∏

l 6=j
z−l
j−l , where the product is over l ∈ {0, . . . , k′ − 1}. Thus

ai,l =
∑k′−1

l′=0 bi,l′si,l′ for some bi,l and αi,l can be computed by forming

αi,l = ubi,0g
Pk′−1

l′=1
bi,l′si,l′ for l = 1, . . . , k′ − 1. To complete Step 2a, Si com-

putes

Cj = Eyj,i(si,j), for j = 1, . . . , k′ − 1 , and

Cj = Eyj,i(1), for j = k′, . . . , k .

Note that all components of the (corrupt) proof of Si above except Cj for j 6∈ IM
are identically distributed to the proof of a prover following its program.

A Proof of Knowledge of a Cleartext 141

Extraction from Corrupt Provers. If a corrupt prover Si, for i ∈ IS , constructs a
valid proof of knowledge, S must extract the knowledge and forward it to FRC

ZK . S
does this as follows.

1. Suppose that (·, Si, Proof, (g, y, ui, vi), (αi,1, . . . , αi,t, Ci,1, . . . , Ci,k)), for i ∈
IS , appears on FBB. S interrupts the simulation of FBB when a message
on the form (Mj , Verifier, Si, (g, y, ui, vi), bj,i) appears on for j = 1, . . . , k.
Then S checks if honest verifiers will output 1. If so S does the following.

a) It computes si,j = Dxj,i(Ci,j) for j 6∈ IM .

b) It computes ri using Lagrange interpolation ri =
∑k′

j=1 sj
∏

l 6=j
−l
j−l .

c) Finally S hands (Prover, (g, y, ui, vi), ri) to S̃i (who forwards it to FRC

ZK).

When S receives (S, S̃i, Prover, (g, y, ui, vi), b) from FRC

ZK it continues the
simulation of FBB.

Reaching a Contradiction. Next we show, using a hybrid argument, that if
the ideal adversary S defined above does not imply that Protocol 10.1 is secure,
then we can break the DDH-assumption.

Suppose that S does not imply the security of the protocol. Then there exists
a hybrid adversary A′ = ASBB , an environment Z with auxiliary input z = {zκ}, a
constant c > 0 and an infinite index set N ⊂ N such that for n ∈ N

|Pr[Zz(I(S, π̃F
RC
ZK)) = 1]− Pr[Zz(H(A′, ππ̃FBB

)) = 1]| ≥ 1

nc
,

where S runs A′ as a black-box as described above, i.e. S = S(A′).
Defining the Hybrids. Without loss we assume that {1, . . . , N}\IS = {1, . . . , η}. We

define T0 = Zz(I(S(A′), π̃FRC
ZK)), and then define Ts by the following modifications

to T0.

1. When S receives (Prover, S̃i, (g, y, ui, vi), b) for i 6∈ IM , it checks if i ∈
{1, . . . , s}. If so, S consults the internal storage of FRC

ZK and finds the ri
stored under the tag (S̃i, (g, y, ui, vi)). Then it runs the original honest Si
following the protocol on input (Prover, (g, y, ui, vi), ri). If i 6∈ {1, . . . , s},
then the simulation of Si proceeds as outlined above.

By inspection of the constructions we see that Tη is identically distributed to

Zz(H(A′, ππ̃FBB)), since the only essential difference is that honest verifiers do
not verify the proofs of all honest provers, but this is never noticed by A′ or Z.

If we set pl = Pr[Tl = 1], we have 1
κc ≤ |p0 − pη| ≤

∑η
l=1 |pl−1 − pl|, which

implies that there exists some fixed 0 < l ≤ η such that |pl−1 − pl| ≥ 1
ηκc ≥ 1

Nκc .

Defining a Distinguisher. Without loss we assume {1, . . . , k}\IM = {1, . . . , khon}.
We are now finally ready to define a distinguisher D. D is confronted with the gen-
eralized indistinguishability experiment of Lemma 2.13. It receives (y′1, . . . , y

′
khon

)
at the start.

142 Secure Realizations of Two Ideal Functionalities

D does the following. For j 6∈ IM , it alters Mj such that it does not gener-
ate the El Gamal keys (xj,l, yj,l), but use y′j instead (for which it does not know
the corresponding private key x′j). Then it simulates Tl until Sl has received
(Prover, (g, y, ul, vl), rl) and computed Cl,1, . . . , Cl,k in the computation of Step
2a of the protocol.

D then defines the pair [{m0,j}khon

j=1 , {m1,j}khon

j=1] by

m0,j = 1 and m1,j = sl,j ,

and sends this pair to the encryption oracle. The encryption oracle returns a list
(C1, . . . , Ckhon

). Sl replaces (Cl,1, . . . , Cl,khon
) by (C1, . . . , Ckhon

) and continues its
execution. Finally, D outputs as its guess the bit b′ output by the simulation.

Note that if b = 0 the simulation is a simulation of Tl−1, and if b = 1 it is a
simulation of Tl. It follows from Lemma 2.13 that this contradicts the polynomial
indistinguishability of the El Gamal cryptosystem. From Lemma 3.9 we conclude
that the DDH-assumption is broken. �

10.2 A Proof of Knowledge of a Shuffle of El Gamal

Cryptotexts

In this section we transform the zero-knowledge proof of knowledge of correct
decryption-permutation from Chapter 9 into a secure realization of FRDP

ZK in a

(FRSA,FRC

ZK ,FCF,FBB)-hybrid model, where FRSA is the RSA common reference
string functionality, and FCF is the coin-flipping functionality defined in Section
5.3. In the protocol below one of the mix-servers play the role of the prover in the
original protocol and all the other mix-servers implement the honest verifier.

Protocol 10.3 (Zero-Knowledge Proof of Decryption-Permutation). The
protocol πDP = (M1, . . . ,Mk) consists of mix-servers Mj and proceeds as follows.

Mix-Server Mj. Each mix-server Mj proceeds as follows.

1. Wait for (RSA,N,g,h) from FRSA.

2. Hand (GenerateCoins, N(κ+ 1)) to FCF and wait until it returns
(Coins, (g1, . . . , gN)).

3. Repeatedly wait for inputs

• On input (Prover, (g, z, y, L, L′), (w, x)) ignore further inputs on the
form (Prover, ·, ·) and do

a) Check if ((g, z, y, L, L′), (w, x)) ∈ LRDP . If not, set w = 0 and x = 0.

b) Hand (Prover, (g, z, 1, 1), w) to FRC

ZK

(z)
and hand

(Prover, (g, y, 1, 1), x) to FRC

ZK

(y)
.

A Proof of Knowledge of a Shuffle of El Gamal Cryptotexts 143

c) Denote by W the first message of the prover in Protocol 9.1. Then
hand (Write, W,W) to FBB.

d) Hand (GenerateCoins, κ) to FCF. Wait until it returns (Coins, s)
and let P = PGen(PRG(s)) be the primes used by the prover in
Protocol 9.1.

e) Denote by C the second message of the prover in Protocol 9.1. Hand
(Write, C, C) to FBB. Then hand (GenerateCoins, κc − 1) to FCF

and wait until it returns (Coins, c′). Let c = c′ + 2κc−1 be the final
challenge in Protocol 9.1.

f) Denote by R the third message of the prover in Protocol 9.1. Hand
(Write, R, R) to FBB.

• On input (Question,Ml, (g, z, y, L, L
′)), where L,L′ ∈ G2N

q and (z, y) ∈
Gq do

a) Hand (Question,Ml, (g, z, 1, 1)) to FRC

ZK

(z)
and wait until it returns

(Verifier,Ml, bz,l). Hand (Question,Ml, (g, y, 1, 1)) to FRC

ZK

(y)
and

wait until it returns (Verifier,Ml, by,l). If bz,l = 0 or by,l = 0
output (Verifier,Ml, 0).

b) Wait until (Ml, W,W) appears on FBB. Hand (GenerateCoins, κ)
to FCF and wait until it returns (Coins, s). Let P = PGen(PRG(s))
be the primes used by the verifier in Protocol 9.1.

c) Wait until (Ml, C, C) appears on FBB. Then hand
(GenerateCoins, κc−1) to FCF and wait until it returns (Coins, c′),
and until (Ml, R, R) appears on FBB. Let c = c′+2κc−1 be the final
challenge in Protocol 9.1. Then verify (W,P,C, c, R) as in Protocol
9.1 and set bj = 1 or bj = 0 depending on the result. Finally, output
(Verifier,Ml, L, L

′, bj).

Theorem 10.4. The ideal functionality FRDP

ZK is securely realized by πDP in the

(FBB,FCF,FRSA,FRC

ZK)-hybrid model with respect to Mk/2-adversaries under the
DL-assumption and the strong RSA-assumption. If the generator PGenc is used
instead, then the result holds in Cramér’s model of the primes.

Proof. We describe an ideal adversary S(·) that runs any hybrid adversary A as a
black-box. Then we show that if S does not imply that the protocol is secure, then
we can break one of the assumptions.

The Ideal Adversary S. Let IM be the set of mix-servers corrupted by A.
The ideal adversary S corrupts the dummy parties M̃i for which i ∈ IM . The ideal
adversary is best described by starting with a copy of the original hybrid ITM-graph

(V,E) = Z ′(H(A, π(π̃
FBB
1 ,π̃

F
RC
ZK

(z)

2 ,π̃
F
RC
ZK

(y)

3 ,π̃
FCF
4)

DP) ,

144 Secure Realizations of Two Ideal Functionalities

where Z is replaced by a machine Z ′. The adversary S simulates all ideal func-

tionalities honestly except FCF, FRC

ZK

(z)
, and FRC

ZK

(y)
. The simulation of these

functionalities and Mj for j 6∈ IM is described below.

Simulation of Links (Z,A), and (Z,Mj) for j ∈ IM . S simulates Z ′, and M̃j for
j ∈ IM , such that it appears as if Z and A, and Z and Mj for j ∈ IM are linked
directly.

1. When Z ′ receives m from A, m is written to Z, by S. When S receives m
from Z, m is written to A by Z ′. This is equivalent to that Z and A are
linked directly.

2. When Z ′ receives m from Mj for j ∈ IM , m is written to Z by M̃j . When

M̃j , j ∈ IM , receives m from Z, m is written to Mj by Z ′. This is equivalent
to that Z and Mj are linked directly for j ∈ IM .

Extraction from Corrupt Provers. When a corrupt prover Mj , for j ∈ IM , manages
to convince the honest verifiers that it knows a witness, that witness must be
forwarded to FRDP

ZK . To do that the witness must be extracted, but this is easy.
The ideal adversary waits until (Mj , R, R) appears on FBB. Then it inter-

rupts the simulation of FBB and checks if the honest verifiers would accept R
as the final message of the prover in Protocol 9.1. If so, it looks at the in-

ternal tapes of FRC

ZK

(z)
and FRC

ZK

(y)
to see if w and x have been stored under the

tags (Mj , z) and (Mj , y) respectively. If this is the case it instructs M̃j to hand

(Prover, (g, z, y, (ui, vi)
N
i=1, (u

′
i, v
′
i)
N
i=1), (w, x)) to FRDP

ZK . Then it waits until it re-

ceives (Mj , Prover, (g, z, y, (ui, vi)
N
i=1, (u

′
i, v
′
i)
N
i=1), b) from FRDP

ZK , at which point it
resumes the simulation of FBB.

Simulation of Honest Provers. When an honest dummy prover M̃j hands a witness

to FRDP

ZK , the ideal adversary must simulate a proof that convinces the corrupted
verifiers. This must be done without knowledge of the witness.

When S receives (Mj , Prover, (g, z, y, (ui, vi)
N
i=1, (u

′
i, v
′
i)
N
i=1), b) from FRDP

ZK , it
inputs (Prover, (g, z, y, (ui, vi)

N
i=1, (u

′
i, v
′
i)
N
i=1), (0, 0)) to Mj if b = 0 and it inputs

(Prover, (g, z, y, (ui, vi)
N
i=1, (u

′
i, v
′
i)
N
i=1), (1, 1)) to Mj if b = 1, and instructs it to

ignore the fact that the witnesses are invalid. It also instructs FRC

ZK

(z)
and FRC

ZK

(y)

respectively to behave as if the submitted witnesses from Mj are correct when it is
handed (z, 1) and (y, 1) respectively.

Then c ∈ [2κc−1, 2κc − 1] is chosen randomly and the simulator described in the
proof of Proposition 9.7, i.e. the simulator of the honest verifier statistical zero-
knowledge proof is invoked, to generate C. Then Mj is instructed to use this C,
instead of computing it, and FCF is instructed to output c. This implies that all
verifiers accept the proof.

Reaching a Contradiction. Next we show that if the ideal adversary S defined
above does not imply the security of Protocol 10.4, then we can break the DL-
assumption or the strong RSA-assumption.

A Proof of Knowledge of a Shuffle of El Gamal Cryptotexts 145

Suppose that S does not imply the security of the protocol. Then there exists
a hybrid adversary A, an environment Z with auxiliary input z = {zκ}, a constant
c > 0 and an infinite index set N ⊂ N such that for κ ∈ N

|Pr[Zz(I(S, π̃F
RDP
ZK)) = 1]

− Pr[Zz(H(A, π(π̃
FBB
1 ,π̃

F
RC
ZK

(z)

2 ,π̃
F
RC
ZK

(y)

3 ,π̃
FCF
4)

DP)) = 1]| ≥ 1

κc
,

where S runs A as a black-box as described above, i.e. S = S(A).
Denote by T the machine that simulates Zz(I(S(A′), π̃FMN)), except that in-

stead of simulating honest provers Mj for j 6∈ IM as described above, it simply

looks at the internal tapes of FRDP

ZK to extract the message on the form

(Mj , Prover, (g, z, y, (ui, vi)
N
i=1, (u

′
i, v
′
i)
N
i=1), (w, x))

handed to FRDP

ZK by M̃j . It inputs (Prover, (g, z, y, (ui, vi)
N
i=1, (u

′
i, v
′
i)
N
i=1), (w, x))

to Mj , which then follows the protocol honestly.
From Proposition 9.7 we know that Protocol 9.1 is statistical zero-knowledge.

Thus,
|Pr[T = 1]− Pr[Zz(I(S(A′), π̃FMN)) = 1]|

is negligible. For simplicity we ignore this negligible difference in the remainder of
the proof.

The only remaining difference between the simulation carried out by T and an
execution in the real model, is that it could happen that S hands

(Prover, (g, z, y, (ui, vi)
N
i=1, (u

′
i, v
′
i)
N
i=1), (w, x))

to FRDP

ZK , despite that ((g, z, y, (ui, vi)
N
i=1, (u

′
i, v
′
i)
N
i=1), (w, x)) 6∈ RDP.

Denote by Bl the event that this happens the lth time a proof is carried out.
Each mix-servers proves at most one statement.

Since the simulation is statistically close to the real model in all respects except
that some event Bl may occur, and we know that the environment can distinguish
the hybrid model from the ideal model with notable probability, we conclude that

Pr [B1 ∨B2 ∨ · · · ∨Bk] ≥
1

κc
.

An averaging argument implies that Pr[Bl] ≥ 1
kκc for some fixed l.

Next we argue that this contradicts the soundness of Protocol 9.1. Denote by
A′ the adversary that accepts (Γ, g) = ((N,g,h), (gi)

N
i=1) as input and simulates

simulates T , except for the following changes. It uses its input, instead of gener-
ating these parameters during the simulation of FRSA and FCF. The simulation is
continued until the lth proof is about to be executed. Then it waits for an input
s ∈ [0, 2κ − 1] and instructs FCF to output s in the generation of the primes, i.e.,

146 Secure Realizations of Two Ideal Functionalities

Pj = PGenc(PRG(s)). Then it waits for another input c ∈ [2κc−1, 2κc − 1] and
instructs FCF to output c′ = c−2κc−1 in the generation of the challenge. It follows
that

Pr
Γ,g,rp,rv

[AccV (viewV
A′(Γ, g, rp, rv)) = 1 ∧ IA′(Γ, g, rp) 6∈ LRDP] ≥ 1

kκc
,

where rp denotes the randomness of all machines in the simulation of T , and rv
denotes the randomness of the honest verifier. Recall from Proposition 9.8 that
Protocol 9.1 is a computationally convincing proof of knowledge. Proposition 2.32
then implies that PrΓ,g,rp,rv [AccV (viewVA′(Γ, g, rp, rv)) = 1 ∧ IA′(Γ, g, rp) 6∈ LRDP]
is negligible. Thus, we have reached a contradiction. �

Chapter 11

An Adaptively Secure Mix-Net

Without Erasures

Many mix-net constructions are proposed in the literature, but we are not aware
of any construction that is claimed to be secure against an adaptive adversary in
any model, even with erasures. Recall that in a model with erasures some parties
must erase parts of their computational history to ensure security, whereas in a
model without erasures it is assumed that every state transition is stored on a
special history tape that is handed to the adversary upon corruption. Adaptive
adversaries are more realistic than static adversaries, in particular for protocols
that execute over a long period of time such as electronic election protocols. We
provide the first mix-net that is secure against an adaptive adversary that corrupts
any minority of the mix-servers and any set of senders. We formalize security in the
UC-framework without erasures. Our solution is based on the Paillier cryptosystem,
but we also consider to what extent our method carries over to El Gamal based
mix-nets. As our two solutions with the El Gamal cryptosystem have less desirable
properties, we only sketch these. The first is provably secure, but impractical. The
second is only secure in a random oracle model with erasures, but it is practical.
Our analysis is novel in that we show that a mix-net can be proved UC-secure even
if the zero-knowledge proofs of knowledge of correct re-encryption-permutations
computed by the mix-servers are not zero-knowledge against adaptive adversaries
and not straight-line extractable.

11.1 Adversary Model

The adversarial model considered in this chapter is the same as that considered
in Chapter 8, except that the adversary may choose which parties to corrupt ad-
aptively. Thus, the comments in Section 8.1 on alternative adversary models are
applicable to this chapter as well.

147

148 An Adaptively Secure Mix-Net Without Erasures

Definition 11.1 (Adaptive Mix-Net Adversaries). We define M∗l to be the
set of adaptive adversaries that corrupt less than l out of k parties of the mix-server
type, and arbitrarily many parties of the sender type.

11.2 Distributed Paillier

We use a combination of two threshold versions of the Paillier [121] cryptosystem
introduced by Lysyanskaya and Peikert [100] and Damgård et al. [57]. We con-
centrate on the fixed-size cleartext case. A detailed introduction to the Paillier
cryptosystem is given in Section 3.12.

The scheme is turned into a distributed cryptosystem with k parties of which
k′ are needed for decryption in the following way.

The key generator chooses two random generators g and h of a subgroup Gq of
prime order q of Z∗2q+1 for a random prime 2q+1 such that log2 q > 2κ+κr, where
κr is an additional security parameter.

We also let v be a generator of the group of squares QRN2 = GN×Gf . Then we
assign to each party Mj a random element dj ∈ [0, 22κ+κr − 1] under the restric-

tion that d =
∑k
j=1 dj mod Nf, and define vj = vdj mod N2. We also compute a

Shamir-secret sharing [136] of each dj to allow reconstruction of this value. More
precisely we choose for each j a random (k′ − 1)-degree polynomial fj over Zq un-
der the restriction that fj(0) = dj , and define dj,l = fj(l) mod q. A Pedersen [123]
commitment Fj,l = gdj,lhtj,l of each dj,l is also computed, where tj,l ∈ Zq is ran-
domly chosen. The joint public key consists of (N, v, (vj)

k
j=1, (Fj,l)j,l∈{1,...,k}). The

private key of Mj consists of (dj , (dl,j , tl,j)
k
l=1).

To jointly decrypt a cryptotext u, the jth share-holder computes uj = udj mod
N2 and proves in zero-knowledge that logu uj = logv vj . If the proof fails, each Ml

publishes (dj,l, tj,l). This allows each honest party to find a set of (dj,l, tj,l) such
that Fj,l = gdj,lhtj,l , recover dj using Lagrange interpolation, and compute uj =

udj mod N2. Finally, the values are combined to yield the cleartext by L(
∏k
j=1 uj) =

m.

11.3 Key Generation

The mix-servers generate a joint Paillier public key N. The corresponding private
key is verifiably and secretly shared among the mix-servers as described above. In
our formulation this is intertwined with the main protocol. The public key N is the
main public key in the mix-net, but we do need additional keys.

We need an additional Paillier cryptosystem, but this need not be distributed.
We denote by (N′, g′, d′) Paillier parameters generated as above but such that N′ >
N. We also need an RSA modulus N that is chosen exactly as the Paillier moduli
N and N′. Finally, we need two Paillier cryptotexts K0 = EN(0, R0) and K1 =
EN(1, R1) of 0 and 1 respectively. Below we summarize key generation as an ideal
functionality.

The Adaptively Secure Mix-Net 149

Functionality 11.2 (Key Generation). The ideal key generation functionality,
FPKG, running with mix-servers M1, . . . ,Mk, senders S1, . . . , SN , and ideal ad-
versary S proceeds as follows. It generates keys as described above and hands
((S, PublicKeys, (N, g, h,N′,N,K0,K1, v, (vl)

k
l=1, (Fl,l′)l,l′∈{1,...,k})),

{(Mj, Keys, (N, g, h,N
′,N,K0,K1, v, (vl)

k
l=1, (Fl,l′)l,l′∈{1,...,k}),

(dj , (dl,j , tl,j)
k
l=1))}kj=1) to CI .

Recall that CI acts as a router between the parties and the ideal functionality.
The ideal functionality can be securely realized using general methods [44] in the
common random string model.

11.4 The Adaptively Secure Mix-Net

In this section we first describe the basic structure of our mix-net. Then we explain
how we modify this to accommodate adaptive adversaries. We also discuss how and
why our construction differs from previous constructions in the literature. This is
followed by subsections introducing the subprotocols invoked in an execution of the
mix-net. Finally, we give a detailed description of the mix-net.

11.4.1 The Overall Structure

Our mix-net is based on the re-encryption-permutation paradigm, which is ex-
plained as follows. Let L0 = {u0,i}Ni=1 be the list of cryptotexts submitted by
senders. For l = 1, . . . , k the lth mix-server Ml re-encrypts each element in Ll−1 =
{ul−1,i}Ni=1 as explained in Section 3.12, sorts the resulting list and publishes the
result as Ll. Then it proves, in zero-knowledge, knowledge of a witness that Ll−1

and Ll are related in this way. The mix-servers then jointly and verifiably re-encrypt
the cryptotexts in Lk. Note that no permutation takes place in latter step. The
result is denoted by Lk+1. Finally, the mix-servers jointly and verifiably decrypt
each cryptotext in Lk+1 and sort the resulting list of cleartexts to form the output.
In short, the overall structure is similar to previous constructions with the excep-
tion of the joint re-encryption step, which is needed for technical reasons discussed
below.

To avoid relation attacks, where a sender manages to submit a cryptotext of a
message that is related to the encrypted message of another sender, each sender
proves knowledge of the message it submits. Each sender forms two cryptotexts u0,i

and u′0,i using different public keys and proves that they hold the same cleartext.
Naor and Yung’s [110] double-cryptotext trick then allows straight-line extraction
of all cleartexts submitted by corrupted parties.

Correctness should hold due to the proofs computed by the mix-servers. An-
onymity for the senders should hold due to the semantic security and homomorphic
property of Paillier’s cryptosystem, and the fact that all proofs are zero-knowledge.

150 An Adaptively Secure Mix-Net Without Erasures

11.4.2 Accommodating Adaptive Adversaries

In this section we point at some key modifications needed for our mix-net to be
secure against adaptive adversaries, and briefly explain how they are used by the
ideal adversary.

As in the static case considered in [147] and in Chapter 8 the ideal adversary
must simulate the submissions of honest senders without knowing which message
they actually hand to FRMN. The first new problem encountered when considering
adaptive adversaries is that the adversary may decide to corrupt a simulated honest
sender Si that has already computed fake cryptotexts u0,i and u′0,i. The ideal

adversary can of course corrupt the corresponding dummy party S̃i and retrieve the
true value mi it handed to FRMN as in the static case. The problem is that it must
provide Si with a plausible history tape that convinces the adversary that Si sent
mi already from the beginning. To solve this problem we use an idea of Damgård
and Nielsen [58]. We have two public keys K0 = EN(0, R0) = R2N

0 mod N2 and
K1 = EN(1, R1) = gR2N

1 mod N2 and each sender is given a unique keyK ′i = EN′(ai)
for a randomly chosen ai ∈ ZN′ . The sender of a message mi chooses bi ∈ ZN,
ri ∈ Z∗N and r′i ∈ Z∗N′ randomly, and computes its two cryptotexts as follows

ui = EK1,N(mi, ri) and u′i = EgbiK′
i,N

′(mi, r
′
i) .

Then it submits (bi, ui, u
′
i) and proves in zero-knowledge that the same message mi

is encrypted in both cryptotexts. Note that Dd(ui) = mi and Dd′(u′i) = (ai+ bi)mi

due to the homomorphic property of the cryptosystem.

During simulation we instead define K0 = EN(1, R0) = gR2N
0 mod N2 and K1 =

EN(0, R1) = R2N
1 mod N2. This means that ui becomes an encryption of 0 for all

senders. Furthermore, simulated senders choose bi = −ai mod N′ which implies
that also u′i is an encryption of 0. The important property of the simulation is
that given mi and R1 we can define r̄i = ri/R

mi
1 such that ui = EK1,N(mi, r̄i),

i.e., we can open a simulated cryptotext as an encryption of an arbitrary message
mi. The cryptotext u′i can also be opened as an encryption of mi in a similar way
when bi + ai = 0 mod N′. Finally, it is possible to construct the proof of equality
such that it also can be opened in a convincing way. This allows the simulator to
simulate honest senders and produce plausible history tapes as required.

Corrupt senders on the other hand have negligible probability of guessing ai, so
the simulator can extract the message submitted by corrupt senders using only the
private key d′ by computing mi = Dd′(u′i)/(ai + bi) mod N′ as bi is sent explicitly.

Before the mix-net simulated by the ideal adversary starts to process the input
cryptotexts the ideal mix-net FRMN has handed the ideal adversary the list of
cleartexts that should be output by the simulation. All cleartexts equal zero in
the simulation and must be replaced. In the static case considered in [147] and
in Chapter 8 this is done by one of the honest simulated mix-servers Mj when it
re-encrypts and permutes Lj . Then it invokes the simulator instead of executing
its proof of knowledge. With an adaptive adversary this is no longer possible. The

The Adaptively Secure Mix-Net 151

problem is that the adversary may corrupt Mj after it has output Lj , and it is then
impossible to compute a plausible history tape for Mj .

Instead, the correct messages are introduced in the joint re-encryption phase.
Thus, all mix-servers are simulated honestly during the re-encryption-permutation
phase and the decryption phase is also simulated honestly using the private key d.

The joint re-encryption is defined as follows. Before the start of the mixing each
mix-server is given a random cryptotext K̄ ′j using the public key N′. Each mix-server

Mj chooses random elements mj,i ∈ ZN and commits to these by choosing b̄j ∈ ZN′

and s′j,i ∈ Z∗N′ randomly and computing w′j,i = E
g
b̄j K̄′

j,N
′(mj,i, s

′
j,i). When all

mix-servers have published their commitments, it chooses sj,i ∈ Z∗N randomly and
computes wj,i = EK0,N(mj,i, sj,i). It also proves in zero-knowledge that the same
random element mj,i is encrypted in both cryptotexts. The jointly re-encrypted
elements uk+1,i are then formed as

uk+1,i = uk,i
∏

l∈I

w

Q

l′ 6=l
l′

l′−l

l,i ,

where I is the lexicographically first set of k′ indices j such that the proof of Mj is
valid.

In the real execution this is an elaborate way to re-encrypt uk,i, since K0 is an
encryption of 0. In the simulation on the other hand the ideal adversary chooses
b̄j = −āj mod N′ and sets mj,i = 0 for simulated mix-servers and extracts the
mj,i values of corrupt mix-servers from their commitments. It then redefines the
mj,i values of simulated honest mix-servers such that fi(j) = mj,i for a (k′ −
1)-degree polynomial fi over ZN such that fi(0) equals mπ(i) for some random
permutation π ∈ ΣN . Since b̄j + āj = 0 mod N′ it can compute s̄′j,i such that
w′j,i = E

g
b̄j K̄′

j ,N
′(mj,i, s̄

′
j,i). In the simulation K0 is an encryption of 1 and each

uk,i is an encryption of zero, which implies that uk+1,i becomes an encryption of
mπ(i) as required. Intuitively, the adversary can not tell the difference since it can
never corrupt k′ mix-servers and get its hands on their mj,i values directly, and
the semantic security of the cryptosystem prevents it from knowing these values
otherwise.

11.4.3 Some Intuition Behind Our Analysis

The soundness of the proof of equal exponents used during decryption, and the
proof of knowledge of correct re-encryption-permutation ensures that the output
messages are identical in the ideal model and the real execution.

It may seem that the zero-knowledge simulator of the proof of equal expo-
nents used during decryption and the proof of knowledge of correct re-encryption-
permutation respectively play no role in the protocol, since they are not invoked by
the ideal adversary sketched above. It may also appear that the knowledge extrac-
tion property of the proof of knowledge of a correct re-encryption-permutation is
never exploited, but they play an essential role in the analysis of the ideal adversary.

152 An Adaptively Secure Mix-Net Without Erasures

To see this note that the private key d corresponding to the Paillier modulus N

is needed both in the ideal model and in the real protocol execution. Thus, even if
the adversary can distinguish the ideal model from the execution of the protocol, we
can not use the adversary directly to reach a contradiction to the semantic security
of Paillier.

To reach a contradiction we must first replace the ideal model and the real
protocol execution by simulations that do not use the private key, but that are
indistinguishable from the ideal model and the real execution respectively. Then we
use the two simulations to break the semantic security of the Paillier cryptosystem.
To do this we use the single-honest-player proof strategy, namely we guess the
identity j of a mix-server Mj that the adversary will not corrupt. Our guess is
correct with probability at least 1/2, since the majority of the mix-servers are
honest and our guess is independent of all other variables in the simulation. Then we
instruct Mj to simulate its proof of knowledge of correct re-encryption-permutation
and its proof of correct decryption. Since we know the set of messages that should
be output by the protocol, andMj simulates its proof, we can instruct Mj to output
his parts of the decryption procedure without using his share of the private key d.
This allows us to hand simulated shares of the private key to all other mix-servers.

The only remaining problem is that although we have instructed Mj to output
the correct set of messages, we have no guarantees that they appear in the correct
order. Indeed if the last mix-server Mk is corrupted and we do not have d, the
semantic security of Paillier prohibits us from knowing the correct order. Thus, de-
cryption is not simulated correctly. To solve this problem we exploit the knowledge
extractor of the proof of knowledge of correct re-encryption-permutation for each
corrupted mix-server Mj. This allows us to extract in which order the messages
should be output and Mj can simulate decryption correctly. The reason we need
the zero-knowledge simulator of the proof of knowledge of correct re-encryption-
permutation is intuitively obvious, but to describe precisely the role it plays in the
security analysis is difficult, and we can only refer the reader to the proof in Section
11.7.

11.4.4 Differences with Previous Constructions

Our mix-net differs from the two previously considered statically UC-secure mix-
nets, [147] and Chapter 8 in several ways.

Our construction is based on the Paillier cryptosystem, whereas the previous
are based on the El Gamal cryptosystem. We need to use the Paillier cryptosystem
to allow adaptive corruption of the senders in the way explained above.

In previous work each mix-server partially decrypts its input. Thus, Lk is
already the list of cleartexts, which reduces the number of rounds and the com-
munication complexity of the protocol. It also simplifies the analysis compared to
having a joint decryption step. We use the more cumbersome paradigm outlined
above, since we are not aware of any method to partially decrypt Paillier cryptotexts
securely.

Subprotocols Invoked by the Main Protocol 153

We have a joint re-encryption step which no previous construction has. This is
needed since we are not aware of any other way to insert the correct messages in
an adaptively secure way in the simulation.

The analyses of the mix-nets in [147] and in Chapter 8 are modular. This means
that the mix-net is given in a hybrid model with access to ideal zero-knowledge proof
of knowledge functionalities. These functionalities are then securely realized, and
the composition theorem of the UC-framework invoked. The modular approach
simplifies the analysis considerably, but the strong demands on subprotocols make
them hard to securely realize efficiently. In particular, the proof of knowledge of a
correct re-encryption-permutation is difficult to realize, since the size of the witness
is large. We remark that this problem is avoided in Chapter 8 by a trick specific
to the El Gamal cryptosystem. It may seem that it would suffice with a proof of
correctness instead of a proof of knowledge, but as explained in Chapter 8, if a
mix-net is based on the re-encryption-permutation paradigm, then each mix-server
must prove knowledge of a witness of a correct re-encryption-permutation. In other
words a “proof of correctness” or a “proof of membership” [116] in the UC-framework
is not enough. In the adaptive setting the problem becomes even harder since any
realization must be secure with regards to an adaptive adversary.

We avoid this problem by showing that a zero-knowledge proof of knowledge of
correct re-encryption-permutation in the classical sense is sufficient, i.e., the pro-
tocol can not be simulated to an adaptive adversary and extraction is not straight-
line.

11.5 Subprotocols Invoked by the Main Protocol

Before we give the details of the main protocol, we detail the two subprotocols
that are needed in addition to the zero-knowledge proof of knowledge of correct
re-encryption of Section 9.7.

11.5.1 Proof of Knowledge of Re-encryption-Permutation

Denote by πprp = (Pprp, Vprp) the 5-move protocol for proving knowledge of a
witness of a re-encryption and permutation of a list of Paillier cryptotexts we con-
struct in Section 9.7. We assume for simplicity that the protocol invokes PGen

during generation of the prime vectors. Both the prover and the verifier accepts
as special parameters an RSA-modulus N and random g,h ∈ QRN, and random
g1, . . . , gN ∈ Gq. For convenience we restate the definition of the re-encryption-
permutation relation RN

RP and the security properties of πprp below.

Definition 9.20 (Knowledge of Correct Re-encryption-Permutation).
Define for each N and N a relation RN

RP ⊂ ((Z∗N)N × (Z∗N)N)× [0, 2κ+κr − 1]N , by

(({ui}Ni=1, {u′i}Ni=1), (a, (xi)
N
i=1)) ∈ RN

RP

154 An Adaptively Secure Mix-Net Without Erasures

precisely when a <
√

N/4 equals one or is prime and (u′i)
a = g

xπ(i)

f uaπ(i) mod N2

for i = 1, . . . , N and some permutation π ∈ ΣN such that the list {ūi}Ni=1 is sorted
lexicographically.

Proposition 9.22. The protocol πprp is honest verifier statistical zero-knowledge.

Proposition 9.23. The protocol πprp is a computationally convincing proof of
knowledge for the relation RN

RP with regards to the distribution of (N,g,h) and
(g1, . . . , gN).

Proposition 9.24 (Simplified). Protocol 9.21 has overwhelming completeness.

11.5.2 Proof of Equality of Cleartexts

When a sender submits its cryptotexts ui and u′i it must prove that they are
encryptions of the same message under two distinct public keys. The protocol
πeq = (Peq, Veq) used to do this is given below. The security parameters κc and κr
decide the soundness and statistical zero-knowledge property of the protocol.

Protocol 11.3 (Proof of Equal Cleartexts Using Distinct Moduli).
Common Input: N ∈ Z, K,u ∈ Z∗

N2 , N′ ∈ Z, K ′, u′ ∈ Z∗
N′2 , N ∈ N, generators g

and h of QRN.
Private Input: m ∈ {0, 1}κ−κr , r ∈ Z∗N, and r′ ∈ Z∗N′ such that u = EK,N(m, r)
and u′ = EK′,N′(m, r′).

1. The prover chooses r′′ ∈ [0, 22κ+κr − 1], s0 ∈ Z∗N2 and s1 ∈ Z∗(N′)2 , and

t ∈ [0, 2κ+κc − 1] and s2,∈ [0, 22κ+κc+2κr − 1] randomly. Then it computes

C = gmhr
′′

mod N , and

(α0, α1, α2) = (Kts2N
0 mod N2, (K ′)ts2N′

1 mod (N′)2,gths2 mod N) ,

and hands (C,α1, α2, α3) to the verifier.

2. The verifier chooses c ∈ [2κc−1, 2κc − 1] and hands c to the prover.

3. The prover computes

(e0, e1) = (rcs0 mod N, (r′)cs1 mod N′) , and

(e2, e3) = (cr′′ + s2 mod 22κ+κc+2κr , cm+ t mod 2κ+κc) ,

and hands (e0, e1, e2, e3) to the verifier.

4. The verifier checks that

(ucα0, (u
′)cα1) = (Ke3e2N

0 mod N, (K ′)e3e2N′

1 mod N′)

Ccα2 = ge3he2 mod N .

Subprotocols Invoked by the Main Protocol 155

Although the protocol is statistical zero-knowledge this is not the property we
need in the simulation. Recall that the simulator must be able to compute a
plausible history tape if a simulated sender is corrupted.

Damgård and Nielsen [58] introduce the notion of non-erasure zero-knowledge
proofs of knowledge. Our protocol could be said to be a “non-erasure statistical
zero-knowledge computationally convincing proof”, but we do not define this notion
explicitly. Instead we prove the following propositions.

Proposition 11.4 (“Zero-Knowledge”). Let K = R2N mod N2 and K ′ = R′
2N′

mod (N′)2 for some R ∈ Z∗N and R′ ∈ Z∗N′ . Let h be a generator of QRN and
g = hx.

Let r, r′, and (r′′, s0, s1, t, s2) be randomly distributed in the domains described
in the protocol, and denote by I(m) = (N,K, u,N′,K ′, u′,N,g,h) the common input
corresponding to the private input (m, r, r′). Denote by c the random challenge from
the verifier and let T (m) = (α, c, e) be the proof transcript induced by (m, r, r′), c,
and (r′′, s0, s1, t, s2).

There exists a deterministic polynomial-time algorithm His such that for every
m ∈ {0, 1}κ−κr it holds that if we define

(r̄, r̄′, r̄′′, s̄0, s̄1, t̄, s̄2) = His(R,R′,x,m, r, r′, r′′, s0, s1, t, s2, c)

then the distributions of

[I(m), T (m), (m, r, r′), (r′′, s0, s1, t, s2)] and

[I(0), T (0), (m, r̄, r̄′), (r̄′′, s̄0, s̄1, t̄, s̄2))]

are statistically close.

Note that the proposition in itself does not imply that the protocol is zero-
knowledge. The protocol is only zero-knowledge for common inputs on a certain
form, namely if K and K ′ are both encryptions of zero.

Proof of Proposition 11.4. The algorithm His first defines

(r̄, r̄′) = (rR−m mod N, r′(R′)−m mod N) , and

r̄′′ = r′′ − xm mod 2κ+κc+2κr .

Then it defines

(s̄0, s̄1) = (e0/r̄
c mod N, e1/(r̄

′)c mod N) ,

s̄2 = e2 − cr̄′′ mod 2κ+κc+2κr , and

t̄ = e3 − cm mod 2κ+κc .

It is easy to see that the distribution of the resulting elements is statistically close
to the distribution of the corresponding elements in a real execution of the proof.

156 An Adaptively Secure Mix-Net Without Erasures

To see why the elements are defined this way, note that

u = r2N = (r̄Rm)2N = r̄2NKm mod N2

u′ = (r′)2N = (r̄′Rm)2N = (r̄′)2NKm mod (N′)2

C = hr
′′

= hr̄
′′+xm = gmhr̄

′′

mod N

α0 = s2N
0 Kt = (e0/r

c)2NKe3 = s̄2N
0 (r̄c/rc)2NK t̄+cm

= s̄2N
0 (rcR−cm/rc)2NK t̄+cm = s̄2N

0 K t̄ mod N2

α1 = s2N′

1 (K ′)t = (e1/(r
′)c)2N′

(K ′)e3 = s̄2N′

1 ((r̄′)c/(r′)c)2N′

(K ′)t̄+cm

= s̄2N
1 ((r′)cR′

−cm
/(r′)c)2N′

(K ′)t̄+cm = s̄2N′

1 (K ′)t̄ mod (N′)2

α2 = gths2 = ge3he2−cr
′′

= gt̄+cmhe2−cr̄
′′−xcm = gt̄hs̄2 .

