
Simplified Submission of Inputs to Protocols

Douglas Wikström�

CSC KTH Stockholm, Sweden
dog@csc.kth.se

Abstract. Consider an electronic election scheme implemented using a
mix-net; a large number of voters submit their votes and then a smaller
number of servers compute the result. The mix-net accepts an encrypted
vote from each voter and outputs the set of votes in sorted order without
revealing the permutation used. To ensure a fair election, the votes of
corrupt voters should be independent of the votes of honest voters, i.e.,
some type of non-malleability or plaintext awareness is needed. How-
ever, for efficiency reasons the servers typically expect inputs from some
homomorphic cryptosystem, which is inherently malleable.

In this paper we consider the problem of how non-malleability can be
guaranteed in the submission phase and still allow the servers to start
their computation with ciphertexts of the homomorphic cryptosystem.
This can clearly be achieved using general techniques, but we would like
a solution which is: (i) provably secure under standard assumptions, (ii)
non-interactive for submittors (iii) very efficient for all parties in terms
of computation and communication.

We give the first solution to this problem which has all these prop-
erties. Our solution is surprisingly simple and can be based on various
Cramer-Shoup cryptosystems. To capture its security properties we in-
troduce a variation of CCA2-security.

1 Introduction

Mix-Nets. A mix-net is a cryptographic protocol executed by N senders and k
mix-servers, where typically N is quite large and k is fairly small, e.g., N = 104

and k = 10. The functionality implemented by a mix-net corresponds to a trusted
party that collects inputs from the senders and then outputs the inputs in sorted
order. The main application of mix-nets is for electronic elections. All known effi-
cient robust mix-nets exploit the homomorphic properties of cryptosystems such
as the El Gamal cryptosystem [16] in an essential way. A problem with using a
homomorphic cryptosystem in the submission phase is that corrupted senders
can submit inputs that are related to those of honest senders, i.e., the cipher-
texts should be non-malleable during the submission phase and then become
homomorphic when the mixing starts.

Formally, the proof of security fails if a semantically secure cryptosystem is used
directly. When using the simulation paradigm, e.g., universally composable secu-
rity [4], a mix-net is said to be secure if for every adversary attacking the mix-net
� Work partly done while at ETH Zürich, Department of Computer Science.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 293–308, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

294 D. Wikström

there is an ideal adversary (simulator), typically running the adversary as a black-
box, attacking the ideal mix-net (the trusted party mentioned above) such that
no environment can tell the two models apart. The simulator does not know the
inputs of the honest parties and replaces them in its simulation, e.g., by zero mes-
sages. It must also extract the inputs of corrupted parties in its simulation and
hand them to the ideal mix-net, since otherwise these inputs would be missing
in the output from the ideal mix-net and the environment could trivially distin-
guish the two models. Any successful adversary must result in a successful attack
against the underlying cryptosystem, which means that the simulator can not use
the secret key of the cryptosystem to extract the inputs of corrupt senders.

General Case. More generally, consider a cryptographic protocol that starts
with a submission phase where many parties submit ciphertexts formed with a
public key pk , and a smaller group of servers hold shares of the secret key sk
corresponding to pk . The servers then compute and publish some function of
the input plaintexts. Typically, efficient protocols exploit the algebraic structure
of the cryptosystem, e.g., homomorphic properties. The problem with using a
semantically secure cryptosystem directly in such protocols is that it does not
guarantee that the plaintexts submitted by corrupt parties are unrelated to those
submitted by honest users.

Formally, the problem surfaces when the cryptographer constructing the pro-
tocol tries to reduce the security of his/her scheme to the security of the cryp-
tosystem. If the simulation paradigm is used, some kind of simulator must be
constructed and the simulator must extract the values of the corrupt parties to
be able to hand these to an ideal version of the protocol. The existence of a
successful adversary must contradict the security of the cryptosystem, i.e., ex-
traction must be done without using the secret key of the cryptosystem. This is
not possible using only a semantically secure cryptosystem.

Submission Problem. The submission problem is how to find a submission scheme
such that: (I) the inputs of corrupted parties can be extracted by the simulator
without using the secret key, and (II) its output is a list of ciphertexts of the
form expected by the servers computing the result. These requirements are es-
sential to allow use of the submission scheme as a prefix to the main protocol,
but there are also several natural additional properties that we can look for, or
even require, in the submission phase.

(i) The solution should be provably secure under standard assumptions in the
plain model, i.e., without any random oracles or generic groups.

(ii) The submission of inputs should be non-interactive for submittors.
(iii) The solution should be very efficient for all parties in terms of computation

and communication. More precisely, when N and k denotes the number of
submittors and servers respectively, then the computational complexity of
each submitter should be independent of k, the communication complexity
of each server should be independent of N , and the computational com-
plexity of each server should be of the form T (k)+T ′(N) for some functions
T and T ′.

Simplified Submission of Inputs to Protocols 295

1.1 Previous Work

Informally, we may view any solution to the problem as a form of proof of
knowledge of the encrypted plaintext, since any solution must allow the simulator
to extract the submitted plaintext without knowledge of the secret key of the
semantically secure cryptosystem. We classify the solutions in the literature and
some extensions as follows:

1. A non-interactive proof of knowledge in the random oracle model is used,
either using the Naor and Yung double ciphertext trick, or with rewinding.
Such solutions are typically very efficient, but unfortunately only heuristi-
cally secure [5]. Note that the CCA2-secure cryptosystems in the random
oracle model given by Shoup and Gennaro [29] may be viewed as instantia-
tions of this solution.