�

The protocol must have overwhelming completeness and the adversary must
have negligible probability of proving a false statement. Denote by REC,N,N′ ⊂
Z∗

N2 × Z∗
N′2 the relation defined as the set of (u, u′) ∈ REC,N,N′ such that u =

EN(m, r) and u′ = EN′(m, r′) for some m ∈ {0, 1}κ−κr , r ∈ Z∗N, and r′ ∈ Z∗N′ .
The adversary is given as input Paillier parameters (N,N′), RSA-parameters

Γ = (N,g,h) and an internal random string rp as input and outputs an in-
stance IP∗

eq
(N,N′,Γ, rp), i.e., some pair (u, u′) ∈ Z∗N2 × Z∗

N′2 . Then it executes
the protocol above with an honest verifier. As in the previous section we denote
by δP∗

eq
(N,N′,Γ, rp) the probability over the random choices of the honest verifier

that it accepts the instance IP∗
eq

(N,N′,Γ, rp).

Proposition 11.5 (Completeness). The protocol has overwhelming complete-
ness.

Proof. The protocol may fail if and only if a modular reduction is performed in the
computation of e2 or e3 in Step 3. This happens with negligible probability over
the random choice of t and s2. �

Proposition 11.6 (Soundness). The protocol is a computationally convincing
proof with regards to the distribution of (N,g,h).

Proof. Suppose that we are given two accepting transcripts

((C,α0, α1, α2), c, (e0, e1, e2, e3)) , and ((C,α0, α1, α2), c
′, (e′0, e

′
1, e
′
2, e
′
3))

such that c 6= c′. From the transcripts we have

Cc−c
′

= ge3−e
′
3he2−e

′
2 mod N

uc−c
′

= Ke3−e
′
3(e0/e

′
0)

2N mod N2

(u′)c−c
′

= (K ′)e3−e
′
3(e1/e

′
1)

2N′

mod (N′)2 .

Subprotocols Invoked by the Main Protocol 157

First note that c− c′ is invertible modulo |QRN2 | and |QR(N′)2 |. Thus, there exists

r and r′ such that rc−c
′

= e0/e
′
0 mod N and (r′)c−c

′

= e1/e
′
1 mod N. If (c − c′)

divides (e3 − e′3) over Z we define m = (e3 − e′3)/(c− c′) and have

u = Kmr2N mod N2 and u′ = (K ′)m(r′)2N′

mod (N′)2 .

By definition m contains less bits than N and N′. Thus, IP∗
eq

(N,N′,Γ, rp) ∈
REC,N,N′.

If on the other hand c− c′ does not divide e3 − e′3 over Z, then we have found
an element b ∈ Z∗N and integers η0 6= 0, η1, and η2, where η0 does not divide both
η1 and η2, such that bη0 = gη1hη2 .

We conclude that the protocol is special-sound according to Definition 2.36.
Thus, by Lemma 2.40 it is a proof of knowledge so there exists an extractor X .
Unfortunately it is not a proof of knowledge for the relation REC,N,N′, but for the
relation REC,N,N′ ∨ RSRSA. We must show that X is an extractor for the relation
REC,N,N′.

The first property of the extractor X required by Definition 2.28 is satisfied
trivially. Suppose that the second property does not hold. Then there exists a
prover P ∗, a constant c, and an infinite index set N such that PrΓ,rp [δP∗,V (Γ, rp) ≥
κ−c] ≥ κ−c and

Pr[(IP∗(Γ, rp),XP∗

(Γ, rp)) 6∈ REC,N,N′ | δP∗,V (Γ, rp) ≥ κ−c] ≥ κ−c ,

for κ ∈ N . Note that no generality is lost by using the same constant c to bound
both probabilities. On the other hand we know that

Pr[(IP∗(Γ, rp),XP∗

(Γ, rp)) ∈ REC,N,N′ ∨RSRSA | δP∗,V (Γ, rp) ≥ κ−c]

is overwhelming. Thus, we conclude that

Pr[(IP∗(Γ, rp),XP∗

(Γ, rp)) ∈ RSRSA | δP∗,V (Γ, rp) ≥ κ−c] ≥ 1

2κc
,

and we have Pr[(IP∗(κ,Γ, rp),XP∗

(Γ, rp)) ∈ RSRSA] ≥ 1
2κ2c . This contradicts

the variant strong RSA-assumption, i.e., Lemma 3.12. Thus, the protocol is a
computationally convincing proof of knowledge with regards to the distribution of
Γ = (N,g,h), and we conclude from Proposition 2.32 that it is a computationally
convincing proof with regards to the distribution of Γ. �

It is easy to see that multiple instances of the protocol can be run in par-
allel using the same RSA-parameters and same challenge without any decrease
in the security. Thus, we use the protocol also for common inputs on the form
(N,K, {ui}Ni=1,N

′,K ′, {u′i}Ni=1,N,g,h) and with corresponding private input
({mi}Ni=1, {ri}Ni=1, {r′i}Ni=1).

158 An Adaptively Secure Mix-Net Without Erasures

Remark 11.7. The reason we use the relaxed definition of an ideal mix-net, Func-
tionality 7.2, is that although the protocol is sound it does not imply that the
message m is contained in {0, 1}κ−κr . The problem with this is that an adversary
may sacrifice the zero-knowledge property of its proof and submit a message that
has say κ− 1

2κr bits. It seems that the only way to avoid this problem is to use an
interval proof of Boudot and Traoré [30]. However, we need the protocol to have a
similar “zero-knowledge” property as that above to allow the simulator to produce
plausible history tapes. Since the analysis in [30] does not give an algorithm that
produces plausible history tapes, and the relaxation of the definition of an ideal
mix-net seems reasonable, we do not follow this path.

11.5.3 Proof of Equality of Exponents

During joint decryption of a cryptotext u each mix-server computes udj mod N2

using its part dj of the private key, and proves correctness relative vj = vdj mod N2.
The protocol πexp = (Pexp, Vexp) below and the propositions are taken from [57].

Protocol 11.8 (Proof of Equal Exponents).
Common Input: N ∈ Z, u, u′, v, v′ ∈ QRN2 .
Private Input: d ∈ [0, 22κ+κr − 1] such that u′ = ud and v′ = vd.

1. The prover chooses r ∈ [0, 22κ+κc+2κr − 1] randomly, computes α0 = ur and
α1 = vr, and hands (α0, α1) to the verifier.

2. The verifier chooses c ∈ [0, 2κc − 1] and hands c to the prover.

3. The prover computes e = cd+ r mod 22κ+κc+2κr and hands e to the verifier.

4. The verifier checks that (u′)cα0 = ue mod N2 and (v′)cα1 = ve mod N2.

Proposition 11.9 (Zero-Knowledge). The protocol is honest verifier statistical
zero-knowledge.

Proof. The zero-knowledge simulator chooses e ∈ [0, 22κ+κc+κr−1] and c ∈ [0, 2κc−
1] randomly and defines α0 = ud/(u′)c mod N2 and α1 = vd/(v′)c mod N2. It
follows that the distribution of the simulated view is statistically close to that in
the real protocol. �

Proposition 11.10 (Proof). The protocol is a proof with overwhelming complete-
ness.

Proof. Completeness follows since the verifier accepts as long as there is no reduc-
tion in the computation of e and this happens with exponentially small probability.

Given two accepting transcripts (α, β, c, e) and (α, β, c′, e′) such that c 6= c′ we
have

(u′)c−c
′

= ue−e
′

and (v′)c−c
′

= ve−e
′

.

The Mix-Net 159

Our choice of parameters ensure that c− c′ is smaller than all divisors of the order
Nf of the group QRN2 of squares modulo N2. Thus, c − c′ is invertible modulo Nf

and we may define d = (e − e′)/(c − c′) mod Nf with u′ = ud and v′ = vd. Thus,
((c− c′), (e− e′)) is a witness.

We conclude that the protocol is special sound according to Definition 2.36.
Thus, by Lemma 2.40 it is a proof of knowledge and by Proposition 2.32 it is a
computationally convincing proof. �

11.6 The Mix-Net

We are now ready to give a detailed description of the mix-net. Recall that k′ =
⌈(k + 1)/2⌉ denotes the number of mix-servers needed for majority.

Protocol 11.11 (Mix-Net). The mix-net πRMN = (S1, . . . , SN ,M1, . . . ,Mk) con-
sists of senders Si, and mix-servers Mj.

Sender Si. Each sender Si proceeds as follows.

1. Wait until (Ml,N,K1,N
′, {K ′i}Ni=1,N,g,h) appears on FBB for k′ distinct

indices l.

2. Wait for an input (Send,mi), mi ∈ {0, 1}κ−κr . Choose ri ∈ Z∗N, bi ∈ ZN′ and
r′i ∈ Z∗N′ randomly and compute

ui = EK1,N(mi, ri) , u′i = E(g′)biK′
i,N

′(mi, r
′
i) , and

(αi, statei) = Peq(N,K1, ui,N
′, (g′)biK ′i, u

′
i,N,g,h,mi, ri, r

′
i) .

Then hand (Write, Submit, (bi, ui, u
′
i), Commit, αi) to FBB.

3. Wait until (Mj , Challenge, Si, ci) appears on FBB for k′ distinct j with
identical ci. Then compute ei = Peq(statei, ci) and hand (Write, Reply, ei)
to FBB.

Mix-Server Mj. Each mix-server Mj proceeds as follows.

Preliminaries

1. Wait for a message on the form

(Keys, (N, g, h,N′,N,K0,K1, v, (vl)
k
l=1, (Fl,l′)l,l′∈{1,...,k}), (dj , (dl,j , tl,j)

k
l=1))

from FPKG.

2. Hand (GenerateCoins, (N +k)(κ+κr)+ (κ+κr)+2(κ+κr)+N(κ+κr)) to
FCF and wait until it returns (Coins, {K ′i}Ni=1, {K̄ ′j}kj=1, gf ,g,h, g1, . . . , gN).

Then hand (Write,N,K1,N
′, {K ′i}Ni=1,N,g,h) to FBB.

160 An Adaptively Secure Mix-Net Without Erasures

Reception of Inputs
3. Initialize L0 = ∅, I = ∅ and J = ∅.

4. Repeat

a) When given input (Run) hand (Write, Run) to FBB.

b) When a new entry (T,Ml, Run) appears on FBB set J ← J ∪ {l} and if
|J | ≥ k′ set Trun = T and go to Step 5.

c) When a new entry (Si, Submit, (bi, ui, u
′
i), Commit, αi) appears on FBB

such that i 6∈ I, set I ← I ∪ {i} and hand (GenerateCoins, κc) to FCF

and wait until it returns (Coins, ci). Hand (Write, Challenge, Si, ci) to
FBB.

5. Request the contents on FBB with index less than Trun. Find for each i the
first occurrences of entries on the forms (Ti, Submit, (bi, ui, u

′
i), Commit, αi),

(T ′j,i,Mj, Challenge, Si, ci), and (T ′′i , Si, Reply, ei). Then form a list L0 of

all cryptotexts u2
i mod N2 such that Ti < T ′j,i < T ′′i < Trun for at least k′

distinct indices j and Veq(N,K1, ui,N
′, (g′)biK ′i, u

′
i,N,g,h, αi, ci, ei) = 1.

Re-encryption and Permutation
6. Write L0 = {u0,i}N

′

i=1 for some N ′. Then for l = 1, . . . , k do

a) If l = j, then do

i. Choose rj,i ∈ [0, 2κ+κr − 1] randomly, compute

Lj = {uj,i}N
′

i=1 = Sort({grj,if u2
j−1,i mod N2}N ′

i=1) , and

(αj , statej) = Pprp(N, gf , L
4
l−1, L

2
l ,N,g,h,

g, g1, . . . , gN ′ , {2rj,i}N
′

i=1) ,

and hand (Write, List, Lj, Commit1, αj) to FBB. The exponenti-
ations L4

l−1 and L2
l should be interpreted term-wise.

ii. Hand (GenerateCoins, κ) to FCF and wait until it returns
(Coins, cj). Then compute (α′j , state′j) = Pprp(statej , cj) and hand
(Write, Commit2, α′j) to FBB.

iii. Hand (GenerateCoins, κc) to FCF and wait until it returns
(Coins, c′j). Then compute ej = Pprp(state′j , c

′
j) and hand

(Write, Reply, ej) to FBB.

b) If l 6= j, then do

i. Wait until an entry (Ml, List, Ll, Commit1, αl) appears on FBB.

ii. Hand (GenerateCoins, κ) to FCF and wait until it returns
(Coins, cl).

iii. Wait for a new entry (Ml, Commit2, α
′
l) on FBB. Hand

(GenerateCoins, κc) to FCF and wait until it returns (Coins, c′l).

The Mix-Net 161

iv. Wait for a new entry (Ml, Reply, el) on FBB and compute

bl = Vprp(N, gf , L
4
l−1, L

2
l ,N,g,h, g, g1, . . . , gN ′ , αl, cl, α

′
l, c
′
l, el) .

v. If bl = 0, then set Ll = L2
l−1.

Joint Re-encryption

7. Choose b̄j ∈ ZN′ , mj,i ∈ ZN′ and s′j,i ∈ Z∗N′ randomly and compute W ′j =

{w′j,i}N
′

i=1 = {E
g′b̄j K̄′

j ,N
′(mj,i, s

′
j,i)}N

′

i=1. Then hand (Write, RandExp, b̄j ,W
′
j)

to FBB.

8. Wait until (RandExp, b̄l,W
′
l) appears on FBB for l = 1, . . . , k. Then choose

sj,i ∈ Z∗N randomly and compute

Wj = {wj,i}N
′

i=1 = {EK0,N(mj,i, sj,i)}N
′

i=1 , and

(αj , statej) = Peq(N,K0,Wj ,N
′,K ′,W ′j ,N,g,h,

{mj,i}N
′

i=1, {sj,i}N
′

i=1, {s′j,i}N
′

i=1) .

Then hand (Write, RandExp,Wj , Commit, αj) to FBB.

9. Wait until (RandExp,Wl, Commit, αl) appears on FBB for l = 1, . . . , k. Hand
(GenerateCoins, κc) to FCF and wait until it returns (Coins, c). Compute
ej = Peq(statej , c) and hand (Write, Reply, ej) to FBB.

10. Wait until (Reply, el) appears on FBB for l = 1, . . . , k. Let I be the lexico-
graphically first set of k′ indices such that

Veq(N,K0,Wl,N
′,K ′,W ′l ,N,g,h, αl, c, el) = 1 .

11. Compute

Lk+1 = {uk+1,i}N
′

i=1 =

{

uk,i
∏

l∈I

w

Q

l′ 6=l
l′

l′−l

l,i

}N ′

i=1

.

Joint Decryption

12. Compute Γj = {vj,i}N
′

i=1 = {u2dj
k+1,i}Ni=1 using dj and a proof (αj , statej) =

Pexp(N, v, vj , L
2
k+1,Γj). Then hand (Write, Decrypt,Γj , Commit, αj) to FBB,

where exponentiation is interpreted element-wise.

13. Wait until (Ml, Decrypt,Γl, Commit, αl) appears on FBB for l = 1, . . . , k.
Then hand (GenerateCoins, κc) to FCF and wait until it returns (Coins, c).

14. Compute ej = Pexp(statej , c) and hand (Write, Reply, ej) to FBB.

15. Wait until (Reply, el) appears on FBB for l = 1, . . . , k. For l = 1, . . . , k do
the following. If Vexp(N, v, vl, L

2
k+1,Γl, αl, c, el) = 0 do

162 An Adaptively Secure Mix-Net Without Erasures

a) Hand (Write, Recover,Ml, dl,j, tl,j) to FBB.

b) Wait until (Ml′ , Recover,Ml, dl,l′ , tl,l′) appears on FBB for l′ = 1, . . . , k.
Then find a subset I of k′ indices l′ such that Fl,l′ = gdl,l′htl,l′ and
Lagrange interpolate dl

dl =
∑

l′∈I

dl,l′
∏

l′′ 6=l′

l′′

l′′ − l′ mod q .

c) Compute Γl = {vl,i}N
′

i=1 = {u2dl
k,i }Ni=1.

16. Let Lout be the list of strings in {L(
∏k
l=1 vl,i)/2

k+2}N ′

i=1 truncated to κ− κr
bits. The mix-server outputs (Output, Sort(Lout)).

Remark 11.12. For simplicity the mix-servers generate a separate challenge for each
sender in the protocol. It is obviously possible to let a set of senders execute their
proofs in parallel and use the same challenge for these senders to improve efficiency.
The squaring of elements is required to keep cryptotexts in QRN2 . All interactive
proofs in the protocol can be made non-interactive in the random oracle model.
Using ideas from Damgård and Groth [56] there is a natural way to avoid the
generation of individual keys for each sender and mix-server in the random oracle
model. Since the penalty of generating these keys is small in our setting, and the
random oracle model is needed to avoid it, we do not make this solution explicit.

11.7 Security Analysis

The following theorem captures the security of Protocol 11.11 above.

Theorem 11.13. The protocol πRMN above securely realizes FRMN in the
(FBB,FPKG,FCF)-hybrid model forM∗k/2-adversaries under the DCR-assumption,
the strong RSA-assumption, and the DL-assumption.

11.7.1 Proof of Theorem 11.13

To prove Theorem 11.13 we describe an ideal adversary S(·) that runs any hybrid
adversary A as a black-box. Then we show that if S does not imply the security of
the protocol, we can break the DCR-assumption, the DL-assumption or the strong
RSA-assumption. The proof follows common practice and goes through a number
of games, where each game is a slight modification of the previous game. This proof
technique is sometimes called “hybrid proof” or “game hopping”.

The proof consists of three parts. The first part describes the ideal adversary
S. To simplify game hopping we mark clearly the parts of S that are later replaced
as numbered “switches”. The second part gives a sequence of games leading from
the ideal model to the hybrid model in which the protocol executes. For all except
one of the hops we prove that the output distributions of neighboring games are

Security Analysis 163

negligibly close. The remaining hop requires rewinding techniques and is treated
in the third part of the proof.

We write X ≈ Y for two ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N, of binary
random variables if |Pr[X = 1]− Pr[Y = 1]| is negligible.

The Ideal Adversary

Let IS and IM be the set of indices of parties corrupted byA so far of the sender type
and the mix-server type respectively. At the start of the execution IS = IM = ∅.

Switch 1 (Switching Keys). The ideal key generator FPKG is simulated honestly,
except that K0 and K1 are defined by K0 = EN(1, R0) = gR2N

0 mod N2 and K1 =
EN(0, R1) = R2N

1 mod N2. Thus, K0 is now an encryption of 1 and K1 is an
encryption of 0 instead of vice versa.

Simulation of Honest Senders. Whenever S receives (S, S̃i, Input, c′) from CI it
stores (i, c′) and instructs Si to compute a submission in the simulated execution.
This has to be done without knowledge of the message handed by S̃i to FRMN. The
simulated sender Si computes (bi, ui, u

′
i) and αi honestly except for the following.

Switch 2 (Submission of Fake Inputs). It sets mi = 0. Note that this most likely is
not the message submitted by S̃i.

Switch 3 (Submission of Fake Inputs). It sets bi = −ai mod N′. This is to make the
submission equivocable.

The simulation is interrupted whenever FBB is about to hand a tuple
(A, S̃i, Input, c, Si, Reply, ei) to CI for some i 6∈ IS (that may be different from the
one in the previous paragraph). If this tuple would imply that u2

i mod N2 is added
to L0 according to the protocol if it appears on FBB, then S finds the pair (i, c′)
for some c′, stores (c, c′) and continues the simulation.

Extraction From Corrupted Senders. When the submission of a corrupted sender
Si, with i ∈ IS , is accepted its cryptotext u2

i is added to the list L0, and the ideal
adversary must extract the submitted cleartext and hand it to FRMN. The message
is extracted as follows.

When FBB is about to hand (A, Input, c, Si, Reply, ei) to CI the simulation is
interrupted and S checks if u2

i mod N2 would be added to L0 if the tuple appears
on FBB. If so it does the following.

Switch 4 (Extracting Messages). It computes m′i = Dd′(u′i)/(bi + ai) mod N′ unless
bi + ai = 0 mod N′ in which case it sets m′i = 0. Since ai is encrypted the latter
event should happen with negligible probability.

Then it instructs S̃i to hand (Send,m′i) to FMN and waits until it receives
(S, S̃i, Input, c′) from CI . Then it stores (c, c′) and the simulation is continued.

164 An Adaptively Secure Mix-Net Without Erasures

Accepting Inputs. The simulation is interrupted whenever FBB is about to hand
tuple (A, S̃i, AcceptInput, c) to CI for some S̃i which is either honest or corrupted.
If there is a c′ such that a pair (c, c′) is stored, then S hands (FMN, AcceptInput, c

′)
to CI and waits for (S, Si, Send) from CI . Then the simulation is continued.

Corruption of Sender. If A corrupts Si, S must construct a plausible history
tape for Si that is consistent with any previous communication involving Si before
handing over the state and control of Si to A. At the start of the simulation the
ideal adversary S defines g = hx for a random x ∈ [0, 2κ+κr − 1] and instructs FCF

to use these values. Then corruptions are treated as follows.

Switch 5 (Correcting the History On Corruption). The ideal adversary first cor-
rupts S̃i to extract the message mi handed by S̃i to FRMN. Denote by (0, ri, r

′
i),

(r′′i , si,0, si,1, ti, si,2), and ci the private input, the random tape, and the challenge
used in the simulation of Si. Denote by Ii the common input and Ti the proof
transcript. The ideal adversary S computes

(r̄i, r̄
′
i, r̄
′′
i , s̄i,0, s̄i,1, t̄i, s̄i,2) = His(R1, R

′,x,mi, ri, r
′
i, r
′′
i , si,0, si,1, ti, si,2, ci) ,

using the algorithm His from Lemma 11.4, and restarts the simulation of Si using
the new values. It continues the new simulation of Si up to the point in the protocol
where it was corrupted. Finally, the resulting state of Si, and control over Si, is
handed to the adversary A.

Simulation of Honest Mix-Servers and Extraction from Corrupted Mix-Servers.
When a corrupt mix-server Mj, for j ∈ IM , writes Run on FBB, S must make

sure that M̃j sends (Run) to FMN. Otherwise it may not be possible to deliver an

output to honest mix-servers at a later stage. If an honest dummy mix-server M̃j,
for j 6∈ IM , receives (Run) from Z, S must make sure that Mj receives (Run) from
Z ′. In both instances S must do this in two steps, first sending and then instructing
FMN or FBB respectively to accept the submitted message. If an honest mix-server
Mj, for j 6∈ IM , outputs (Output, L′), S must make sure that M̃j does the same.
This is done as follows.

1. Let j ∈ IM . If FBB receives (Mj , Write, Run), then S continues the simula-

tion until FBB is about to hand (A, Input, c, M̃j, Run) to CI . Then the sim-

ulation of FBB is interrupted and M̃j hands (Run) to FMN. When S receives
(Mj , Input, c

′) from CI it stores the pair (c, c′) and continues the simulation
of FBB.

2. Let j 6∈ IM . If S receives (S, Input, c′, M̃j) from CI , then S hands (Run) to Mj

and continues the simulation until FBB is about to hand (A, Input, c, M̃j , Run)
to CI . Then the pair (c, c′) is stored and the simulation is continued.

3. If FBB receives (A, AcceptInput, c) the simulation of FBB is interrupted. If
there is a pair (c, c′) for some c′, then S hands (FMN, AcceptInput, c

′) to CI

Security Analysis 165

and waits until it receives (S, M̃j , Run) or ((S, M̃j , Output, L
′),

{(M̃l, τl)}kl=1) from CI . Then the simulation of FBB is continued.

4. For the outputting of messages we need a “switch”.

Switch 6 (Outputting Messages). Let j 6∈ IM . If Mj outputs (Output, L′), S
sends (1, τj) to CI , i.e. S instructs CI to deliver (Output, L′) to M̃j .

Note that it does not matter if the adversary manages to replace or modify
some of the messages in the simulated protocol. The output handed to honest
mix-servers still consists of the messages handed to FRMN.

Consider now the simulation of the computations of the honest mix-servers.
These are simulated honestly except in the re-encryption phase, i.e., Steps 7-11.
Note that when these steps are simulated, FRMN has already handed (Output, L′)
to S.

Unless S somehow introduces the correct cleartexts from L′ in the simulation,
all messages are zero.

Switch 7 (Replacing the Zero Cleartexts With Correct Ones). Step 7 of each sim-
ulated mix-server Mj , with j 6∈ IM , is simulated honestly except that S sets
b̄j = −āj mod N′ for j 6∈ IM . After all mix-servers Ml have published w′l,i, S
computes

ml,i = Dd′(w′l,i)/(b̄l + āl) mod N′ ,

for l ∈ IM . It then defines m0,i = mπ(i)2
k+1 mod N for a random permutation

π ∈ ΣN ′ and defines fi(x) ∈ ZN[x] as a random (k′ − 1)-degree polynomial such
that fi(j) = mj,i for j ∈ IM ∪ {0}. This should be possible since |IM | < k′, unless
some non-invertible element a ∈ ZN is encountered.

Finally, it defines m̄j,i = fi(j) and s̄′j,i = s′j,iR
′
j
mj,i−m̄j,i mod (N′)2 for j 6∈ IM .

Then it restarts each honest Mj with a modified random string to give the new
values. This is to giveMj a proper history tape that can be handed to the adversary
A.

Corruption of Mix-Servers. Corruption of a mix-server is straightforward. The
ideal adversary S simply hands over the current state of the simulated machine
and the control over it to A.

Extraction From Corrupted Mix-Servers. When Mj for j ∈ IM hands (Write, Run)
to FBB, S interrupts the simulation and instructs the corresponding dummy mix-
server M̃j to hand (Run) to FRMN. Then S waits until it receives (M̃j , Run) or

((M̃j , Output, L
′), {(M̃l, τl)}kl=1) from CI and the simulation of FBB is continued.

The Main Hybrid Argument

Suppose that S does not imply the security of the protocol. Then there exists a
hybrid adversary A, an environment Z with auxiliary input z = {zκ}, a constant

166 An Adaptively Secure Mix-Net Without Erasures

c > 0 and an infinite index set N ⊂ N such that for κ ∈ N

|Pr[Zz(I(S, π̃FRMN)) = 1]− Pr[Zz(H(A, π(FBB,FPKG,FCF)
RMN)) = 1]| ≥ 1

κc

where S runs A as a black-box as described above, i.e. S = S(A).
We show that this gives a contradiction by a hybrid argument which gradu-

ally turns the ideal model execution into the hybrid model execution of the pro-
tocol. Denote by H the machine that simulates all machines in the ideal model
Zz(I(S, π̃FRMN)). We use the convention of adding as a subscript the index of the
“switch” that is replaced in the game previously considered. In this part of the
proof we prove that

H ≈ H2,5 and H2,5,1 ≈ H2,5,1,4 ≈ H2,5,1,4,3 ≈ H2,5,1,4,3,7 ≈ H2,5,1,4,3,7,6 .

The proof that H2,5 ≈ H2,5,1 is postponed for Section 11.7.1.
Denote by H2,5 the machine that simulates H except for the following changes.

Instead of executing Switch 2 it extracts the messagemi handed by S̃i to FRMN from
the simulation of FRMN and use it when simulating the submission of a message
from Si. Instead of executing Switch 5 to correct the history of Si it simply hands
the state of and control over Si to A. Thus, although the resulting cleartexts are
still all zero, the senders compute their cryptotexts as in the real protocol.

Claim 1. H ≈ H2,5.

Proof. The modifications of H only change the distribution negligibly, since by
Proposition 11.4 the distribution of the tuple produced by the algorithm His is
statistically close to the corresponding tuple in a real execution. �

Denote by H2,5,1 the machine identical to H2,5 except that instead of executing
Switch 1 it simulates FPKG honestly. Note that this means that the cryptotexts
computed by the senders become valid encryptions of their respective messages,
and at the same time the joint re-encryption step no longer alters the cleartexts.

Claim 2. Under the DCR-assumption H2,5 ≈ H2,5,1.

The proof of this claim is involved and postponed for Section 11.7.1 to keep the
main track of the proof simple.

Denote by H2,5,1,4 the machine identical to H2,5,1 except that instead of execut-
ing Switch 4 it defines m′i by m′i = Dd(ui). If this changes the distribution we must
have Dd(ui) 6= Dd′(u′i)/(bi + ai) for some i. Since each sender proves that it uses
the same exponent mi when constructing both ui and u′i, this can only happen if
bi = −ai mod N′. However, ai is randomly chosen so this means that the adversary
can break the semantic security of the Paillier cryptosystem. More precisely we
have the following claim.

Claim 3. Under the CR-assumption and the strong RSA-assumption
H2,5,1 ≈ H2,5,1,4.

Security Analysis 167

Proof. Suppose first that Pr[bi + ai = 0 mod N′ for some i ∈ IS] is non-negligible.
An averaging argument implies that there exists a fixed i such that Pr[bi + ai =
0 mod N′] is non-negligible. Next we show that this allow us to break the CR-
assumption.

We define D to be the machine identical to H2,5,1,4 except for the following
changes. It waits for a modulus N′ and a random element u ∈ Z∗

N′2 . It instructs
FPKG to use N′ and it instructs FCF to use K ′i = u2 mod (N′)2 and continues the
simulation. Then it waits until Si has handed (Write, (bi, ui, u

′
i), Commit, αi) to

FBB and outputs bi/2. If Si never does so it outputs ⊥. It follows that D outputs
the residuosity class of the challenge cryptotext with non-negligible probability.
This contradicts the CR-assumption, and we conclude that Pr[bi + ai 6= 0 mod
N′ for all i ∈ IS] with overwhelming probability.

Denote by Edistinct
i the event that

Dd(ui) 6= Dd′(u′i)/(bi + ai) and

Veq(N,K1, ui,N
′, (g′)biK ′i, u

′
i,N,g,h, αi, ci, ei) = 1 .

The only way the simulation carried out by H2,5,1,4 can differ from that of H2,5,1 is
if the event Edistinct

i occurs for some i. We assume that Pr[Edistinct
i for some i ∈ IS]

is non-negligible and show that this gives a contradiction.
An averaging argument implies that Pr[Edistinct

i] is non-negligible for some fixed
i. We define a malicious prover P ∗eq that contradicts the soundness of the protocol,
i.e., Proposition 11.6. It waits for public parameters (N,g,h). Then it simulates
H2,5,1, and instructs FPKG to use the RSA-modulus and it instructs FCF to out-
put the RSA-generators g and h. The simulation is interrupted when Si hands
(Write, (bi, ui, u

′
i), Commit, αi) to FBB. Then P ∗eq outputs (ui, u

′
i, αi) and waits for

a challenge ci. When it receives the challenge it instructs FCF to output ci instead
of generating a new challenge in the simulation. Finally, it continues the simulation
until Si hands (Write, Reply, ei) to FBB, at which point it outputs ei. We have es-
tablished that Pr[bi+ai = 0 mod N′] is negligible and Pr[Edistinct

i] is non-negligible.
The union bound implies that Pr[Edistinct

i ∧ bi + ai 6= 0 mod N′] is non-negligible.
Thus, the existence of P ∗eq contradicts Proposition 11.6 and we conclude that the
claim holds. �

Denote by H2,5,1,4,3 the machine identical to H2,5,1,4 except that instead of
executing Switch 3 it chooses bi ∈ ZN′ randomly for all i 6∈ IS . Note that the
simulator no longer uses the fact that bi = −ai mod N′ and in the real execution
bi is chosen randomly. The change should only influence the output distribution
negligibly unless the adversary can guess a randomly chosen encrypted cleartext ai
correctly. More precisely the following claim holds.

Claim 4. Under the DCR-assumption H2,5,1,4 ≈ H2,5,1,4,3.

Proof. The proof is by contradiction. Assume without loss that Pr[H2,5,1,4 = 1]−
Pr[H2,5,1,4,3 = 1] is non-negligible.

168 An Adaptively Secure Mix-Net Without Erasures

We describe a distinguisher D that breaks the semantic security of the Pail-
lier cryptosystem. Denote by D the machine that simulates H2,5,1,4 except that
it accepts a modulus N′ as input. Then it outputs the messages (0, 1) to the ex-
periment. The experiment chooses a random bit b and computes a cryptotext
u = EN′(b) which it hands to D. D chooses ai, bi ∈ ZN′ and ti ∈ Z∗N′ randomly

and defines K ′i = u−bi((g′)1/u)ait2N′

i mod (N′)2 for i ∈ {1, . . . , N}. These values
are then used in the continued simulation of FCF. Note that if u is on the form
EN′(1, r) = (g′)1r2N′

mod (N′)2, then K ′i is on the form (g′)−bi(t′i)
2N′

mod (N′)2 for
a randomly distributed t′i ∈ Z∗N′ , i.e., D is identically distributed to H2,5,1,4. On

the other hand, if u is on the form EN′(0, r) = r2N′

mod (N′)2, then K ′i is on the

form (g′)ai(t′i)
2N′

mod (N′)2 for a randomly distributed t′i ∈ Z∗N′ , i.e., the output of
D is identically distributed to H2,5,1,4,3.

It follows thatD breaks the semantic security of the Paillier cryptosystem, which
is equivalent to breaking the DCR-assumption. �

Denote by H2,5,1,4,3,7 the machine identical to H2,5,1,4,3 except that instead
of executing Switch 7 it simulates Steps 7-11 honestly. This does not alter the
cleartexts, since now K0 is an encryption of zero. The output distribution should
only change negligibly, since the adversary can not tell if b̄j = −āj mod N′, or not
when the cryptosystem is semantically secure.

Claim 5. Under the DCR-assumption H2,5,1,4,3 ≈ H2,5,1,4,3,7.

Proof. Firstly, note that we may assume that S chooses ml,i for l 6∈ IM randomly
in H2,5,1,4,3, since K0 is on the form R2N

0 mod N2 and (g′)biK ′i is on the form

R′
2N′

mod (N′)2. More precisely, the distribution of w′l,i and wl,i does not change by
this modification. Secondly, Proposition 11.4 implies that executing the real proof
of equal cleartexts from the beginning instead of invoking the history algorithm His

only changes the distribution negligibly.
This leaves us with the problem of changing the definition of b̄j for j 6∈ IM

from b̄j = −āj mod N′ to random. That this only changes the output distribution
of H2,5,1,4,3 follows by a slight variation of the proof of Claim 4 and is left to the
reader. �

Denote by H2,5,1,4,3,7,6 the machine identical to H2,5,1,4,3,7 except that it modi-
fies Switch 6 as follows. Instead of sending (1, τj) to CI when it receives (Output, L′)
from Mj it instructs CI to deliver the output L′. In principle it could be the case
that L′ is different from the true output of FRMN, but this should only happen
with negligible probability, since each mix-server proves in zero-knowledge that it
behaves correctly.

Claim 6. Under the DCR-assumption, the strong RSA-assumption, and the DL-
assumption H2,5,1,4,3,7 ≈ H2,5,1,4,3,7,6.

Proof. Denote by Edistinct the event that the set of cleartexts in L′ does not cor-
respond to the set of messages encrypted in L0 in the simulation of H2,5,1,4,3,7,6.

Security Analysis 169

Denote by Eshuffle,l the event that the messages encrypted in Ll are distinct
from those encrypted in L2

l−1. Denote by Ereenc,l the event that Wl is not a list of

encryptions of 0. Denote by Edecr,l the event that vl,i 6= udl
k,i for some i. Then it

follows that one of the events Eshuffle,l, Ereenc,l or Edecr,l must occur if the event
Edistinct occurs. Thus, if each of these events occur with negligible probability the
claim follows.

We prove that the probability of the event Eshuffle,l is negligible for all l. For
each l = 1, . . . , k we construct an adversary P ∗prpl

to the experiment considered in
Proposition 9.23 as follows. It takes as input RSA parameters Γ = (N,g,h) and
discrete logarithm parameters g = (g, g1, . . . , gN) and then instructs FPKG and FCF

to use these values in the simulation of H2,5,1,4,3,7,6. It interrupts the simulation
when Ml hands (Write, List, Ll, Commit1, αl) to FBB, and outputs (N, L4

l−1, L
2
l).

Then it outputs αl as the first commitment in the proof. A challenge value cl is
then accepted as input and FCF is instructed to use this value as challenge to Ml.
The simulation is continued until Ml hands (Write, Commit2, α′l) to FBB and P ∗prpl
outputs α′l as the second commitment of the proof. Finally, it accepts a second
challenge value c′l as input and instructs FCF to use this value as challenge to Ml.
The simulation is then continued until Ml hands (Write, Reply, el) to FBB at which
point P ∗prpl

outputs el as the final reply.

Denote by TP∗
prp

(κ) a polynomial upper bound on the running time of any ad-
versary P ∗prpl

. The adversaries are polynomial since H2,5,1,4,3,7,6 is polynomial. De-
note by rp0 the random tapes of all machines in the simulation, except those parts
needed to generate Γ, g and c1, c

′
1, . . . , ck, c

′
k. Let rpl be the list (rpl−1, cl−1, c

′
l−1).

It follows that we may consider P ∗prpl
as an adversary in the sense of Propositions

9.23 taking as input (Γ, g, rpl).

If Eshuffle,l is non-negligible, the adversary P ∗prpl
breaks the soundness of the

proof of knowledge of a shuffle and contradicts Proposition 9.23, which holds under
the strong RSA-assumption and the DL-assumption.

If Pr[Edecr,l] is non-negligible there are two cases to consider. Either Ml manages
to output a faulty vl,i and still convince the other mix-servers that it was correct, or
Ml outputs an invalid proof and some other Ml′ manages to open Fl,l′ in a different
way than the way it was constructed leading to a faulty reconstruction of dl, and
thus a faulty vl,i. We consider the second event first. Denote by Ecomm,l,l′ the
event that Ml′ opens one of its commitments Fl,l′ using (dl,l′ , tl,l′) 6= (d′l,l′ , t

′
l,l′). If

Pr[Ecomm,l,l′] is non-negligible for any pair (l, l′) we define a machine B the breaks
the DL-assumption as follows. It takes g, h ∈ Gq as input instructs FCF to use these
values in the simulation of H2,5,1,4,3,7,6 and if Ml′ uses valid (d′l,l′ , t

′
l,l′) 6= (dl,l′ , tl,l′)

it outputs (d′l,l′ − dl,l′)/(tl,l′ − t′l,l′) mod q. This is the logarithm of h in the basis
g. Thus, B contradicts the DL-assumption.

Denote by Eshare,l the event that Ml outputs a faulty vl,i and still convince the
other mix-servers that it was correct. Consider now a malicious prover P ∗exp for
Protocol 11.8 defined as follows. It simulates H2,5,1,4,3,7,6 except for the random-
ness used to generate the random challenge c produced by FCF in Step 13, which

170 An Adaptively Secure Mix-Net Without Erasures

it replaces by a challenge handed to it by the honest verifier Vexp. If Pr[Eshare,l] is
non-negligible, a simple averaging argument implies that there exists a determin-
istic variant of P ∗exp which breaks the soundness of Protocol 11.8 and contradicts
Proposition 11.10. Note that here the argument is quite easy, since the protocol
πexp is a proof system and not merely a computationally convincing proof.

If Pr[Ereenc,l] is non-negligible there exists a malicious prover P ∗eq for Protocol
11.3. It takes as input RSA-parameters Γ = (N,g,h) and simulates H2,5,1,4,3,7,6

until Step 8. Then it outputs (W ′l ,Wl) and αl and waits for a random challenge c.
When given a random challenge it instructs FCF to use this value in the simulation.
After Step 15 has been executed, it outputs the reply el. It follows that P ∗eq breaks
the soundness of the proof of equal cleartexts and contradicts Proposition 11.6. �

We now conclude the proof of the theorem using the above claims. It fol-
lows by inspection that the distribution of H2,5,1,4,3,7,6 is identical to the distribu-

tion of Zz(H(A, π(FBB,FPKG,FCF)
RMN)). Claim 1-6 then imply that Zz(I(S, π̃FRMN)) ≈

Zz(H(A, π(FBB,FPKG,FCF)
RMN)), which contradicts the assumption about the adversary

A, and the theorem is true. It remains to prove Claim 2.

Proof of Claim 2

The proof is by contradiction. Suppose that there exists a constant c0 and an
infinite index set N such that

Pr[H2,5,1 = 1]− Pr[H2,5 = 1] ≥ 1

κc0
,

for all κ ∈ N . We show that we can exploit the non-negligible gap to break the
semantic security of the Paillier cryptosystem. This is a contradiction and the claim
must be true. In all claims below we implicitly assume the strong RSA-assumption,
the DL-assumption, and the DCR-assumption.

More precisely we describe an adversary for the following special case of the
polynomial indistinguishability experiment. A public key N and a random bit
b ∈ {0, 1} is generated and cryptotexts K0 = EN(b) and K1 = EN(1 − b) defined.
Then the adversary D is given (N,K0,K1) and must guess b.

A naive first attempt is to define an adversary D that simulates H2,5,1 except
that FPKG uses the modulus N and cryptotexts K0 and K1 given by the exper-
iment. The output of D should then be distributed as the output of H2,5,1 if
b = 1 and as the output of H2,5 if b = 0, and D would contradict the polynomial
indistinguishability of the Paillier cryptosystem.

Unfortunately, the naive attempt does not work since the private key d is needed
by the ideal adversary to simulate the decryption phase. Indeed, FPKG must output
correct private keys dj to all mix-servers, since any mix-server may be adaptively
corrupted. Let us modify both H2,5 and H2,5,1 such that they do not use the private
key.

Security Analysis 171

Denote by Hc
2,5 the machine that chooses a random index j ∈ {1, . . . , k} and

simulates H2,5 except that if the adversary corrupts Mj it outputs ⊥. Define Hc
2,5,1

correspondingly.

Claim 7. Pr[H2,5 = 1] = Pr[Hc
2,5 = 1 | Hc

2,5 6= ⊥] and
Pr[H2,5,1 = 1] = Pr[Hc

2,5,1 = 1 | Hc
2,5,1 6= ⊥].

Proof. This follows since j is chosen randomly and independently. �

Denote by Hc,s
2,5 the machine that simulates Hc

2,5 with the following changes. In
Step 6a it simulates the proof of knowledge of correct re-encryption-permutation of
Lj−1 to Lj using the statistical zero-knowledge simulator guaranteed by Proposition
9.22 instead of letting Mj compute it honestly. Similarly, in Steps 12-15 it simulates
the proof of correctness of vj,i using the simulator guaranteed by Proposition 11.9
of Mj instead of letting it compute it honestly. Define Hc,s

2,5,1 correspondingly.

Claim 8. |Pr[Hc
2,5 = 1 | Hc

2,5 6= ⊥]− Pr[Hc,s
2,5 = 1 | Hc,s

2,5 6= ⊥]| and
|Pr[Hc

2,5,1 = 1 | Hc
2,5,1 6= ⊥]− Pr[Hc,s

2,5,1 = 1 | Hc,s
2,5,1 6= ⊥]| are negligible.

Proof. The claim follows from Proposition 9.22 and Proposition 11.9 which states
that the simulations are statistically close to real executions of the protocols. �

The natural next step is to replace decryption using the private key d with
simulated decryption where d is not used, since we have already made sure that d

is not needed when proving correctness of decryption. The problem with this plan
is that in the simulation of Hc,s

2,5,1 we do not know the correspondence between the
cleartexts mi and the cryptotexts uk+1,i to be decrypted, unless we use the private
key d to actually decrypt these cryptotexts.

We overcome this problem by invoking the knowledge extractor for each corrup-
ted mix-server Ml, for l ∈ IM , and extract the permutation πl used when forming
Ll from Ll−1. Since the simulator knows the message mi sent by each sender Si,
this allows the simulator to simulate decryption correctly without the private key.
Below we make this idea precise.

Denote by P ∗prpl
the malicious prover defined in Claim 6. Denote by Hc,s,e,∗

2,5

the machine that simulates Hc,s
2,5 except that it interrupts the execution before Step

12, i.e., before starting the decryption phase. Then for each l such that Ml was
corrupt when executing its proof of a shuffle, the extractor XP∗

prpl
is invoked on input

(Γ, g, rpl), and the result is denoted by (fl, {rl,i}Ni=1, πl). Finally, π′ is defined as
the product πkπk−1 · · ·π1, and the simulation is continued using π = π′ in the
simulation of the joint re-encryption instead of choosing π randomly. We transform
the machine into a polynomial time machine Hc,s,e

2,5 by bounding its running time by

a polynomial pe(κ) = 4p2
s(κ)TP∗

prp
(κ)k2, where ps(κ) is a polynomial to be defined

later. If the simulation is not finished, it outputs ∗. Define Hc,s,e,∗
2,5,1 and Hc,s,e

2,5,1

correspondingly.

172 An Adaptively Secure Mix-Net Without Erasures

Before we analyze these machines we need a technical observation. Consider
a sequence Z1, Z2, . . . , Zk of families Zl = {Zl,κ}κ∈N of binary random variables.
Denote by Sgood(f(κ)) the set of families of outcomes (z1, . . . , zk) such that

Pr[Zl = 1 | (Z1, . . . , Zl−1) = (z1, . . . , zl−1)] ≥
1

f(κ)

for all l such that zl = 1 and κ in some infinite index set N . Then we have the
following claim.

Claim 9. There exists an infinite index set N such that for every polynomial p(κ),
and κ ∈ N , we have

Pr[(Z1, Z2, . . . , Zk) ∈ Sgood(kp(κ))] ≥ 1− 1

p(κ)
.

Proof. Suppose the claim is false and write Z = (Z1, Z2, . . . , Zk). Then for every
infinite index set N exists a polynomial p(κ) and an κ ∈ N such that

1− 1

p(κ)
> Pr[Z ∈ Sgood(kp(κ))] = 1− Pr[Z 6∈ Sgood(kp(κ))] .

Thus, Pr[Z 6∈ Sgood(kp(κ))] > 1
p(κ) , but the union bound implies that Pr[Z 6∈

Sgood(p(κ))] is bounded from above by k 1
p(κ)k = 1

p(κ) . This is a contradiction and

the claim follows. �

Claim 10.

Pr[Hc,s,e
2,5 = ∗] ≤ 1

ps(κ)
and Pr[Hc,s,e

2,5,1 = ∗] ≤ 1

ps(κ)
.

Proof. We prove the first inequality. The proof of the second inequality is almost
identical. Denote by Zl an indicator variable for the event that Ml produces a
valid proof in the simulation. Then we can define Tgood(f(n)) as the set of lists
(Γ, g, rpk, ck, c

′
k) such that the outcome (z1, . . . , zk) of (Z1, . . . , Zk) is contained in

Sgood(f(n)).

Proposition 9.23 implies that the expected running time of Hc,s,e,∗
2,5 is bounded

by 2ps(κ)TP∗
prp

(κ)k2 whenever (Γ, g, rpk) ∈ Tgood(2kps(κ)). Markov’s inequality,
Proposition 9.23 and the union bound implies that

Pr[Hc,s,e
2,5 6= ∗ | (Γ, g, rpk) ∈ Tgood(2kps(κ))] ≥ 1− 1

2ps(κ)
− ǫ(κ) ,

for some negligible function ǫ(κ). It follows from Claim 9 that Pr[(Γ, g, rpk) ∈
Tgood(2kps(κ))] ≥ 1− 1

2ps(κ) . Thus, we have Pr[Hc,s,e
2,5 6= ∗] ≤ 1

ps(κ) as required. �

Security Analysis 173

Claim 11.

|Pr[Hc,s
2,5 = 1 | Hc,s

2,5 6= ⊥]− Pr[Hc,s,e
2,5 = 1 | Hc,s,e

2,5 6= ⊥]| ≤ 2

ps(κ)

|Pr[Hc,s
2,5,1 = 1 | Hc,s

2,5,1 6= ⊥]− Pr[Hc,s,e
2,5,1 = 1 | Hc,s,e

2,5,1 6= ⊥]| ≤ 2

ps(κ)

Proof. Consider the simulation of Hc,s,e
2,5 . During the re-encryption-permutation

phase all cleartexts are zero. The method used by Mj for re-encryption gives
cryptotexts with distribution statistically close the the distribution of cryptotexts
re-encrypted using the standard method. Note that there exists for each permuta-
tion πj ∈ ΣN ′ values rj,i ∈ [0, 2κ+κr − 1] such that

Lj = {uj,i}N
′

i=1 = Sort({grj,if u2
j−1,i mod N2}N ′

i=1) .

Thus, the distribution of the cryptotexts for any pair of fixed permutations only
differ negligibly. Furthermore, the proof of Mj is simulated and therefore contains
no additional information on the permutation πj used by Mj . It is at this point
the zero-knowledge simulator of the proof of knowledge of correct re-encryption-
permutation is essential.

Thus, the distribution of Hc,s,e
2,5 conditioned on not outputting ∗ is statistically

close to the distribution of Hc,s
2,5. The first inequality then follows from Claim 10

and the union bound.
Consider now the simulation of Hc,s,e

2,5,1. Note that since K0 and (g′)b̄lK̄ ′l are
encryptions of 0 for l 6∈ IM , the cryptotexts w′l,i and wl,i contain no information on

π′ for l 6∈ IM . Thus, each transcript of a simulation of Hc,s,e
2,5,1 that does not result in

the output ∗ is also the transcript of a simulation of Hc,s
2,5,1. The second inequality

then follows from Claim 10 and the union bound. �

Denote by Hc,s,e,d
2,5 the machine that simulates Hc,s,e

2,5 except for the following

changes. It defines v = gm
′

r2N using a random m′ ∈ ZN, it never defines dj , and it
defines

vj = gm
′

/

k
∏

l=1

vl .

The reason this is a good idea is that vd = gm
′

and vdj = vj , where d =
∑k

l=1 dl mod
Nf. Thus, we have made sure that v and vj are distributed exactly as in Hc,s,e

2,5 .
It also chooses dj,l ∈ Zq randomly instead of evaluating a polynomial. The final
change takes place in the decryption phase, Steps 12-15. S instructs Mj to compute
vj,i by

vj,i = gmπ′(i)/
∏

l 6=j

vl,i .

Define Hc,s,e,d
2,5,1 correspondingly.

174 An Adaptively Secure Mix-Net Without Erasures

Claim 12. Pr[Hc,s,e,d
2,5 = 1 | Hc,s,e,d

2,5 6= ⊥] = Pr[Hc,s,e
2,5 = 1 | Hc,s,e

2,5 6= ⊥], and

Pr[Hc,s,e,d
2,5,1 = 1 | Hc,s,e,d

2,5,1 6= ⊥] = Pr[Hc,s,e
2,5,1 = 1 | Hc,s,e

2,5,1 6= ⊥].

Proof. It suffices to note that although the private key d is not used anymore the
values of v, vj or vj,i in any simulation are identically distributed to the values that
would have resulted if d would have been used. Recall that the proof of correctness
is already simulated. �

We are now ready to conclude the proof of Claim 2. Suppose first that

|Pr[Hc,s,e,d
2,5 6= ⊥]− Pr[Hc,s,e,d

2,5,1 6= ⊥]|

is non-negligible. Then we define a distinguisher D that is the naive distinguisher
except that it simulates Hc,s,e,d

2,5,1 instead of H2,5,1 and outputs 1 if Hc,s,e,d
2,5,1 outputs

⊥ and otherwise 0. It follows that D breaks the polynomial indistinguishability
of the Paillier cryptosystem, which is equivalent to breaking the DCR-assumption.
Thus, |Pr[Hc,s,e,d

2,5 6= ⊥]− Pr[Hc,s,e,d
2,5,1 6= ⊥]| is negligible.

Next we note that Pr[Hc,s,e,d
2,5 6= ⊥] ≤ 1

2 +ǫ(κ), for some negligible function ǫ(κ),
since Mj is chosen randomly, and the only parts of the simulation that contains any
information on the identity of Mj are the simulated proofs in the re-encryption-
permutation phase and decryption-phase, and these are statistically close to real
executions of these protocols by Proposition 9.22 and Proposition 11.9. Thus,
Pr[Hc,s,e,d

2,5 6= ⊥],Pr[Hc,s,e,d
2,5,1 6= ⊥] ≤ 1

4
Finally, if we define ps(κ) = 8κc0 we have from Claim 7, 8, 11, and 12 that

Pr[Hc,s,e,d
2,5,1 = 1 | Hc,s,e,d

2,5,1 6= ⊥]− Pr[Hc,s,e,d
2,5 = 1 | Hc,s,e,d

2,5 6= ⊥] ≥ 1

2κc0
.

Combined with the above two observations this means that Pr[Hc,s,e,d
2,5,1 = 1] −

Pr[Hc,s,e,d
2,5 = 1] is non-negligible. We define a distinguisherD that is identical to the

naive distinguisher except that it simulates Hc,s,e,d
2,5,1 instead of H2,5,1. It follows that

D breaks the polynomial indistinguishability of the Paillier cryptosystem, which is
equivalent to breaking the DCR-assumption. This is a contradiction and Claim 2
must be true.

11.8 On Adaptively Secure El Gamal Based Mix-Nets

The underlying complexity assumption of the Paillier cryptosystem has not un-
dergone the same scrutiny as the decision Diffie-Hellman (DDH) assumption on
which the security of the El Gamal cryptosystem rests. Furthermore, distributed
key generation is simpler when using El Gamal. Thus, there are good reasons to
investigate if one can form an adaptively secure mix-net based on El Gamal.

Recall that El Gamal is employed in a group Gq of prime order with generator
g. A private key is an element x ∈ Zq and the corresponding public key consists

On Adaptively Secure El Gamal Based Mix-Nets 175

of g and y = gx. To encrypt a message m ∈ Gq a random exponent r ∈ Zq is
chosen and (u, v) = E(g,y)(m, r) = (gr, yrm) is computed. To decrypt (u, v) one
computes Dx(u, v) = vu−x = m. A cryptotext (u, v) can be randomly re-encrypted
by computing (gsu, ysv) for a random s.

On a very high level, two problems must be dealt with to translate our approach
to the El Gamal cryptosystem. Firstly, there must be a way for the senders to
submit their cryptotexts in such a way that simulated honest senders can later
open their cryptotexts to any cleartext. Secondly, there must be a way to jointly
insert the correct outputs before the final shuffled list of cryptotexts is decrypted.

11.8.1 An Impractical Construction

A simple method to solve the first problem is to change the encoding of messages.
Instead of encoding a message as an element m ∈ Gq, the message is encoded as
an element m ∈ Zq and then m′ = gm is encrypted. The key generator chooses a

joint public key y = gx, where x =
∑k

j=1 xj and yj = gxj , and each xj is secretly
shared in exactly the same way as in the Paillier setting. An additional joint public
key y′ = gx

′

is also generated. The keys y and y′ play the same roles as N and N′

in the Paillier setting. Two cryptotexts (g0, y0) = E(g,y)(g
0, R0) = (gR0 , yR0) and

(g1, y1) = E(g,y)(g
1, R0) = (gR1 , gyR1) for random R0, R1 ∈ Zq are also generated

that play the same role as K0 and K1 in the Paillier setting.
Each sender is given an encryption (g′i, y

′
i) = (gR

′
i , (y′)R

′
iai) of a random element

ai ∈ Gq. This plays the role of K ′i in the Paillier setting. It chooses bi ∈ Gq and
ri, r

′
i ∈ Zq randomly and computes

(ui, vi) = (gmi1 gri, ymi1 yri) = (gR0mi+ri , yR0mi+rigmi) , and

(u′i, v
′
i) = ((g′i)

migr
′
i , (y′i/bi)

mi(y′)r
′
i) .

Then it submits (bi, (ui, vi), (u
′
i, v
′
i)) and proves that it uses the same mi when

forming (ui, vi) and (u′i, v
′
i).

The distributions of the keys (g0, y0) and (g1, y1) are indistinguishable to the
adversary. During simulation we switch the definitions of these keys. Furthermore,
simulated senders chooses bi = ai and mi = 0, which allows the ideal adversary
to later compute a plausible history tape by setting r̄i = ri − R1mi mod q and
r̄′i = r′i −R′imi mod q, and opening the proof similarly.

The messages mi submitted by corrupted senders are extracted by computing
mi = logbi/ai(Dx′(u′i)). By the semantic security of the cryptosystem the adversary
can not guess ai, so bi/ai 6= 1 and the extracted message is well defined and equal
to the message encrypted in ui with overwhelming probability. To compute the
logarithm mi = logbi/ai(Dx′(u′i)) only a small number of values of mi can be
allowed. One way to restrict the set of values is to let the prover prove that m
has small absolute value when viewed as an integer. Another way to restrict the
set of values is to let the prover prove explicitly that m is one of a fixed number of
different values using standard Schnorr-style proofs.

176 An Adaptively Secure Mix-Net Without Erasures

The correct messages can be replaced in a joint re-encryption step as fol-
lows. Two (k′ − 1)-degree polynomials f0 and f1 are defined by the key gener-
ator such that f0(0) = 0 and f1(0) = 1. Then each mix-server Ml is given f0(l)
and f1(l) and Pedersen commitments Hj,0 = gf0(l)hzj,0 and Hj,1 = gf1(l)hzj,1 are
made public by the key generator. To insert the correct messages each mix-server
secret shares random (w′j,i,1, w

′
j,i,2) ∈ G2

q using an adaptively UC-secure verifiable
secret sharing scheme [4]. All random pairs are recovered. Each mix-server com-

putes (wj,i,1, wj,i,2) = (gsj,iu
f1(j)
k,i (

∏k
j=1 w

′
j,i,1)

f0(j), ysj,iv
f1(j)
k,i (

∏k
j=1 w

′
j,i,2)

f0(j)) and
proves that it did so for some sj,i ∈ Zq relative Hj,0 and Hj,1. Finally, all mix-

servers compute (uk+1,i, vk+1,i) = (
∏

j∈I w
Q

l 6=j
l
l−j

j,i,1 ,
∏

j∈I w
Q

l 6=j
l
l−j

j,i,2), where I is the
lexicographically first set of indices j such that the proof of Mj is valid.

In the real protocol this amounts to a elaborate way to re-encrypt the list of
cryptotexts. In the simulation the ideal adversary defines the polynomials such
that f0(0) = 1 and f1(0) = 0 instead. After all corrupted mix-servers have
handed their pairs (w′j,i,1, w

′
j,i,2) to the ideal secret sharing functionality, the secret

sharing functionality is instructed to redefine the pairs (w′j,i,1, w
′
j,i,2) of the simu-

lated honest mix-servers such that they are random, but under the restriction that
(
∏k
j=1 w

′
j,i,1,

∏k
j=1 w

′
j,i,2) is an encryption of gmπ(i) for a randomly chosen permuta-

tion π ∈ ΣN using the public key (g, y).

To decrypt the cryptotexts in Lk+1 each mix-server computes u
xj
k+1,i and proves

that it does this correctly relative yj . If not, its part xj of the private key is
recovered and the computation is done openly.

The obvious problem with the outlined solution is that only very short messages
can be submitted. Longer messages can be handled by parallel mixing of several
cryptotexts, but this is not efficient.

11.8.2 A Practical Construction

A more practical “solution” to the submission problem is to let the senders compute
the proof needed using a random oracle, and to stipulate that they delete the
randomness used in encryption and proving before submitting their input. In other
words the senders would force erasures and the problem of constructing plausible
history tapes for senders disappears.

More precisely, a sender encodes its message as an element mi ∈ Gq, chooses
ri, r

′
i ∈ Zq, forms two cryptotexts

(ui, vi) = (gri , yrimi) and (u′i, v
′
i) = (gr

′
i , (y′)r

′
imi) ,

and computes a proof σ that it uses the same message in both cryptotexts using
a standard Σ-proof in the random oracle model. Then it erases its history of
computation and it submits (ui, vi, u

′
i, v
′
i, σ).

Honest senders are simulated by setting mi = 1. The adversary can only corrupt
a sender before it has started the computation of its submission or after it has

On Adaptively Secure El Gamal Based Mix-Nets 177

completed it and erased the randomness used in this process. Extraction from
corrupted senders Si is done by computing mi = v′i(u

′
i)
−x′

.
The problem of correcting the input is solved in the same way as is outlined

above except that (w′j,i,1, w
′
j,i,2) is chosen randomly for simulated mix-servers under

the restriction that (
∏k
j=1 w

′
j,i,1,

∏k
j=1 w

′
j,i,2) is an encryption of mπ(i).

Although the sketched solution is practical it is only heuristically secure due to
the dependence on the random oracle model. Furthermore, it is questionable if the
assumption that all senders manage to erase their randomness is realistic.

Chapter 12

Conclusions of Part II

The need for a rigorous treatment of mix-nets has been illustrated by several prac-
tical attacks on a construction in the literature. To rectify this the first definition of
an ideal mix-net functionality in the universally composable security framework has
been presented. The functionality is simple and corresponds to a natural trusted
party. We have also presented the first efficient mix-nets with complete security
analyses, in any model. This shows that our definition of security of a mix-net is
not only natural, but it can be satisfied in an efficient way. In doing this we have
introduced a new method to construct a proof of a shuffle that seems as efficient
as the two previously known approaches. There are at least two interesting open
problems.

The adaptively secure mix-net we describe is based on the security of the Paillier
cryptosystem. This cryptosystem has not undergone the same scrutiny as the older
El Gamal cryptosystem. Therefore it is interesting to investigate if it is possible to
construct an efficient El Gamal based adaptively secure mix-net without erasures.

We have illustrated two methods of extracting the cleartexts during submission.
The first is non-interactive, but the work of the sender is linear in the number of
mix-servers. The second is interactive, or non-interactive in the random oracle
model, but very efficient. An interesting open problem is if it is possible to use
a distributed CCA2-secure cryptosystem for extraction in the submission phase.
This would give a non-interactive submission phase in the plain model. We believe
that this is possible.

179

Part III

Hierarchical Group Signatures

181

Chapter 13

Introduction of the New Notion and

Definitions

In this chapter we introduce the notion of a hierarchical group signatures. There
exists no previous work on this notion, but it is a strict generalization of group sig-
natures which have been studied extensively. Therefore, we give a detailed account
on previous work on group signatures and other related notions. Then we describe
the parties of a hierarchical group signature system and give formal definitions.
We also discuss informally alternative definitions and the difficulties involved in
constructing a hierarchical group signature schemes. Finally, we prove a character-
ization of anonymous cryptosystems that is used in the next chapter. This chapter
is based on the paper by Trolin and Wikström [141].

13.1 Related Work

The concept of group signatures was introduced by Chaum and van Heyst [48]
in 1991. Recall from Section 1.4.2 that group signature schemes generalize digital
signature schemes. There is a group manager and several signers. Each signer holds
a private signing key and the group manager holds a private opening key. There is
also a joint public key. Anybody holding the public key can verify the correctness of
a signature, but without the group manager private key it is infeasible to determine
who computed a given group signature. Thus, any outsider can verify that some
signer belonging to the group computed the signature, but nothing else. The group
manager on the other hand can use its private key to open any valid signature and
discover the identity of the signer that produced it.

The original scheme in [48] and the group signature schemes that followed
[49, 32] all have the property that the complexity of the scheme grows with the
number of parties. In [38] Camenisch and Stadler presented a system where the
key does not grow with the number of parties. This system, however, relies on a
non-standard number-theoretic assumption. The assumption was actually found to

183

184 Introduction of the New Notion and Definitions

be incorrect and was modified in [8]. An efficient system whose security rests on the
strong RSA-assumption and the decision Diffie-Hellman assumption was presented
by Camenisch and Michels in 1998 [35]. This system was improved in [7]. The cur-
rently most efficient scheme that is secure under standard assumptions was given
by Camenisch and Groth [33]. More efficient schemes do exist [27, 34], but they are
based on bilinear maps and thus relies on less well-studied assumptions for security.

A related notion is traceable signatures introduced by Kiayias et al. [93], where
signatures belonging to a member can be opened, or traced, in a distributed way
without revealing the group secret.

Bellare et al. [17] give a definitional framework for group signatures for static
groups, i.e., when the set of members cannot be changed after the initial setup.
They also present a scheme that is secure according to their definitions under gen-
eral assumption. Kiayias and Yung [94] define security for dynamic groups and
prove that a modification of [7] is secure under these definitions. Independently,
Bellare et al. [19] extend the definitions of [17] in a similar way to handle dynamic
groups, and present a scheme that is secure under general assumptions.

The first of our constructions which is secure under general assumptions can be
seen as a generalization of the construction in [17].

In [8] the concepts of multi-group signatures and subgroup signatures are de-
scribed, and in [96] a system for hierarchical multi-groups is given. It is worthwhile
to consider the differences between these concepts and hierarchical group signatures
introduced here.

Subgroup signatures make it possible for an arbitrary number i of signers to
produce a joint signature which can be verified to stem from precisely i distinct
group members, without disclosing the identity of the individual signers.

Multi-group signature schemes allow a signer who is a member of two groups
to produce a signature that shows membership of either both groups or just one
of them. In hierarchical multi-groups a signer who is a member of a supergroup
with subgroups can produce a signature that reveals membership either of the
supergroup or of a subgroup of his choice. Thus, the signer decides to some extent
the amount of information about its identity that is made public.

Recall from Section 1.4.4 that in a hierarchical group signature scheme the
parties are organized in a tree with group managers as internal nodes and signers
as leaves. As for group signatures no outsider can determine from a signature which
signer produced it. A group manager can from a signature determine if the signer
that produced the signature belongs to the subtree of which it is the root, and if so
determine to which of its immediate subtrees the signer belongs, but nothing else.

In both subgroup signatures and multi-group signatures there are several group
managers, but any group manager that opens a valid signature learns the identity
of the signer. In hierarchical group signatures on the other hand the opening
procedure is hierarchical. Both the subgroup property and the multi-group property
are independent from the hierarchical property we study.

The connection between group signatures and anonymous payment schemes is
quite natural and has been studied before. In [101] a system for electronic cash

The Parties 185

based on group signatures is given by Lysyanskaya and Ramzan.
Group signatures, and especially hierarchical group signatures, should not be

confused with zero-knowledge sets as described in [104]. Zero-knowledge sets en-
ables a prover to commit to a set S. Given x he can then prove x ∈ S or x 6∈ S,
whichever is true, without disclosing anything else about S. For zero-knowledge
sets the prover has the necessary information to produce a proof of membership
for any element in the set. With group signatures on the other hand the set of
members may be public, and the signer proves that it belongs to this set.

13.2 The Parties

There are two types of parties: signers denoted Sα for α in some index set I, and
group managers denoted Mα for indices α described below. The parties form a tree
T , where the signers are leaves and the group managers are inner nodes. We denote
by L(T) its set of leaves and by V(T) the set of all vertices. The indices of the
group managers are formed as follows. If a group manager manages a set of signers
Sα for α ∈ β ⊂ I we denote it by Mβ . This corresponds to Mβ having Sα for α ∈ β
as children. If a group manager manages a set of group managers {Mβ1, . . . ,Mβl}
we denote it by Mγ where γ is the set of sets {β1, . . . , βl}. This corresponds to Mγ

having Mβi for i = 1, . . . , l as children. Let Mρ denote the root group manager.
We define the root group manager to be at depth 0 and assume that all leaves in
the tree are at the same depth. This is illustrated in Figure 1.3 in the introduction.
We reproduce this figure below for convenience.

Mρ

Mβ1

Sα1 Sα2

Mβ2

Sα3 Sα4 Sα5 Sα6

Mβ3

Sα7 Sα8 Sα9

Figure 1.3: A tree of group managers and signers, where ρ = {β1, β2, β3}, β1 =
{α1, α2}, β2 = {α3, α4, α5, α6}, and β3 = {α7, α8, α9}.

Note that standard group signatures correspond to having a single group man-
ager M[1,l] that manages all signers S1, . . . , Sl.

13.3 The Definition of Security

Bellare et al. [17] give a definition of a group signature scheme, but more import-
antly they argue that two properties of group signatures, full anonymity and full
traceability, imply any reasonable security requirements one can expect from a
group signature scheme.

186 Introduction of the New Notion and Definitions

We follow their definitional approach closely and develop definitions that are
proper generalizations of the original.

The idea is that the managers and signers are organized in a tree T , and we
wish to associate with each node and leaf α a public value hpk (α) and a private
value hsk (α).

Definition 13.1 (Hierarchical Group Signature). A hierarchical group sig-
nature scheme HGS = (HKg,HSig,HVf,HOpen) consists of four polynomial-time
algorithms

1. The probabilistic key generation algorithm HKg takes as input (1κ, T), where
T is a tree of size polynomially bounded in κ with all leaves at the same
depth, and outputs a pair of maps hpk , hsk : V(T)→ {0, 1}∗.

2. The probabilistic signature algorithm HSig takes as input a message m, a
tree T , a public map hpk , and a private signing key hsk (α), and returns a
signature of m.

3. The deterministic signature verification algorithm HVf takes as input a tree
T , a public key map hpk , a message m and a candidate signature σ of m and
returns either 1 or 0.

4. The deterministic opening algorithm HOpen takes as input a tree T , a pub-
lic map hpk , a private opening key hsk (β), a message m, and a candidate
signature σ. It outputs an index α ∈ β or ⊥.

In the definition of HSig above, it is assumed that it is possible to verify in
polynomial time given the public tree hpk , a private key hsk (α) and an index α′, if
α = α′. This is the case for the construction in [17]. We assume that hpk and hsk

map any input that is not a node of T to ⊥ and that HOpen(·, ·,⊥, ·, ·) = ⊥.
We need to define what we mean by security for a hierarchical group signature

scheme. We begin with anonymity. Consider Figure 13.1, where two signers Sα(0)

and Sα(1) are marked. Assume that a signature σ of a messagem is given and that it
is computed by either Sα(0) or Sα(1) . Then any group manager on the path leading
from Sα(0) or Sα(1) to their first common ancestor can determine who produced the
signature. In the figure those group managers are marked black. In the definition of
anonymity we capture the property that unless the adversary corrupts one of these
group managers, it cannot determine whether Sα(0) or Sα(1) signed the message,
even if the adversary is given the private keys of all signers and is allowed to select
α(0), α(1) and the message m that is signed.

We define Experiment 13.2 to formalize these ideas. Throughout the experiment
the adversary has access to an HOpen(T, hpk , hsk (·), ·, ·) oracle. At the start of the
experiment the adversary is given the public keys of all parties and the private
keys of all signers. Then it can adaptively ask for the private keys of the group
managers. At some point it outputs the indices α(0) and α(1) of two leaves and a
message m. The HSig(·, T, hpk , hsk(α(b))) oracle then computes the signature of m

The Definition of Security 187

Figure 13.1: Nodes in black represent group managers able to distinguish between
signatures by Sα(0) and Sα(1) , the two leaves marked ⊕ and ⊗ respectively.

and hands it to the adversary. The adversary finally outputs a guess d of the value
of b. If the scheme is anonymous the probability that b = d should be negligibly
close to 1/2 when b is a randomly chosen bit. The labels corrupt, choose and guess

below allows the adversary to distinguish between the phases of the experiment.

Experiment 13.2 (Hierarchical Anonymity, Expanon−b
HGS,A(κ, T)).

(hpk , hsk)← HKg(1κ, T); state← (hpk , hsk(L(T))); C ← ∅; α← ∅;
Do
C ← C ∪ {α}
(state, α)← AHOpen(T,hpk ,hsk(·),·,·)(corrupt, state, hsk (α))

While (α ∈ V(T) \ C)
(state, α(0), α(1),m)← AHOpen(T,hpk ,hsk(·),·,·)(choose, state)
σ ← HSig(m,T, hpk , hsk (α(b)))

d← AHOpen(T,hpk ,hsk(·),·,·)(guess, state, σ)

Let B be the set of nodes on the paths from α(0) and α(1) up to their first common

ancestor αt excluding α(0) and α(1) but including αt, i.e., the set of nodes α
(0)
l ,

α
(1)
l , l = t, . . . , δ − 1, such that

α(0) ∈ α(0)
δ−1 ∈ α

(0)
δ−2 ∈ . . . ∈ α

(0)
t+1 ∈ αt ∋ α

(1)
t+1 ∋ . . . ∋ α

(1)
δ−2 ∋ α

(1)
δ−1 ∋ α(1) .

If B ∩ C 6= ∅ or if A asked its HOpen(T, hpk , hsk(·), ·, ·) oracle a query (α
(0)
l ,m, σ)

or (α
(1)
l ,m, σ) return 0. Otherwise return d.

No generality is lost by having a corrupt phase only before σ is computed. The
reason for this is that before A receives σ, it has decided on α(0) and α(1) and can
corrupt any group manager not on the path from α(0) or α(1) respectively.

Consider the above experiment with a depth one tree T with root ρ. In that case
we may assume that hsk (ρ) is never handed to the adversary, since the adversary
fails in that case anyway. Similarly the HOpen(T, hpk , hsk(·), ·, ·) oracle reduces to
the Open oracle in [17]. Thus, our experiment reduces to the experiment for full
anonymity given in [17] where the adversary gets the private keys of all signers, but
only the public key of the group manager.

188 Introduction of the New Notion and Definitions

Next we consider how the notion of full traceability can be defined in our setting.
Full traceability as defined in [17] is similar to security against chosen message
attacks as defined by Goldwasser, Micali and Rivest [78] for signatures. Their
definition is given in Section 2.6.1.

The only essential difference is that the group manager must always be able to
open a signature and identify the signer. In our setting this amounts to the follow-
ing. Given a signature deemed valid by the HVf algorithm, the root should always
be able to identify the child directly below it of which the signer is a descendant.
The child should have the same ability for the subtree of which it is a root and so
on until the child itself is a signer.

Again we define an experiment consisting of two phases. The adversary is given
the private keys of all group managers and has access to a signature oracle, and
adaptively chooses a set of signers to corrupt. Then in a second phase the adversary
outputs a message m and a signature σ. If σ is a valid signature of m and the signer
cannot be traced, or if the signature is traced to a non-corrupted signer Sα and
the adversary has not queried its signature oracle HSig(·, T, hpk , hsk (·)) on (m,α),
the adversary has succeeded and the experiment outputs 1. The other way the
adversary can succeed is by constructing a signature that does trace correctly, but
has the property that some group manager not belonging to the path also gets a
valid index corresponding to one of its children if it opens the signature. If none of
the above is the case it outputs 0. Thus, the distribution of the experiment should
be negligibly close to 0 for all adversaries if the scheme is secure.

Experiment 13.3 (Hierarchical Traceability, Exptrace
HGS,A(κ, T)).

(hpk , hsk)← HKg(1κ, T); state← (hpk , hsk(V(T)\L(T))); C ← ∅; α← ∅;
Do
C ← C ∪ {α}
(state, α)← AHSig(·,T,hpk ,hsk(·))(corrupt, state, hsk (α))

While (α ∈ L(T) \ C)
(m,σ)← AHSig(·,T,hpk,hsk(·))(guess, state)

If HVf(T, hpk ,m, σ) = 0 return 0. Define α0 = ρ and define αl for l = 1, . . . , δ
by αl = HOpen(T, hpk , hsk(αl−1),m, σ). If αl = ⊥ for some 0 < l ≤ δ return
1. If αδ 6∈ C and the HSig(·, T, hpk , hsk(·)) oracle did not get a query (m,αδ)
return 1. If there exists an index α ∈ V(T) such that α 6= αl for l = 1, . . . , δ and
α′ = HOpen(T, hpk , hsk(α),m, σ) and α′ ∈ α, then return 1. Otherwise return 0.

Remark 13.4. The above definition differs from the one in [141] in that the re-
quirement on the special index α “outside” the path has been added. The original
definition guarantees that the group managers along the path to the producer of a
signature can open their part of the signature. Unfortunately, it does not prohibit
the construction of signatures such that if two distinct group managers Mα and
Mβ on the same level open a signature they both get indices α′ ∈ α and β′ ∈ β.
Naturally, we expect that only one of α′ and β′ can be different from ⊥. Thus,

Alternative Definitions 189

although the original definition guarantees that the signer can be identified, a group
manager can not fully trust the result of the opening algorithm unless it communic-
ates with all group managers on the path from itself to the root. This goes against
the non-interactivity of signature schemes.

The definition above on the other hand not only requires that the group man-
agers along the path to the signer can open a signature and recover the index of the
sub-group manager to which the signer belongs, but also that if any group manager
that is not on the path to the signer opens the signature then the result is ⊥.

Consider the experiment above with a depth one tree. This corresponds to giv-
ing the adversary the private key of the group manager, and letting it adaptively
choose additional signing keys. Furthermore, the HSig(·, T, hpk , hsk(·)) oracle re-
duces to the GSig oracle in [17]. Thus, the definition reduces to the definition of
full traceability in [17].

The advantages of the adversary in the experiments are defined by

Advanon
HGS,A(κ, T) = |Pr[Expanon−0

HGS,A(κ, T) = 1]− Pr[Expanon−1
HGS,A(κ, T) = 1]| , and

Advtrace
HGS,A(κ, T) = Exptrace

HGS,A(κ, T) .

Definition 13.5 (Security of Hierarchical Group Signatures). A hierarchical
group signature scheme HGS = (HKg,HSig,HVf,HOpen) is secure if for all trees
T of polynomial size in κ with all leaves at the same depth, and all adversaries
A ∈ PPT∗ the sum Advtrace

HGS,A(κ, T) + Advanon
HGS,A(κ, T) is negligible.

An ordinary signature scheme SS = (Kg, Sig,Vf), with key generator Kg, signa-
ture algorithm Sig, and verification algorithm Vf, can be viewed as a hierarchical
group signature scheme (Kg, Sig,Vf,HOpen) of depth 0. Definition 13.3 reduces to
the definition of security against chosen message attacks as defined by Goldwasser,
Micali, and Rivest [78].

Remark 13.6. Formally, only the private key of a corrupted group manager or signer
is handed to the adversary in the definitions above. Thus, the definition captures
a model where the signers always erase the randomness that is used to construct
signatures.

13.4 Alternative Definitions

Above we define a hierarchical group signature scheme such that the group man-
agers are organized in a tree where all leaves are at the same depth. Furthermore, a
group manager can by looking at a signature decide whether the signer belongs to
it or not without any interaction with other group managers. Several other variants
are possible. Below we discuss some of these variants informally.

Trees with leaves on different depths could be considered. Any such tree can
clearly be replaced by a tree with all leaves at the same depth by inserting dummy

190 Introduction of the New Notion and Definitions

group managers in between signers and their immediate parents until all signers
are at the same depth.

We could let group managers sign on behalf of its group. If this is needed a
dummy signer that corresponds to the group manager is added. Depending on if
the parent of the group manager should be able to distinguish between a signature
of the group manager itself and its children or not, the signer is added as a child to
the group manager’s parent or itself. This may give a tree with leaves on different
depths, in which case the transformation described above is applied.

We could consider a forest of trees, i.e., there could be several roots. Such a
scheme can be simulated in our definition by first joining the trees into a single tree
by adding a root and then disposing of the private root key.

The group managers could be organized in a directed acyclic graph (DAG), e.g.,
two group managers could share a common subtree. This would give alternative
paths to some signers. There may be situations where this is advantageous, but the
semantics of such a scheme is complex and involves many subtle issues, e.g., should
all group managers of a signer get information on its identity, or should the signer
decide on a path from a root and only reveal information to group managers along
this path? Although we believe that the techniques we use for our constructions
would be useful also for this type of scheme we do not investigate such schemes
further.

Another interesting variation is to require that a group manager needs the ad-
mission and help of its ancestor to open a signature, or to help any of its children
to open a signature. We believe that it is not hard to solve this problem using our
methods, but we have not investigated this in detail.

13.5 The Main Difficulties

All modern group signatures are based on the idea that the signer encrypts a secret
of some sort using the group manager’s public key, and then proves that the result-
ing cryptotext is on this special form. The security of the cryptosystem used implies
anonymity, since no adversary can distinguish cryptotexts of two distinct messages
if they are encrypted using the same public key. We generalize this approach.