2. An interactive proof of knowledge [17] is used, either with a straight-line
extractor in the public key setting using the Naor and Yung [20] double-
ciphertext trick, or with a rewinding extractor.

3. A non-interactive proof of knowledge using general techniques [2] is used.
This is not efficient for either the submittor or the servers, even using the
recent techniques of Groth et al. [18]. One could also use the fairly general
zero-knowledge proofs based on homomorphic encryption of Damg̊ard, Fazio
and Nicolosi [12], but this requires non-standard assumptions. Note that
using a non-interactive proof in this way is essentially the construction of a
CCA2-secure cryptosystem under general assumptions given by Sahai [27]
based on the Naor-Yung double-ciphertext trick, but starting from a concrete
semantically secure cryptosystem with useful structure.

4. A non-interactive (for the submitter) proof of knowledge based on verifiable
secret sharing is used, for example using techniques from Abe, Cramer, and
Fehr [1]. Then the computational and communication complexity of the sub-
mitting party grows linearly with the number of servers, since each server
must receive an encrypted secret share, and the servers must interact for
each submitted ciphertext to verify its proof.

5. Non-interactive secret-key proofs using Cramer and Damg̊ard [7] could be
used. Their technique allows a prover and verifier to set up a secret key in a
preliminary phase that later allows the prover to show that it behaves in a
way consistent with the secret keys. Their scheme could be used in two ways.
Either each submittor would take part in a protocol in the preliminary phase
where the needed correlated secret keys are generated, or the servers would
generate secret keys relative each other that allow them to prove that they
performed the verification of a Cramer-Shoup ciphertext correctly. In the
former case, interaction is moved to a preliminary phase, but each submittor
must still interact with the servers and the servers must store a secret key
for each submittor. In the latter case, submitting is non-interactive for the
submittor, but each server must send and receive a non-interactive proof
for each sender, i.e., its communication complexity with the other servers is
linear in N .

296 D. Wikström

6. An arbitrary CCA2-secure cryptosystem is used and ciphertexts are trans-
lated into suitable semantically secure ciphertexts using general multiparty
computation techniques. This is inefficient both in terms of computation and
communication.

7. A special CCA2-secure cryptosystem such that a ciphertext can be trans-
formed more easily into a new ciphertext for the basic semantically secure
scheme needed by the servers is used. We list the solutions of this type we
are aware of below.
(a) Canetti and Goldwasser [6] and Lysyanskaya and Peikert [19] have given

CCA2-secure cryptosystems with distributed decryption which allows
transforming ciphertexts into ciphertexts for semantically secure cryp-
tosystems. These either involve interaction, expensive setup assumptions,
or only work for a small number of servers.

(b) Boneh, Boyen, and Halevi [3] give a CCA2-secure cryptosystem with
distributed decryption that may be viewed as containing a semantically
secure cryptosystem, but its security is based on a non-standard com-
plexity assumption based on pairings.

(c) Cramer, Damg̊ard, and Ishai [8] present a solution based on distributed
pseudo random functions and share conversion that is reasonably efficient
for a small number of servers and requires communication linear in the
number of ciphertexts between the servers to verify validity.

8. Prabhakaran and Rosulek [25] present a re-randomizable and replayable
CCA secure cryptosystem where one could view the transformation as triv-
ial, i.e., nothing would be done with the ciphertexts before handing them to
the underlying protocol.
This work is interesting, but we are not aware of any (interesting) underlying
protocol that accepts input ciphertexts of their cryptosystem. In fact, the
authors point out that it can not be used directly to construct a mix-net,
and even if that would be possible it would give an inefficient mix-net due
to the larger and more complex ciphertexts.
We remark that our work was publicly available [32] before their work was
published.

To summarize, there are numerous solutions to the submission problem which
satisfies properties (I) and (II), but no such solution has the properties (i)-(iii)
listed above for any interesting underlying protocol.

What Is Used In Existing Mix-Nets? There are numerous proposed mix-nets
with informal security arguments. If the submission problem is considered at all,
the Fiat-Shamir heuristic is used (mostly even without a proof in the random
oracle model). In the provably secure mix-nets either a secret sharing based
solution is used [30], or an interactive proof of knowledge is used [31,33].

1.2 Our Contribution

We give a simple solution to the submission problem that is efficient both in
terms of computation and communication. Although the solution is nothing

Simplified Submission of Inputs to Protocols 297

more than an observation on the Cramer-Shoup cryptosystem, it is novel and
important, since it gives a truly practical and provably secure way for senders to
submit their inputs to a mix-net, and this solution has eluded researchers ever
since the Cramer-Shoup cryptosystem appeared 10 years ago.