First we consider the problem of forwarding partial information on the identity
of the signer to group managers without leaking information. Each group manager
Mβ is given a private key skβ and a public key pkβ of a cryptosystem. We also give
each signer Sα a public key pkα that is used to identify the signer. Each signer is
associated in the natural way with the path α0, α1, . . . , αδ from the root ρ = α0

to the leaf α = αδ in the tree T of group managers and signers. To compute a
signature, the signer computes as part of the signature a chain

(C0, C1, . . . , Cδ−1) =
(

Encpkα0
(pkα1

),Encpkα1
(pkα2

), . . . ,Encpkαδ−1
(pkαδ)

)

.

Note that each cryptotext Cl in the list encrypts the public key pkαl+1
used to form

the next cryptotext. The particular structure of the chain and the fact that all leaves

A Characterization of Anonymous Cryptosystems 191

are on the same depth in the tree ensures that a group manager Mβ on depth l can
try to open a signature by decrypting Cl, i.e., it computes pk = Dskβ (Cl).

If αl = β, then pk = pkαl+1
. Thus, if Mβ manages signers, it learns the identity

of the signer Sα, and if it manages other group managers it learns the identity of the
group manager below it in the tree which, perhaps indirectly, manages the signer
Sα.

Now suppose that αl 6= β, so pk 6= pkαl+1
. What does Mβ , or indeed any

outsider, learn about the identity of the signer Sα? It clearly does not learn anything
from a cryptotext Cl about the encrypted cleartext, as long as the cryptosystem is
semantically secure. There may be another way to deduce the content of Cl though.
If the cryptotext Cl+1 somehow indicate which public key was used to form it, Mβ,
or any outsider, can simply look at Cl+1 and recover the cleartext of Cl. This means
that it can look at the chain of cryptotexts and extract information on the identity
of the signer. We conclude that using the approach above, we need a cryptosystem
which not only hides the cleartext, but also hides the public key used to form the
cryptotext. A cryptosystem with this property is said to be anonymous. We give
a definition in Section 2.5.2. The property of anonymity was discussed in [1] and
studied extensively by Bellare et al. in [14].

Next we consider the problem of ensuring hierarchical traceability. This prob-
lem consists of two parts. We must ensure chosen message security to avoid that an
illegitimate signer is able compute a valid signature at all. The difficult problem is
to ensure that the signer Sα not only formed (C0, . . . , Cδ−1) as described above for
some public keys pkα0

, . . . , pkαδ , but also that the public keys used correspond to
the unique path α0, α1, . . . , αδ from the root ρ = α0 to the leaf α = αδ correspond-
ing to the signer Sα. This is the main obstacle to construct an efficient hierarchical
group signature scheme.

13.6 A Characterization of Anonymous Cryptosystems

As explained above we need an anonymous cryptosystem to construct a hierarchical
group signature scheme using our approach. The lemma below characterizes the set
of cryptosystems which are both polynomially indistinguishable and anonymous.

Denote by Expind−Dind

CS,A (κ) Experiment 2.11, but with the challenge cryptotext
Encpkb(m) replaced by an element distributed according to a distributionDκ, where

Dind = {Dκ}, and correspondingly for Expanon−Dind

CS,A (κ). We use TD to denote the
Turing machine that on input 1κ returns a sample distributed according to an
efficiently sampleable distribution Dκ. In other words we consider the following
somewhat artificial experiments.

Experiment 13.7 (Dind-Indistinguishability, Expind−Dind

CS,A (κ)).

(pk , sk) ← CSKg(1κ)

(m0,m1, state) ← A(pk)

d ← A(TD(1κ), state)

192 Introduction of the New Notion and Definitions

The experiment outputs d.

Experiment 13.8 (Dind-Anonymity, Expanon−Dind

CS,A (κ)).

(pk0, sk0) ← CSKg(1κ)

(pk1, sk1) ← CSKg(1κ)

(m, state) ← A(pk0, pk1)

d ← A(TD(1κ), state)

The experiment outputs d.

Lemma 13.9. Let CS be a cryptosystem which is both polynomially indistinguish-
able and anonymous. Then there exists an efficiently sampleable distribution Dind

such that for all A ∈ PPT∗ the absolute value

|Pr[Expind−b
CS,A(κ) = 1]− Pr[Exp

ind−Dind(κ)
CS,A (κ) = 1]|

is negligible for b ∈ {0, 1}. The reverse implication holds as well.

The intuition behind this lemma is that if a cryptosystem that is both poly-
nomially indistinguishable and anonymous, then the cryptotexts are polynomially
indistinguishable from a random distribution which is independent of both the key
and the plaintext.

Proof. Suppose that a distribution Dind as in the lemma exists. The indistin-
guishability of CS then follows by the triangle inequality. Suppose that CS is not
anonymous. Then there exists an adversary A ∈ PPT∗ such that

|Pr[Expanon−0
CS,A (κ) = 1]− Pr[Expanon−1

CS,A (κ) = 1]|

is non-negligible which by the triangle inequality implies that

|Pr[Expanon−b
CS,A (κ) = 1]− Pr[Expanon−Dind

CS,A (κ) = 1]|

is non-negligible for a fixed b ∈ {0, 1}, which we without loss assume to be 0.
Let A′ be the adversary in Experiment 2.11 defined as follows. On input pk it
sets pk0 = pk generates (pk1, sk1) = CSKg(1κ) and hands (pk0, pk1) to A, which
returns (m, state). Then A′ returns (m,m, state). When handed (c, state) from
the experiment it returns the output of A(c, state). By construction Expind−0

CS,A′(κ) is

identically distributed to Expanon−0
CS,A (κ), and Expind−Dind

CS,A′ (κ) is identically distributed

to Expanon−Dind

CS,A (κ). This is a contradiction, since it implies that

|Pr[Expind−0
CS,A′(κ) = 1]− Pr[Expind−Dind

CS,A′ (κ) = 1]|

is non-negligible.

A Characterization of Anonymous Cryptosystems 193

Suppose next that CS is polynomially indistinguishable and anonymous. We
define our candidate distribution Dind as follows. To generate a sample from Dind,
generate a key pair (pk ′, sk ′) = CSKg(1κ) and output an encryption Encpk ′(m′),
where m′ is any fixed message. This implies that Dind is efficiently sampleable.
Assume that

|Pr[Expind−b
CS,A (κ) = 1]− Pr[Expind−Dind

CS,A (κ) = 1]|
is non-negligible for b = 0. Then it is also non-negligible for b = 1, since CS is
polynomially indistinguishable. Let A′0 be the adversary in Experiment 2.14 that
does the following. On input (pk0, pk1) it hands pk0 to A which returns (m0,m1).
Then A′0 returns m0, and is given Encpkb(m0) for a randomly chosen b ∈ {0, 1}
by the experiment. It hands Encpkb(m0) to A and returns the output of A. A′1 is
identical to A′0 except that it hands m′ to the experiment instead of m0. From the
construction follows that Expind−0

CS,A (κ) and Expind−Dind

CS,A (κ) are identically distributed

to Expanon−0
CS,A′

0
(κ) and Expanon−1

CS,A′
1

(κ) respectively. Thus

|Pr[Expanon−0
CS,A′

0
(κ) = 1]− Pr[Expanon−1

CS,A′
1

(κ) = 1]|

is non-negligible. From the anonymity of CS we have that

|Pr[Expanon−0
CS,A′

b
(κ) = 1]− Pr[Expanon−1

CS,A′
b

(κ) = 1]|

is negligible for b ∈ {0, 1}. A hybrid argument then implies that

|Pr[Expanon−b
CS,A′

0
(κ) = 1]− Pr[Expanon−b

CS,A′
1
(κ) = 1]|

is non-negligible for some b ∈ {0, 1}. Without loss we assume b = 0. Denote by A′′

the adversary in Experiment 2.11 defined as follows. Given input pk it hands pk to
A. When A returns (m0,m1), it outputs (m0,m

′), and receives either Encpk(m0)
or Encpk(m

′), which it forwards to A. Finally, it returns the output of A. Since,

Expind−0
CS,A′′(κ) is identically distributed to Expanon−0

CS,A′
0

(κ) and Expind−1
CS,A′′(κ) is identically

distributed to Expanon−0
CS,A′

1
(κ), this contradicts the indistinguishability of CS. �

Note that Dind depends on CS but is independent of all stochastic variables in
the experiment. In the next chapter we prove that the probabilistic cryptosystem
of Goldwasser and Micali [76] is anonymous.

Remark 13.10. Several standard probabilistic cryptosystems can be made anonym-
ous by minor modifications, e.g., it is not hard to see that the El Gamal [71]
cryptosystem is anonymous under the DDH-assumption if all parties employ the
same group.

Chapter 14

A Construction Under General

Assumptions

In this chapter we show how hierarchical group signatures can be constructed under
general assumptions. Our focus is on feasibility and conceptual simplicity. More
precisely, we prove the following theorem.

Theorem 14.1. If there exists a family of trapdoor permutations, then there exists
a secure hierarchical group signature scheme.

To prove the theorem we construct a hierarchical group signature scheme and prove
its security. This chapter is based on the paper by Trolin and Wikström [141].

14.1 Preliminaries

Our construction is based on three primitives: the group signature scheme of Bel-
lare et al. [17], the public key cryptosystem of Goldwasser and Micali [76], and a
non-interactive zero-knowledge proof as defined in Section 2.9. Of these we use the
first and last in a blackbox way. Bellare et al. [17] prove the following theorem.

Theorem 14.2. If there exists a family of trapdoor permutations, then there exists
a secure group signature scheme GS = (GKg,GSig,GVf,Open).

As explained in Section 13.3 every group signature scheme is also a hierarchical
group signature scheme, and our definition of security reduces to the definition of
security given in [17] for group signatures. The definition of a trapdoor permutation
family is given in Section 2.3.

Recall from Section 2.9 that a non-interactive zero-knowledge proof (NIZK) al-
lows a prover to send a single message to a verifier that convinces the verifier of
some statement in NP. Bellare et al. [17] use a NIZK in their proof of the theorem
above, but the NIZK we use must be adaptive zero-knowledge for polynomially

195

196 A Construction Under General Assumptions

many statements, and not only for a single statement. The requirement on sim-
ulation soundness is in fact unchanged compared with [17], i.e., single statement
simulation soundness suffices. A precise definition of the type of NIZK we use is
given in Section 2.9.

De Santis et al. [135] extend the results in [62] and [133] and prove the following
theorem.

Theorem 14.3. If there exists a family of trapdoor permutations, then there exists
a NIZK for any language in NP.

The probabilistic cryptosystem of Goldwasser and Micali [76] is defined in Sec-
tion 3.1. Goldwasser and Micali prove that their cryptosystem is polynomially
indistinguishable, i.e., it satisfies Definition 2.12, but as explained in the previous
chapter we need an anonymous cryptosystem. We prove the following lemma using
Lemma 13.9 from the previous chapter.

Lemma 14.4. If T PF = (Gen, Sample,Eval, Invert) is a trapdoor permutation fam-
ily with hard-core bit B, then CSgm

T PF,B is anonymous.

Proof. Suppose that CSgm
T PF ,B is not anonymous. Let Uκ+1 be the uniform and

independent distribution over {0, 1}κ+1. Then for some adversary A ∈ PPT∗,

|Pr[Expind−b
CSgm

T PF,B,A
(κ) = 1]− Pr[Exp

ind−Uκ+1

CSgm

T PF,B,A
(κ) = 1]|

is non-negligible for a fixed b ∈ {0, 1}. Without loss we assume b = 0. Since
CSgm
T PF,B is a bitwise cryptosystem, we may without loss assume that m0 = 0

and m1 = 1. Let m ∈ {0, 1} be randomly chosen. Then a cryptotext Epk (m) =
(Eval(pk , r),B(r) ⊕ m) is distributed according to Uκ+1, since the function fpk
evaluated by Eval is a permutation and B(r) ⊕m is uniformly and independently
distributed. A trivial averaging argument then implies that |Pr[Expind−0

CSgm

T PF,B,A
(κ) =

1]− Pr[Expind−1
CSgm

T PF,B,A
(κ) = 1]| is non-negligible which is a contradiction. �

We remind the reader at this point that we define a trapdoor permutation family
to have domain {0, 1}κ.

14.2 Our Construction

In this section we construct a hierarchical group signature scheme which we denote
by HGS = (HKg,HSig,HVf,HOpen). We let T PF = (Gen, Sample,Eval, Invert)
denote a family of trapdoor permutations with a hard-core bit B, and assume that
a Goldwasser-Micali cryptosystem CSgm

T PF,B has been constructed from this. We
denote by GS = (GKg,GSig,GVf,Open) the group signature scheme of Bellare et al.
also constructed from T PF . We view this as a hierarchical group signature scheme
of depth 1, but we denote its public key map and private key map by gpk and gsk

Our Construction 197

respectively instead of hpk and hsk to distinguish them from the public key map and
private key maps of the hierarchical group signature scheme we are constructing.
We also use T PF to construct a NIZK for a language LHGS defined below.

The key generator is constructed as follows. First keys for the group signature
scheme GS are generated, where the signers correspond to the signers in the hier-
archical group signature scheme we are constructing, but the root group manager is
not given its usual private opening key gsk(ρ). Instead, each group manager is given
a key pair (pkβ , skβ) of the CSgm

T PF,B cryptosystem. When a signer Sα signs a mes-
sage m it first forms a group signature σ of the message m. Suppose that the signer
corresponds to the path α0, . . . , αδ in the tree, i.e., α0 = ρ and αδ = α. Then the
signer forms a chain of cryptotexts C = (Epkα0

(pkα1
), . . . , Epkαδ−1

(pkαδ)). Finally,

it forms a NIZK π that the chain of cryptotexts C is formed in this way, and that the
encrypted path corresponds to the identity of the signer hidden in the group signa-
ture σ. The hierarchical group signature consists of the tuple (σ,C,C′, π). Verific-
ation of a signature corresponds to verifying the NIZK. Opening a signature using
the private opening key of a group manager at depth l corresponds to decrypting the
lth cryptotext. In the above description we have not mentioned how it is ensured
that only one group manager on each level opens a signature to something other
than ⊥. This is done using an additional chain C′ = (Epk (pkα0

), . . . , Epk (pkαδ−1
)).

Algorithm 14.5 (Key Generation, HKg(1κ, T)). The key generation algorithm
is defined as follows.

1. Generate a random string ξ ∈ {0, 1}∗ sufficiently long for a NIZK based on
T PF for the language LHGS defined below. Generate (pk , sk) = Kggm(1κ).

2. For each node α in V(T), compute (pkα, skα) = Kggm(1κ).

3. Let I be the bijection mapping each list (pkα0
, . . . , pkαδ) such that α0, . . . , αδ

is a path in T to αδ, where α0 = ρ and αδ ∈ L(T). Define I to map anything
else to ⊥. Denote by TGS the tree with root ρ and leaves L(T).

4. Run (gpk , gsk) = GKg(1κ, TGS) to generate keys for a group signature scheme,
and set (hpk (α), hsk (α)) = ((pkα, gpk (α)), gsk (α)) for α ∈ L(T).

5. Define the keys of the root ρ by (hpk (ρ), hsk (ρ)) = ((ξ, pk , pkρ, gpk (ρ)), skρ)
and set (hpk (β), hsk (β)) = (pkβ, skβ) for β ∈ V(T)\L(T), β 6= ρ. Note that
hsk (ρ) does not contain gsk (ρ).

6. Output (hpk , hsk).

The result of running the above algorithm is illustrated in Figure 14.1. We are
now ready to define the NIZK we need in our construction.

We denote by πhgs = (Phgs, Vhgs) a NIZK of the language LHGS consisting of
tuples (T, hpk ,m, σ, C,C′) such that there exists public keys pk0, . . . , pk δ, gsk(α)

198 A Construction Under General Assumptions

((ξ, pk , pkρ, gpk(ρ)), skρ)

(pkβ3
, skβ3)

((pkα7
, gpk (α7)), gsk(α7))

Figure 14.1: The figure illustrates the public and private keys along a path in the
tree of keys corresponding to Figure 1.3. The edges along the path have thick edges.
Each node contains a pair of public and private keys.

and random strings r0, r
′
0, . . . , rδ−1, r

′
δ−1, rδ such that

α0 = ρ ,

(Cl, C
′
l) = (Epkαl

((pkαl+1
, r′l), rl), Epk (pkαl , r

′
l)) for l = 0, . . . , δ − 1 ,

α = I(pkα0
, . . . , pkαδ−1

) , and σ = GSigrδ(m,TGS , gpk , gsk(α)) .

The NIZK now enables us to give a succinct description of the signature al-
gorithm.

Algorithm 14.6 (Signing, HSig(m,T, hpk , hsk (α))). Let α0, . . . , αδ be the path
to the signer Sα, i.e., ρ = α0 and αδ = α. Choose ri and r′i randomly and compute

σ = GSigrδ(m,TGS , gpk , gsk(α))

(Cl, C
′
l) = (Epkαl

((pkαl+1
, r′l), rl), Epk (pkαl , r

′
l)) for l = 0, . . . , δ − 1 ,

π = Phgs((T, hpk ,m, σ, C,C
′),

(pkα0
, . . . , pkαδ , gsk(α), r0, r

′
0, . . . , rδ−1, r

′
δ−1, rδ), ξ) .

Then output (σ,C,C′, π).

Algorithm 14.7 (Verification, HVf(T, hpk ,m, (σ,C,C′, π))). On input a candid-
ate signature (σ,C,C′, π) output Vhgs((T, hpk ,m, σ, C,C

′), π, ξ).

Algorithm 14.8 (Opening, HOpen(T, gpk , gsk(β),m, (σ,C,C′, π))). Suppose the
index β is on level l in T . If HVf(T, hpk ,m, (σ,C,C′, π)) = 0, then return ⊥.
Otherwise, compute (pkα, r

′) = Dskβ (Cl) and verify that C′l = Epk (pkβ , r
′) and

α ∈ β. Return α if this is the case and return ⊥ otherwise.

Remark 14.9. The scheme described above differs from the scheme in [140]. As
explained in Remark 13.4 the original definition in [140] did not capture all the

Security Analysis 199

properties we expect from a hierarchical group signature scheme. We use a stronger
definition in this thesis. The role of the new cryptotexts C′l is to allow a group
manager to ensure that no other group manager can open a signature to something
other than ⊥.

Remark 14.10. In Section 14.4 we describe an alternative construction which seems
better suited if we try to eliminate the trusted key generator, but which is harder
to analyze.

Remark 14.11. Suppose we want to instantiate the scheme using the RSA-function.
Then an alternative to using the restrictive definition of a trapdoor permutation
family and applying Yao’s construction [16] to turn the RSA-function into a trap-
door permutation family with domain {0, 1}κ, is to modify the Goldwasser-Micali
encryption algorithm as follows. It repeatedly chooses r until Eval(i, r) < 2κ. This
implies that Eval(i, r) < N for all κ-bit moduli N and that the first part of a
Goldwasser-Micali cryptotext is a uniformly distributed element in {0, 1}κ. The
probability that r has this property is at least 1/4. Given that we put a polynomial
bound on the number of tried r, the encryption process fails with negligible probab-
ility. It is easy to see that the proof of anonymity goes through, and the polynomial
indistinguishability of the scheme follows from the polynomial indistinguishability
of the original, since the original scheme uses an r with Eval(i, r) < 2κ with probab-
ility at least 1/4. To change the construction in this way we do need to modify the
definition of a public key cryptosystem such that it allows the encryption algorithm
to fail with negligible probability.

14.3 Security Analysis

We prove the following lemma on the security of our construction, from which
Theorem 14.1 follows immediately.

Lemma 14.12. If T PF is a family of trapdoor permutations, then HGS is secure.

Proof. We prove the hierarchical anonymity and the hierarchical traceability of
HGS separately.

Proof of Hierarchical Anonymity. Suppose to the contrary that an adversary
A breaks hierarchical anonymity. Then we have Advanon

HGS,A(κ, T) ≥ 1/κc for some
polynomial size tree T , constant c > 0 and κ in an infinite index setN . We construct
a machine A′ that runs A as a blackbox and breaks the hierarchical anonymity of
GS (recall that hierarchical anonymity is a strict generalization of full anonymity).

Definition of A′. The adversary A′ simulates the hierarchical anonymity exper-
iment, Experiment 13.2, with HGS to A. It also plays the role of adversary in
Experiment 13.2 with GS.

The key generation is simulated as follows. First the NIZK simulator Shgs is
invoked to compute the reference string with trapdoor (ξ, simstate). The string ξ

200 A Construction Under General Assumptions

is used instead of a random string. Recall that TGS denotes the very simple tree
having ρ, the root of T , as root, and children L(T). The adversary A′ waits until it
receives gpk and (gsk(α))α∈L(T). Then it simulates the remaining part of the key
generation honestly except that it uses the received values, and it does not define
gsk(ρ) at all. Thus, the keys of all intermediate group managers are generated by
A′. In each iteration in the simulated experiment A may request gsk(α) for some
group manager Mα and the simulator can answer this request honestly.

Queries to the HOpen(T, hpk , hsk(·), ·, ·)-oracle are simulated in the following
way. Given a query on the form (β,m, (σ,C,C′, π)), A′ first checks that β ∈ V(T)
and

HVf(T, hpk ,m, (σ,C,C′, π)) = 1 .

If not it returns ⊥. If so it asks its Open(TGS , gpk , gsk(·), ·, ·)-oracle the question
(ρ,m, σ), to which it replies by α. If α 6∈ L(T) it returns ⊥. Otherwise, let
α0, . . . , αδ be its corresponding path, i.e., α0 = ρ and αδ = α. Let β be on depth
l. Then A′ instructs the HOpen(T, hpk , hsk(·), ·, ·)-oracle to return αl+1 if β = αl
and ⊥ otherwise. We expect that the answers computed in this way are correct,
but this remains to be proved.

When A outputs (α(0), α(1),m), A′ outputs this as well. Let α
(0)
t = α

(1)
t

be the least common ancestor of α(0) and α(1), and let α(0), α
(0)
δ−1, . . . , α

(0)
t and

α(1), α
(1)
δ−1, . . . , α

(1)
t be the paths to this index.

When A′ is given a signature σ from its experiment it does the following.
It computes the cryptotexts C0, C

′
0, . . . , Ct−1, C

′
t−1 honestly. It chooses random

samples Ct, C
′
t, . . . , Cδ−1, C

′
δ−1 according to the distribution Dind guaranteed to

exist by Lemma 13.9. Here we in fact need to apply Lemma 2.13 and Lemma
2.16 to increase the length of messages that can be encrypted, and then apply
Lemma 13.9, but we abuse notation below. Then it invokes Shgs of the NIZK on
((T, hpk ,m, σ, C,C′), ξ, simstate) to form a proof π, and hands (σ,C,C′, π) to A.

Eventually A outputs a bit d, which A′ then returns as output.

Analysis of A′. We divide our analysis into three claims. Denote by Hb
c,o,p the

machine that on input κ simply simulates Experiment 13.2 with HGS to A and
outputs the result. Denote by Hb

c,o the machine which is identical to Hb
c,o,p ex-

cept that it generates ξ as A′ and also simulates the NIZK π exactly as A′ does.
Thus, except from the fact that the proof π in the challenge signature is simu-
lated, Hb

c,o simulates Experiment 13.2 with HGS to A. We also define Hb
c to be

identical to Hb
c,o except that it simulates the HOpen(T, hpk , hsk (·), ·, ·)-oracle to A

precisely as A′ does. Finally, we define Hb to be identical to Hb
c except that the

Ct, C
′
t, . . . , Cδ−1, C

′
δ−1 in the challenge signature are generated precisely as A′ does.

Thus, by constructionHb is identically distributed to Expanon−b
GS,A′ (κ). This gives us

a chain of distributions Hb
c,o,p, H

b
c,o, H

b
c , H

b starting with Expanon−b
HGS,A(κ) and ending

with Expanon−b
GS,A′ (κ). In the following claims we show that the distance between each

pair of distributions is negligible.

Security Analysis 201

Claim 1. There exists a negligible function ǫ1(κ) such that

|Pr[Hb
c,o,p(κ) = 1]− Pr[Hb

c,o(κ) = 1]| < ǫ1(κ) .

Proof. The proof is based on the adaptive zero-knowledge of the NIZK πhgs =
(Phgs, Vhgs, Shgs).

Consider the adversary Aadzk defined as follows. It waits for a string ξ from
Experiment 2.42. Then it starts the simulation of Hc,o except that it uses ξ in-
stead of choosing it randomly. Then it continues the simulation of Hc,o until it
is about to compute the NIZK π. Instead of computing the NIZK, it requests a
NIZK π from Experiment 2.42. More precisely, it hands (T, hpk ,m, σ, C,C′) and
(pk0, . . . , pk δ, gsk(α), r0, r

′
0, . . . , rδ−1, r

′
δ−1, rδ) to the experiment. Finally, it contin-

ues the simulation of Hc,o until it halts.
It follows that the random variables Hb

c,o,p(κ) and Hb
c,o(κ) are identically dis-

tributed to Expadind−0
πhgs,Aadzk

(κ) and Expadind−1
πhgs,Aadzk

(κ) respectively. The adaptive zero-

knowledge property of the NIZK implies that there exists a negligible function ǫ1(κ)
such that

|Expadind−0
πhgs,Aadzk

(κ)− Expadind−1
πhgs,Aadzk

(κ)| < ǫ1(κ) ,

and the claim follows. �

Claim 2. There exists a negligible function ǫ2(κ) such that

|Pr[Hb
c,o(κ) = 1]− Pr[Hb

c (κ) = 1]| < ǫ2(κ) .

Proof. The proof of this claim follows from the simulation soundness and the sound-
ness of the NIZK, and we give the details below. First we note that any query
(β,m, (σ,C,C′, π)) to the Open(TGS , gpk , gsk(·), ·, ·)-oracle such that
Vhgs((T, hpk ,m, σ, C,C

′, ξ′), π, ξ) = 0 is answered correctly.
Consider now a query (β,m, (σ,C,C′, π)), where π is a valid proof, that is,

Vhgs((T, hpk ,m, σ, C,C
′), π, ξ) = 1, and still (T, hpk ,m, σ, C,C′) 6∈ LHGS. We argue

that such queries are asked with negligible probability.
We construct an adversaryAsims (orAs) against simulation soundness (or sound-

ness), i.e., Experiment 2.44 (or the soundness property of Definition 2.41), as fol-
lows. It accepts the random string ξ as input and simulates Hb

c (or Hb
c,o). Whenever

A asks a query (β,m, (σ,C,C′, π)), Asims (or As) interrupts the simulation ofHb
c (or

Hb
c,o) and checks whether the query is such that (T, hpk ,m, σ, C,C′) ∈ LHGS. This

is easily done using the keys to the cryptosystems and the group signature scheme.
If (T, hpk ,m, σ, C,C′) 6∈ LHGS, then Asims (or As) outputs ((T, hpk ,m, σ, C,C′), π).
From the simulation soundness (or soundness) we conclude that such queries are
asked with negligible probability.

Consider a query (β,m, (σ,C,C′, π)) to the HOpen(T, hpk , hsk (·), ·, ·)-oracle.
Define α0 = ρ and define αl for l = 1, . . . , δ by

αl = HOpen(T, hpk , hsk (αl−1),m, (σ,C,C
′, π)) .

202 A Construction Under General Assumptions

We may assume without loss (T, hpk ,m, σ, C,C′) ∈ LHGS, since this happens with
overwhelming probability for queries that verifies correctly.

This means that a query is answered incorrectly only if β is on level l, β 6= αl and
still β′ = HOpen(T, hpk , hsk(β),m, (σ,C,C′, π)) with β′ ∈ β. This is one of the two
places in the proof where we use the cryptotexts in the list C′ in an essential way.
Without them, it is not only possible in theory to compute a signature that opens
“correctly” using two distinct secret keys. It is an easy exercise to see that using
the Goldwasser-Micali cryptosystem it would be easy to compute such a signature.
Thus, we must argue that the cryptotexts in the list C′ prohibits the construction
of such signatures.

By the definition of the open algorithm the above anomaly can only happen
if (pkβ′ , r′) = Dskβ (Cl) and Epk (pkβ, r

′) = C′l . This is a contradiction and we
conclude that the claim is true, since we know that Esk (C′l) = pkαl . �

Claim 3. There exists a negligible function ǫ3(κ) such that

|Pr[Hb
c (κ) = 1]− Pr[Hb(κ) = 1]| < ǫ3(κ) .

Proof. This follows from the polynomial indistinguishability and the anonymity of
the Goldwasser-Micali cryptosystem CSgm

T PF ,B using Theorem 3.1, Lemma 14.4, and
Lemma 13.9 by use of a standard hybrid argument. We give details below.

We define a sequence of hybrid machines Aind,l for l = t, . . . , δ − 1 as follows.
Aind,l simulates Hb

c until it has computed (Ct, C
′
t, . . . , Cδ−1, C

′
δ−1). Then it com-

putes samples (C̄t, C̄
′
t, . . . , C̄l, C̄

′
l) distributed according to the Dind distribution

guaranteed by Lemma 13.9. Finally, it replaces

(Ct, C
′
t, . . . , Cδ−1, C

′
δ−1)

in its simulation by

(C̄t, C̄
′
t, . . . , C̄l, C̄

′
l , Cl+1, C

′
l+1, . . . , Cδ−1, C

′
δ−1)

and continues the simulation of Hb
c . By construction, Aind,t−1(κ) and Aind,δ−1(κ)

are identically distributed to Hb
c (κ) and Hb(κ) respectively.

Suppose that the claim is false, i.e., there exists a constant c and an infinite
index set N ′ such that

|Pr[Aind,t−1 = 1]− Pr[Aind,δ−1 = 1]| ≥ κ−c

for κ ∈ N ′. A hybrid argument implies that there exists a fixed t ≤ l < δ − 1 such
that

|Pr[Aind,l−1 = 1]− Pr[Aind,l = 1]| ≥ κ−c/δ .
Denote by A1

ind,l−1 the machine that simulates Aind,l−1 except that it also replaces

Cl by a sample C̄l distributed according to Dind. If we write A0
ind,l−1 instead of

Aind,l−1 and A2
ind,l−1 instead of Aind,l the triangle inequality implies that

|Pr[Aj−1
ind,l−1 = 1]− Pr[Ajind,l−1 = 1]| ≥ 1

2δκc
.

Security Analysis 203

for a fixed j = {1, 2}.
We consider the case j = 1. The other case follows by similar arguments.

Consider the adversary Aind for the indistinguishability experiment of the previous

chapter, Experiment 13.7, run with CSgm
T PF,B. It chooses β

(b)
δ randomly from L(T).

Let β0, . . . , βδ be the corresponding path, i.e., ρ = β0 and βδ = β
(b)
δ . Then it

simulates Aj−1
ind,l−1 except that the keys (pkβl , skβl) are not generated. Instead it

uses the key it receives from the experiment. It continues the simulation and hands
(pkβl+1

, pkβl+1
) to its experiment. The experiment returns an element C̄l that is

used instead of Cl.
If A requests the private key skβl , the simulation can not be continued and Aind

outputs 0. Similarly, if A outputs (α(0), α(1)), where α(b) 6= β(b), then Aind outputs
0. Since β(b) is randomly chosen, we have Pr[α(b) = β(b)] = 1/|L(T)|.

If neither of the two events above occur, Aind continues the simulation. We have

|Pr[Expind−b
CSgm

T PF,B,Aind
(κ) = 1]− Pr[Expind−Dind

CSgm

T PF,B,Aind
(κ) = 1]|

= |Pr[A0
ind,l−1 = 1 ∧ α(b) = β(b)]− Pr[Aind1,l−1 = 1 ∧ α(b) = β(b)]|

= (1/|L(T)|)|Pr[A0
ind,l−1 = 1]− Pr[A1

ind,l−1 = 1]| ≥ 1/(|L(T)|δκc) .

The first equality follows by construction. The second equality follows by inde-
pendence. In view of Theorem 3.1, Lemma 14.4, and Lemma 13.9 this contradicts
either the indistinguishability or the anonymity of CSgm

T PF,B. Thus, the claim is
true. �

Claim 4. The hierarchical anonymity of GS is broken.

Proof. From Claim 1, Claim 2, and Claim 3 follows that

|Pr[Hb
c,o,p(κ) = 1]− Pr[Hb(κ) = 1]| < ǫ1(κ) + ǫ2(κ) + ǫ3(κ) ,

which gives

|Pr[Expanon−0
GS,A′ (κ) = 1]− Pr[Expanon−1

GS,A′ (κ) = 1]|
≥ |Pr[Expanon−0

HGS,A(κ) = 1]− Pr[Expanon−1
HGS,A(κ) = 1]|

−2(ǫ1(κ) + ǫ2(κ) + ǫ3(κ)) .

The assumption about A implies that the hierarchical anonymity is broken. �

Proof of Hierarchical Traceability. Suppose to the contrary that A breaks
the hierarchical traceability of HGS. Then Advtrace

HGS,A(κ, T) ≥ 1/κc for some poly-
nomial size tree T , constant c > 0 and κ in an infinite index set N . We construct
a machine A′ that runs A as a blackbox and breaks the hierarchical traceability of
GS and thus its full traceability.

204 A Construction Under General Assumptions

Definition of A′. The adversary A′ simulates the hierarchical traceability experi-
ment, Experiment 13.3, with HGS to A. It also plays the role of the adversary in
Experiment 13.3 with GS.

The key generation is simulated as follows. First the NIZK simulator is invoked
to compute a reference string with a trapdoor (ξ, simstate). The string ξ is used
instead of a random string. Recall that TGS denotes the tree having ρ, the root
of T , as root, and children L(T). The adversary A′ waits until it receives the
keys (gpk (ρ), gsk (ρ)) from its experiment. Then it simulates the key generation
honestly except that it uses the received values, and it does not define gsk(α)
for any α ∈ L(T) at all. Thus, the keys of all intermediate group managers are
generated by A′.

In each iteration in the experiment simulated to A, it may request hsk(α) for
some signer Sα. When this happens A′ requests gsk(α) from its experiment, and
hands gsk(α) to A.

When A queries its HSig(·, T, hpk , hsk(·))-oracle on (m,α) the reply is computed
as follows. First A′ queries its GSig(·, TGS , gpk , gsk(·))-oracle on (m,α). The answer
is a GS signature σ. Then A′ computes C0, C

′
0, . . . , Cδ−1, C

′
δ−1 as defined by HSig.

Finally, it uses the NIZK simulator Shgs on input ((T, hpk ,m, σ, C,C′), ξ, simstate)
to get a simulated proof π, and hands (σ,C,C′, π) to A.

At some point A outputs a message-signature pair (m, (σ,C,C′, π)). Then A′

outputs (m,σ). This concludes the definition of A′.

Analysis of A′. We divide our analysis into several claims. Denote by Hπ,p the ma-
chine that simulates Experiment 13.3 with HGS to A, and outputs 1 if the experi-
ment outputs 1 and the output (m, (σ,C,C′, π)) of A satisfies (T, hpk ,m, σ, C,C′) ∈
LHGS. Consider such an execution and define α0 = ρ and αl for l = 1, . . . , δ by

αl = HOpen(T, hpk , hsk (αl−1),m, (σ,C,C
′, π)) .

Consider how the experiment can output 1. We argue that there does not exist a
β on level l in T such that β 6= αl and β′ = HOpen(T, hpk , hsk(β),m, (σ,C,C′, π))
with β′ ∈ β. If it did, then we would have (pkβ′ , r′) = Dskβ (Cl) and Epk (pkβ , r

′) =
C′l , but this contradicts the fact that Esk (C′l) = pkαl . Thus, the only explanation
for the output 1 is that αδ 6∈ C.

Denote by Hπ the machine that is identical to Hπ,p except that it simulates the
answers from the HSig(·, T, hpk , hsk(·))-oracle to A precisely as A′ does.

Claim 5. There exists a negligible function ǫ1(κ) such that

Pr[Exptrace
HGS,A(κ) = 1] ≤ Pr[Hπ,p(κ) = 1] + ǫ1(κ) .

Proof. The claim follows from the soundness of the NIZK. Denote by Eπ,p the event
that the output (m, (σ,C,C′, π)) of A satisfies (T, hpk ,m, σ, C,C′) ∈ LHGS. From
the soundness of the NIZK follows that Pr[Exptrace

HGS,A(κ) = 1 ∧ Eπ,p] is negligible.

By definition we have that Pr[Hπ,p(κ) = 1] = Pr[Exptrace
HGS,A(κ) = 1 ∧ Eπ,p]. The

claim follows. �

Security Analysis 205

Claim 6. There exists a negligible function ǫ2(κ) such that

|Pr[Hπ(κ) = 1]− Pr[Hπ,p(κ) = 1]| < ǫ2(κ) .

Proof. The claim follows from the adaptive zero-knowledge of the NIZK. We con-
struct an adversary Aadzk against the adaptive zero-knowledge, Experiment 2.42,
as follows.

It simulates Hπ except for the following two modifications. Firstly, it uses the
random string ξ from the experiment instead of generating its own. Secondly,
instead of invoking the simulator Shgs on input ((T, hpk ,m, σ, C,C′), ξ, simstate) to
produce a NIZK π it requests a NIZK of (T, hpk ,m, σ, C,C′) from its experiment.
To do this it must also hand a witness to the experiment, but this is not a problem
since the remainder of the signature is generated honestly. It follows that

|Pr[Hπ,p(κ) = 1]− Pr[Hπ(κ) = 1]|
= |Pr[Expadzk−0

πhgs,Aadzk
(κ) = 1]− Pr[Expadzk−1

πhgs,Aadzk
(κ) = 1]| < ǫ2(κ) ,

for some negligible function ǫ2(κ). �

Claim 7. Pr[Hπ(κ) = 1] ≤ Pr[Exptrace
GS,A′(κ) = 1].

Proof. All inputs to A in the simulation of Hπ are identically distributed to the
corresponding inputs in Experiment 13.3. The only difference in how the output of
Hπ and the output in the traceability experiment are defined is that Hπ outputs 1
if the output (m, (σ,C,C′, π)) of A satisfies (T, hpk ,m, σ, C,C′) ∈ LHGS and α 6∈ C,
whereas the experiment outputs 1 if GVf(TGS , gpk ,m, σ) = 1 and αδ 6∈ C. The
former implies the latter and the claim follows. �

Claim 8. The hierarchical traceability of GS is broken.

Proof. From Claim 5, Claim 6, and Claim 7 follows that

Pr[Exptrace
HGS,A(κ) = 1] ≤ Pr[Hπ,p(κ) = 1] + ǫ1(κ)

≤ Pr[Hπ(κ) = 1] + ǫ1(κ) + ǫ2(κ) ≤ Pr[Exptrace
GS,A′(κ) = 1] + ǫ1(κ) + ǫ2(κ) .

The claim now follows from the assumption that HGS is broken by A. �

Conclusion of Proof. If HGS is not hierarchically anonymous, then by Claim
4 neither is GS. If HGS is not hierarchically traceable, then by Claim 8 neither is
GS. This concludes the proof. �

206 A Construction Under General Assumptions

14.4 An Alternative Construction

The construction we describe above is not a good starting point if we want to
find a hierarchical group signature scheme for the adaptive setting. In this sec-
tion we sketch an alternative construction. Let SS = (Kg, Sig,Vf) be a signa-
ture scheme. For each group manager Mα and signer Sα, (spkα, sskα) = Kg(1κ),
and keys (pkα, skα) = Kggm(1κ) to a Goldwasser-Micali cryptosystem are gener-
ated. Then for each child α of β ∈ V(T), σβ(α) = Sigsskβ

(spkα, pkα) is computed.
For each α ∈ V(T)\L(T)\{ρ} we set hpk (α) = (spkα, pkα, σβ(α)), where α ∈ β,
and hsk (α) = skα. For each α ∈ L(T) set hpk (α) = (spkα, pkα, σβ(α)), where
α ∈ β, and hsk(α) = (sskα, skα). For the root ρ we set hpk (ρ) = (spkρ, pkρ) and
hsk(ρ) = skρ.

Consider a signer Sα corresponding to a path α0, . . . , αδ, where α0 = ρ and
αδ = α. To sign a message m the signer computes

Cl = Epkαl
((σαl(αl+1), r

′
l), rl) , for l = 0, . . . , δ − 1 ,

C′l = Epk (pkαl , r
′
l) , for l = 0, . . . , δ − 1 , and

Cδ = Epkαδ
(Sigsskα

(m)))

and provides a NIZK π that (C,C′) is formed as above with pkα0
= pkρ. The

signature consists of the tuple (C,C′, π).
To verify a signature (C,C′, π) the verifier simply checks the NIZK π. To open

a signature, a group manager Mβ on depth l first verifies the signature. If it is not
valid, it returns ⊥. Otherwise it computes (σ, r′) = Dskβ (Cl). If σ is equal to σβ(α)
for some α ∈ β and Epk (pkβ , 1) = C′l , then it returns α and otherwise ⊥.

This construction is a strict generalization of the construction in [17] except
that we require that the cryptosystem used is anonymous. We believe that the
construction is provably secure under the existence of a family of trapdoor per-
mutations. However, as part of the proof we must essentially redo the analysis
of the CCA2-secure cryptosystem of Sahai [133], and the group signature scheme
of Bellare et al. [17], which makes the proof more complex than the proof for the
construction we detail in this thesis.

A potential advantage of this scheme is that key generation need not be per-
formed centrally. Each group manager Mβ could also be given the private signature
key sskβ which allows it to generate (spkα, pkα) and (sskα, skα) for a child Mα or
Sα by itself. Thus, a group manager could issue keys without interacting with any
other group manager. As we will see in the next section, it is far from obvious how
to define the security of such a scheme.

14.5 On Eliminating the Trusted Key Generator

We have defined hierarchical group signatures using a trusted key generator. This is
a natural first step when trying to understand a new notion, but there are situations
where one would like a hierarchical group signature scheme without a trusted party.

On Eliminating the Trusted Key Generator 207

If there exists a set of parties of which the majority is trusted, general multiparty
techniques can be used to replace the trusted key generator by the secure evaluation
of a function. Although this solves the problem in some sense it introduces a trust
hierarchy that is inconsistent with the hierarchy of the group managers and signers.

Consider now the security of a construction without a trusted key generator.
In this case hierarchical anonymity and hierarchical traceability do not suffice to
ensure security. The problem is that the experiments only consider the advantage
of an adversary when all keys are generated honestly. Thus, all bets are off if this is
not the case. It is, however, not clear what a definition of security for hierarchical
group signatures without a trusted key generator should look like.

The adversary should probably have the power to choose its keys adaptively,
based on the keys and signatures of honest parties. There are many subtle issues.
For example, without a trusted key generator the default for hierarchical group
signatures is that not only trees but general acyclic graphs of group managers are
allowed. Is this what we want? If only trees are supposed to be allowed, certificates
must embed additional information that restricts how a certificate chain may look
and the NIZK must consider this as well. Other interesting questions are: Is there
a well defined tree? Do all parties know what the tree looks like? Who generates
the common random string used by the NIZKs?

We believe that the alternative construction described above is well suited to a
setting without a trusted key generator, but without a rigorous definition of security
we cannot claim anything.

Chapter 15

A Construction Under Standard

Assumptions

In this section we construct an almost practical hierarchical group signature scheme.
We give an explicit construction where the details of all subprotocols are completely
specified. Then we prove the security of our construction in the random oracle
model under the discrete logarithm assumption and the strong RSA-assumption.

The primitives we use to achieve this result are the El Gamal cryptosystem, the
Cramer-Shoup cryptosystem, the Cramer-Shoup signature scheme, the Chaum-van
Heijst-Pfitzmann hash function, and the Shamir hash function.

This chapter is based on the paper by Trolin and Wikström [141].

15.1 An Informal Description of Our Construction

Our construction is quite complex, so before presenting any details we give an
informal description of the key ideas. Recall from Section 3.6 the definition and
basic properties of the El Gamal cryptosystem [71]. It is well known that the
El Gamal cryptosystem is semantically secure under the DDH-assumption, but it
is easy to see that it is also anonymous, as long as a fixed group is used for all
parties. We exploit both properties in our construction. Each group manager Mβ

holds a private key xβ and a public key yβ = gxβ of an El Gamal cryptosystem.

Recall from Section 3.10 the definition of the Cramer-Shoup signature scheme
[54]. It is provably secure under the strong RSA-assumption. We exploit this to
form the private keys of the signers. The private key of a signer Sα is a Cramer-
Shoup signature σα = Sigcs(yα1 , . . . , yαδ−1

) of the public keys corresponding to the
path α0, α1, . . . , αδ from the root ρ = α0 to the leaf α = αδ.

To form a signature of a message m the signer first computes a chain of crypto-

209

210 A Construction Under Standard Assumptions

texts on the form

((u0, v0, u
′
0, v
′
0), . . . , (uδ−1, vδ−1, u

′
δ−1, v

′
δ−1))

= (Eyα0
(yα1), Eyα0

(1), . . . , Eyαδ−1
(yαδ), Eyαδ−1

(1)) .

Then the signer computes a commitment C(σα) of the signature σα. Finally, it com-
putes an honest verifier zero-knowledge proof of knowledge π(m) that the crypto-
texts above form a chain and that C(σα) hides a signature of the list (yα1 , . . . , yαδ−1

)
of the public keys used to form the chain of cryptotexts. The proof is given in the
random oracle model and the message m to be signed is given as a prefix to the
query to the random oracle. Thus, the complete signature is given by

((ul, vl, u
′
l, v
′
l)
δ−1
l=0 , C(σα), π(m)) .

Recall from Section 2.10 that in a proof in the random oracle model one or several
cryptographic hash functions are modeled by randomly chosen functions.

Intuitively, this means that if a signer Sα can produce a valid signature, we can
by rewinding extract a signature of the list of public keys corresponding to the path
from the root to the signer. Thus, a signature can only be formed if the signer is
legitimate and if it has formed the chain correctly.

The pair (u′l, v
′
l) may seem useless, but it allows a group manager Mβ on level

l to determine if the cryptotext (ul, vl) in a signature is computed using its public
key yβ or not, and thus avoid that the opening of a signature gives the wrong result.

15.1.1 An Informal Description of the Proof of Knowledge

The main obstacle to find an efficient hierarchical group signature scheme fol-
lowing our approach is how to prove efficiently that C(σα) is a commitment of
a signature σα of the list of public keys (yα1 , . . . , yαδ−1

) used to form the chain
((u0, v0, u

′
0, v
′
0), . . . , (uδ−1, vδ−1, u

′
δ−1, v

′
δ−1)). We construct a reasonably practical

honest verifier zero-knowledge public coin proof for this relation by carefully select-
ing and combining a variety of cryptographic primitives and techniques.

Let q0, . . . , q3 be primes such that qi = 2qi+1 + 1 for i = 0, 1, 2. Recall from
Section 3.2 that such a list of primes is called a Cunningham chain and that it
exists under mild assumptions on the distribution of primes. There is a subgroup
Gqi+1 ⊂ Z∗qi of order qi+1 for i = 0, 1, 2. Denote by gi and yi fixed and independently
chosen generators of Gqi for i = 1, 2, 3, i.e., loggi yi is not known to any party in
the protocol. Thus, we can form a commitment of a value yα ∈ Gq3 in three ways,
as

(yt
′′′

3 gs
′′′

3 , ys
′′′

3 yα) , (yt
′′

2 g
s′′

2 , ys
′′

2 gyα2) , and (yt
′

1 g
s′

1 , y
s′

1 g
gyα2
1) ,

where t′′′, s′′′ ∈ Zq3 , t
′′, s′′ ∈ Zq2 , and t′, s′ ∈ Zq1 are randomly chosen. By ex-

tending the ideas of Stadler [138] we can give a reasonably practical cut-and-choose
proof that the elements hidden in two such commitments are identical.

An Informal Description of Our Construction 211

Recall from Section 3.4 that the collision-free Chaum-Heijst-Pfitzmann hash
function [47] is defined by HCHP : Zδq2 → Gq2 , H

CHP : (z1, . . . , zδ) 7→
∏δ
l=1 h

zl
l ,

where h1, . . . , hδ ∈ Gq2 are randomly chosen, i.e., no party knows a non-trivial
representation of 1 ∈ Gq2 in these elements.

We employ El Gamal over Gq3 . This means that the public keys yα1 , . . . , yαδ
belong to Gq3 . Although it is not trivial, the reader should not find it too hard to
imagine that Stadler-techniques can be used to prove that the public keys used for
encryption are identical to values hidden in a list of commitments formed as

((µ0, ν0), . . . , (µδ−1, νδ−1)) = ((y
t′′0
2 g

s′′0
2 , y

s′′0
2 h

yα1
1), . . . , (y

t′′δ−1

2 g
s′′δ−1

2 , y
s′′δ−1

2 h
yαδ
δ)) .

The importance of this is that if we take the product of the commitments we get a
commitment of HCHP(yα1 , . . . , yαδ), i.e.,

(δ−1
∏

i=0

µi,

δ−1
∏

i=0

νi

)

=

(

yt
′′

2 g
s′′

2 , ys
′′

2

δ
∏

i=1

h
yαi
i

)

, (15.1)

for some t′′, s′′ ∈ Zq2 . Thus, at this point we have devised a way for the signer
to verifiably commit to the hash value of the keys it used to form the chain of
cryptotexts. This is a key step in the construction.

Recall that the signer commits to a Cramer-Shoup signature σα of the list of
public keys it uses to form the chain of cryptotexts. The Cramer-Shoup signature
scheme uses an RSA-modulus N and elements from the subgroup QRN of squares
in Z∗N, and it is parameterized by two collision-free hash functions. We refer the
reader to Section 3.10 for details on this. The first hash function is used to compute
a message digest of the message to be signed, i.e., the list (yα1 , . . . , yαδ) of public
keys. Above we have sketched how the signer can verifiably form a commitment of
the HCHP hash value of this message, so it is only natural that we let this be the
first of the two hash functions in the signature scheme. In the signature scheme
the message digest lives in the exponent of an element in QRN. To move the hash
value up in the exponent and to change group from Gq1 to QRN, the signer forms
two commitments

(

yt
′

1 g
s′

1 , y
s′

1 g
HCHP(yα1 ,...,yαδ)

1

)

and ytgH
CHP(yα1 ,...,yαδ) .

Then it gives a cut-and-choose proof that the exponent in the left commitment
equals the value committed to in the product (15.1). It also proves that the expo-
nents in the two commitments are equal. Thus, at this point the signer has proved
that it holds a commitment over QRN of the hash value of the public keys it used
to form the chain of cryptotexts.

The second hash function used in the Cramer-Shoup signature scheme is applied
to a single element in QRN. Since HCHP is not collision-free on such inputs, we use
the Shamir hash function defined by HSh

(N,g) : Z → QRN, x 7→ gx mod N instead.
A more detailed account of this function is given in Section 3.9. Using similar

212 A Construction Under Standard Assumptions

techniques as explained above the signer evaluates the hash function and moves the
result into the exponent, by two Stadler-like cut-and-choose proofs.

Given the two hash values in the exponents of two commitments, standard
techniques can be used to prove that the commitment C(σα) is a commitment of
the Cramer-Shoup signature σα of the list of public keys used to form the chain of
cryptotexts.

15.2 Our Construction

We are now ready to describe the details of our construction following the informal
description above. We denote our scheme by HGS = (HKg,HSig,HVf,HOpen), and
define algorithms HKg, HSig, HVf, and HOpen below.

Denote by κc and κr two additional security parameters that are defined as
functions of κ such that 2−κc and 2−κr are negligible.

15.2.1 Key Generation

The key generation phase proceeds as follows. Each group manager is given an
El Gamal key pair, and each signer is given a Cramer-Shoup signature of the public
keys of the group managers on the path from the root to the signer.

Algorithm 15.1 (Key Generation, HKg(1κ, T)).

1. Run (q0, . . . , q3) = CunnGen4(1
κ) to generate a Cunningham chain, and let

gi, yi ∈ Gqi be random elements for i = 1, 2, 3.

2. Let δ be the depth of the tree T , and run

HCHP = (h1, . . . , hδ) = CHPg(q2, δ)

to generate a collision-free Chaum-van Heijst-Pfitzmann hash function.

3. Run (X,Y) = Kgcs(q3) to generate keys for a Cramer-Shoup cryptosystem
over Gq3 .

4. Run ((HCHP,g,N,h, z, e′), (HCHP,g,N,h, z, e′,p′,q′)) = SSKgcs
CHPg,Shg(1

κ)
and choose y ∈ QRN randomly to generate keys for a Cramer-Shoup signature
scheme employed with the collision-free hash functions HCHP and HSh

(N,g) and

for a commitment scheme. We sometimes write (spk , ssk) for the above keys
to simplify notation.

5. Compute the integer a < κ such that P = apq + 1 is prime. Recall from
Section 3.10 that there exists such a prime. Choose gN, yN ∈ GN randomly.

6. For each node β ∈ V(T), generate keys

(hpk (β), hsk (β)) = (yβ, xβ) = CSKgelg(q3, g3)

for an El Gamal cryptosystem over Gq3 .

Our Construction 213

7. For each leaf α ∈ L(T) let α0, . . . , αδ be the path from the root to α, where
α0 = ρ and αδ = α, and compute

(eα,σα,σ
′
α) = Sigcs

HCHP,HSh
(N,g)

,ssk (yα1 , . . . , yαδ) .

Then redefine hsk (α) = (eα,σα,σ
′
α).

8. Let ρ be the root of T . Redefine the public key hpk (ρ) of the root ρ to be

(hpk (ρ),N,h, z, e′,g,y, q0, g1, y1, g2, y2, g3, y3, H
CHP, Y, gN, yN, κc, κr)

and output (hpk , hsk).

Remark 15.2. The security parameters κc and κr are used in the proof of knowledge
and decide its completeness, soundness, and the statistical distance between a real
and simulated view of the protocol.

(y{{α,β},{γ,δ}}, . . .), x{{α,β},{γ,δ}}

y{α,β}, x{α,β}

yα, (eα,σα,σ
′
α)

yβ , (eβ,σβ ,σ
′
β)

y{γ,δ}, x{γ,δ}

yγ , (eγ ,σγ ,σ
′
γ)

yδ, (eδ,σδ,σ
′
δ)

Figure 15.1: An illustration of the output of HKg for a three-level tree. The common
group parameters, i.e., key size, generators etc., are not explicit.

15.2.2 Computing, Verifying, and Opening a Signature

In this section we give a detailed description of the signing algorithm, the verific-
ation algorithm, and the opening algorithm of the scheme. Denote by LRHGS the
language consisting of tuples

((ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C)

in G4δ
q3 ×G4

q3 × QR5
N such that there exists

((τ0, τ
′
0, . . . , τδ−1, τ

′
δ−1, τδ), (τ , ζ, τ

′, ζ′,ψ, ε))

214 A Construction Under Standard Assumptions

in Z2δ+1
q3 × [0, 2κrN− 1]5 × [2κ, 2κ+1 − 1] such that

γ0 = yα0 ,

(ul, vl, u
′
l, v
′
l) = (E(γl,g)(γl+1, τl), E(γl,g)(1, τ

′
l)) for l = 0, . . . , δ − 1 ,

Cδ = Ecs
Y (γδ, τδ) ,

u = yζgτ , u′ = yζ
′

gτ
′

, C = yψgε , and

VfcsHCHP,HSh,spk ((γ1, . . . , γδ), (ε,v/y
τ ,v′/yτ

′

)) = 1 .

In Chapter 16 we construct a zero-knowledge proof of knowledge denoted by πhgs =
(Phgs, Vhgs) for this relation.

Algorithm 15.3 (Signing, HSig(m,T, hpk , hsk (α))). Let α0, . . . , αδ with ρ = α0

and αδ = α be the path to the signer Sα, and write (eα,σα,σ
′
α) = hsk (α)

1. Choose r0, r
′
0, . . . , rδ−1, r

′
δ−1, rδ ∈ Zq3 randomly and compute (ul, vl, u

′
l, v
′
l) =

(E(yαl ,g3)
(yαl+1

, rl), E(yαl ,g3)
(1, r′l)), for l = 0, . . . , δ−1, and Cδ = Ecs

Y (yαδ , rδ).
This is the list of cryptotexts.

2. Choose r, s, r′, s′, t ∈ [0, 2κrN − 1] randomly and set (u,v) = (ysgr,yrσα),
(u′,v′) = (ys

′

gr
′

,yr
′

σ′α), and C = ytgeα . This is a commitment of the
signature (eα,σα,σ

′
α).

3. Compute a non-interactive proof

π = P
O(m,·)
hgs

(

((ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C),

((τ0, . . . , τδ), (τ , ζ, τ
′, ζ′,ψ, ε))

)

in the random oracle model using the message m as a prefix.

4. Output the signature
(

(ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, π

)

.

Remark 15.4. Note that we switch the order of the components in the El Gamal
cryptosystem in order to simplify the construction of the proof of knowledge. For
example, D1/xρ(u0, v0) = yα1 .

The construction of the proof of knowledge πhgs is involved and postponed until
Chapter 16. The verification algorithm consists simply of verifying the proof of
knowledge contained in a signature.

Algorithm 15.5 (Verification, HVf(T, hpk ,m, σ)). On input a candidate signa-

ture σ = (c, π) =
((

(ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C

)

, π
)

return V
O(m,·)
hgs (c, π).

To open a signature a group manager on depth l first verifies that the signature
is valid and that its public key was used to form (ul, vl). Only then does it decrypt
(ul, vl).

Security Analysis 215

Algorithm 15.6 (Open, HOpen(T, hpk , hsk(β),m, σ)). On input a candidate sig-
nature σ =

(

(ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, π

)

, if HVf(T, hpk ,m, σ) = ⊥ or
if u′l 6= (v′l)

xβ and β 6= ρ, then return ⊥. Otherwise compute yα = D1/xβ(ul, vl)
and return α.

Remark 15.7. To ensure that the protocol satisfies the new and stronger definition
instead of the one presented in [141], the elements (u′l, v

′
l) are added. The role

played by these elements is to let a group manager verify, given a signature, that
no other group manager can open the signature.

15.2.3 The Complexity of the Scheme

The main computational cost of the protocol lies in computing the zero-knowledge
proof of knowledge πhgs. Thus, we postpone the complexity analysis to Section
16.6.

15.3 Security Analysis

We analyze the security of the scheme and prove the following theorem.

Theorem 15.8. The hierarchical signature scheme HGS is secure in the random
oracle model under the DL-assumption, the DDH-assumption, and the strong RSA-
assumption.

Proof. The proof proceeds by contradiction. We show that an adversary that
breaks the hierarchical group signature scheme breaks the DL-assumption, the
DDH-assumption, or the strong RSA-assumption.

We can not use the Cramer-Shoup signature scheme as a blackbox and reach
a contradiction to its security. The problem is that we use the RSA-modulus of
the signature scheme also for commitments. Fortunately, Cramer and Shoup [54]
describe a simulator running an adversaryA as a blackbox. The simulator simulates
the CMA-experiment to the adversary in a way that is statistically indistinguishable
from the real experiment. Furthermore, if in the simulation the adversary with non-
negligible probability can output a signature of a message on which it never queried
the simulated signature oracle, then the strong RSA-assumption is broken.

When invoking the zero-knowledge simulator we must program the random
oracle O at some points. In principle it could be the case that the adversary
has already asked for the value at the point we need to program, and this would
prohibit programming. A standard observation is that an adversary can only query
the random oracle at a polynomial number of points, and the point on which the
random oracle is programmed is always chosen randomly from an exponentially
large space. Thus, it is easy to see that programming the oracle fails with negligible
probability. Similarly, in principle it could be the case that the adversary guesses
the value of the random oracle at some point, on which the random oracle is never
queried. It is easy to see that also this happens with negligible probability. Thus,

216 A Construction Under Standard Assumptions

in the remainder of the proof we assume without loss that the adversary has never
queried the random oracle O at any point x on which we must give O(x) a specific
value, and that the adversary never outputs a point x and a corresponding value
O(x) without querying the oracle on x. This convention simplifies our exposition.

We consider hierarchical anonymity and hierarchical traceability separately.

Hierarchical Anonymity. Let A be any adversary. Denote by Hb the machine
that simulates the hierarchical anonymity experiment Expanon−b

HGS,A(κ, T) using A as a
blackbox.

Denote by Hb
o the machine that is identical to Hb except that the open oracle

HOpen(T, hpk , hsk (·), ·, ·) is simulated as follows. Consider a query on the form
(α,m, σ), where α is on depth l. If HVf(T, hpk ,m, σ) = 0, return ⊥. Otherwise
assume that the signature is on the form

σ =
(

(ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, π

)

.

The machine Hb
o computes Dcs

X(Cδ) and if the result does not equal yαδ for some
αδ ∈ L(T), the HOpen(T, hpk , hsk (·), ·, ·)-oracle is instructed to return ⊥. Suppose
now that yαδ is on the expected form. Then there is a path α0, . . . , αδ in the tree T
corresponding to αδ and the HOpen(T, hpk , hsk(·), ·, ·)-oracle is instructed to return
αl+1 if β = αl and ⊥ otherwise. In principle this answer could be incorrect, but we
prove that it is not.

Claim 1. The absolute value |Pr[Hb = 1] − Pr[Hb
o = 1]| is negligible under the

DL-assumption and the strong RSA-assumption.

Proof. Assume that the claim is false. Then with non-negligible probability some
query to the open oracle HOpen(T, hpk , hsk(·), ·, ·) is answered incorrectly.

Let p(κ) denote the running time of A. Then it follows that A asks the sim-
ulated HOpen(T, hpk , hsk (·), ·, ·) oracle at most p(κ) queries. Denote by Tl the
machine that simulates Hb

o until l− 1 queries have been answered by the simulated
HOpen(T, hpk , hsk (·), ·, ·)-oracle, and then halts outputting the lth query. We say
that a query is difficult if it is answered incorrectly. We show that Tl outputs a
difficult query with negligible probability for l = 0, . . . , p(κ). The union bound then
implies that all queries are answered correctly with overwhelming probability and
the claim follows.

The statement is clearly true for T0, since its output is empty. Suppose now
that the statement is true for Tl for l < s, but false for Ts. Thus, Ts outputs a
difficult query with non-negligible probability.

Consider a query (α,m, σ) such that

σ = ((ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, (γ, c, e)) .

There are two sorts of difficult queries. Either

((ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C)

Security Analysis 217

does not belong to LRHGS, or it does, but (ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ is not a chain on

the form (Eyα0
(yα1), Eyα0

(1), . . . , Eyαδ−1
(yαδ), Eyαδ−1

(1)), Ecs
Y (yαδ) for any path

α0, . . . , αδ from the root ρ = α0 in T to a leaf α = αδ ∈ L(T).
Note that if the tuple above does belong to LRHGS, then (u′l, v

′
l) = E(yαl ,g)

(1, r′l)

for some r′l and there exists no β ∈ V(T) with β 6= αl such that (v′l)
xβ = u′l.

Suppose first that Ts outputs a query of the first type with non-negligible prob-
ability. Then the soundness of the computationally convincing proof of knowledge
πhgs is broken by the interactive prover P ∗hgs defined as follows. It accepts special
parameters

Λ = ((N,g,y), (q0, g1, y1, g2, y2, g3, y3, gN, yN))

as input. Then it chooses k ∈ QRN randomly, and invokes the simulator from
the proof of the Cramer-Shoup signature scheme on (N,k) to generate spk . The
remaining parameters of the experiment simulated to A are generated as in the real
experiment, except the signatures (eα,σα,σ

′
α). They are computed by invoking

the simulated signature oracle of the Cramer-Shoup signature simulator.
The prover P ∗hgs chooses a random index 1 ≤ i ≤ p(κ) and simulates Ts until

A makes its ith query to the random oracle O. Denote the ith new query by
((ul, vl, u

′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, γ). The prover P ∗hgs then outputs the ith

query as its choice of common input and the first message γ in the proof and waits
for a challenge c from the honest verifier Vhgs of protocol πhgs. It instructs O to
output c and continues the simulation of Ts until it gives output (α,m, σ). Note
that here we only program the oracle on new queries. If σ is on the form

σ = ((ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, (γ, c, e))

it outputs e, and otherwise 0. Note that the index i is chosen independently at
random. Thus, the probability that the challenge value c in the final output of Ts
corresponds to the ith query to O conditioned on the event that the final output of
Ts is a difficult query is at least 1/p(κ).

It is proved in [54] that the distributions of the key spk and the signatures
(eα,σα,σ

′
α) are statistically close to the distributions of a real public key and real

signatures. Thus, we conclude that

Pr[AccVhgs
(view

Vhgs

P∗
hgs

(Λ, rp, rv)) = 1 ∧ IP∗
hgs

(Λ, rp) 6∈ LRHGS]

is non-negligible. This contradicts the soundness of the protocol πhgs. Formally,
the contradiction follows from combining Proposition 16.39 with Proposition 2.32.

Assume now that Ts outputs a query of the second type with non-negligible
probability.

The idea is to execute the extractor of the proof of knowledge of the πhgs protocol
to find a Cramer-Shoup signature of a list of public keys that does not correspond to
a signer for which the adversary has requested the secret key. This would contradict
the CMA-security of the Cramer-Shoup signature scheme.

218 A Construction Under Standard Assumptions

The problem is that, although the extractor will output a witness in expected
polynomial time with non-negligible probability and part of the witness is indeed a
Cramer-Shoup signature of a list of public keys, the definition of a computationally
convincing proof of knowledge gives no guarantee that the extracted signature is
not a signature of list of public keys already given to the adversary.

We resolve this technicality by describing a special hypothetical protocol π′hgs in
Section 16.5.1 of the next chapter, and show that it is a computationally convincing
proof of knowledge. The protocol is identical to πhgs except that the verifier only
accepts a proof corresponding to no signer. We show that a prover in the π′hgs

protocol defined in Section 16.5.1 can be constructed from Ts. Then we invoke the
extractor and conclude that the extracted Cramer-Shoup signature implies that the
CMA-security of the Cramer-Shoup signature scheme is broken.

Denote by P ∅hgs the prover in the protocol π′hgs identical to P ∗hgs except for the
following changes. It accepts as input

Λ′ = ((N,g,y), (q0, g1, y1, g2, y2, g3, y3, gN, yN), (xα, yα)α∈V(T)) .

It chooses k ∈ QRN randomly and invokes the simulator from the proof of the
Cramer-Shoup signature scheme on (N,k) to generate spk . Finally, it interacts
with the honest verifier V ′hgs of the π′hgs protocol instead of the honest verifier Vhgs

of the πhgs protocol.
It follows that there exists a constant c1 and an infinite index set N such that

for κ ∈ N

κ−c1 ≤ Pr[AccVhgs
(view

V ′
hgs

P∅
hgs

(Λ′, rp, rv)) = 1]

≤ Pr[AccVhgs
(view

V ′
hgs

P∅
hgs

(Λ′, rp, rv)) = 1 | δV
′
hgs

P∅
hgs

(Λ′, rp) ≥ 1

2
κ−c1]

·Pr[δ
V ′
hgs

P∅
hgs

(Λ′, rp) ≥ 1

2
κ−c1]

+
1

2
κ−c1 .

Thus, Pr[δ
V ′
hgs

P∅
hgs

(Λ, rp) ≥ 1
2κ
−c1] ≥ 1

2κ
−c1 and from Proposition 16.40 we conclude

that there exists an extractor XP∅
hgs and a polynomial p(κ) such that

Pr[(IP∅
hgs

(Λ′, rp),XP∅
hgs(Λ′, rp)) ∈ R′HGS | δ

V ′
hgs

P∅
hgs

(Λ′, rp) ≥ 1

2
κ−c1] ≥ 1− ǫ(κ)

for some negligible function ǫ(κ), and such that the expected running time of XP∅
hgs

on inputs (Λ′, rp) such that δ
V ′
hgs

P∅
hgs

(Λ′, rp) ≥ 1
2κ
−c1 is bounded by some polynomial

t(κ).
Denote by Asig the algorithm that on input (N,k) generates the remainder of

the parameters in Λ′, chooses rp ∈ {0, 1}∗ randomly and simulates XP∅
hgs on these

Security Analysis 219

inputs except that P ∅hgs uses the value of k instead of generating it. Furthermore,

XP∅
hgs is simulated for at most 4κc1t(κ) steps. Note that on inputs such that the

expected running time is t(κ), Markov’s inequality implies that the the probability
that the simulation is not completed is bounded by 1

4κ
−c1 .

If the simulation is completed it interprets the common input IP∅
hgs

(Λ, rp) as

(

(ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C

)

∈ G4δ
q3 ×G4

q3 ×QR5
N

and it interprets the output of XP∅
hgs as a tuple

((τ0, τ
′
0, . . . , τδ−1, τ

′
δ−1, τδ), (τ, ζ, τ

′, ζ′, ψ, ε))

in Z2δ+1
q3 × [0, 2κrN − 1]5 × [2κ, 2κ+1 − 1]. Finally, it outputs (ε,v/yτ ,v′/yτ

′

). If
on the other hand the simulation is not completed it outputs ⊥.

We conclude that Asig outputs a Cramer-Shoup signature of (γ1, . . . , γδ) that
does not equal (yα1 , . . . , yαδ) for any path α0, . . . , αδ in T with probability at least

1

2κc1

(

1

2κc1
− 1

4κc1
− ǫ(κ)

)

which is non-negligible. Note that by construction, the simulated Cramer-Shoup
signature oracle has never been queried on (γ1, . . . , γδ). It follows from [54] that
this contradicts the strong RSA-assumption, or the collision-freeness of SH or CHP.
From Proposition 3.13 we know that finding a collision in SH contradicts the strong
RSA-assumption, and from Proposition 3.6 we know that finding a collision in CHP
contradicts the DL-assumption. �

Denote by Hb
o,g the machine that is identical to Hb

o except that it chooses two

leaves β
(0)
δ and β

(1)
δ randomly. Let β

(0)
δ , . . . , β

(0)
t and β

(1)
δ , . . . , β

(1)
t be the paths to

their least common ancestor β
(0)
t = β

(1)
t . The machine Hb

o,g outputs 0 if A requests

x
β

(b)
l

for some b ∈ {0, 1} and t ≤ l ≤ δ. It also outputs 0 if (α(0), α(1)) 6= (β
(0)
δ , β

(1)
δ).

Claim 2. Pr[Hb
o = 1] = Pr[Hb

o,g = 1]/|L(κ)|2.

Proof. If A does not output indices α(0), α(1) ∈ L(T) the output is 0 in both

simulations. Suppose it does and let α
(0)
δ , . . . , α

(0)
t′ and α

(1)
δ , . . . , α

(1)
t′ be the paths

to their least common ancestor α
(0)
t′ = α

(1)
t′ . If A ever asks for the secret key of x

α
(b)
l

for any l = t, . . . , δ the output is 0 in both simulations. Suppose it does not ask

for such keys. Then we have (α(0), α(1)) = (β
(0)
δ , β

(1)
δ) with probability 1/|L(κ)|2,

since the indices β
(0)
δ and β

(1)
δ are chosen independently at random. The claim

follows. �

220 A Construction Under Standard Assumptions

Denote by Hb
o,g,nddh the machine that is identical to Hb

o,g except for the fol-
lowing. In Step 6 in the key generation algorithm is simulated honestly except
that y

β
(b)
l

, for l = t, . . . , δ, are instead defined as follows using a randomly chosen

elements (D1,l, D2,l, D3,l, D
′
2,l, D

′
3,l) ∈ G5

q3 for l = t, . . . , δ − 1. The public keys are
defined by

y
β

(b)
l

= D1,l .

Note that the simulated hierarchical group signature of m is only computed if

(α(0), α(1)) = (β
(0)
δ , β

(1)
δ). The single querym to the HSig(T, hpk , hsk (α(b)), ·) oracle

is simulated as follows. To simplify the exposition we write αl instead of α
(b)
l as

in Experiment 13.2. The machine Hb
o,g,nddh chooses τ , ζ, τ ′, ζ′,ψ ∈ [0, 2κ+κr − 1]

randomly and computes

(ul, vl, u
′
l, v
′
l) = (D2,l, yαl+1

D3,l, D
′
2,l, D

′
3,l), for l = 0, . . . , δ − 1 ,

Cδ = Ecs
Y (yαδ , r) , and

(u,v) = (gζ ,gτ), (u′,v′) = (gζ
′

,gτ
′

), C = gψ .

To construct the proof π, Hb
o,g,nddh simply invokes the simulator for the proof

of knowledge. This is guaranteed to exist by Proposition 16.38. To do this the
random oracle O is programmed. As explained at the beginning of the proof this
is not a problem since the input to the random oracle is chosen randomly from an
exponentially large space.

Claim 3. The absolute value |Pr[Hb
o,g = 1]− Pr[Hb

o,g,nddh = 1]| is negligible under
the DL-assumption.

Proof. Recall the definition of the variant DDH-assumption from Section 3.5. A
tuple (D1, D2, D3, D

′
2, D

′
3) is called a DDH-tuple if logg3 D3 = logg3 D1 logg3 D2

and logg3 D
′
3 = logg3 D1 logg3 D

′
2.

Denote by Hb,i
o,g,nddh the machine that simulates Hb

o,g,nddh except that it uses
random triples only for t ≥ l > i. The distributions of the simulated (u,v), (u′,v′),
and C are statistically close to those in the real experiment. From Proposition
16.38, i.e., the statistical zero-knowledge property of the protocol πhgs, we have that

|Pr[Hb,−1
o,g,nddh = 1] − Pr[Hb

o,g = 1]| is negligible. It follows that the distributions

of Hb,−1
o,g,nddh and Hb,δ−1

o,g,nddh are statistically close to the distributions of Hb
o,g and

Hb
o,g,nddh respectively.

Suppose that |Pr[Hb
o,g = 1]−Pr[Hb

o,g,nddh = 1]| is non-negligible. Then it follows
from a hybrid argument that there exists a fixed i such that

|Pr[Hb,i
o,g,nddh = 1]− Pr[Hb,i+1

o,g,nddh = 1]|

is non-negligible.
Denote by A′ the adversary in the variant DDH-experiment of Lemma 3.8 that

proceeds as follows. On input (q3, g3, D1, D2, D3, D
′
2, D

′
3) it computes q0, q1, q2 from

Security Analysis 221

q3 and then simulates Hb,i
o,g,ddh on these values except that instead of generating

(D1,l, D2,l, D3,l, D
′
2,l, D

′
3,l) it uses (D1, D2, D3, D

′
2, D

′
3). We conclude that the dis-

tribution of the variableA′(q3, g3, D1, D2, D3, D
′
2, D

′
3) is identical to the distribution

of Hb,i+1
o,g,nddh or Hb,i

o,g,nddh depending on if (D1, D2, D3, D
′
2, D

′
3) is a DDH-tuple or

not. Thus, by Lemma 3.8, A′ contradicts the DDH-assumption, and the claim
holds. �

Claim 4. The absolute value |Pr[H0
o,g,nddh = 1] − Pr[H1

o,g,nddh = 1]| is negligible
under the DDH-assumption.

Proof. Suppose that the claim is false. Then the CCA2-security of the Cramer-
Shoup cryptosystem is broken by the adversary A′ taking part in Experiment 2.17
and defined as follows. It simulates H0

o,g,nddh except that it waits for a Cramer-
Shoup public key Y over Gq3 , computes q0, q1, q2, and uses these values in the sim-
ulation. Thus, it does not know the private key X to the Cramer-Shoup cryptosys-
tem. Instead of computing Dcs

X(Cδ) to simulate the answer to a query to the
HOpen(T, hpk , hsk (·), ·, ·)-oracle, it queries its decryption oracle to find this value.
When computing the hierarchical group signature of m, it hands y

β
(0)
δ

and y
β

(1)
δ

to the encryption oracle and receives a challenge cryptotext Cδ. It then uses this
challenge cryptotext to construct the simulated hierarchical group signature.

It follows that Expcca2−b
CScs,A′(κ) is identically distributed to Hb

o,g,nddh, and the
CCA2-security of the Cramer-Shoup cryptosystem is broken. This contradicts Pro-
position 3.10 and the claim holds. �

The hierarchical anonymity now follows immediately from Claims 1–4.

Hierarchical Traceability. Let A be any adversary. Denote byH the machine
that simulates the experiment Exptrace

HGS,A(κ, T). Denote by Hp the machine that is
identical to H except that it simulates the HSig(·, T, hpk , hsk(·))-oracle as follows.
The first step is simulated honestly. In Step 2 (u,v), (u′,v′) and C are replaced
by (gζ ,gτ), (gζ

′

,gτ
′

) and gψ respectively with randomly chosen ζ, τ , ζ′, τ ′,ψ ∈
[0, 2κ+κr − 1]. In Step 3, the simulator of the proof of knowledge guaranteed to
exist by Proposition 16.38 is invoked to construct π. This requires that the random
oracle O is programmed, but this is not a problem, since the query to the random
oracle is chosen randomly from an exponentially large space.

Claim 5. The absolute value |Pr[H = 1]− Pr[Hp = 1]| is negligible.

Proof. The distributions of (u,v), (u′,v′), and C in simulated hierarchical signa-
tures are statistically close to those in the real experiment. The statistical zero-
knowledge simulator guaranteed to exist by Proposition 16.38 implies that the dis-
tributions of the simulated proofs are statistically close to those in the experiment.
The claim follows. �

Claim 6. The probability Pr[Hp = 1] is negligible.

222 A Construction Under Standard Assumptions

Proof. The idea of the proof is to execute the extractor of the πhgs protocol to find
a Cramer-Shoup signature on a list of public keys that does not correspond to a
signer for which the adversary has requested the private key.

The problem is that the extractor does not guarantee that the extracted witness
has any particular properties, and we need a witness that contains not just any
Cramer-Shoup signature, but a signature on a message on which the simulated
Cramer-Shoup oracle has never been queried. Note that this problem is similar
to the problem we encountered when proving that the simulated opening oracle
behaved correctly in the proof of hierarchical anonymity. We resolve the problem
in a similar way and use the extractor of the slightly modified protocol π′hgs.

Denote by Tβ the tree T except that a leaf β is removed. We also write T∅ for
the tree T . This allows us to consider two different cases at once. Denote by p(κ)

the running time of A. We construct a prover P βhgs to the π′hgs protocol. The prover

P βhgs is given the special parameter

Λ′ = ((N,g,y), (q0, g1, y1, g2, y2, g3, y3, gN, yN), (xα, yα)α∈V(Tβ))

as input. If a leaf is removed it extends Tβ to T if β 6= ∅ and generates xβ and yβ
honestly. It also chooses k ∈ QRN randomly and invokes the simulator from the
proof of the Cramer-Shoup signature scheme on (N,k) to generate spk . Then it
simulates Hp on these values except for the following.

Whenever A requests hsk(α) for a leaf α ∈ L(T) with α 6= β, P βhgs invokes the
simulated Cramer-Shoup signature oracle on input (yα1 , . . . , yαδ), where α0, . . . , αδ
is the path from the root ρ = α0 to the leaf αδ = α. The simulated Cramer-Shoup
signature oracle then returns a signature (eα,σα,σ

′
α), which is handed to A. If A

requests hsk (β) it is handed ⊥.

The prover P βhgs chooses a random index 1 ≤ i ≤ p(κ) and simulates Hp until A
makes the ith new query to the random oracle O. Let the ith query to O be given
by ((ul, vl, u

′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, γ). The prover P βhgs outputs

((ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, γ)

and waits for a challenge c from the honest verifier V ′hgs of the protocol π′hgs.

The prover P βhgs programs O to output c and continues the simulation of Hp

until A outputs a pair (m,σ). Programming O is not a problem since only new
queries are considered. If σ is on the form

((ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, γ, c, d)

it outputs d, and otherwise 0. Note that the index i is chosen independently
at random. Thus, the probability that the challenge value c in the final out-
put of A corresponds to the ith query to O conditioned on the event that c =
O((ul, vl, u

′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, γ) is at least 1/p(κ). Recall from the be-

ginning of the proof of the theorem that we do not worry that the adversary guesses
the value of the random oracle at any point. This completes the description of P βhgs.

Security Analysis 223

Suppose first that the probability that A outputs (m,σ) and

Vhgs((ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, γ, c, d) = 1 and still

((ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C) 6∈ LRHGS

is non-negligible. This implies that

Pr[AccVhgs
(view

Vhgs

Pβhgs

(Λ′, rp, rv)) = 1 ∧ IPβhgs
(Λ′, rp) 6∈ LRHGS]

is non-negligible. This contradicts the soundness of the protocol πhgs. Formally,
the contradiction follows from combining Proposition 16.39 with Proposition 2.32.