The Idea. Recall the original Cramer and Shoup scheme [10]. The cryptosystem
is deployed in a group Gq of prime order q in which the decision Diffie-Hellman
assumption is assumed to be hard. The key generator first chooses two random
generators g0, g1 ∈ Gq. Then it chooses x0, x1, y0, y1, z ∈ Zq randomly and de-
fines c = gx0

0 gx1
1 , d = gy0

0 gy1
1 , and h = gz

0 . It generates a collision-free hash
function H . Finally, it outputs (pk , sk) = ((H, g0, g1, c, d, h), (x0, x1, y0, y1, z)).
To encrypt a message m ∈ Gq using the public key pk the encryption algorithm
chooses r ∈ Zq randomly and outputs (u0, u1, e, v) = (gr

0, g
r
1, h

rm, crdrH(u0,u1,e)).
To decrypt a tuple (u0, u1, e, v) ∈ G4

q using the secret key sk the decryption algo-
rithm tests if ux0

0 ux1
1 (uy0

0 uy1
1)H(u0,u1,e) = v to check the validity of the ciphertext.

If so it outputs e/uz
0, and otherwise the unit element of the group.1

Note that h = gz and z have the form of an El Gamal [16] public and secret
key respectively and that (u0, e) is nothing more than an El Gamal ciphertext.
This is of course not a new observation. What seems to be a new observation is
the fact that the holder of the secret key may reveal (x0, x1, y0, y1) without any
loss in security as long as it never decrypts any ciphertext constructed after this
point, and that this solves the submission problem.

Generalizing and Applying the Idea. To allow us to generalize the observation
about the original Cramer-Shoup scheme and identify a class of cryptosystems
for which it applies, we introduce the notion of an augmented cryptosystem which
contains another cryptosystem as a component. In applications, the latter cryp-
tosystem will have some useful structure, e.g., be homomorphic, that allows
more efficient and simpler protocols. We also introduce a strengthened variation
of CCA2-security called submission security and observe that the generic scheme
of Cramer and Shoup [11] already satisfies this stronger definition. In the full
version [32] we also illustrate the use of the new notion by applying it to general
secure function evaluation, which strictly generalizes the notion of a mix-net.

The real efficiency gain from using our technique obviously depends on the
application, but it is clear that when the number of submittors N is large the
complexity of our solution based on the El Gamal cryptosystem is close to that
of the most efficient heuristic solution in the random oracle model. Due to the
cost of evaluating a pairing we also expect it to out-perform any solution based
on elliptic curves with pairings.

Limitations of Our Approach. When using our solution, no new inputs can be
accepted after part of the secret key is revealed. This is a minor drawback in
the targeted applications, since we have a large number of submitting parties
and executions of the underlying protocol are infrequent. When a new session

1 In [10] a special symbol ⊥ is output if the test fails, but this is only to simplify the
analysis. Any fixed output works just as well.

298 D. Wikström

is executed the servers simply generate a new key. However, it may be useful
to re-use the public key of the basic cryptosystem in the underlying protocol.
Thus, our definitions require that the augmentation can be replaced by a freshly
generated augmentation without any loss in security. This allows using several
independent augmentations that may be revealed sequentially, i.e., inputs can be
processed in batches and then input to the same underlying protocol. We remark
that for general threshold decryption, e.g. [6], our approach is not reasonable,
since users requesting a decryption expect the result immediately.

1.3 Notation

We denote by PT and PPT the sets of deterministic and probabilistic polyno-
mial time Turing machines respectively, and write PT∗ for the set of non-uniform
polynomial time Turing machines. We use n to denote the security parameter,
and say that a function ε(n) is negligible if for every constant c there exists a
constant n0 such that ε(n) < n−c for n > n0. If pk is the public key of a cryp-
tosystem, we denote by Mpk , Cpk , and Rpk the plaintext space, the ciphertext
space, and the randomness space respectively.

2 Augmented Cryptosystems

Keeping our observation about the original Cramer-Shoup cryptosystem in mind,
we formalize a general class of augmented cryptosystems that given part of the
secret key allow conversion of a ciphertext into a ciphertext of another basic
cryptosystem. In applications, the basic cryptosystem typically has special prop-
erties, e.g., it is homomorphic, that are exploited by the cryptographic protocol.
We introduce the following definition.

Definition 1 (Augmented Cryptosystem). A cryptosystem CS = (Kg, Enc,
Dec) is an augmentation of a cryptosystem CSB = (KgB, EncB, DecB) if there
exists an augmentation algorithm Aug ∈ PPT and a stripping algorithm Strip ∈
PT such that:

1. On input 1n, Kg computes (pkB, skB)=KgB(1n) and (pkA, skA)=Aug(pkB),
and outputs (pk , sk) = ((pkA : pkB), (skA : skB)).

2. On input ((skA : skB), c), Dec outputs DecB
skB (Strippk ,skA(c)).

Clearly, any cryptosystem can be viewed as a trivial augmentation of itself, and
if it is CCA2-secure then the trivial augmentation is also submission secure as
defined below, but we are interested in non-trivial augmentations where CSB

has structural properties useful in the construction of protocols.
Some readers may find it tempting to use a definition that mirrors the Cramer-

Shoup cryptosystem more closely to avoid the existence of trivial augmentations,
i.e., one could explicitly require that it is possible to check the “validity” of
a ciphertext using skA. We remind those readers that for most cryptographic
notions there are trivial instances, e.g., the identity map is a cryptosystem, and
we see no reason to impose unnecessary conditions on which particular properties
of the basic cryptosystem that should be considered useful.