Consider a σ such that ((ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C) ∈ LRHGS. Then

we have (ul, vl) = E(γl,g)(γl+1, rl) and (u′l, v
′
l) = E(γl,g)(1, r

′
l) for some γl, γl+1,

rl and r′l. Thus, there does not exist any α′ ∈ V(T) with yα′ 6= γl such that
(v′l)

xα′ = u′l.
We conclude that if Pr[Hp = 1] is non-negligible, then there also exists a

β such the probability that ((ul, vl, u
′
l, v
′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C) ∈ LRHGS and

HVf(T, hpk ,m, σ) = 1 and αδ = β and A is never given hsk (β) 6= ⊥ is non-negligible.
Remember that we allow β to be either the index of a signer or equal to ∅. This

implies that Pr[AccVhgs
(view

V ′
hgs

Pβhgs

(Λ′, rp, rv)) = 1] is non-negligible, since the distri-

butions of the simulated public key spk and the simulated signatures (eα,σα,σ
′
α)

are statistically close to the corresponding distributions in the simulation of Hp.
More precisely there exists a constant c1 and an infinite index set N such that

for κ ∈ N

κ−c1 ≤ Pr[AccVhgs
(view

V ′
hgs

Pβhgs

(Λ′, rp, rv)) = 1]

≤ Pr[AccVhgs
(view

V ′
hgs

Pβhgs

(Λ′, rp, rv)) = 1 | δV
′
hgs

Pβhgs

(Λ′, rp) ≥ 1

2
κ−c1]

·Pr[δ
V ′
hgs

Pβ
hgs

(Λ′, rp) ≥ 1

2
κ−c1]

+
1

2
κ−c1 .

Thus, Pr[δ
V ′
hgs

Pβ
hgs

(Λ, rp) ≥ 1
2κ
−c1] ≥ 1

2κ
−c1 and from Proposition 16.40 we conclude

that there exists an extractor XP
β
hgs and a polynomial t(κ) such that

Pr[(IPβhgs
(Λ′, rp),XP

β
hgs(Λ′, rp)) ∈ R′HGS | δ

V ′
hgs

Pβhgs

(Λ′, rp) ≥ 1

2
κ−c1] ≥ 1− ǫ(κ)

for some negligible function ǫ(κ), and such that the expected running time of XP
β
hgs

on inputs (Λ′, rp) such that δ
V ′
hgs

Pβhgs

(Λ′, rp) ≥ 1
2κ
−c1 is bounded by some polynomial

224 A Construction Under Standard Assumptions

t(κ). Denote by A′ the algorithm that on input (N,k) generates the remainder of

the parameters in Λ′, chooses rp ∈ {0, 1}∗ randomly and simulates XP
β
hgs on these

inputs for at most 4κc1t(κ) steps. Note that if the expected running time of XP
β
hgs is

t(κ) on a given input (Λ′, rp), Markov’s inequality implies that the the probability
that the simulation is not completed is bounded by 1

4κ
−c1 .

Using the union bound we conclude that A′ outputs a Cramer-Shoup signature
of a message (γ1, . . . , γδ) that does not equal (yα1 , . . . , yαδ) for any path α0, . . . , αδ
in Tβ with probability at least

1

2κc1

(

1

2κc1
− 1

4κc1
− ǫ(κ)

)

which is non-negligible. By construction the simulated Cramer-Shoup signature or-
acle has never been queried on the list of public keys (yα1 , . . . , yαδ) corresponding to
the path to Sβ. Thus, A′ breaks the CMA-security of the Cramer-Shoup signature
scheme. Proposition 3.10 implies that this contradicts the strong RSA-assumption,
or the collision-freeness of the Shamir hash function SH or the Chaum-van Heijst-
Pfitzmann hash function CHP. From Proposition 3.13 we know that the first event
contradicts the strong RSA-assumption, and from Proposition 3.6 we know that
the second event contradicts the DL-assumption. Thus, the claim holds. �

Conclusion of Proof. To conclude the proof it suffices to note that we have
proved that both Advanon

HGS,A(κ, T) and Advtrace
HGS,A(κ, T) are negligible. �

Remark 15.9. It is shown in [17] that it is necessary to use a CCA2-secure cryptosys-
tem to form a group signature scheme. Still we only use a CCA2-secure cryptosys-
tem for the leaves. This apparent contradiction is resolved by noting that since
the public keys yα are distinct, and we may identify the leaves with their paths in
the tree, any query to the HOpen(T, hpk , hsk (·), ·, ·)-oracle for intermediate levels
of the tree can be answered using a single query to the decryption oracle for the
CCA2-secure Cramer-Shoup cryptosystem used to encrypt leaves.

Remark 15.10. The exposition here differs from the exposition in [140]. There it is
not taken into account that the protocol πhgs is a computationally convincing proof
of knowledge and not a proof of knowledge. Furthermore, it is not clear from the
proof in [140] that it is safe to use the RSA-modulus of the Cramer-Shoup signature
scheme to form integer commitments and to use it as a one-way hash function in
the signature scheme. This inter-dependency could potentially be dangerous. These
deficiencies are eliminated here and this will be reflected in the final full version of
the paper as well.

Chapter 16

Construction of the Proof of

Knowledge

In this chapter we describe the proof of knowledge needed in Chapter 15. We give
zero-knowledge proofs of knowledge for a number of subprotocols which combined
gives the proof of knowledge we need to apply the Fiat-Shamir heuristic to get a
signature scheme in the random oracle model. This chapter is based on the paper
by Trolin and Wikström [141].

Our protocols are based on a variety of proof techniques including: proofs of
knowledge of exponents, double-decker exponentiation, equality of exponents over
distinct groups, interval proofs, and equality of integer exponents over an RSA-
modulus.

The exposition is divided into a number of subsections. First we describe the
protocols that execute in the groupsGq1 , Gq2 , andGq3 . Then we describe a protocol
that executes in both Gq1 (or GN) and in Z∗N. This is followed descriptions of the
protocols that execute in Z∗N. Finally, the combined protocol is described. For
intuition on how the proof is constructed we refer the reader to Section 15.1.

Although we focus on efficiency, in some cases we have chosen to divide the
protocol into subprotocols for clarity, thus sacrificing some efficiency. Since the by
far most time-consuming part of the protocol are the proofs of exponential relations,
where to our knowledge the most efficient known method is based on cut-and-choose
techniques, saving a few exponentiations in other parts of the protocol yields little
in terms of overall performance.

In some protocols we use the additional security parameters κc and κr. The
first parameter normally decides the number of bits in a challenge, and the second
parameter is used to pad exponents with additional random bits to achieve statist-
ical zero-knowledge, when the order of a group is not known. For example, if we
wish to compute a commitment yrgb of a bit b using randomness r, where N is a
κ-bit RSA-modulus and g and y are random elements in QRN, then the random
exponent should be chosen in [0, 2κ+κr−1] to achieve a statistically hiding commit-

225

226 Construction of the Proof of Knowledge

ment scheme. The parameter κr also decides the completeness of several protocols.
It suffices if 2−κc and 2−κr are negligible in the main security parameter κ.

Sometimes it is more convenient to keep the committed number in the base
rather than in the exponent. In this case a commitment to an element z ∈ QRN

can be computed as

(yrgs,yrz) ,

where r, s ∈ [0, 2κrN − 1] are randomly chosen. We use this trick also over the
groups Gq1 , Gq2 , and Gq3 .

Remark 16.1. The exposition here differs from the exposition in the preliminary
full version [140] of [141] in one important aspect. In [140] the various special cases
above are treated rather informally. It is never clearly stated that the protocols are
in fact computationally convincing proofs of knowledge, and not proofs of know-
ledge. This deficiency is eliminated here and this will be reflected in the final full
version of the paper as well.

16.1 A Simplifying Convention

Most subprotocols below are strictly speaking not proofs of knowledge of their
private input from the prover. It may happen that an extractor finds elements
on the form listed below instead of a witness. To simplify the exposition we do
not state this explicitly in each lemma. Instead we point to one of the special
cases below whenever such a case occurs in the analysis of each protocol. Then
when we combine all subprotocols we state explicitly the dependence on the special
parameters.

We stress that we do not expect any adversary to find a witness of the type
below. In fact if an adversary finds a witness of the type below with non-negligible
probability, then the adversary can be used to break either the DL-assumption or
the strong RSA-assumption. Thus, each subprotocol is in fact a computationally
convincing proof of knowledge of the private input of the prover as stated in the
protocol for some special input.

Another simplifying assumption is that we assume that any element A ∈ ZN

can be inverted modulo N. Note that if this is not the case A is a non-trivial factor
of N, i.e., Case 7 is satisfied. We do not mention this case explicitly every time we
invert an element.

1. An element η ∈ Zq1 such that y1 = gη1 .

2. An element η ∈ Zq2 such that y2 = gη2 .

3. An element η ∈ Zq3 such that y3 = gη3 .

4. An element η ∈ ZN such that yN = gηN.

Protocols in Groups of Known Prime Order 227

5. Integers η0 6= 0 and η1, η2 not both zero and b ∈ Z∗N such that η0 does not
divide both η1 and η2, and bη0 = gη1yη2 .

6. Integers η0, η1 not both zero such that gη0yη1 = 1.

7. An integer η such that 1 < |η| < N and η | N.

For simplicity we also assume that each protocol is given the representation of
the appropriate group as common input, i.e., if the protocol executes in Gq1 , Gq2 ,
or Gq3 it is given q0 as input, and if it executes in QRN or GN it is given N as
input. We do not state this explicitly to avoid cluttering the exposition.

16.2 Protocols in Groups of Known Prime Order

The goal of this section is to provide subprotocols that can be used to prove know-
ledge of γ1, . . . , γδ and τ0, τ

′
0, . . . , τδ−1, τ

′
δ−1, τδ satisfying the parts of the relation

RHGS that are defined exclusively over Gq1 , Gq2 , and Gq3 . Most of the ideas we
use in this section have appeared in various forms in the literature.

We begin our program by considering a problem related to that of proving that
a list of cryptotexts is chained properly.

Protocol 16.2 (Chained Cryptotexts).

Common Input: y0, g, y ∈ Gq and
(

(ul, vl, u
′
l, v
′
l), (µl, νl)

)δ−1

l=0
∈ G6δ

q

Private Input: rl, r
′
l, sl, tl ∈ Zq for l = 0, . . . , δ − 1 and yl ∈ Gq for l = 1, . . . , δ

such that (ul, vl, u
′
l, v
′
l) = (E(yl,g)(yl+1, rl), E(yl,g)(1, r

′
l)) = (yrll , g

rlyl+1, y
r′l
l , g

r′l)
and (µl, νl) = (ytlgsl , yslyl+1).

1. The prover chooses al, a
′
l, a
′′
l ∈ Zq randomly and computes

A1,l = ya
′
lgalµ

rl+1

l , A2,l = yalν
rl+1

l , and A3,l = ya
′′
l grl+1

for l = 0, . . . , δ − 2.

2. The prover chooses bl, b
′
l, b
′′
l , el, fl, hl, il, jl, wl, w

′
l, kl, k

′
l ∈ Zq randomly and

computes B0 = ye00 ,

B1,l = gelyil and B2,l = gilyjl

for l = 0, . . . , δ − 1, and

B3,l = yb
′
lgblµ

el+1

l , B4,l = yblν
el+1

l ,

B5,l = yhlgfl , B6,l = yfl ,

B7,l = yb
′′
l gel+1 , B8,l = (u′l+1)

kl ,

B9,l = yw
′
l(v′l+1)

kl , B10,l = gwl

228 Construction of the Proof of Knowledge

for l = 0, . . . , δ − 2. Then it hands
(

B0, (B1,l, B2,l)
δ−1
l=0 ,

(A1,l, A2,l, A3,l, B3,l, B4,l, B5,l, B6,l, B7,l, B8,l, B9,l, B10,l)
δ−2
l=0

)

to the verifier.

3. The verifier chooses c ∈ Zq randomly and hands c to the prover.

4. The prover computes

d1,l = crl + el , d2,l = −csl + il , and d3,l = −ctl + jl (16.1)

for l = 0, . . . , δ − 1 and

d4,l = cal + bl , d5,l = ca′l + b′l , (16.2)

d6,l = c (al + slrl+1) + fl , d7,l = ctlrl+1 + hl , (16.3)

d8,l = ca′′l + b′′l , d9,l = ca′′l + w′l , (16.4)

d10,l = c(rl+1/r
′
l) + kl , d11,l = cr′l + wl (16.5)

for l = 0, . . . , δ − 2. Then it hands

((d1,l, d2,l, d3,l)
δ−1
l=0 , (d4,l, d5,l, d6,l, d7,l, d8,l, d9,l, d10,l, d11,l)

δ−2
l=0)

to the verifier.

5. The verifier checks that
uc0B0 = y

d1,0
0 (16.6)

and

(vl/νl)
cB1,l = gd1,lyd2,l and B2,l = µcl y

d3,lgd2,l , (16.7)

(16.8)

for l = 0, . . . , δ − 1 and

Ac1,lB3,l = yd5,lgd4,lµ
d1,l+1

l , Ac2,lB4,l = yd4,lν
d1,l+1

l , (16.9)

Ac1,lB5,l = gd6,lyd7,l , (A2,l/ul+1)
cB6,l = yd6,l , (16.10)

Ac3,lB7,l = yd8,lgd1,l+1 , uclB8,l = (u′l+1)
d10,l , (16.11)

Ac3,lB9,l = yd9,l(v′l+1)
d10,l , (v′l+1)

cB10,l = gd11,l (16.12)

for l = 0, . . . , δ − 2.

Intuitively the proof works by first showing that (ul, vl) encrypts the key yl+1

that is committed to in (µl, νl) and then by showing that key yl+1 in the commit-
ment (µl, νl) is the encryption key used to produce (ul+1, vl+1). Based on these

relations it is then proved that (u′l, v
′
l) is on the form (y

r′l
l , g

r′l).
This is depicted in Figure 16.1.

Protocols in Groups of Known Prime Order 229

(u0, v0, u
′
0, v
′
0)OO

��

(u1, v1, u
′
1, v
′
1)OO

��

· · · (uδ−1, vδ−1, u
′
δ−1, v

′
δ−1)OO

��
(µ0, ν0)

vv

66
m

m
m

m
m

m
m

m
m

m
m

m

(µ1, ν1)
yy

99
s

s
s

s
s

s
s

s
s

s
s

· · · ww

77
n

n
n

n
n

n
n

n
n

n
n

n
n

n

(µδ−1, νδ−1)

Figure 16.1: The protocol for a chain of cryptotexts. The elements B1,l and B2,l

are used to prove the lth vertical relation. The elements B3,l, B4,l, B5,l, B6,l are
used to prove the lth diagonal relation. This explains why there are fewer element
of the second type than the first. Finally, B7,l, B8,l, B9,l, B10,l is used to prove that
(u′l, v

′
l) is on the correct form.

Lemma 16.3. Protocol 16.2 is a Zq3 -Σ-protocol.

Proof. It is straightforward to see that the protocol has perfect completeness. We
now prove special soundness. Suppose we have a list (B0, (B1,l, B2,l)

δ−1
l=0 ,

(A1,l, A2,l, A2,l, B3,l, B4,l, B5,l, B6,l, B7,l, B8,l, B9,l)
δ−2
l=0) and ((d1,l, d2,l, d3,l)

δ−1
l=0 ,

(d4,l, d5,l, d6,l, d7,l, d8,l, d9,l, d10,l)
δ−2
l=0) that satisfy the Equations (16.6)–(16.12), and

c′ 6= c and ((d′1,l, d
′
2,l, d

′
3,l)

δ−1
l=0 , (d

′
4,l, d

′
5,l, d

′
6,l, d

′
7,l, d

′
8,l, d

′
9,l, d

′
10,l)

δ−2
l=0) that satisfies

the same equations.

We solve the equation systems corresponding to Equations (16.1)–(16.5) to ex-
tract ρl, ζl, and τl for l = 0, . . . , δ − 1 such that

u0 = yρ00 ,

vl/νl = gρly−ζl and µl = yτlgζl

and αl, α
′
l, α
′′
l , λl, ωl, ω

×
l , ρ×l , and ρ+

l for l = 0, . . . , δ − 2 such that

A1,l = yα
′
lgαlµ

ρl+1

l , A2,l = yαlν
ρl+1

l ,

A1,l = yλlgωl , A2,l/ul+1 = yωl ,

A3,l = yα
′′
l gρl+1 , ul = (u′l+1)

ρ×l ,

A3,l = yω
×
l (v′l+1)

ρ×l , v′l+1 = gρ
+
l

From this we can compute ζ∗l = (ωl − αl)/ρl+1 and τ∗l = (λl − α′l)/ρl+1 for l =
0, . . . , δ − 2 such that µl = yτ

∗
l gζ

∗
l since

yτ
∗
l gζ

∗
l =

(

yλl−α
′
lg(wl−αl)

)1/ρl+1

=

(

A1,l

yα′gαl

)1/ρl+1

= µl .

We have νl = yζ
∗
l γl+1 for some γl+1, i.e., (µl, νl) = (yτ

∗
l gζ

∗
l , yζ

∗
l γl+1), for l =

230 Construction of the Proof of Knowledge

0, . . . , δ − 2. This implies that

ul+1 = A2,ly
−ωl = yαlν

ρl+1

l y−ωl = yαlyζ
∗
l ρl+1γ

ρl+1

l+1 y
−ωl

= yαl−ωl+ζ
∗
l ρl+1γ

ρl+1

l+1 = γ
ρl+1

l+1 .

Define γ∗l+1 by vl = gρlγ∗l+1, i.e., (ul, vl) = E(γl,g)(γ
∗
l+1, ρl), for l = 0, . . . , δ − 1.

What remains is to argue that ζ∗l = ζl, τ
∗
l = τl, and γ∗l+1 = γl+1 for l = 0, . . . , δ− 2

to connect the “links in the chain”.
If one of the first two types of equalities does not hold, then we have gζlyτl =

µl = gζ
∗
l yτ

∗
l and we can define η = (ζl− ζ∗l)/(τ∗l − τl) such that y = gη. In the main

protocol this protocol is executed in Gq3 . Thus, if the equality does not hold Case
3 in Section 16.1 is satisfied. Thus, we assume that the first two types of equalities
hold. Next we note that

gρly−ζl = vl/νl = gρlγ∗l+1y
−ζ∗l γ−1

l+1 = gρly−ζl(γ∗l+1/γl+1) ,

which implies that γ∗l+1 = γl+1. To summarize, we have found elements ρ0, . . . , ρδ−1,
τ0, . . . , τδ−1, ζ0, . . . , ζδ−1, and γ1, . . . , γδ such that

(u0, v0) = (yρ00 , gρ0γ1) (µ0, ν0) = (yτ0gζ0 , yζ0γ1)

(u1, v1) = (γρ11 , gρ1γ2) (µ1, ν1) = (yτ1gζ1 , yζ1γ2)

...
...

(uδ−1, vδ−1) = (γ
ρδ−1

δ−1 , g
ρδ−1γδ) (µδ−1, νδ−1) = (yτδ−1gζδ−1 , yζδ−1γδ) .

Thus, we have

u′l+1 = u
1/ρ×l
l+1 = γ

ρl+1/ρ
×
l

l+1

v′l+1 = (yα
′′
l gρl+1y−ω

×
l)1/ρ

×
l = y(α′′

l −ω
×
l

)/ρ×
l gρl+1/ρ

×
l .

If α′′l 6= ω×l , then we define η = (ρl + −ρl+1/ρ
×
l)/((α′′l − ω×l)/ρ+

l) and conclude
that y = gη and Case 3 in Section 16.1 is satisfied, since in the main protocol this
subprotocol is invoked in the group Gq3 .

To summarize we may define ρ′l+1 = ρl+1/ρ
×
l and have

(u′1, v
′
1) = (γ

ρ′1
1 , gρ

′
1)

(u′2, v
′
2) = (γ

ρ′2
2 , gρ

′
2)

...

(u′δ−1, v
′
δ−1) = (γ

ρ′δ−1

δ−1 , g
ρ′δ−1) .

We conclude that the protocol is special-sound.

Protocols in Groups of Known Prime Order 231

The special zero-knowledge simulator is defined as follows. Given the challenge
c ∈ Zq it chooses A1,l, A2,l, A3,l ∈ Gq, and

((d1,l, d2,l, d3,l)
δ−1
l=0 , (d4,l, d5,l, d6,l, d7,l, d8,l, d9,l, d10,l, d11,l)

δ−2
l=0)

with di,l ∈ Zq randomly and defines

(B0, (B1,l, B2,l)
δ−1
l=0 , (B3,l, B4,l, B5,l, B6,l, B7,l, B8,l, B9,l, B10,l)

δ−2
l=0)

by Equations (16.6)–(16.12). It is easy to see that the resulting simulation is
perfectly distributed. Thus, the protocol is special honest verifier perfect zero-
knowledge. �

Next we consider the problem of proving that the values yα ∈ Gq3 and gyα2 ∈ Gq2
committed to in two commitments (µ, ν) = (yt3g

s
3, y

s
3yα) and (µ′, ν′) = (yt

′

2 g
s′

2 ,
ys

′

2 h
yα) respectively satisfy an exponential relation. Stadler [138] studied a simpler

problem, namely, given a cryptotext E(g,y)(m) with g, y ∈ Gq3 and gm2 , prove that
an exponential relation holds between the cleartext and the exponent. Although
we consider a more complex problem, our protocol is based on his ideas. Note
that proving that our relation holds is equivalent to proving knowledge of s, t ∈
Zq2 and s′, t′ ∈ Zq3 such that (θ, ω, φ) = ((µ′)ν

−1

, (ν′)ν
−1

, µ−1) is on the form

(yt
′

2 g
s′

2 , y
s′

2 h
ys3 , yt3g

s
3). For clarity we state this observation as a protocol below.

As stated the two next protocols execute in the groups Gq3 and Gq2 , but we
invoke the protocol also in the similarly related groups Gq2 and Gq1 . It is trivial to
see that the security properties of the protocols are not changed by this.

Protocol 16.4 (Exponential Relation Between Committed Values).
Common Input: g3, y3, µ, ν ∈ Gq3 and g2, y2, h, µ

′, ν′ ∈ Gq2 .
Private Input: t, s ∈ Zq3 such that (µ, ν) = (yt3g

s
3, y

s
3yα) and t′, s′ ∈ Zq2 such

that (µ′, ν′) = (yt
′

2 g
s′

2 , y
s′

2 h
yα).

1. Invoke Protocol 16.6 on common input g3, y3, φ ∈ Gq3 and g2, y2, h, θ, ω ∈ Gq2 ,
where (θ, ω, φ) = ((µ′)ν

−1

, (ν′)ν
−1

, µ−1), and private input −t,−s ∈ Zq3 and
t′ν−1, s′ν−1 ∈ Zq2 .

Lemma 16.5. Protocol 16.4 is a {0, 1}κc-Σ-protocol.

Proof. This follows directly from Lemma 16.7 below. �

We now give the double-decker exponentiation protocol called from within the
protocol above.

Protocol 16.6 (Double-Decker Exponentiation).
Common Input: g3, y3, φ ∈ Gq3 and g2, y2, h, θ, ω ∈ Gq2 .
Private Input: t, s ∈ Zq3 and t′, s′ ∈ Zq2 with (θ, ω, φ) = (yt

′

2 g
s′

2 , y
s′

2 h
ys3 , yt3g

s
3).

232 Construction of the Proof of Knowledge

1. The prover chooses el, fl ∈ Zq3 and e′l, f
′
l ∈ Zq2 randomly for l = 1, . . . , κc,

computes F1,l = y
e′l
2 g

f ′
l

2 , F2,l = y
f ′
l

2 h
y
fl
3 , and Al = yel3 g

fl
3 . Then it hands

(F1,l, F2,l, Al)
κc
l=1 to the verifier.

2. The verifier chooses b = (b1, . . . , bκc) ∈ {0, 1}κc randomly and hands b to the
prover.

3. The prover computes d1,l = el − blt, d2,l = fl − bls, d3,l = f ′l − bly
d2,l
3 s′, and

d4,l = e′l − bly
d2,l
3 t′, and hands (d1,l, d2,l, d3,l, d4,l)

κc
l=1 to the verifier.

4. The verifier checks for l = 1, . . . , κc that

θbly
d2,l
3 y

d4,l
2 g

d3,l
2 = F1,l , y

d3,l
2 (ωblh(1−bl))y

d2,l
3 = F2,l , and (16.13)

φbly
d1,l
3 g

d2,l
3 = Al . (16.14)

Lemma 16.7. Protocol 16.6 is a {0, 1}κc-Σ-protocol.

Proof. It is easy to see that the protocol has perfect completeness. Consider now
special soundness. Suppose that we are given the outputs from two executions
(F1,l, F2,l, Al)

κc
l=1, b, (d1,l, d2,l)

κc
l=1 and b′, (d′1,l, d

′
2,l)

κc
l=1 with b 6= b′ that satisfy Equa-

tions (16.13)–(16.14). Thus, for some l we have bl 6= b′l.
Let (ε, τ) and (ψ, ζ) ∈ Zq3 be solutions to the equation systems

{

d1,l = el − blt
d′1,l = el − b′lt

}

and

{

d2,l = fl − bls
d′2,l = fl − b′ls

}

,

This implies that φ = yτ3g
ζ
3 . Consider next the equation system

{

d3,l = f ′l − bly
d2,l
3 s′

d′3,l = f ′l − b′ly
d′2,l
3 s′

}

.

Note that bly
d2,l
3 is zero if bl = 0 and non-zero otherwise. Thus, the system is

solvable. Let (ψ′, ζ′) be a solution and assume without loss that b′l = 0. Then we
have

F2,l = y
d3,l
2 ωy

d2,l
3 = y

ψ′−y
d2,l
3 ζ′

2 ωy
d2,l
3 = y

ψ′−yψ−ζ
3 ζ′

2 ωy
ψ−ζ
3 and

F2,l = y
d′3,l
2 hy

d′2,l
3 = yψ

′

2 hy
d′2,l
3 = yψ

′

2 hy
ψ
3 .

Solving for ω gives ω = yζ
′

2 h
yζ3 . Finally, let (ε′, τ ′) be the solution to

{

d4,l = e′l − bly
d2,l
3 t′

d′4,l = e′l − b′ly
d′2,l
3 t′

}

.

Protocols in Groups of Known Prime Order 233

Then we have

F1,l = θy
d2,l
3 y

d4,l
2 g

d3,l
2 = θy

d2,l
3 y

ε′−y
d2,l
3 τ ′

2 g
ψ′−y

d2,l
3 ζ′

2 and

F1,l = y
d′4,l
2 g

d′3,l
2 = yε

′

2 g
ψ′

2 .

Solving for θ gives θ = yτ
′

2 g
ζ′

2 . We conclude that the protocol is special-sound.
The special zero-knowledge simulator is defined as follows. Given b ∈ {0, 1}κc

it chooses d1,l, d2,l ∈ Zq3 and d3,l, d4,l ∈ Zq2 randomly for l = 1, . . . , κc and defines
(F1,l, F1,l, Al) by Equations (16.13)–(16.14). We conclude that the protocol is spe-
cial honest verifier perfect zero-knowledge. �

Our next protocol shows that the cleartext of an El Gamal encryption is the
value hidden in a commitment. Since the protocol is used in conjunction with
Cramer-Shoup cryptotexts, we use a notation that is consistent with the notation
we use for the Cramer-Shoup cryptosystem in the main protocol.

Protocol 16.8 (Equality of Committed and Encrypted Cleartexts).
Common Input: g3, y3, µ, ν, ḡ1, h̄, ū, v̄ ∈ Gq3 .
Private Input: t, s, r such that (µ, ν) = (yt3g

s
3, y

s
3m) and (ū, v̄) = (ḡr1 , h̄

rm).

1. The prover chooses a, e, f ∈ Zq3 randomly, computes A1 = ya3g
e
3, A2 = ye3h̄

f ,

A3 = ḡf1 , and hands (A1, A2, A3) to the verifier.

2. The verifier chooses c ∈ Zq3 randomly and hands it to the verifier.

3. The prover computes d1 = ct + a, d2 = cs + e, d3 = −cr + f and hands
(d1, d2, d3) to the verifier.

4. The verifier checks that

µcA1 = yd13 g
d2
3 , (ν/v̄)cA2 = yd23 h̄

d3 , A3/ū
c = ḡd31 . (16.15)

Lemma 16.9. Protocol 16.8 is a Zq3 -Σ-protocol.

Proof. It is straightforward to see that the protocol has perfect completeness. Con-
sider special soundness. Given (A1, A2, A3), (c, d1, d2, d3), and (c′, d′1, d

′
2, d
′
3), with

c 6= c′, that satisfy Equation (16.15) above, we can solve the corresponding equation
systems to find τ, ζ, ρ ∈ Zq3 such that

(µ, ν/v̄, ū) = (yτ3g
ζ
3 , y

ζ
3 h̄

ρ, ḡ−ρ1) .

This implies that the cryptotext and commitment holds the same value v̄/h̄τ as
prescribed. Thus, the protocol is special-sound.

Given the challenge c the special zero-knowledge simulator chooses d1, d2, d3 ∈
Zq3 randomly and defines A1, A2, A3 by Equation (16.15). It is easy to see that the
resulting distribution is distributed exactly like that in a real execution. Thus, the
protocol is special honest verifier perfect zero-knowledge. �

234 Construction of the Proof of Knowledge

Our next protocol shows that a Cramer-Shoup cryptotext is valid. Here H
denotes the representation of a collision-free hash function.

Protocol 16.10 (Validity of Cramer-Shoup Cryptotext).
Common Input: H : G3

q3 → Zq3 , ḡ1, ḡ2, c̄, d̄ ∈ Gq3 , and ū, µ̄, v̄, ν̄ ∈ Gq3 .
Private Input: r ∈ Zq3 such that (ū, µ̄, v̄, ν̄) = (ḡr1 , ḡ

r
2, v̄, c̄

rd̄rH(ū,µ̄,v̄)).

1. The prover chooses a ∈ Zq3 randomly and computes B1 = ḡa1 , B2 = ḡa2 ,
B3 = (c̄d̄H(ū,µ̄,v̄))a and hands (B1, B2, B3) to the verifier.

2. The verifier chooses c ∈ Zq3 randomly and hands c to the prover.

3. The prover computes d = cr + a and hands d to the verifier.

4. The verifier checks that ūcB1 = ḡd1 , µ̄cB2 = ḡd2 and ν̄cB3 = (c̄d̄H(ū,µ̄,v̄))d.

Lemma 16.11. Protocol 16.10 is a Zq3 -Σ-protocol.

Proof. It is straightforward to see that the protocol has perfect completeness. As-
suming the output of two executions B1, B2, B3, c, d and B1, B2, B3, c

′, d′ for c 6= c′

both satisfying the verification of Step 4, we can compute ρ = (d− d′)/(c− c′) such
that (ū, µ̄, ν̄) = (ḡρ1 , ḡ

ρ
2 , c̄

ρd̄ρH(ū,µ̄,v̄)). Thus, the protocol is special-sound.
Given the challenge c the special zero-knowledge simulator chooses d ∈ Zq3

randomly and defines B1, B2, and B3 by the equations in Step 4. It follows that
the protocol is special honest verifier perfect zero-knowledge. �

The next protocol combines the protocols above and provides a solution to the
goal of this section, i.e., proving the relations in Step 3 in Algorithm 15.3 involving
only elements from Gq1 , Gq2 , and Gq3 .

Protocol 16.12 (Commitment to Hash of Chained Keys).
Common Input: g3, y3, yα0 ∈ Gq3 , g2, y2 ∈ Gq2 , g1, y1 ∈ Gq1 , HCHP = (h1, . . . , hδ)
∈ Gδq2 , (ul, vl, u

′
l, v
′
l)
δ−1
l=0 ∈ G2δ

q3 , (µ′′, ν′′) ∈ G2
q1 , ḡ1, ḡ2, c̄, d̄, h̄ ∈ Gq3 ,

Cδ = (ū, µ̄, v̄, ν̄) ∈ G4
q3 .

Private Input: r0, r
′
0, . . . , rδ−1, r

′
δ−1, rδ ∈ Zq3 , yα1 , . . . , yαδ ∈ Gq3 , and s′′, t′′ ∈

Zq2 such that

(ul, vl) = E(yαl ,g3)
(yαl+1

, rl) for l = 0, . . . , δ − 1 ,

(u′l, v
′
l) = E(yαl ,g3)

(1, r′l) for l = 0, . . . , δ − 1 ,

Cδ = Ecs
Y (yαδ , rδ) , and

(µ′′, ν′′) = (yt
′′

1 g
s′′

1 , ys
′′

1 g
HCHP(yα1 ,...,yαδ)

1) .

1. The prover chooses sl, tl ∈ Zq2 randomly, computes commitments

(µl, νl) =
(

ytl3 g
sl
3 , y

sl
3 yαl+1

)

for l = 0, . . . , δ − 1, and hands (µl, νl)
δ−1
l=0 to the verifier.

Protocols in Groups of Known Prime Order 235

2. The prover chooses s′l, t
′
l ∈ Zq3 randomly, computes commitments (µ′l, ν

′
l) =

(y
t′l
2 g

s′l
2 , y

s′l
2 h

yαl+1

l+1) for l = 0, . . . , δ − 1, and hands (µ′l, ν
′
l)
δ
l=1 to the verifier.

3. The prover and verifier computes (µ′, ν′) =
(

∏δ−1
l=0 µ

′
l,
∏δ−1
l=0 ν

′
l

)

. The prover

computes s′ =
∑δ−1

l=0 s
′
l and t′ =

∑δ−1
l=0 t

′
l.

4. Invoke the following protocols in parallel:

a) Protocol 16.2 on public input yα0 , g3, y3,
(

(ul, vl, u
′
l, v
′
l), (µl, νl)

)δ−1

l=0
, and

private input (rl, r
′
l, sl, tl)

δ−1
l=0 to show that the chain is a valid chain of

encrypted keys and commitments.

b) Protocol 16.4 for l = 0, . . . , δ − 1 on public input g3, y3, µl, νl ∈ Gq3 and
g2, y2, hl, µ

′
l, ν
′
l ∈ Gq2 , and private input sl, tl ∈ Zq3 and s′l, t

′
l ∈ Zq2 .

This “lifts” each committed public key up into the exponent.

c) Protocol 16.4 on public input g2, y2, µ
′, ν′ ∈ Gq2 and g1, y1, g1, µ

′′, ν′′ ∈
Gq1 , and private input s′, t′ ∈ Zq2 and s′′, t′′ ∈ Zq1 . This “lifts” the
Chaum-van Heijst-Pfitzmann hash value of the public keys along the
chain up into the exponent.

d) Protocol 16.8 on common input g3, y3, µδ−1, νδ−1 ∈ Gq3 and ḡ1, h̄, ū, v̄ ∈
Gq3 , and private input tδ−1, sδ−1, rδ ∈ Zq3 to show that Cδ is an encryp-
tion of the value yαδ committed to in (µδ−1, νδ−1).

e) Protocol 16.10 on common input H , and ḡ1, ḡ2, c̄, d̄, h̄ ∈ Gq3 , Cδ =
(ū, µ̄, v̄, ν̄) ∈ G4

q3 , and private input rδ ∈ Zq3 to show that Cδ is cor-
rectly formed.

Lemma 16.13. Protocol 16.12 is a {0, 1}κc × Zq3-Σ-protocol.

Proof. The perfect completeness of the protocol follows from the perfect complete-
ness of the subprotocols.

From the Observations 2.38 and 2.39 it follows that Step 4 may be considered
a single combined {0, 1}κc × Zq3 -Σ-protocol. Given two satisfying transcripts the
special soundness of each subprotocol can be used to find suitable values, but we
must also show that the values found this way for the different subprotocols are
consistent to prove special soundness.

Using Lemma 16.3 we can find τl, τ
′
l , ζl, ψl ∈ Zq3 , γl ∈ Gq3 such that

(ul, vl) = E(γl,g3)(γl+1, τl) = (γτll , g
τl
3 γl+1) ,

(u′l, v
′
l) = E(γl,g3)(1, τ

′
l) = (γ

τ ′
l

l , g
τ ′
l

3) , and

(µl, νl) = (yψl3 gζl3 , y
ζl
3 γl+1)

for l = 0, . . . , δ − 1. Using Lemma 16.5 we can find τ∗l , ζ
∗
l , ψ

∗
l ∈ Zq3 , γ

∗
l ∈ Gq3 , and

ζ′l , ψ
′
l ∈ Zq2 such that

(µl, νl) = (y
ψ∗
l

3 g
ζ∗l
3 , y

ζ∗l
3 γ∗l+1) and (µ′l, ν

′
l) = (y

ψ′
l

2 g
ζ′l
2 , y

ζ′l
2 h

γ∗
l+1

l)

236 Construction of the Proof of Knowledge

for l = 0, . . . , δ − 1. If γ∗l+1 6= γl+1, then either ψ∗l 6= ψl or ζ∗l 6= ζl. Then we define
η = (ζl−ζ∗l)/(ψ∗l −ψl) and conclude that y3 = gη3 . In other words Case 3 in Section
16.1 is satisfied. Thus, we assume that γ∗δ = γδ, ψ

∗
δ = ψδ, and ζ∗δ = ζδ.

Using Lemma 16.5 we can find ζ′, ψ′ ∈ Zq2 , ζ
′′, ψ′′ ∈ Zq1 , and Γ ∈ Gq2 such that

(µ′, ν′) = (yψ
′

2 gζ
′

2 , y
ζ′

2 Γ) and (µ′′, ν′′) = (yψ
′′

1 gζ
′′

1 , yζ
′′

1 gΓ
1) .

If
∏δ
l=1 h

γl
l 6= Γ, then either ψ′ 6= ∑δ−1

l=0 ψ
′
l or ζ′ 6= ∑δ−1

l=0 ζ
′
l . Then we define

η = ψ′−∑δ−1
l=0 ψ

′
l and

∑δ−1
l=0 ζ

′
l− ζ′ and conclude that y2 = gη2 . In other words Case

2 in Section 16.1 is satisfied. Thus, we assume that
∏δ
l=1 h

γl
l = Γ, ψ′ =

∑δ−1
l=0 ψ

′
l,

and ζ′ =
∑δ−1
l=0 ζ

′
l .

Using Lemma 16.9 we can find ψ×δ−1, ζ
×
δ−1, τ ∈ Zq3 and γ×δ ∈ Gq3 such that

(µδ−1, νδ−1) = (y
ψ×
δ−1

3 g
ζ×
δ−1

3 , y
ζ×
δ−1

3 γ×δ) and (ū, v̄) = (ḡτ1 , h̄
τγ×δ) .

If γ×δ 6= γδ, then either ψ×δ−1 6= ψδ−1 or ζ×δ−1 6= ζδ−1. Then we define η = (ψ×δ−1 −
ψδ−1)/(ζδ−1 − ζ×δ−1) and conclude that y3 = gη3 . In other words Case 3 in Section

16.1 is satisfied. Thus, we assume that γ×δ = γδ, ψ
×
δ−1 = ψδ−1 and ζ×δ−1 = ζδ−1.

Using Lemma 16.11 we can find τ ∈ Zq3 such that (ū, µ̄, v̄, ν̄) = Ecs
Y (γδ, τ), where

Y is the public key Y = (H, ḡ1, ḡ2, c̄, d̄, h̄) to the Cramer-Shoup cryptosystem over
Gq3 . This concludes the proof of special soundness of the protocol.

Given a challenge (b, c) ∈ {0, 1}κc × Zq3 the special zero-knowledge simulator
chooses µl, νl ∈ Gq3 and µ′l, ν

′
l ∈ Gq2 randomly and invokes the special zero-

knowledge simulator of each invoked subprotocol. Since the commitments (µl, νl)
and (µ′l, ν

′
l) are perfectly distributed and each subprotocol is special honest verifier

perfect zero-knowledge, then so is the combined protocol. �

16.3 Protocols in Two Distinct Groups

In this section we consider the problem of proving equality of exponents over distinct
groups. This is used as a bridge between the two parts of the main protocol. Two
Pedersen commitments are given: one over Gn denoted C = ys

′

ge, with e, s′ ∈ Zn
and one over QRN denoted C = ysge with s ∈ [0, 2κ+κr − 1]. In our application
Gn is a group Gq of prime order q or a group GN with order equal to the RSA
modulus N.

This problem has been studied by Boudot and Traoré [30] as well as by Camen-
isch and Michels [36]. We use Boudot’s protocol [29] for proving that a committed
value is contained in a certain interval. Instead of giving the complete protocol, we
only give the interface and refer the reader to [29] for details.

Protocol Head 16.14 (A Committed Number Lies in an Interval).
Common Input: g,y,C ∈ QRN and a, b ∈ Z.
Private Input: e ∈ [a, b] and s ∈ [0, 2κrN− 1] such that C = ysge.

Protocols in Two Distinct Groups 237

Lemma 16.15. Protocol 16.14 is a {0, 1}κc-Σ-protocol.

Proof. Boudot [29] essentially shows that either e ∈ [a, b] or Case 5 in Section 16.1
is satisfied. �

We now give the proof of equality of exponents over distinct groups using the
protocol above.

Protocol 16.16 (Equality of Exponents Over Distinct Groups).
Common Input: g,y,C ∈ Z∗N and g, y, C ∈ Gn.
Private Input: e ∈ [0, n− 1], s ∈ [0, 2κrN− 1], and s′ ∈ Zn. such that C = ysge

and C = ys
′

ge.

1. The prover chooses a ∈ [0, 2κc+κrn − 1], b ∈ [0, 2κc+2κrN − 1] and b′ ∈ Zn
randomly, computes

A = ybga and A = yb
′

ga

and hands (A, A) to the verifier.

2. Protocol 16.14 is executed in parallel with the protocol below on common
input g,y,C and using the interval [0, n− 1] and private input e and s.

3. The verifier chooses c ∈ [0, 2κc − 1] and hands it to the prover.

4. The prover computes

d1 = ce+ a mod 2κc+κrn , (16.16)

d2 = cs+ b mod 2κc+2κrN , and (16.17)

d3 = cs′ + b′ mod n , (16.18)

and hands (d1, d2, d3) to the verifier.

5. The verifier checks that yd2gd1 = CcA and yd3gd1 = CcA.

Lemma 16.17. Protocol 16.16 with n = q or n = N is a [0, 2κc − 1]-Σ-protocol.

Proof. If the prover is honest the verifier accepts if there is no modular reduction
in the computation of d1, d2. By the union bound this happens with probability
not more than 2 · 2−κr , which is negligible. Thus, the protocol has overwhelming
completeness.

To prove that the protocol is special-sound, assume we have A, A, c, d1, d2, d3 as
well as c′ 6= c, d′1, d

′
2, d
′
3, each list satisfying the equations of Step 5. Then we have

yd2−d
′
2gd1−d

′
1 = Cc−c′ and yd3−d

′
3gd1−d

′
1 = Cc−c

′

.

If c− c′ does not divide both d1−d′1 and d2−d′2 we define η0 = c− c′, η1 = d1−d′1,
η2 = d2 − d′2, and b = C and conclude that Case 5 in Section 16.1 is satisfied.

238 Construction of the Proof of Knowledge

If n = q, then c − c′ is obviously invertible in Zn. If n = N and c − c′ is not
invertible, we know that gcd(c − c′,N) is a non-trivial factor of N, and Case 7 in
Section 16.1 is satisfied.

Thus, we assume that c − c′ divides both d1 − d′1 and d2 − d′2 and define ε =
(d1−d′1)/(c−c′) and ζ = (d2−d′2)/(c−c′) over the integers and ζ′ = (d3−d′3)/(c−c′)
over Zn. This gives

C = yζgε and C = yζ
′

gε .

Finally, using Lemma 16.15 we can find ε∗ ∈ [0, n− 1] and ζ∗ such that

C = yζ∗gε∗ .

We may assume that ε∗ = ε, since otherwise we can define η0 = ε− ε∗, η1 = ζ − ζ∗,
and b = C and conclude that Case 6 in Section 16.1 is satisfied.

Given the challenge c ∈ [0, 2κc−1] the special zero-knowledge simulator chooses
d1 ∈ [0, 2κc+κrn − 1], d2 ∈ [0, 2κc+2κrN − 1], and d3 ∈ Zn randomly and defines
A and A by the equations in Step 5. This gives the same distribution as an
execution of the protocol. Thus, the protocol is special honest verifier perfect zero-
knowledge. �

16.4 Protocols in the Squares Modulo An RSA-modulus

Zero-knowledge proofs of knowledge of logarithms of elements in QRN have been
studied by Fujisaki and Okamoto [67] and Damgård and Fujisaki [55]. We use
similar techniques. More precisely we the consider Pedersen commitments ysge

over QRN and the problem of proving relations between the committed values in
such commitments.

Protocol 16.18 (Knowledge of Committed Value).
Common Input: g,y ∈ QRN and u,v ∈ Z∗N.
Private Input: s, t ∈ [0, 2κrN− 1], r ∈ QRN such that (u,v) = (ysgt,ytr).

1. The prover chooses a, b ∈ [0, 2κc+2κrN − 1] randomly, computes µ = yagb,
and hands µ to the verifier.

2. The verifier chooses c ∈ [0, 2κc − 1] randomly and hands it to the prover.

3. The prover computes

d1 = cs+ a mod 2κc+2κrN and d2 = ct+ b mod 2κc+2κrN

and hands (d1, d2) to the verifier.

4. The verifier checks that ucµ = yd1gd2 .

Lemma 16.19. Protocol 16.18 is a [0, 2κc − 1]-Σ-protocol.

Protocols in the Squares Modulo An RSA-modulus 239

Proof. It is easy to check that the verifier accepts when there is no modular reduc-
tion in the computation of d1 or d2. Such a reduction occurs with probability at
most 2 ·2κr , which is negligible. Thus, the protocol has overwhelming completeness.

For the extraction of s, t and r to prove special soundness, assume that we have
two lists (µ, c, d1, d2) and (µ, c′, d′1, d

′
2), where c 6= c′, that satisfy the equations in

Step 4. Thus, we have

uc−c
′

= yd1−d
′
1gd2−d

′
2 .

If (c− c′) does not divide (d1−d′1) and (d2−d′2) we define η0 = c− c′, η1 = d1−d′1,
η2 = d2 − d′2, and b = u and conclude that Case 5 in Section 16.1 is satisfied.

Thus, we assume that (c − c′) divides (d1 − d′1) and (d2 − d′2) and define ζ =
(d1 − d′1)/(c− c′) and τ = (d2 − d′2)/(c− c′). This gives

u = yζgτ .

On input a challenge c ∈ [0, 2κc−1] the special zero-knowledge simulator chooses
d1, d2 ∈ [0, 2κc+2κrN− 1] randomly and defines µ by the equation in Step 4. The
resulting transcript is identically distributed to that in the real protocol and we
conclude that the protocol is special honest verifier perfect zero-knowledge. �

Next we give a protocol that shows that two committed values are equal. Note
that we parameterize the protocol on a positive integer z to allow for different sizes
of the exponents.

Protocol 16.20 (Equality of Committed Values).
Common Input: g,y,∈ QRN and u,v,u′,v′ ∈ Z∗N.
Private Input: s, t, s′, t′ ∈ [−2κrz + 1, 2κrz − 1] and r ∈ QRN such that (u,v) =
(ysgt,ytr) and (u′,v′) = (ys

′

gt
′

,yt
′

r).

1. The prover chooses a, b, a′, b′ ∈ [0, 2κc+2κrz − 1] randomly, computes

(α,β,γ) = (yagb,yby−b
′

,ya
′

gb
′

)

and hands (α,β,γ) to the verifier.

2. The verifier chooses c ∈ [0, 2κc − 1] randomly and hands it to the prover.

3. The prover computes

d1 = cs+ a mod 2κc+2κrz ,

d2 = ct+ b mod 2κc+2κrz ,

d3 = cs′ + a′ mod 2κc+2κrz , and

d4 = ct′ + b′ mod 2κc+2κrz ,

and hands (d1, d2, d3, d4) to the verifier.

240 Construction of the Proof of Knowledge

4. The verifier checks that

(ucα, (v/v′)cβ, (u′)cγ) = (yd1gd2 ,yd2y−d4 ,yd3gd4) .

Lemma 16.21. Protocol 16.20 is a [0, 2κc − 1]-Σ-protocol.

Proof. An honest prover fails to convince the verifier if there is a modular reduction
in the computation of d1, d2, d3, and d4. It is easy to see that this happens with
negligible probability. Thus, the protocol has overwhelming completeness.

To show special soundness assume that we have (α,β,γ), c and (d1, d2, d3, d4)
satisfying the equations of Step 4 as well as c′ 6= c and (d′1, d

′
2, d
′
3, d
′
4) satisfying the

same equations. We have

(uc−c
′

, (v/v′)c−c
′

, (u′)c−c
′

) = (yd1−d
′
1gd2−d

′
2 ,yd2−d

′
2y−(d4−d

′
4),yd3−d

′
3gd4−d

′
4) .

If (c− c′) does not divide (d1−d′1) and (d2−d′2) we define η0 = c− c′, η1 = d1−d′1,
η2 = d2 − d′2, and b = u and conclude that Case 5 in Section 16.1 is satisfied. We
do correspondingly if (c− c′) does not divide (d3 − d′3) and (d4 − d′4).

Thus, we assume that (c−c′) divides (d1−d′1), (d2−d′2), (d3−d′3), and (d4−d′4),
and define ζ = (d1− d′1)/(c− c′), τ = (d2− d′2)/(c− c′), ζ′ = (d3− d′3)/(c− c′), and
τ ′ = (d4 − d′4)/(c− c′). This gives

(u,v/v′,u′) = (yζgτ ,yτy−τ
′

,yζ
′

gτ
′

) .

On input a challenge c ∈ [0, 2κc−1] the special zero-knowledge simulator chooses
d1, d2, d3, d4 ∈ [0, 2κc+2κrz − 1] randomly and defines (α,β,γ) by the equations in
Step 4. The resulting distribution is equal to the distribution of the transcript of
an honest execution of the protocol. Thus, the protocol is special honest verifier
perfect zero-knowledge. �

The above protocol can also be used to prove that a pair u,v is a commitment to
a public value w. For clarity we state this as a protocol, also this time parameterized
on z:

Protocol 16.22 (Specific Committed Value).
Common Input: g,y ∈ QRN and u,v,w ∈ Z∗N.
Private Input: s, t ∈ [−2κrz + 1, 2κrz − 1] such that (u,v) = (ysgt,ytw).

1. Invoke protocol 16.20 on common input g,y, (u,v), (1,w) and private expo-
nents s, t, 0, 0.

Lemma 16.23. Protocol 16.22 is a [0, 2κc − 1]-Σ-protocol.

Proof. This follows directly from Lemma 16.21. �

Protocols in the Squares Modulo An RSA-modulus 241

In Protocol 16.4 we showed how to prove that two committed values have an
exponential relation. We need to be able to do this also over ZN. We use a protocol
for double-decker exponential relations similar to Protocol 16.6. Once again we use
the fact that proving that (u, v) and (u,v) are on the forms (u, v) = (yt

′

Ng
s′

N, y
s′

Ng
r
N)

and (u,v) = (ytgs,ysr) is equivalent to proving that (θ, ω,φ) = (uv−1

, vv
−1

,u−1)

is on the form (yt
′

Ng
s′

N, y
s′

Ng
yt

N ,ytgs).

Protocol 16.24 (Basic Double-Decker Exponentiation).
Common Input: g,y,φ ∈ QRN and gN, yN, θ, ω ∈ GN.
Private Input: t, s ∈ [−2κrN + 1, 2κrN− 1] and t′, s′ ∈ ZN such that

(θ, ω,φ) = (yt
′

Ng
s′

N, y
s′

Ng
ys

N ,ytgs).

1. The prover chooses el, fl ∈ [0, 22κrN − 1] and e′l, f
′
l ∈ ZN randomly for l =

1, . . . , κc. Then it computes

(F1,l, F2,l,Al) = (y
e′l
Ng

f ′
l

N , y
f ′
l

Ng
yfl

N ,yelgfl)

and hands (F1,l, F2,l,Al)
κc
l=1 to the verifier.

2. The verifier randomly chooses b = (b1, . . . , bκc) ∈ {0, 1}κc and hands b to the
prover.

3. The prover computes

d1,l = el − blt mod 22κrN ,

d2,l = fl − bls mod 22κrN ,

d3,l = f ′l − blyd2,ls′ mod N , and

d4,l = e′l − blyd2,l t′ mod N ,

and hands (d1,l, d2,l, d3,l, d4,l)
κc
l=1 to the verifier.

4. The verifier checks for l = 1, . . . , κc that

θbly
d2,l

y
d4,l
N g

d3,l
N = F1,l ,

y
d3,l
N (ωblg1−bl

N)y
d2,l

= F2,l , and

φblyd1,lgd2,l = Al .

Lemma 16.25. Protocol 16.24 is a {0, 1}κc-Σ-protocol.

Proof. If there is no reduction in the computations of d1,l and d2,l the verifier will
accept if the prover is honest. It is easy to see that a reduction occurs with negligible
probability. Thus, the protocol has overwhelming completeness.

Now we prove special soundness. For this we follow the proof of Lemma 16.5,
taking into account that the order of Z∗N is unknown.

242 Construction of the Proof of Knowledge

Suppose that we are given two outputs (F1,l, F2,l, Al)
κc
l=1, b, (d1,l, d2,l)

κc
l=1 and

b′, (d′1,l, d
′
2,l)

κc
l=1 with b 6= b′ that satisfy the equations of Step 4. Thus, for some l,

bl 6= b′l.
Let (ε, τ) and (ψ, ζ) be solutions to the equation systems

{

d1,l = el − blt
d′1,l = el − b′lt

}

and

{

d2,l = fl − bls
d′2,l = fl − b′ls

}

,

i.e., τ =
d1,l−d

′
1,l

bl−b′l
and ζ =

d2,l−d
′
2,l

bl−b′l
. Since |bl − b′l| = 1 this gives integral values of

τ, ζ when the system is solved over Z. We now have that φ = yτgζ .
Consider next the equation system

{

d3,l = f ′l − blyd2,ls′
d′3,l = f ′l − b′lyd

′
2,ls′

}

.

Note that bly
d2,l is zero if bl = 0 and non-zero otherwise. Thus, the system is

solvable. Let (ψ′, ζ′) be a solution and assume without loss that b′l = 0. Then we
have

F2,l = y
d3,l
N ωy

d2,l
= yψ

′−y
d2,lζ′

N ωy
d2,l

= yψ
′−yψ−ζζ′

N ωyψ−ζ

and

F2,l = y
d′3,l
N gy

d′2,l

N = yψ
′

N gy
d′2,l

N = yψ
′

N gy
ψ

N .

Solving for ω gives ω = yζ
′

Ng
yζ

N . Finally, let (ε′, τ ′) be the solution to

{

d4,l = e′l − blyd2,l t′
d′4,l = e′l − b′lyd

′
2,l t′

}

.

Then we have

F1,l = θy
d2,l

y
d4,l
N g

d3,l
N = θy

d2,l
yε

′−y
d2,lτ ′

N gψ
′−y

d2,lζ′

N and

F1,l = y
d′4,l
N g

d′3,l
N = yε

′

Ng
ψ′

N .

Solving for θ gives θ = yτ
′

Ng
ζ′

N. We conclude that the protocol is special-sound.
On input b ∈ {0, 1}κc the special zero-knowledge simulator chooses random

elements d1,l, d2,l, d3,l, d4,l ∈ [0, 22κrN−1] and defines (F1,l, F2,l,Al) by the equation
in Step 4. The resulting distribution is identical to that in a real execution protocol.
Thus, the protocol is special honest verifier perfect zero-knowledge. �

Unfortunately, the protocol does not give us exactly what we need. Although
we have moved the committed value into the exponent the commitment (u, v) is
defined over GN. We need a corresponding commitment over QRN. To achieve this
we combine the above protocol with a protocol for proving equivalence of exponents
over distinct groups. This is illustrated in Figure 16.2.

Protocols in the Squares Modulo An RSA-modulus 243

GN

��
QRN

;;
w

w
w

w
w

w
w

w
w

QRN

Figure 16.2: Double-decker exponentiation proof over an RSA-modulus.

Protocol 16.26 (Double-Decker Exponentiation).
Common Input: g,y,h ∈ QRN, (u,v), (u′,v′) ∈ (Z∗N)2, and gN, yN ∈ GN.
Private Input: r ∈ QRN, s, t, s′, t′ ∈ [0, 2κrN− 1] such that (u,v) = (ysgt,ytr)
and (u′,v′) = (ys

′

gt
′

,yt
′

hr).

1. The prover chooses s′′, t′′ ∈ ZN randomly, computes (u, v) = (ys
′′

N gt
′′

N , y
t′′

N g
r
N)

and hands (u, v) to the verifier.

2. The following two protocols are executed in parallel:

a) Protocol 16.24 on common input g,y,φ ∈ QRN and gN, yN, θ, ω ∈ GN

where (θ, ω,φ) = (uv−1

, vv
−1

, u−1) and private input t′′v−1, s′′v−1 ∈
ZN and −t,−s ∈ [−2κrN + 1, 2κrN− 1].

b) Protocol 16.16 on common input y,h,v′ ∈ QRN, gN, yN, v ∈ GN and
private input r, t′, t′′.

Lemma 16.27. Protocol 16.26 is a {0, 1}κc-Σ-protocol.

Proof. The completeness follows from the completeness of the subprotocols.
We now prove special soundness. Using Lemma 16.25 we can find ζ′′, τ ′′, ζ, τ

such that

(θ, ω,φ) = (yτ
′′

N gζ
′′

N , yζ
′′

N gy
ζ

N ,yτgζ) .

Thus, we can compute ρ such that

(u,v) = (gζyτ ,gτρ) and (u, v) = (gζ
′′

N yτ
′′

N , gτ
′′

N yρN) .

Using Lemma 16.17 we can find ζ′, τ ′′∗ and ρ ∈ [0,N− 1] such that

v′ = gζ
′

hρ and v = y
τ ′′
∗

N gρN .

We may assume that (τ ′′∗ , ρ) = (τ ′′,ρ), since otherwise we can define η0 = τ ′′ − τ ′′∗
and η1 = ρ− ρ and Case 4 in Section 16.1 is satisfied.

On input c ∈ {0, 1}κc the special zero-knowledge simulator chooses u, v ∈ GN

randomly and invokes the special zero-knowledge simulators of the subprotocols on
input c. The generated pair (u, v) is identically distributed as in a real execution.
Thus, it follows from Lemma 16.25 and Lemma 16.17 that the protocol is special
honest verifier perfect zero-knowledge. �

244 Construction of the Proof of Knowledge

Protocol 16.28 (Knowledge of a Root of a Committed Value).
Common Input: g,y ∈ QRN and u,v,u′,v′,C ∈ Z∗N.
Private Input: s, t, s′, t′, s′′, e ∈ [0, 2κrN − 1] and r ∈ QRN such that (u,v) =
(ysgt,ytr), (u′,v′) = (ys

′

gt
′

,yt
′

re) and C = ys
′′

ge.

1. The prover chooses a, b ∈ [0, 2κrN− 1] and f, h, i, j ∈ [0, 2κc+2κrN− 1] ran-
domly and computes

(A1,A2) = (yagbue,ybve) , (16.19)

(B1,B2) = (yfghui,yhvi) , and (16.20)

B3 = yjgi . (16.21)

Then it hands (A1,A2,B1,B2,B3) to the verifier. The following protocols
are executed in parallel with the protocol below:

a) Protocol 16.20 parameterized with z = (2κcN)
2

+ 2κc+2κrN on public
input g, y, (A1,A2), (u′,v′) and private input se+ a, te+ b, s′, t′, and
re.

b) Protocol 16.18 on public input g,y, (u,v) and private input s, t, r.

2. The verifier chooses c ∈ [0, 2κc − 1] randomly and hands it to the prover.

3. The prover computes

d1 = ca+ f mod 2κc+2κrN , (16.22)

d2 = cb+ h mod 2κc+2κrN , (16.23)

d3 = ce+ i mod 2κc+2κrN , and (16.24)

d4 = cs′′ + j mod 2κc+2κrN . (16.25)

4. The verifier checks that

Ac
1B1,A

c
2B2 = (yd1gd2ud3 ,yd2vd3) , and (16.26)

CcB3 = yd4gd3 . (16.27)

Lemma 16.29. Protocol 16.28 is a [0, 2κc − 1]-Σ-protocol.

Proof. The verifier rejects if one of the three subprotocols fails or if there is a
modular reduction in the computation of d1, d2, d3 or d4. It is easy to see that
this happens with negligible probability. Thus, the protocol has overwhelming
completeness.

We prove that the protocol is special sound. Suppose we have two transcripts
(A1,A2,B1,B2,B3, c, d1, d2, d3, d4) and (A1,A2,B1,B2,B3, c

′, d′1, d
′
2, d
′
3, d
′
4) with

c 6= c′ satisfying the equations in Step 4. Then we have

Ac−c′

1 = yd1−d
′
1gd2−d

′
2ud3−d

′
3 ,

Ac−c′

2 = yd2−d
′
2vd3−d

′
3 , and

Cc−c′ = yd4−d
′
4gd3−d

′
3 .

Protocols in the Squares Modulo An RSA-modulus 245

If c− c′ does not divide d1− d′1, d2− d′2, d3− d′3, and d4− d′4 we conclude similarly
to previous proofs that Case 5 in Section 16.1 is satisfied.

Thus, we assume that c − c′ divides d1 − d′1, d2 − d′2, d3 − d′3, and define
α = (d1 − d′1)/(c − c′), β = (d2 − d′2)/(c − c′), ε = (d3 − d′3)/(c − c′), and ζ′′ =
(d4 − d′4)/(c− c′). This gives

A1 = yαgβuε ,

A2 = yβvε , and

C = yζ
′′

gε .

Using Lemma 16.19 we can find ζ, τ, r such that

(u,v) = (yζgτ ,yτr) .

If we combine the equations we have

(A1,A1) = (yζε+αgτε+β,yζτ+βrε) .

Using Lemma 16.21 we can find α∗, β∗, ζ
′, τ ′ such that

(A1,A2/u
′,v′) = (yα∗gβ∗ ,yβ∗y−τ

′

,yζ
′

gτ
′

) .

If (ζε+α, τε+β) 6= (α∗, β∗) then we set η0 = ζε+α−α∗ and η1 = τε+β−β∗ and
conclude that Case 6 in Section 16.1 is satisfied. Thus, we assume that equality
holds and have

(u′,v′) = (yζ
′

gτ
′

,yτ
′

rε) .

This concludes the proof of special-soundness.
On input a challenge c ∈ [0, 2κc − 1] the special zero-knowledge simulator

chooses A1,A2 ∈ QRN and d1, d2, d3, d4 ∈ [0, 2κc+2κrN− 1] randomly and defines
B1,B2,B3 by the equations in Step 4. Finally, the simulator invokes the spe-
cial zero-knowledge simulators of the subprotocols on input c. The distribution of
(A1,A2) is statistically close to the distribution of this pair in a real execution,
and both subprotocols are special honest verifier perfect zero-knowledge. Thus, the
protocol is special honest verifier statistical zero-knowledge. �

Protocol 16.30 (Equality of Exponents of Committed Values).
Common Input: g,y,h,u,v,C ∈ QRN

Private Input: r, s, t, w ∈ [0, 2κrN − 1] such that (u,v) = (yrgs,yshw) and
C = ytgw.

1. The prover chooses a, b, e, f ∈ [0, 2κc+2κrN − 1], sets (µ,ν) = (yagb,ybhe)
and B = geyf and hands (µ,ν,B) to the verifier.

2. The verifier randomly chooses c ∈ [0, 2κc − 1] and hands it to the prover.

246 Construction of the Proof of Knowledge

3. The prover computes

d1 = cr + a mod 2κc+2κrN ,

d2 = cs+ b mod 2κc+2κrN ,

d3 = ct+ e mod 2κc+2κrN , and

d4 = cw + f mod 2κc+2κrN ,

and hands (d1, d2, d3, d4) to the verifier.

4. The verifier checks that ucµ = yd1gd2 , vcν = yd2hd4 and CcB = yd3gd4 .

Lemma 16.31. Protocol 16.30 is a [0, 2κc − 1]-Σ-protocol.

Proof. An honest verifier will convince the verifier except possibly when there is
a modular reduction in the computation of d1, d2, d3, or d4. It is easy to see
that this happens with negligible probability. Thus, the protocol has overwhelming
completeness.

Now we show that the protocol is special-sound. Assume that we have two lists
(µ,ν,B, c, d1, d2, d3, d4) and (µ,ν,B, c′, d′1, d

′
2, d
′
3, d
′
4) with c 6= c′ both satisfying

the equations of Step 4. Then we have

(uc−c
′

,vc−c
′

) = (yd1−d
′
1gd2−d

′
2 ,yd2−d

′
2hd4−d

′
4) , and

Cc−c′ = yd3−d
′
3gd4−d

′
4 .

If c− c′ does not divide d1− d′1, d2− d′2, d3− d′3, and d4− d′4 we conclude similarly
to previous proofs that Case 5 in Section 16.1 is satisfied.

Thus, we assume that c − c′ divides d1 − d′1, d2 − d′2, d3 − d′3, and d4 − d′4
and define ρ = (d1 − d′1)/(c − c′), ζ = (d2 − d′2)/(c − c′), τ = (d3 − d′3)/(c − c′),
ω = (d4 − d′4)/(c− c′). This gives

(u,v) = (yρgζ ,yζ ,hω) , and

C = gωyτ .

This concludes the proof of special-soundness.
On input a challenge c ∈ [0, 2κc−1] the special zero-knowledge simulator chooses

d1, d2, d3, d4 ∈ [0, 2κc+2κr − 1] randomly and defines µ, ν and C by the equations
of Step 4. This gives a distribution equal to that of an honest execution. Thus, the
protocol is special honest verifier perfect zero-knowledge. �

The following is a protocol, parameterized on k and l, is used to show that a
committed value can be written as ka+ l for some a.

Protocol 16.32 (A Committed Value Can Be Written as ka+ l).
Common Input: g,y ∈ QRN and C ∈ Z∗N.
Private Input: a, t ∈ [0, 2κrN− 1] such that C = ytgka+l.

Protocols in the Squares Modulo An RSA-modulus 247

1. The prover selects e, f, h ∈ [0, 2κc+2κrN−1], i ∈ [0, 2κc+2κrkN−1] at random,
computes

A = yega , (16.28)

B1 = yhgf , and (16.29)

B2 = yi , (16.30)

and hands (A,B1,B2) to the verifier.

2. The verifier randomly chooses c ∈ [0, 2κc − 1] and hands it to the prover.

3. The prover computes

d1 = ca+ f mod 2κc+2κrN , (16.31)

d2 = ce+ h mod 2κc+2κrN , and (16.32)

d3 = c(ek − t) + i mod 2κc+2κrkN , (16.33)

and hands (d1, d2, d3) to the verifier.

4. The verifier checks that AcB1 = yd2gd1 and (glAk/C)cB2 = yd3 .

Lemma 16.33. Protocol 16.32 is a [0, 2κc − 1]-Σ-protocol.

Proof. The prover succeeds to convince the verifier unless there is a modular re-
duction in the computation of d1, d2, or d3. It is easy to see that this happens with
negligible probability. Thus, the protocol has overwhelming completeness.

Consider now special soundness. Assume we have lists (A,B1,B2, c, d1, d2, d3)
and (A,B1,B2, c

′, d′1, d
′
2, d
′
3), with c 6= c′, satisfying the equations of Step 4. We

have

Ac−c′ = yd2−d
′
2gd1−d

′
1 and

(glAk/C)c−c
′

= yd3−d
′
3 .

If c − c′ does not divide d1 − d′1, d2 − d′2, and d3 − d′3 we conclude similarly to
previous proofs that Case 5 in Section 16.1 is satisfied.

Thus, we assume that c − c′ divides d1 − d′1, d2 − d′2, and d3 − d′3 and define
α = (d1− d′1)/(c− c′), ε = (d2 − d′2)/(c− c′), and ζ = (d3− d′3)/(c− c′). This gives

A = yεgα and glAk/C = yζ

and we conclude that

C = ykε−ζgkα+l .

On input c ∈ [0, 2κc−1] the special zero-knowledge simulator chooses A ∈ QRN,
d1, d2 ∈ [0, 2κc+2κrN− 1], d3 ∈ [0, 2κc+2κrkN− 1] randomly and defines B1,B2 by
the equations in Step 4. This gives a distribution that is statistically close to that
in the real protocol. Thus, the protocol is special honest verifier statistical zero-
knowledge. �

248 Construction of the Proof of Knowledge

From these building blocks we can now present the proof that a committed
signature is valid.

Protocol 16.34 (Validity of Committed Signature from Hash).
Common Input: g,y,h, z ∈ QRN, u,v,u′,v′,C,C′ ∈ Z∗N, e′ ∈ [2κ, 2κ+1 − 1].
Private Input: r, s, r′, s′, t, t′ ∈ [0, 2κrN − 1], e ∈ [2κ, 2κ+1 − 1], and wα ∈ Zq2
such that

(u,v) = (ysgr,yrσ) ,

(u′,v′) = (ys
′

gr
′

,yr
′

σ′) ,

C = ytge ,

C′ = yt
′

gwα , and

Vfcsid,HSh
(N,g)

,(N,h,z,e′)(wα, (e,σ,σ
′)) = 1 .

In other words (e,σ,σ′) is a valid Cramer-Shoup signature of wα if the first hash
function is the identity map.

1. Let z′ denote (σ′)e
′

h−wα . The prover chooses ζ, τ , ζ′, τ ′, ζ′′, τ ′′, ζ′′′, τ ′′′,
ζ′′′′, τ ′′′′ ∈ [0, 2κrN− 1] and sets

(µ,ν) = (yζgτ ,yτh−wα) ,

(µ′,ν ′) = (yζ
′

gτ
′

,yτ
′

z′) ,

(µ′′,ν′′) = (yζ
′′

gτ
′′

,yτ
′′

σe) ,

(µ′′′,ν′′′) = (yζ
′′′

gτ
′′′

,yζ
′′′

HSh
(N,g)(z

′)) , and

(µ′′′′,ν′′′′) = (yζ
′′′′

gτ
′′′′

,yζ
′′′′

h−H
Sh
(N,g)(z

′)) .

Then it hands (µ,ν), (µ′,ν ′), (µ′′,ν ′′), (µ′′′,ν ′′′), and (µ′′′′,ν′′′′) to the
verifier.

2. The following protocols are run in parallel

a) Protocol 16.18 on the public input g,y, (u,v) and private input s, r,σ
to show that the prover knows how to open the commitment (u,v).

b) Protocol 16.18 on the public input g,y, (u′,v′) and private input s′, r′,σ′

to show that the prover knows how to open the commitment (u′,v′).

c) Protocol 16.30 on public input g,y,h, (µ,ν), (C′)−1 and private input
ζ, τ , −t′, −wα to show that (µ,ν) is a commitment of h−wα .

d) Protocol 16.20 with z = N + N2κ+1 on public input g, y, (µ′, ν ′),
(µ(u′)e

′

, ν(v′)e
′

) and private input ζ′, τ ′, ζ + s′e′, τ + r′e′ to show that
(µ′,ν ′) is a commitment of z′.

Protocols in the Squares Modulo An RSA-modulus 249

e) Protocol 16.28 on public input g,y, (u,v), (µ′′,ν ′′),C and private expo-
nents s, r, ζ′′, τ ′′, t, e. This shows that (µ′′,ν′′) hides the value hidden in
(u,v) to the power of the value hidden in C.

f) Protocol 16.26 on public input g,y,g, (µ′,ν ′), (µ′′′,ν′′′), gN, yN and ζ′,
τ ′, ζ′′′, τ ′′′ as private input to show that (µ′′′,ν ′′′) is a commitment of
a Shamir hash of z′.

g) Protocol 16.26 on public input g,y,h−1, (µ′′′,ν ′′′), (µ′′′′,ν ′′′′), gN, yN
and private input ζ′′′, τ ′′′, ζ′′′′, τ ′′′′ to show that (µ′′′′,ν′′′′) commits
to h to the power of −HSh

(N,g)(z
′).

h) Protocol 16.22 with z = 2N on public input g,y, (µ′′µ′′′′,ν′′ν′′′′), z with
private input ζ′′+ζ′′′′, τ ′′+τ ′′′′ to finally show that the signature is valid.

i) Protocol 16.32 with k = 4 and l = 3 on public input g,y,C and private
input e, t to prove that e is odd and different from e′.

j) Protocol 16.14 on public input g,y,C, 2κ, 2κ+1−1 and private input e, t
to prove that e belongs to the correct interval.

Lemma 16.35. Protocol 16.34 is a [0, 2κc − 1]-Σ-protocol.

Proof. Since there is a natural bijection between [0, 2κc − 1] and {0, 1}κc, the res-
ulting protocol is a [0, 2κc − 1]-Σ-protocol. The completeness follows from the
completeness of the subprotocols.

Consider now special soundness. Using Lemma 16.19 we can find ζ, ρ, r and
ζ′, ρ′, r′ such that

(u,v) = (yζgρ,yρr) and (16.34)

(u′,v′) = (yζ
′

gρ
′

,yρ
′

r′) . (16.35)

Using Lemma 16.31 we can find ζ1, ρ1, ω, τ such that

(µ,ν) = (yζ1gρ1 ,yρ1h−ω) and (16.36)

C′ = y−τgω . (16.37)

Using Lemma 16.21 we can find ζ1, τ1, r1, ζe, τe, re such that

(µ′,ν′) = (yζ1gρ1 ,yρ1r1) and (16.38)

(µ(u′)e
′

,ν(v′)e
′

) = (yζegρe ,yρer1) . (16.39)

If we combine Equations (16.34), (16.36), and (16.39) we get

(yζ1+ζ′e′gρ1+ρ
′e′ ,yρ1+ρ′e′h−ωr′e

′

) = (yζegρe ,yρer1) .

We may assume that (ζ1 + ζ′e′, ρ1 + ρ′e′) = (ζe, ρe) and thus re = h−ωr′e
′

, since
otherwise Case 6 in Section 16.1 is satisfied. Thus, we have

(µ′,ν ′) = (yζ1gρ1 ,yρ1h−ωr′e
′

) .

250 Construction of the Proof of Knowledge

Using Lemma 16.29 we can find ζ2, τ2, r2, ζ
′
2, τ
′
2, ε, ζ

′′
2 such that

(u,v) = (yζ2gρ2 ,yρ2r2) ,

(µ′′,ν′′) = (yζ
′
2gρ

′
2 ,yρ

′
2rε2) , and

C = yζ
′′
2 gε .

We may assume that (ζ2, ρ2) = (ζ, ρ) and thus r2 = r, since otherwise Case 6 in
Section 16.1 is satisfied.

Using Lemma 16.27 we can find ζ3, τ3, r3, ζ
′
3, τ
′
3 such that

(µ′,ν′) = (yζ3gρ3 ,yρ3r3) and

(µ′′′,ν′′′) = (yζ
′
3gρ

′
3 ,yρ

′
3hr3) .

We may assume that (ζ3, ρ3) = (ζ′1, ρ
′
1) and thus r3 = h−ωr′e

′

, since otherwise Case
6 in Section 16.1 is satisfied.

Using Lemma 16.27 we can find ζ4, τ4, r4, ζ
′
4, τ
′
4 such that

(µ′′′,ν′′′) = (yζ4gρ4 ,yρ4r4) and

(µ′′′′,ν′′′′) = (yζ
′
4gρ

′
4 ,yρ

′
4hr4) .

We may assume that (ζ4, ρ4) = (ζ′3, ρ
′
3) and thus r4 = hr3 , since otherwise Case 6

in Section 16.1 is satisfied.
Using Lemma 16.23 we can find ζ5, τ5 and z such that

(µ′′µ′′′′,ν′′ν′′′′) = (yζ5gρ5 ,yρ5z) .

We may assume that (ζ5, ρ5) = (ζ′2 + ζ′4, ρ
′
2 + ρ′3) and thus we have

z = rεhhr3
= rεhH

Sh
(N,g)(h

−ωr′e
′
), since otherwise Case 6 in Section 16.1 is satisfied.

Using Lemma 16.33 we can find α, τ ′ such that

C = yτ
′

g4α+3 .

We may assume that ε = 4α+ 3, since otherwise Case 6 in Section 16.1 is satisfied.
Using Lemma 16.15 we can find ζ6, ε6 ∈ [2κ, 2κ+1 − 1] such that

C = yζ6gε6 .

We may assume that ε6 = ε, since otherwise Case 6 in Section 16.1 is satisfied.
To summarize we have found ζ, ρ, ζ′, ρ′, τ, ζ′′2 and ω, (ε, r, r′), with ε ∈ [2κ, 2κ+1−

1] and ε = 3 mod 4, and ζ, ρ, such that

(u,v) = (yζgρ,yρr) ,

(u′,v′) = (yζ
′

gρ
′

,yρ
′

r′) ,

C′ = y−τgω ,

C = yζ
′′
2 gε , and

Vfcsid,HSh
(N,g)

,(N,h,z,e′)(ω, (ε, r, r
′)) = 1 .

The Complete Protocol 251

This concludes the proof of special-soundness.
On input a challenge c ∈ {0, 1}κc the special zero-knowledge simulator chooses

random elements µ′,µ′′,µ′′′,µ′′′′,ν ′,ν′′,ν′′′,ν′′′′ ∈ QRN and invokes the special
zero-knowledge simulator of each subprotocol on input c. The distribution of the
above elements is statistically close to their distribution in the real protocol. Since
all subprotocols are special honest verifier statistical zero-knowledge, so is the com-
bined protocol. �

16.5 The Complete Protocol

We are finally ready to give the complete proof of a correct signature corresponding
to the proof in Step 3 of Algorithm 15.3. The common input consists of a chain of
cryptotexts and commitments of a SScs signature of the public keys corresponding
to the path of the signer in the tree.

Protocol 16.36 (Valid HGS Signature).
Common Input:

HCHP = (h1, . . . , hδ) ∈ Gδq2 (ul, vl, u
′
l, v
′
l)
δ−1
l=0 ∈ G4δ

q3

g1, y1 ∈ Gq1 , g2, y2 ∈ Gq2 , g3, y3 ∈ Gq3 Cδ ∈ G4
q3

yα0 ∈ Gq3 , Y ∈ G5
q3 u,v,u′,v′,C ∈ QRN

e′ ∈ [2κ, 2κ+1 − 1]

g,y,h, z ∈ QRN

Private Input: (r0, . . . , rδ) ∈ Zδ+1
q3 , (yα1 , . . . , yαδ) ∈ Gδq3 , e ∈ [2κ, 2κ+1 − 1], and

(r, s, r′, s′, t) ∈ [0, 2κrN− 1]5 such that

(ul, vl) = E(yαl ,g3)(yαl+1
, rl) for l = 0, . . . , δ − 1 ,

(u′l, v
′
l) = E(yαl ,g3)(1, r

′
l) for l = 0, . . . , δ − 1 ,

Cδ = Ecs
Y (yαδ , rδ) ,

u = ysgr ,

u′ = ys
′

gr
′

,

C = ytge , and

VfcsHCHP,HSh
(N,g)

,(N,h,z,e′)((yα1 , . . . , yαδ), (e,v/y
r,v′/yr

′

)) = 1 .

1. The prover chooses s, t ∈ Zq2 and t′ ∈ [0, 2κrN − 1] randomly and computes

(µ, ν) = (ys1g
t
1, y

t
1g
HCHP(yα1 ,...,yαδ)

1), C′ = yt
′

gH
CHP(yα1 ,...,yαδ). The prover

hands (µ, ν) and C′ to the verifier.