Simplified Submission of Inputs to Protocols 299

2.1 Submission Security of Augmented Cryptosystems

Recall the game considered in the definition of CCA2-security [20,13,26]. The ad-
versary is given a public key pk . Then it may ask any number of decryption queries
to a decryption oracle Decsk (·) holding the secret key sk corresponding to pk .
The adversary must then choose two challenge messages m0 and m1. The game
is parameterized by a bit b and returns a challenge ciphertext of the form c =
Encpk (mb). Then the adversary is again allowed to ask arbitrary decryption queries
to Decsk (·) with the exception of c, and must finally output a guess b′ of the bit b.
If the cryptosystem is CCA2-secure, then the difference in distribution of b′ when
b = 0 or b = 1 respectively, should be negligible. Consider the following game.

Experiment 1 (Submission Security, Expsub−b
CS,CSB ,A

(n))

(pkB, skB)← KgB(1n) // Basic keys

(pkA
j , skA

j)← Aug(pkB) for j = 1, 2, 3, . . . // Augmentations

(pk j , sk j)←
(
(pkA

j : pkB), (skA
j : skB)

)
// Augmented keys

(i, m0, m1, state)← A
pkA

(·),sk
A
(·),Decsk(·) (·)(choose, pkB) // Choice of challenges

c← Encpki
(mb) // Challenge ciphertext

d← A
pkA

(·),sk
A
(·),Decsk(·) (·)(guess, state) // Guess of adversary

The experiment returns 0 if Decsk(·)(·) was queried on (i, c) or if it was queried
on (j, c′) for some c′ after skA

(·) was queried on j. Otherwise the experiment
returns d.

In the game above, the adversary is given a public key pkB of the basic
cryptosystem. It can request that the experiment generates an augmentation
(pkA

j , skA
j) = Aug(pkB), stores (pk j , sk j) = ((pkA

j : pkB), (skA
j : skB)), and

returns pk j = (pkA
j : pkB) to the adversary. This is done by submitting the

integer j to its pkA
(·)-oracle. Any subsequent identical queries j give the same pk j .

It can ask decryption queries. This is done by submitting an index and ciphertext
pair (j, c′) to its Decsk(·)(·)-oracle. It can request that the experiment reveals an
augmentation skA

j by submitting j to its skA
(·)-oracle, but after such a query no

more decryption queries of the form (j, c′) for some ciphertext c′ are allowed. Then
the adversary must choose an index i and two challenge messages m0 and m1. The
game is parameterized by a bit b and returns a challenge ciphertext of the form
c = Encpki

(mb). The adversary is then again allowed to: ask for more fresh public
keys, ask more decryption queries with the exception of decryption of (i, c), and
request more augmentations or augmentation keys. Finally, it outputs a guess b′

of b. If the cryptosystem is submission secure, then the difference in distributions
of b′ with b = 0 or b = 1 respectively should be negligible.

300 D. Wikström

We could equivalently have defined a game where the game only generates an
augmentation if requested to do so by the adversary, but the above is conceptu-
ally simpler.

Definition 2 (Submission Security). An augmentation CS of CSB is sub-
mission secure if ∀A ∈ PT∗: |Pr[Expsub−0

CS,CSBA
(n) = 1]− Pr[Expsub−1

CS,CSB ,A
(n) = 1]|

is negligible.

Example 1. A simple example of a submission secure cryptosystem can be de-
rived from the scheme of Sahai [27] based on the Naor and Yung double cipher-
text trick [20]. A semantically secure cryptosystem CSB is given and a CCA2-
secure cryptosystem CS = (Kg, Enc, Dec) is constructed as follows. To generate
a public key, compute (pkB

0 , skB
0) = KgB(1n) and (pkB

1 , skB
1) = KgB(1n), and

generate a common reference string CRS. Then output the key pair (pk , sk) =
((pkB

0 : pkB
1 , CRS), (skB

0 : skB
1)). To encrypt a message m, output (c0, c1, π) =

(EncB
pkB

0
(m), EncB

pkB
1
(m), π), where π is a simulation sound non-interactive adap-

tively zero-knowledge proof (NIZKP) that the same message is encrypted in c0

and c1. To decrypt, verify the NIZKP and output DecB
sk0

(c0) or 0 depending
on if the NIZKP was accepted or not. The augmentation algorithm Aug takes
(pkB

1 , CRS) as input and outputs (pkB
0 , skB

0) = KgB(1n). The stripping algo-
rithm Strip checks the NIZKP and outputs c0 or EncpkB

0
(0, 0) depending on if

the NIZKP was accepted or not.

3 Generic Cramer-Shoup Is Submission Secure

The fact that the generic CCA2-secure cryptosystem of Cramer and Shoup is
submission secure if we view it as an augmentation of a basic semantically secure
cryptosystem is quite easy to see from their security proof. On the other hand we
need to prove that this is indeed the case. Thus, we recall their scheme and prove
this fact, but we use coarse-grained and streamlined definitions. We also take the
liberty of ignoring the technical problem of constructing efficiently computable
hash families, since this complicates the definitions and does not add anything
to our exposition (see [11] for details).

3.1 Preliminaries

Subset Membership Problems. A subset membership problem consists of three
sets X , L � X , and W , and a relation R ⊂ X ×W . The idea is that it should
be hard to decide if an element is sampled from L or from X \ L. To be useful
in cryptography we also need some algorithms that allow us to sample instances
and elements, and check for membership in X .