2. The following protocols are executed in parallel

252 Construction of the Proof of Knowledge

a) Protocol 16.12 on public input g3, y3, yα0 , g2, y2, g1, y1, H
CHP,

(ul, vl, u
′
l, v
′
l)
δ−1
l=0 , (µ, ν), Y, Cδ and private input r0, r

′
0, . . . , rδ−1, r

′
δ−1, rδ,

yα1 , . . . , yαδ , s, t.

b) Protocol 16.16 on public input g,y,C′, g1, y1, ν and private input
HCHP(yα1 , . . . , yαδ), t

′, and t.

c) Protocol 16.34 on public input g,y,h, z, (u,v), (u′,v′),C,C′, e′ and
private input r, s, r′, s′, t, t′, e,HCHP(yα1 , . . . , yαδ).

Lemma 16.37. Protocol 16.36 is a [0, 2κc − 1]× Zq2-Σ-protocol.

Proof. The completeness follows from the completeness of the subprotocols.

Using Lemma 16.13 we can find ρ0, ρ
′
0, . . . , ρδ−1, ρ

′
δ−1, ρδ, γ0, . . . , γδ with γ0 =

yα0 , and ζ′′, τ ′′ such that

(ul, vl, u
′
l, v
′
l) = (E(γl,g3)(γl+1, ρl), E(γl,g3)(1, ρ

′
l)) for l = 0, . . . , δ − 1 ,

Cδ = Ecs
Y (γδ, ρδ) , and

(µ, ν) = (yζ
′′

1 gτ
′′

1 , yτ
′′

1 g
HCHP(γ1,...,γδ)
1) .

Using Lemma 16.17 we can find ω, ζ′′′, τ ′′′ such that

C′ = yζ
′′′

gω and ν = yτ
′′′

1 gω1 .

We may assume that ω = HCHP(γ1, . . . , γδ), since otherwise Case 1 in Section 16.1
is satisfied. Using Lemma 16.35 we can find ρ, ζ, ρ′, ζ′, τ, τ ′, ε, ω∗ and r, r′ ∈ QRN

such that

(u,v) = (gζyρ,gρr) ,

(u′,v′) = (gζ
′

yρ
′

,gρ
′

r′) ,

C = yτgε ,

C′ = yτ
′

gω
∗

, and

Vfcsid,HSh
(N,g)

,(N,h,z,e′)(ω, (ε, r, r
′)) = 1 .

We may assume that ω = ω∗, since otherwise Case 5 in Section 16.1 is satisfied.
This concludes the proof of special-soundness.

On input (b, c) ∈ [0, 2κc − 1]×Zq2 the special zero-knowledge simulator chooses
µ, ν ∈ Gq1 and C′ ∈ QRN randomly and invokes the special zero-knowledge sim-
ulator of each subprotocol on input b or c as appropriate. Since the distribution
of (µ, ν,C′) is statistically close to the corresponding elements in a real execution
and the subprotocols are special honest verifier statistical zero-knowledge, then so
is the combined protocol. �

The Complete Protocol 253

16.5.1 A Computationally Convincing Proof of Knowledge

We are finally ready to prove the main results of this chapter.

Proposition 16.38. Protocol 16.36 is honest verifier statistical zero-knowledge.

Proof. This is an immediate consequence of 16.37. �

Proposition 16.39. Protocol 16.36 is a computationally convincing proof of know-
ledge with regards to the distribution of the special parameters Γ = (N,g,y, gN, yN)
and g = (q0, g1, y1, g2, y2, g3, y3), under the DL-assumption and the strong RSA-
assumption.

Proof. We know from Lemma 16.37 that the protocol is a Σ-protocol for the relation
R = RHGS∨RDL∨RSRSA. From Lemma 2.40 follows that the protocol is a proof of
knowledge for the relation RHGS ∨RDL ∨RSRSA. Let X be the extractor. Then we
have for every prover P ∗ and constant c that if Pr(Γ,g),rp [δ

V
P∗((Γ, g), rp) ≥ κ−c] ≥

κ−c then

Pr[(IP∗((Γ, g), rp),XP∗

((Γ, g), rp)) ∈ R | δVP∗((Γ, g), rp) ≥ κ−c] (16.40)

is overwhelming.
We argue that X is an extractor for a computationally convincing proof of

knowledge for the relation RHGS. The requirement on the running time of X in
Definition 2.28 follows immediately. Suppose that the requirement on the output of
X in Definition 2.28 does not hold. Then there exists an adversary P ∗, a constant
c, and an infinite index set N such that

Pr
(Γ,g),rp

[δVP∗((Γ, g), rp) ≥ κ−c] ≥ κ−c

Pr[(IP∗((Γ, g), rp),XP∗

((Γ, g), rp)) 6∈ RHGS | δVP∗((Γ, g), rp) ≥ κ−c] ≥ κ−c .

The union bound and the fact that the probability in Equation (16.40) is over-
whelming implies that

Pr[(IP∗((Γ, g), rp),XP∗

((Γ, g), rp)) ∈ RDL ∨RSRSA | δVP∗((Γ, g), rp) ≥ κ−c]

is at least 1
2κc and we conclude that Pr[(IP∗((Γ, g), rp),XP∗

((Γ, g), rp)) ∈ RDL ∨
RSRSA] ≥ 1

2κ2c .

Denote by t(κ) the expected running time of XP∗

. We define an adversary A
that given input (Γ, g) simulates XP∗

except that it halts after 4κ2ct(κ) steps. If
the simulation is not completed it outputs ⊥. Otherwise it outputs the output of
XP∗

. Thus, the running time of A is polynomial.
Markov’s inequality implies that the probability that the simulation is interrup-

ted is at most 1
4κ2c . The union bound then implies that

Pr[A(Γ, g) ∈ RDL ∨RSRSA] ≥ 1

4κ2c
.

254 Construction of the Proof of Knowledge

It follows from Lemma 3.12 and Lemma 3.5 that this contradicts either the DL-
assumption, Definition 3.4, or the strong RSA-assumption, Definition 3.11, and the
proposition follows. �

It turns out that in the analysis of the hierarchical group signature scheme we
need a somewhat stronger statement. Consider the protocol where the prover and
verifier are given as special input not only (Γ, g), but also a tree T , a pair of maps
sk : V(T)→ Zq3 and pk : V(T)→ Gq3 and a set of leaves L ⊂ L(T). The protocol
is identical to πhgs except that the verifier checks that there does not exist a path
α0, . . . , αδ in the tree T such that

(D1/sk(α0)(u0, v0), . . . , D1/sk(αδ−1)(uδ−1, vδ−1)) = (pk (α1), . . . , pk(αδ)) .

Denote the resulting protocol by π′hgs. The following result follows similarly to the
proposition above.

Proposition 16.40. Let T be a tree with all leaves at the same depth. Then Pro-
tocol 16.36 is a computationally convincing proof of knowledge with regards to the
distribution of Γ = (N,g,y, gN, yN), g = (q0, g1, y1, g2, y2, g3, y3), and (pk , sk),
under the DL-assumption and the strong RSA-assumption.

16.6 Complexity Analysis

We now analyze the number of exponentiations needed for some typical parameters.
Table 16.1 shows the number of exponentiations necessary for each protocol.

Since Protocol 16.36 corresponds to the proof of a signature, this is what we need
to evaluate to find the number of exponentiations of the complete protocol. Since
the bulk of computations stem from the (δ + 3) executions of the double-decker
exponentiation proofs that are based on cut-and-choose techniques we consider
how to speed up these exponentiations. It can be noted that all exponentiations
in these protocols are fixed-based exponentiations. In [31] a technique to use pre-
computation to speed up such computations is given. The idea is to represent the
exponent in basis b and pre-compute gb

i

for i = 1, 2, . . . , logbm where m is the
maximum value of the exponent, in our case usually 2κ. By pre-computing also
cross-products gbigbj we can speed up the algorithm by a factor of (almost) two by
paying in larger storage requirements.

For each call to Protocol 16.6 or 16.24 the verifier will need to perform precom-
putations for two new bases. All other bases in these two cut-and-choose protocols
are fixed throughout the execution, and thus only requires one precomputation
phase, which also may be stored between executions.

A realistic example may be κ = 1024 and κc = 160. By choosing parameters
appropriately, one fixed-base exponentiation then takes about 0.075 of the time
for a general exponentiation, and the setup phase takes about 4

310 general expo-
nentiations with a storage requirement of about 2.5 Mb per base involved. By
evaluating the expressions in Table 16.1 and adding a setup phase for 10 bases, we

Complexity Analysis 255

Prot. Prover Verifier Setup

16.2 25δ − 2 30δ − 3
16.4 2 + (16.6) 2 + (16.6)
16.6 7.5κc 7.5κc 2 bases
16.8 5 8
16.10 3 6

16.12
7δ + 2 + (16.2)+ (16.2)+
(δ + 1) · (16.4) (δ + 1) · (16.4)+
(16.8) + (16.10) (16.8) + (16.10)

16.16 10 18
16.18 2 3
16.20 2 3
16.22 (16.20) (16.20)
16.26 6 + (16.16) + (16.24) (16.16) + (16.24)
16.24 7.5κc 7.5κc 2 bases
16.28 12 + 2 · (16.18) + (16.20) 8 + 2 · (16.18) + (16.20)
16.30 4 9
16.32 7 7
16.14 6 12

16.34

20 + 2 · (16.18)+ 2 · (16.18)+
(16.20) + (16.22)+ (16.20) + (16.22)+
2 · (16.26) + (16.28)+ 2 · (16.26) + (16.28)+
(16.30) + (16.32) + (16.14) (16.30) + (16.32) + (16.14)

16.36
6 + δ + (16.12)+ δ + (16.12)+
(16.16) + (16.34) (16.16) + (16.34)

Table 16.1: Number of exponentiations in each subprotocol

get that generating and verifying a signature takes time equivalent to about 1000
general exponentiations. This can be improved by using more efficient exponen-
tiation algorithms, see, e.g., [109]. We have, for example, not used the fact that
many exponentiations are simultaneous multiple exponentiations.

We now look at the size of a signature. Also here the cut-and-choose protocols
contribute the most. For each protocol execution, 7κc values need to be stored,
each of which has κ bits. This gives a total of 7κc(δ + 3) κ-bit numbers. With the
same parameters as above this gives a signature size of about 1 Mb.

In the above computations we have ignored the fact that some computations
involve exponents slightly larger than κ bits, but the numbers still gives a good
picture of the amount of computation necessary. One can conclude that on a
standard PC a signature can be created in about a minute.

Chapter 17

Conclusions of Part III

We have introduced the new notion of hierarchical group signatures, and given
formal definitions. We have also given two constructions. The first is secure under
the existence of a family of trapdoor permutations, and the second is secure under
standard concrete complexity assumptions. Although we believe that our work is
a good starting point, much work on hierarchical group signatures remain.

Our definitions only consider static groups. Thus, an important research prob-
lem is to formalize hierarchical group signatures for dynamic groups, i.e., when
group managers and signers can be added and removed. It is far from obvious what
the semantics of such a scheme should be. Another important problem is to find
a more practical scheme, even for static groups. Finally, our solution postulates a
trusted key generator. Future work should try to eliminate this deficiency.

As part of the construction of the proof of knowledge of Chapter 16 we have
constructed a reasonably practical zero-knowledge proof of knowledge that a com-
mitted value is a signature of an encrypted message. We are not aware of any
previous method to do this efficiently.

There are many interesting variations of group signatures, some of which have
not yet been properly formalized and studied. These variations are not always
of immediate practical value, but the problem of realizing them is still an inter-
esting cryptographic problem that inspire the development of new methods and
techniques.

257

Bibliography

[1] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the com-
putational soundness of formal encryption). In Theoretical Computer Science,
Exploring New Frontiers of Theoretical Informatics IFIP TCS 2000, volume
1872 of Lecture Notes in Computer Science. Springer Verlag, 2000.

[2] M. Abe. Universally verifiable mix-net with verification work independent
of the number of mix-centers. In Advances in Cryptology – Eurocrypt ’98,
volume 1403 of Lecture Notes in Computer Science, pages 437–447. Springer
Verlag, 1998.

[3] M. Abe, R. Cramer, and S. Fehr. Non-interactive distributed-verifier proofs
and proving relations among commitments. In Advances in Cryptology –
Asiacrypt 2002, volume 2501 of Lecture Notes in Computer Science, pages
206–223. Springer Verlag, 2002.

[4] M. Abe and S. Fehr. Adaptively secure feldman VSS and applications to
universally-composable threshold cryptography. In Advances in Cryptology
– Crypto 2004, volume 3152 of Lecture Notes in Computer Science, pages
317–334. Springer Verlag, 2004. (Full version at Cryptology ePrint Archive,
Report 2004/118, http://eprint.iacr.org, May, 2004.).

[5] M. Abe and H. Imai. Flaws in some robust optimistic mix-nets. In Aus-
tralasian Conference on Information Security and Privacy – ACISP2003,
volume 2727 of Lecture Notes in Computer Science, pages 39–50. Springer
Verlag, 2003.

[6] R. J. Anderson and S. Vaudenay. Minding your p’s and q‘s. In Advances
in Cryptology – Asiacrypt ’96, volume 1163 of Lecture Notes in Computer
Science, pages 26–35. Springer Verlag, 1996.

[7] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In Advances in Cryptology
– Crypto 2000, volume 1880 of Lecture Notes in Computer Science, pages
255–270. Springer Verlag, 2000.

259

260 Bibliography

[8] G. Ateniese and G. Tsudik. Some open issues and directions in group sig-
natures. In Financial Cryptography ’99, volume 1648 of Lecture Notes in
Computer Science, pages 196–211. Springer Verlag, 1999.

[9] M. Backes and D. Hofheinz. How to break and repair a universally composable
signature functionality. Cryptology ePrint Archive, Report 2003/240, 2003.
http://eprint.iacr.org/.

[10] R. C. Baker and G. Harman. The difference between consecutive primes.
Proceedings of the London Mathematical Society, 72(3):261–280, 1996.

[11] N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature
scheme. In Advances in Cryptology – Eurocrypt ’97, volume 1233 of Lecture
Notes in Computer Science, pages 480–494. Springer Verlag, 1997.

[12] O. Baudron, P.A. Fouque, D. Pointcheval, G. Poupard, and J. Stern. Practical
multi-candidate election scheme. In 20th ACM Symposium on Principles of
Distributed Computing – PODC, pages 274–283. ACM Press, 2001.

[13] D. Beaver. Foundations of secure interactive computation. In Advances in
Cryptology – Crypto ’91, volume 576 of Lecture Notes in Computer Science,
pages 377–391. Springer Verlag, 1991.

[14] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in
public-key encryption. In Advances in Cryptology – Asiacrypt 2001, volume
2248 of Lecture Notes in Computer Science. Springer Verlag, 2001.

[15] M. Bellare and O. Goldreich. On defining proofs of knowledge. In Advances in
Cryptology – Crypto ’92, volume 740 of Lecture Notes in Computer Science,
pages 390–420. Springer Verlag, 1992.

[16] M. Bellare and S. Micali. How to sign given any trapdoor permutation. SIAM
Journal on Computing, 39(1):214–233, 1992.

[17] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signa-
tures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In Advances in Cryptology – Eurocrypt 2003, volume
2656 of Lecture Notes in Computer Science, pages 614–629. Springer Verlag,
2003.

[18] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM Conference on Computer and Commu-
nications Security (CCS) ’93, pages 62–73. ACM Press, 1993.

[19] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The
case of dynamic groups. In RSA Conference 2005, Cryptographers’ Track
2005, 2005. (Full version at Cryptology ePrint Archive, Report 2004/077,
http://eprint.iacr.org, May, 2004.).

261

[20] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In 20th ACM Sym-
posium on the Theory of Computing (STOC), pages 1–10. ACM Press, 1988.

[21] J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections. In 26th ACM
Symposium on the Theory of Computing (STOC), pages 544–553. ACM Press,
1994.

[22] J. Benaloh and M. Yung. Distributing the power of a government to enhance
the privacy of voters. In 5th ACM Symposium on Principles of Distributed
Computing – PODC, pages 52–62. ACM Press, 1986.

[23] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography. Cam-
bridge University Press, 1999.

[24] M. Blum. Coin flipping by telephone. In Advances in Cryptology – Crypto
’81, pages 11–15, 1981.

[25] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its
applications. In 20th ACM Symposium on the Theory of Computing (STOC),
pages 103–118. ACM Press, 1988.

[26] M. Blum and S. Micali. How to generate cryptographically strong sequences
of pseudo-random bits. SIAM Journal on Computing, 13:850–864, 1984.

[27] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances
in Cryptology – Crypto 2004, volume 3152 of Lecture Notes in Computer
Science. Springer Verlag, 2004.

[28] D. Boneh and M. Franklin. Efficient generation of shared RSA keys. In Ad-
vances in Cryptology – Crypto ’97, volume 1233 of Lecture Notes in Computer
Science, pages 425–439. Springer Verlag, 1997.

[29] F. Boudot. Efficient proofs that a committed number lies in an interval. In
Advances in Cryptology – Eurocrypt 2000, volume 1807 of Lecture Notes in
Computer Science, pages 431–444. Springer Verlag, 2000.

[30] F. Boudot and J. Traoré. Efficient publicly veriable secret sharing schemes
with fast or delayed recovery. In 2nd International Conference on Informa-
tion and Communication Security (ICICS), volume 1726 of Lecture Notes in
Computer Science, pages 87–102. Springer Verlag, 1999.

[31] E.F. Brickell, D.M. Gordon, K.S. McCurly, and D.B. Wilson. Fast expo-
nentiation with precomputation. In Advances in Cryptology – Eurocrypt ’92,
volume 658 of Lecture Notes in Computer Science, pages 200–207. Springer
Verlag, 1992.

262 Bibliography

[32] J. Camenisch. Efficient and generalized group signature. In Advances in
Cryptology – Eurocrypt ’97, volume 1233 of Lecture Notes in Computer Sci-
ence, pages 465–479. Springer Verlag, 1997.

[33] J. Camenisch and J. Groth. Group signatures: Better efficiency and new
theoretical aspects. In Security in Communication Networks 2004, volume
3352 of Lecture Notes in Computer Science. Springer Verlag, 2005.

[34] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous creden-
tials from bilinear maps. In Advances in Cryptology – Crypto 2004, volume
3152 of Lecture Notes in Computer Science. Springer Verlag, 2004.

[35] J. Camenisch and M. Michels. A group signature scheme with improved
effiency. In Advances in Cryptology – Asiacrypt ’98, volume 1514 of Lecture
Notes in Computer Science, pages 160–174. Springer Verlag, 1999.

[36] J. Camenisch and M. Michels. Separability and efficiency for generic group
signature schemes. In Advances in Cryptology – Crypto ’99, volume 1666 of
Lecture Notes in Computer Science, pages 413–430. Springer Verlag, 1999.

[37] J. Camenisch and A. Mityagin. Mix-network with stronger security. Unpub-
lished Manuscript.

[38] J. Camenisch and M. Stadler. Efficient group signature schemes for large
groups. In Advances in Cryptology – Crypto ’97, volume 1294 of Lecture
Notes in Computer Science, pages 410–424. Springer Verlag, 1997.

[39] R. Canetti. Towards realizing random oracles: Hash functions that hide all
partial information. In Advances in Cryptology – Crypto ’97, volume 1294 of
Lecture Notes in Computer Science, pages 455–469. Springer Verlag, 1997.

[40] R. Canetti. Security and composition of multi-party cryptographic protocols.
Journal of Cryptology, 13(1):143–202, 2000.

[41] R. Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd IEEE Symposium on Foundations of Computer
Science (FOCS), pages 136–145. IEEE Computer Society Press, 2001. (Full
version at Cryptology ePrint Archive, Report 2000/067, http://eprint.

iacr.org, October, 2001.).

[42] R. Canetti. Universally composable signatures, certification and authentica-
tion. Cryptology ePrint Archive, Report 2003/239, 2003. http://eprint.

iacr.org/.

[43] R. Canetti, O. Goldreich, and S. Halevi. The random oracle model revisited.
In 30th ACM Symposium on the Theory of Computing (STOC), pages 209–
218. ACM Press, 1998.

263

[44] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable
two-party and multi-party secure computation. In 34th ACM Symposium on
the Theory of Computing (STOC), pages 449–503. ACM Press, 2002.

[45] D. Chaum. Untraceable electronic mail, return addresses and digital pseudo-
nyms. Communications of the ACM, 24(2):84–88, 1981.

[46] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure
protocols. In 20th ACM Symposium on the Theory of Computing (STOC),
pages 11–19. ACM Press, 1988.

[47] D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically strong un-
deniable signatures, unconditionally secure for the signer. In Advances in
Cryptology – Crypto ’91, volume 576 of Lecture Notes in Computer Science,
pages 470–484. Springer Verlag, 1991.

[48] D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology
– Eurocrypt ’91, volume 547 of Lecture Notes in Computer Science, pages
257–265. Springer Verlag, 1991.

[49] L. Chen and T. P. Pedersen. New group signature schemes. In Advances
in Cryptology – Eurocrypt ’94, volume 950 of Lecture Notes in Computer
Science, pages 171–181. Springer Verlag, 1994.

[50] J. Cohen and M. Fischer. A robust and verifiable cryptographically secure
election scheme. In 28th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pages 372–382. IEEE Computer Society Press, 1985.

[51] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In Advances in Cryptology –
Crypto ’94, volume 839 of Lecture Notes in Computer Science, pages 174–187.
Springer Verlag, 1994.

[52] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally ef-
ficient multi-authority election scheme. In Advances in Cryptology – Euro-
crypt ’97, volume 1233 of Lecture Notes in Computer Science, pages 103–118.
Springer Verlag, 1997.

[53] R. Cramer and V. Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In Advances in Cryptology
– Crypto ’98, volume 1462 of Lecture Notes in Computer Science, pages 13–
25. Springer Verlag, 1998.

[54] R. Cramer and V. Shoup. Signature schemes based on the strong RSA as-
sumption. In 6th ACM Conference on Computer and Communications Se-
curity (CCS), pages 46–51. ACM Press, 1999.

264 Bibliography

[55] I. Damgård and E. Fujisaki. A statistically-hiding integer commitment scheme
based on groups with hidden order. In Advances in Cryptology – Asiacrypt
2002, volume 2501 of Lecture Notes in Computer Science, pages 125–142.
Springer Verlag, 2002.

[56] I. Damgård and J. Groth. Non-interactive and reusable non-malleable com-
mitment schemes. In 35th ACM Symposium on the Theory of Computing
(STOC), pages 426–437. ACM Press, 2003.

[57] I. Damgård and M. Jurik. A generalisation, a simplification and some applica-
tions of paillier’s probabilistic public-key system. In Public Key Cryptography
– PKC 2001, volume 1992 of Lecture Notes in Computer Science, pages 119–
136. Springer Verlag, 2001.

[58] I. Damgård and J. Buus Nielsen. Universally composable efficient multi-
party computation from threshold homomorphic encryption. In Advances in
Cryptology – Crypto 2003, volume 2729 of Lecture Notes in Computer Science,
pages 247–267. Springer Verlag, 2003.

[59] Y. Desmedt and K. Kurosawa. How to break a practical MIX and design a
new one. In Advances in Cryptology – Eurocrypt 2000, volume 1807 of Lecture
Notes in Computer Science, pages 557–572. Springer Verlag, 2000.

[60] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

[61] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In 23rd ACM
Symposium on the Theory of Computing (STOC), pages 542–552. ACM Press,
1991.

[62] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero-knowledge
proofs under general assumptions. SIAM Journal on Computing, 29(1):1–28,
1999.

[63] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In
28th IEEE Symposium on Foundations of Computer Science (FOCS), pages
427–438. IEEE Computer Society Press, 1987.

[64] A. Fiat and A. Shamir. How to prove yourself. practical solutions to iden-
tification and signature problems. In Advances in Cryptology – Crypto ’86,
volume 263 of Lecture Notes in Computer Science, pages 186–189. Springer
Verlag, 1986.

[65] P. Fouque and J. Stern. Fully distributed threshold RSA under standard
assumptions. Cryptology ePrint Archive, Report 2001/008, 2001. http:

//eprint.iacr.org/.

265

[66] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for
large scale elections. In Advances in Cryptology – Auscrypt ’92, volume 718
of Lecture Notes in Computer Science, pages 244–251. Springer Verlag, 1992.

[67] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove
modular polynomial relations. In Advances in Cryptology – Crypto ’97,
volume 1294 of Lecture Notes in Computer Science, pages 16–30. Springer
Verlag, 1997.

[68] J. Furukawa. Efficient, verifiable shuffle decryption and its requirements of
unlinkability. In Public Key Cryptography – PKC 2004, volume 2947 of Lec-
ture Notes in Computer Science, pages 319–332. Springer Verlag, 2004.

[69] J. Furukawa, H. Miyauchi, K. Mori, S. Obana, and K. Sako. An implement-
ation of a universally verifiable electronic voting scheme based on shuffling.
In Financial Cryptography 2002, volume 2357 of Lecture Notes in Computer
Science, pages 16–30. Springer Verlag, 2002.

[70] J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In Ad-
vances in Cryptology – Crypto 2001, volume 2139 of Lecture Notes in Com-
puter Science, pages 368–387. Springer Verlag, 2001.

[71] T. El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

[72] O. Goldreich. Foundations of Cryptography – Basic Tools. Cambridge Uni-
versity Press, 2001.

[73] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions.
In 21st ACM Symposium on the Theory of Computing (STOC), pages 25–32.
ACM Press, 1989.

[74] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
19th ACM Symposium on the Theory of Computing (STOC), pages 218–229.
ACM Press, 1987.

[75] S. Goldwasser and L. Levin. Fair computation of general functions in presence
of immoral majority. In Advances in Cryptology – Crypto ’90, volume 537 of
Lecture Notes in Computer Science, pages 77–93. Springer Verlag, 1990.

[76] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984.

[77] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of inter-
active proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

266 Bibliography

[78] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme se-
cure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

[79] P. Golle, S. Zhong, D. Boneh, M. Jakobsson, and A. Juels. Optimistic mixing
for exit-polls. In Advances in Cryptology – Asiacrypt 2002, volume 2501 of
Lecture Notes in Computer Science, pages 451–465. Springer Verlag, 2002.

[80] J. Groth. A verifiable secret shuffle of homomorphic encryptions. In Public
Key Cryptography – PKC 2003, volume 2567 of Lecture Notes in Computer
Science, pages 145–160. Springer Verlag, 2003.

[81] J. Groth. Personal communication, 2004.

[82] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. Construction of a pseu-
dorandom generator from any one-way function. SIAM Journal on Comput-
ing, 28(4):1364–1396, 1999.

[83] J. Håstad, A. W. Schrift, and A. Shamir. The discrete logarithm modulo
a composite hides O(n) bits. Journal of Computer and System Sciences,
47:376–404, 1993.

[84] M. Hirt and K. Sako. Efficient reciept-free voting based on homomorphic
encryption. In Advances in Cryptology – Eurocrypt 2000, Lecture Notes in
Computer Science, pages 539–556. Springer Verlag, 2000.

[85] S. Hamdy J. Buchmann. A survey on IQ cryptography. In Public-Key Cryp-
tography and Computational Number Theory, pages 1–15. Walter de Gruyter,
2001.

[86] M. Jakobsson. Flash mixing. In 19th ACM Symposium on Principles of
Distributed Computing – PODC, pages 83–89. ACM Press, 1998.

[87] M. Jakobsson. A practical mix. In Advances in Cryptology – Eurocrypt ’98,
volume 1403 of Lecture Notes in Computer Science, pages 448–461. Springer
Verlag, 1998.

[88] M. Jakobsson and A. Juels. Millimix: Mixing in small batches. Technical
Report 1999-33, Center for Discrete Mathematics and Theoretical Computer
Science (DIMACS), June 1999.

[89] M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via
ciphertexts. In Advances in Cryptology – Asiacrypt 2000, volume 1976 of
Lecture Notes in Computer Science, pages 162–177. Springer Verlag, 2000.

[90] M. Jakobsson and A. Juels. An optimally robust hybrid mix network. In 20th
ACM Symposium on Principles of Distributed Computing – PODC, pages
284–292. ACM Press, 2001.

267

[91] M. Jakobsson, A. Juels, and R. Rivest. Making mix nets robust for electronic
voting by randomized partial checking. In 11th USENIX Security Symposium,
pages 339–353. USENIX, 2002.

[92] M. Jakobsson and D. M’Raihi. Mix-based electronic payments. In Selected
Areas in Cryptography – SAC ’98, volume 1556 of Lecture Notes in Computer
Science, pages 157–173. Springer Verlag, 1998.

[93] A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In Advances
in Cryptology – Eurocrypt 2004, volume 3027 of Lecture Notes in Computer
Science. Springer Verlag, 2004.

[94] A. Kiayias and M. Yung. Group signatures: Provable security, efficient con-
structions and anonymity from trapdoor-holders. Cryptology ePrint Archive,
Report 2004/076, 2004. http://eprint.iacr.org/2004/076.

[95] A. Kiayias and M. Yung. The vector-ballot e-voting approach. In Financial
Cryptography 2004, volume 3110 of Lecture Notes in Computer Science, pages
72–89. Springer Verlag, 2004.

[96] S. Kim, S. Park, and D. Won. Group signatures for hierarchical multigroups.
In Information Security Workshop – ISW ’97, volume 1396 of Lecture Notes
in Computer Science, pages 273–281. Springer Verlag, 1998.

[97] N. Koblitz. Algebraic Aspects of Cryptography. Springer Verlag, 1998.

[98] N. Koblitz and A. Menezes. Another look at “provable security”. Cryptology
ePrint Archive, Report 2004/152, 2004. http://eprint.iacr.org/.

[99] C. H. Lim and P. J. Lee. A key recovery attack on discrete log-based schemes
using a prime order subgroup. In Advances in Cryptology – Crypto ’97, volume
1294 of Lecture Notes in Computer Science, pages 249–263. Springer Verlag,
1997.

[100] A. Lysyanskaya and C. Peikert. Adaptive security in the threshold setting:
From cryptosystems to signature schemes. In Advances in Cryptology – Asiac-
rypt 2001, volume 2248 of Lecture Notes in Computer Science, pages 331–350.
Springer Verlag, 2001.

[101] A. Lysyanskaya and Z. Ramzan. Group blind digital signatures: A scalable
solution to electronic cash. In Financial Cryptography ’98, volume 1465 of
Lecture Notes in Computer Science, pages 184–197. Springer Verlag, 1998.

[102] A. Menezes, P. Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

[103] R. Merkle. Protocols for public key cryptosystems. In 1980 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, 1980.

268 Bibliography

[104] S. Micali, M. Rabin, and J. Kilian. Zero-knowledge sets. In 44th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 80–91. IEEE
Computer Society Press, 2003.

[105] S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic
cryptosystems. SIAM Journal on Computing, 17(2):412–426, 1988.

[106] S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology –
Crypto ’91, volume 576 of Lecture Notes in Computer Science, pages 392–404.
Springer Verlag, 1991.

[107] M. Michels and P. Horster. Some remarks on a reciept-free and universally
verifiable mix-type voting scheme. In Advances in Cryptology – Asiacrypt ’96,
volume 1163 of Lecture Notes in Computer Science, pages 125–132. Springer
Verlag, 1996.

[108] M. Mitomo and K. Kurosawa. Attack for flash MIX. In Advances in Crypto-
logy – Asiacrypt 2000, volume 1976 of Lecture Notes in Computer Science,
pages 192–204. Springer Verlag, 2000.

[109] B. Möller. Public-Key Cryptography – Theory and Practice. PhD thesis,
Technische Universität Darmstadt, 2003.

[110] M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attack. In 22th ACM Symposium on the Theory of Com-
puting (STOC), pages 427–437. ACM Press, 1990.

[111] M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In 22nd ACM Symposium on the Theory of Com-
puting (STOC), pages 427–437. ACM Press, 1990.

[112] A. Neff. A verifiable secret shuffle and its application to e-voting. In 8th
ACM Conference on Computer and Communications Security (CCS), pages
116–125. ACM Press, 2001.

[113] A. Neff. Verifiable mixing (shuffling) of elgamal pairs. manuscript, 2005.
Available at http://www.votehere.com/documents.html.

[114] L. Nguyen, R. Safavi-Naini, and K. Kurosawa. A provably secure and efficient
verifiable shuffle based on a variant of the paillier cryptosystem. Cryptology
ePrint Archive, Report 2005/162, 2005. http://eprint.iacr.org/.

[115] L. Nguyen, R. Safavi-Naini, and K. Kurosawa. Verifiable shuffles: A formal
model and a paillier-based efficient construction with provable security.
Cryptology ePrint Archive, Report 2005/199, 2005. http://eprint.iacr.

org/.

269

[116] J. Buus Nielsen. Universally composable zero-knowledge proof of membership.
http://www.brics.dk/~buus/, April 2005.

[117] V. Niemi and A. Renvall. How to prevent buying of votes in computer elec-
tions. In Advances in Cryptology – Asiacrypt ’94, volume 917 of Lecture Notes
in Computer Science, pages 164–170. Springer Verlag, 1994.

[118] A. M. Odlyzko. Discrete logarithms: The past and the future. Designs,
Codes, and Cryptography, 19(2/3):129–145, 2000.

[119] National Institute of Standards and Technology (NIST). Secure hash stand-
ard. Federal Information Processing Standards Publication 180-2, 2002.
http://csrc.nist.gov/.

[120] W. Ogata, K. Kurosawa, K. Sako, and K. Takatani. Fault tolerant anonymous
channel. In 1st International Conference on Information and Communication
Security (ICICS), volume 1334 of Lecture Notes in Computer Science, pages
440–444. Springer Verlag, 1997.

[121] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Advances in Cryptology – Eurocrypt ’99, volume 1592 of Lecture
Notes in Computer Science, pages 223–238. Springer Verlag, 1999.

[122] C. Park, K. Itoh, and K. Kurosawa. Efficient anonymous channel and
all/nothing election scheme. In Advances in Cryptology – Eurocrypt ’93,
volume 765 of Lecture Notes in Computer Science, pages 248–259. Springer
Verlag, 1994.

[123] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Advances in Cryptology – Crypto ’91, volume 576 of Lecture
Notes in Computer Science, pages 129–140. Springer Verlag, 1992.

[124] K. Peng, C. Boyd, and E. Dawson. Simple and efficient shuffling with provable
correctness and ZK privacy. In Advances in Cryptology – Crypto 2005, volume
3621 of Lecture Notes in Computer Science, pages 188–204. Springer Verlag,
2005.

[125] B. Pfitzmann. Breaking an efficient anonymous channel. In Advances in
Cryptology – Eurocrypt ’94, volume 950 of Lecture Notes in Computer Science,
pages 332–340. Springer Verlag, 1995.

[126] B. Pfitzmann and A. Pfitzmann. How to break the direct RSA-
implementation of mixes. In Advances in Cryptology – Eurocrypt ’89, volume
434 of Lecture Notes in Computer Science, pages 373–381. Springer Verlag,
1990.

270 Bibliography

[127] B. Pfitzmann and M. Waidner. Composition and integrity preservation of
secure reactive systems. In 7th ACM Conference on Computer and Commu-
nications Security (CCS), pages 245–254. ACM Press, 2000.

[128] The prime pages. http://primes.utm.edu, March 2004.

[129] The proth search page. http://www.prothsearch.net, March 2004.

[130] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In Advances in Cryptology – Crypto ’91, volume
576 of Lecture Notes in Computer Science, pages 433–444. Springer Verlag,
1991.

[131] P. Ribenboim. The new book of prime number records. Springer Verlag, 3
edition, 1996.

[132] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public key cryptosystems. Communications of the ACM, 21(2):120–
126, 1978.

[133] A. Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-
ciphertext security. In 40th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 543–553. IEEE Computer Society Press, 1999.

[134] K. Sako and J. Killian. Reciept-free mix-type voting scheme. In Advances
in Cryptology – Eurocrypt ’95, volume 921 of Lecture Notes in Computer
Science, pages 393–403. Springer Verlag, 1995.

[135] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai.
Robust non-interactive zero knowledge. In Advances in Cryptology – Crypto
2001, volume 2139 of Lecture Notes in Computer Science, pages 566–598.
Springer Verlag, 2001.

[136] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, 1979.

[137] S. Singh. The Code Book. Fourth Estate, London, 1999.

[138] M. Stadler. Publicly verifiable secret sharing. In Advances in Cryptology
– Eurocrypt ’96, volume 1070 of Lecture Notes in Computer Science, pages
190–199. Springer Verlag, 1996.

[139] D. Stinson. A polemic on notions of cryptographic security. Manuscript, 2004.
http://www.cacr.math.uwaterloo.ca/~dstinson.

[140] M. Trolin and D. Wikström. Hierarchical group signatures. Cryptology ePrint
Archive, Report 2004/311, 2004. http://eprint.iacr.org/.

271

[141] M. Trolin and D. Wikström. Hierarchical group signatures. In 32nd Inter-
national Colloquium on Automata, Languages and Programming (ICALP),
volume 3580 of Lecture Notes in Computer Science, pages 446–458. Springer
Verlag, 2005. (Full version [140]).

[142] Y. Tsiounis and M. Yung. On the security of elgamal based encryption.
In Public Key Cryptography – PKC ’98, volume 1431 of Lecture Notes in
Computer Science, pages 117–134. Springer Verlag, 1998.

[143] D. Wagner. A generalized birthday problem. In Advances in Cryptology –
Crypto 2002, volume 2442 of Lecture Notes in Computer Science, pages 288–
304. Springer Verlag, 2002.

[144] D. Wikström. How to break, fix, and optimize “optimistic mix for exit-polls”.
Technical Report, Swedish Institute of Computer Science (SICS), T2002:24,
ISSN 1100-3154, ISRN SICS-T-2002/24-SE, 6 December 2002, http://www.
sics.se.

[145] D. Wikström. On the security of mix-nets and related problems. Licentiate
thesis, Department of Numerical Analysis and Computer Science, Royal Insti-
tute of Technology, TRITA-NA-04-06, ISSN 0348-2952, ISRN KTH/NA/R--
04/06--SE, ISBN 91-7283-717-9, May, 2004, http://www.kth.se.

[146] D. Wikström. Five practical attacks for “optimistic mixing for exit-polls”. In
Selected Areas in Cryptography – SAC 2003, volume 3006 of Lecture Notes in
Computer Science, pages 160–174. Springer Verlag, 2003.

[147] D. Wikström. A universally composable mix-net. In 1st Theory of Crypto-
graphy Conference (TCC), volume 2951 of Lecture Notes in Computer Sci-
ence, pages 315–335. Springer Verlag, 2004.

[148] D. Wikström. A sender verifiable mix-net and a new proof of a shuffle. In
Advances in Cryptology – Asiacrypt 2005, volume 3788 of Lecture Notes in
Computer Science, pages 273–292. Springer Verlag, 2005. (Full version [149]).

[149] D. Wikström. A sender verifiable mix-net and a new proof of a shuffle. Crypto-
logy ePrint Archive, Report 2004/137, 2005. http://eprint.iacr.org/.

[150] D. Wikström and J. Groth. An adaptively secure mix-net without erasures.
submitted manuscript.

[151] A. C. Yao. Theory and application of trapdoor functions. In 23rd IEEE
Symposium on Foundations of Computer Science (FOCS), pages 80–91. IEEE
Computer Society Press, 1982.

[152] A. Young and M. Yung. Finding length-3 positive Cunningham chains and
their cryptographic significance. In Algorithmic Number Theory – ANTS- III,
volume 1423 of Lecture Notes in Computer Science, pages 289–298. Springer
Verlag, 1998.

Appendix A

Probability Bounds

Theorem A.1 (Markov). Let X be a random variable taking non-negative values.
Then

Pr[X ≥ a] ≤ E[X]

a
,

where E[X] is the expected value of X.

Theorem A.2 (Chernoff). Let X1, . . . , XN be mutually independent indicator

variables and define X =
∑N

i=1Xi. Then for arbitrary γ > 0 we have:

Pr[X < E[X]− γN] < e−2γ2N .

Theorem A.3 (Chernoff). Let X1, . . . , XN be mutually independent indicator

variables and define X =
∑N

i=1Xi. Then for arbitrary γ > 0 we have:

Pr[X < (1 − γ)E[X]] < e−
γ2E[X]

2 .

273