Definition 3. A subset membership problem M consists of a collection of dis-
tributions (In)n∈N, an instance generator Ins ∈ PPT, a sampling algorithm
Sam ∈ PPT, and a membership checking algorithm Mem ∈ PT such that:

Simplified Submission of Inputs to Protocols 301

1. In is a distribution on instance descriptions Λ[X, L, W, R] specifying finite
non-empty sets X, L � X, and W , and a binary relation R ⊂ X ×W .

2. On input 1n, Ins outputs an instance Λ with distribution statistically close
to In.

3. On input 1n and Λ[X, L, W, R] ∈ [In] (the support of In), Sam outputs
(x, w) ∈ R, where the distribution of x is statistically close to uniform over
L.

4. On input 1n, Λ[X, L, W, R] ∈ [In], and ζ ∈ {0, 1}∗, Mem outputs 1 or 0
depending on if ζ ∈ X or not.

Definition 4. Let M be a subset membership problem. Sample Λ from In and
let x and x′ be randomly distributed over L and X \ L respectively. We say that
M is hard if for every A ∈ PT∗: |Pr[A(Λ, x) = 1]−Pr[A(Λ, x′) = 1]| is negligible.

Hash Families. Hash families are well known in the cryptographic literature and
there are many variations. We assume that all families are indexed by a security
parameter n.

Definition 5. A projective hash family H = (H, K, X, L, Π, S, α) consists of
finite non-empty sets K, X, L � X, Π, and S, a function α : K → S, and a
collection of hash functions H = (Hk : X×Π → Π)k∈K , where α(k) determines
Hk on L×Π .

Definition 6. Let H = (H, K, X, L, Π, S, α) be a projective hash family, and let
k ∈ K be random. Then H is universal2 if for every s ∈ S, x, x′ ∈ X with x �∈
L ∪ {x′}, and πx, π′

x, π, π′ ∈ Π, Prk[Hk(x, πx) = π ∧Hk(x′, π′
x) = π′ | α(k) = s]

is negligible.

The following definition and lemma are stated informally in [11].

Experiment 2 (Computationally Universal2, Expcuni2
H,A (n)). Let τk be the

predicate defined by τk((x, πx), π) ⇐⇒ Hk(x, πx) = π, and consider the fol-
lowing experiment.

k ← K

(x, πx, state)← Aτk(·,·)(α(k))
← Aτk(·,·)(Hk(x, πx), state)

Denote by ((xi, πx,i), πi) the ith query to τk, and let il be the index of the
last query before the first output. If A asks a query ((xi, πx,i), πi) to τk with
Hk(xi, πx,i) = πi, xi ∈ X \ L, and i ≤ il or xi �= x, then output 1 and
otherwise 0.

302 D. Wikström

Definition 7. A projective hash family H is computationally universal2 if for
every A ∈ PT∗, Pr[Expcuni2

H,A (n) = 1] is negligible.

Lemma 1. If a projective hash family H is universal2, then it is computationally
universal2.

Proof. Denote by ((xi, πx,i), πi) the ith query of A and let Ei be the event that
Hk(xi, πx,i) = πi, xi ∈ X \ L, and i ≤ il or xi �= x. Condition on arbitrary fixed
values of (x, πx), π = Hk(x, πx), and α(k). Then the conditional probability of
the event Ei is negligible by universiality2 of H. Since the fixed values are arbi-
trary, this holds also without conditioning. Finally, A asks at most a polynomial
number of queries and the lemma follows from the union bound.

Definition 8. Let H = (H, K, X, L, Π, S, α) be a projective hash family, and let
k ∈ K, x ∈ X \L, and π ∈ X be random. Then H is smooth if for every πx ∈ Π
the distributions of (x, πx, α(k), Hk(x, πx)) and (x, πx, α(k), π) are statistically
close.

Universal Hash Proof Systems. Informally, a hash proof system may be viewed
as a non-interactive zero-knowledge proof system where only the holder of a
secret key corresponding to the public common random string can verify a proof.
Strictly speaking, the definition below corresponds, in the unconditional case, to
a special case of what Cramer and Shoup [11] call “extended strongly (smooth,
universal2)” hash proof system.

Definition 9. A (smooth, (computational) universal2) hash proof system P for
a subset membership problem M associates with each instance Λ[X, L, W, R] a
(smooth, (computationally) universal2) projective hash family H =
(H, K, X, L, Π, S, α), and the following algorithms

1. A key generation algorithm Gen ∈ PPT that on input 1n and Λ ∈ [In]
(the support of In) outputs (s, k), where k is randomly distributed in K and
s = α(k).

2. A private evaluation algorithm PEval ∈ PT that on input 1n, Λ ∈ [In],
k ∈ K, and (x, πx) ∈ X ×Π outputs Hk(x, πx).

3. A public evaluation algorithm Eval ∈ PT that on input 1n, Λ ∈ [In], α(k)
with k ∈ K, (x, πx) and w, with (x, w) ∈ R and πx ∈ Π, outputs Hk(x, πx).

4. A membership checking algorithm Mem ∈ PT that on input 1n, Λ ∈ [In],
and ζ ∈ {0, 1}∗ outputs 1 or 0 depending on if ζ ∈ Π or not.

3.2 Generic Scheme of Cramer and Shoup

Given the definitions above it is not hard to describe the generic cryptosys-
tem of Cramer and Shoup [11]. Let M be a hard subset membership prob-
lem, such that Π can be fitted with a group operation for any Λ, let P0 =
(Gen0, PEval0, Eval0, Mem0) be a smooth hash proof system for M, and let P1 =
(Gen1, PEval1, Eval1, Mem1) be a computationally universal2 hash proof system
for M.

Simplified Submission of Inputs to Protocols 303

Key Generation. Compute Λ[X, L, W, R] = Ins(1n), (s, k) = Gen0(1n, Λ),
(ŝ, k̂) = Gen1(1n, Λ), and output the key pair (pk , sk) = ((ŝ : Λ, s), (k̂ : k)).

Encryption of a message m ∈ Π. Compute (x, w) = Sam(Λ), π =
Eval0(Λ, s, x, w) = Hk(x), e = m+π, and π̂ = Eval1(Λ, ŝ, x, w, e) = Ĥ

�k(x, e),
and output (x, e, π̂).

Decryption of a ciphertext (x, e, π̂). Output m = e− PEval0(Λ, k, x) = e−
Hk(x), only if PEval1(Λ, k̂, x, e) = Ĥ

�k(x, e) = π̂ and otherwise output 0.

We have not modified the cryptosystem, except that we have introduced a colon
in the notation to distinguish the two parts of the public and secret keys as
needed in the definition of submission security, and we have replaced the special
symbol ⊥ by the zero plaintext.

Write CS = (Kg, Enc, Dec), and let CSB = (KgB, EncB, DecB) be the underly-
ing basic cryptosystem defined as follows. It has public key (Λ, s) and secret key
k. A message m ∈ Π is encrypted as (x, e), where e = Eval0(Λ, s, x, w) + m, and
a ciphertext (x, e) is decrypted by computing e−PEval0(Λ, k, x). It is clear that
CS is an augmentation of CSB, since we can define Aug(Λ, s) = Gen1(1n, Λ) and
define Strippk ,�k(x, e, π̂) to output (x, e) if PEval1(Λ, k̂, x, e) = π̂ and otherwise
EncpkB (0, 0).

Cramer and Shoup prove (see Theorem 1 in [11]) that CS is CCA2-secure
under the assumption that M is hard. We prove a stronger result.

Proposition 1. If M is a hard subset membership problem, then CS is a sub-
mission secure augmentation of CSB.

The key observations needed to extend Cramer’s and Shoup’s proof of CCA2-
security are:

1. The projective property of hash proofs implies that proofs computed using
a witness and hash proofs computed using the private key k̂ are identical
(indeed this is how a hash proof is verified). This means that the holder of k̂

can “perfectly simulate” proofs without the witness, i.e., even if k̂ is made
public the “simulated proof” looks exactly like a proof computed using a
witness.

2. The soundness of proofs computed by an adversary before k̂ is made public,
is not decreased by the publishing of k̂.

The generic Cramer-Shoup scheme generalizes several concrete schemes de-
scribed in [11], such as the El Gamal based scheme in the introduction, but also
schemes based on the Paillier cryposystem [22]. Both schemes are common in
efficient protocols.

3.3 Proof of Proposition 1

Conceptually, we follow the proof of Cramer and Shoup, but our proof is some-
what simplified, since we ignore the problem of approximating the hash families
by efficiently computable hash families.

304 D. Wikström

Denote by T
(0)
b the machine that simulates the experiment Expsub−b

CS,CSB ,A
(n)

with some adversary A ∈ PT∗, except that when computing the challenge cipher-
text (x, e, π̂), the two hash proofs π and π̂ are computed as π = PEval0(Λ, k, x) =
Hk(x) and π̂ = PEval1(Λ, k̂i, x, e) = Ĥ

�ki
(x, e), where i is the challenge index cho-

sen by the adversary. By the projectivity of hash proofs this does not change the
distribution of the experiment.

We now change T
(0)
b step by step until it is independent of b.

Claim 1. Denote by T
(1)
b the machine T

(0)
b except that x is chosen randomly in

X \ L. Then |Pr[T (0)
b = 1]− Pr[T (1)

b = 1]| is negligible.

Proof. Denote by Amem an algorithm that tries to solve the subset membership
problem M. It accepts as input (Λ, x), where x either belongs to L or X \ L.
It simulates T

(0)
b except that it uses the instance Λ and defines the challenge

ciphertext (x, e, π̂) using x from its input (Λ, x). Note that Amem is identically
distributed to T

(0)
b or T

(1)
b depending on if x ∈ L or x ∈ X\L. From the hardness

of M follows that |Pr[T (0)
b = 1]− Pr[T (1)

b = 1]| is negligible. �

Denote by (ij, (πj , ej , π̂j)) the jth query to the decryption oracle Decsk(·)(·),
and let jl be the index of the last query before the adversary outputs its choice
of challenge index and messages. Denote by (x, e, π̂) the challenge ciphertext,
and let E be the event that A asks a decryption query (ij , (πj , ej, π̂j)) with
Ĥ
�kij

(xj , ej) = π̂j , xj ∈ X \ L, and j ≤ jl or xj �= x, for some index j before it

requests skA
ij

from its skA
(·)-oracle (it may of course not ever do this).

Claim 2. Pr[E] is negligible.

Proof. Let Q be the total number of queries to the augmentation oracle pk (·)
made by the adversary. Without loss we assume that the adversary asks the
queries l = 1, . . . , Q.

Define Al
uni for l = 1, . . . , Q to be the machine that simulates T

(1)
b and

takes part in Experiment 2. The simulation is modified in that: ŝl is defined
as the hash proof key received in Experiment 2, whenever T

(1)
b needs to check

a hash proof as PEval1(Λ, k̂l, xj , ej) = Ĥ
�kl

(xj , ej) it simply queries its τ
�kl

(·, ·)-
oracle in Experiment 2 with (xj , ej) instead, and when it needs to compute
PEval1(Λ, k̂l, x, e) = Ĥ

�kl
(x, e) = π̂ it outputs (x, e) and waits for Ĥ

�kl
(x, e) = π̂

from the experiment instead. The computational universal2 property and the
union bound then implies the claim.

Note that the computational universal2 property can be applied despite that the
experiment reveals private hash proof keys, since by definition of submission
security the adversary only wins if it never asks a decryption query after this
point. This observation is the only essential change to the original proof. �
Denote by T

(2)
b the machine T

(1)
b , except that it outputs ⊥ if the event E oc-

curs. The machine T
(2)
b may not be efficient, but this does not matter since the

remainder of the argument is statistical in nature.

Simplified Submission of Inputs to Protocols 305

Claim 3. Denote by T
(3)
b the machine T

(2)
b except that in the computation of

the challenge ciphertext (x, e, π̂), π is chosen randomly in Π . Then |Pr[T (2)
b =

1]− Pr[T (3)
b = 1]| is negligible.

Proof. Consider an arbitrary fixed instance Λ of the subset membership problem
and an arbitrary fixed random string of the experiment conditioned on the event
Ē. Define a function f : X × S × Π → {0, 1} as follows. Let f(x, α(k), π)
simulate T

(2)
b except that the input parameters are used in the computation of

the challenge ciphertext. Note that f exists, since T
(2)
b outputs ⊥ if the event

E occurs and α(k) determines Hk on L by the projective property of H, so
the answers of all queries are determined by α(k). When k ∈ K, x ∈ X , and
π ∈ Π are randomly chosen, f(x, α(k), Hk(x)) is identically distributed to T

(2)
b

and f(x, α(k), π) is identically distributed to T
(3)
b . The claim now follows from

the smoothness of P.

Conclusion of Proof of the Proposition. To conclude the proof of the proposition
we simply note that the distributions of T

(3)
0 and T

(3)
1 are identical since Π is a

group. The claims above now imply that |Pr[T (0)
0 = 1]−Pr[T (0)

1 = 1]| is negligible.

4 Applications of Submission Security

The original motivation for this paper was to come up with a practical non-
interactive submission phase in El Gamal based mix-nets. For readers that are
not familiar with mix-nets we give an informal description of a construction that
goes back to Sako and Kilian [28]. In the full version [32] we also illustrate how the
notion of submission secure augmented cryptosystems can be used to construct
and analyze the submission phase of a protocol in a modularized way for general
secure function evaluation, and explain how this generalizes the mix-net setting
in the informal description.

4.1 Informal Description of Application to a Mix-Net

There are many senders S1, . . . , SN and few mix-servers M1, . . . , Mk, e.g., N =
104 and k = 10. In a joint key generation phase the mix-servers generate a
joint public key (g, h) such that each mix-server holds a verifiable secret share
sj of the joint secret key z such that h = gz. This can be done using Feld-
man verifiable secret sharing [14]. To submit a message mi ∈ Gq, a sender
Si computes an El Gamal ciphertext (u0,i, e0,i) = (gri , hrimi), where ri ∈ Zq

is randomly chosen. Then the mix-servers take turns at re-encrypting, using
the homomorphic property of El Gamal, and permuting the list of ciphertexts.
In other words, for j = 1, . . . , k, Mj computes and publishes {(uj,i, ej,i)} =
{(uj−1,πj(i)g

tj,i , ej−1,πj(i)h
tj,i)}, where tj,i ∈ Zq and πj are random. Finally, the

mix-servers jointly and verifiably decrypt the list {(uk,i, ek,i)} output by the last
mix-server Mk using their shares sj , sort the result, and output it.

306 D. Wikström

The idea is that due to the transformations computed by the mix-servers the
correspondence between the output plaintexts and the input ciphertexts should
be hidden. To ensure correctness, each mix-server also proves in zero-knowledge
that it processed the list of ciphertexts correctly. This is done using a so called
proof of a shuffle [21,15].

Unfortunately, the construction is completely insecure [24], since a malicious
sender Sl may compute its ciphertext as (u0,l, e0,l) = (ua

0,i, e
a
0,i) for some random

exponent a and then identify a matching pair (mi, m
a
i) in the final output, where

mi is the message sent by Si. This reveals the message mi sent by the honest
sender Si. Intuitively, what is needed is a non-malleable cryptosystem, but on
the other hand the cryptosystem must be homomorphic for re-encryption to be
possible. Formally, what is needed in the overall proof of security of the mix-
net (see [30,31,33]) is a way to extract the messages submitted by corrupted
players without using the secret key of the cryptosystem, as explained in the
introduction. In previous work this is either solved heuristically, or as in the
cited works a proof of knowledge is used explicitly.

We augment the above to make the cryptosystem used for submission identi-
cal to the Cramer-Shoup scheme. We set g0 = g and let the mix-servers generate
g1 ∈ Gq, x0, x1, y0, y1 ∈ Zq, c = gx0

0 gx1
1 , and d = gy0

0 gy1
1 , where x0, x1, y0, y1 are

verifiably secret shared among the mix-servers. This can be done using Pedersen
verifiable secret sharing [23] and takes place after the joint key h is generated. This
gives a Cramer-Shoup key pair ((H, g1, c, d : g0, h), (x0, x1, y0, y1 : z)) with verifi-
ably secret shared secret key. Due to the submission security of the cryptosystem
the mix-servers may simply reconstruct the first part (x0, x1, y0, y1) of the shared
key before starting the mixing process. This allows each mix-server to identify the
valid ciphertexts without any additional communication, and form the list of El
Gamal ciphertexts consisting of the El Gamal part of each valid ciphertext. Then
the mix-servers process the El Gamal ciphertexts as explained above.

5 Future Work

In the mix-net application, all messages are free-form. This may not be the
case in other applications. It is for example not the case in multi-candidate
homomorphic election schemes, e.g., [9], where the submitted messages must be
of a special form to encode a valid candidate. It is an interesting question if it is
possible to come up with an efficient hash proof system that constrains the set of
messages in this way. This would give a very efficient non-interactive submission
phase for such election schemes in the standard model.

Acknowledgments

I thank Eike Kiltz for helpful discussions, and I thank Ronald Cramer for answer-
ing my questions about the relation between the generic Cramer-Shoup scheme
and its concrete instantiations.

Simplified Submission of Inputs to Protocols 307

References

1. Abe, M., Cramer, R., Fehr, S.: Non-interactive distributed-verifier proofs and prov-
ing relations among commitments. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 206–223. Springer, Heidelberg (2002)

2. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: 20th ACM Symposium on the Theory of Computing (STOC), pp.
103–118. ACM Press, New York (1988)

3. Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key threshold
encryption without random oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS,
vol. 3860, pp. 226–243. Springer, Heidelberg (2006)

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 136–145. IEEE Computer Society Press, Los Alamitos (2001),
http://eprint.iacr.org

5. Canetti, R., Goldreich, O., Halevi, S.: The random oracle model revisited. In: 30th
ACM Symposium on the Theory of Computing (STOC), pp. 209–218. ACM Press,
New York (1998)

6. Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure
against adaptive chosen ciphertext attack. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg (1999)

7. Cramer, R., Damg̊ard, I.: Secret-key zero-knowlegde and non-interactive verifi-
able exponentiation. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 223–237.
Springer, Heidelberg (2004)

8. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

9. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

10. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

11. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption (June 1999),
http://homepages.cwi.nl/∼cramer/

12. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006)

13. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: 23rd ACM Sym-
posium on the Theory of Computing (STOC), pp. 542–552. ACM Press, New York
(1991)

14. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
28th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 427–438.
IEEE Computer Society Press, Los Alamitos (1987)

15. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)

16. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

http://eprint.iacr.org
http://homepages.cwi.nl/~cramer/

308 D. Wikström

17. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

18. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for np.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

19. Lysyanskaya, A., Peikert, C.: Adaptive security in the threshold setting: From
cryptosystems to signature schemes. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 331–350. Springer, Heidelberg (2001)

20. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd ACM Symposium on the Theory of Computing (STOC),
pp. 427–437. ACM Press, New York (1990)

21. Neff, A.: A verifiable secret shuffle and its application to e-voting. In: 8th ACM
Conference on Computer and Communications Security (CCS), pp. 116–125. ACM
Press, New York (2001)

22. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

23. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

24. Pfitzmann, B., Pfitzmann, A.: How to break the direct RSA-implementation of
mixes. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS,
vol. 434, pp. 373–381. Springer, Heidelberg (1990)

25. Prabhakaran, M., Rosulek, M.: Rerandomizable rcca encryption. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517–534. Springer, Heidelberg (2007)

26. Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

27. Sahai, A.: Non-malleable non-interactive zero-knowledge and adaptive chosen-
ciphertext security. In: 40th IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 543–553. IEEE Computer Society Press, Los Alamitos (1999)

28. Sako, K., Killian, J.: Reciept-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995)

29. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998)

30. Wikström, D.: A universally composable mix-net. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 315–335. Springer, Heidelberg (2004)

31. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg
(2005)

32. Wikström, D.: Simplified submission of inputs to protocols. Cryptology ePrint
Archive, Report 2006/259 (2006), http://eprint.iacr.org/

33. Wikström, D., Groth, J.: An adaptively secure mix-net without erasures. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 276–287. Springer, Heidelberg (2006)

http://eprint.iacr.org/

	Simplified Submission of Inputs to Protocols
	Introduction
	Previous Work
	Our Contribution
	Notation

	Augmented Cryptosystems
	Submission Security of Augmented Cryptosystems

	Generic Cramer-Shoup Is Submission Secure
	Preliminaries
	Generic Scheme of Cramer and Shoup
	Proof of Proposition 1

	Applications of Submission Security
	Informal Description of Application to a Mix-Net

	Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

