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Abstract. We introduce a pre-computation technique that drastically
reduces the online computational complexity of mix-nets based on ho-
momorphic cryptosystems.

More precisely, we show that there is a permutation commitment
scheme that allows a mix-server to: (1) commit to a permutation and effi-
ciently prove knowledge of doing so correctly in the offline phase, and (2)
shuffle its input and give an extremely efficient commitment-consistent
proof of a shuffle in the online phase.

We prove our result for a general class of shuffle maps that general-
ize all known types of shuffles, and even allows shuffling ciphertexts of
different cryptosystems in parallel.

1 Introduction

Consider a situation where N senders S1, . . . , SN each have some input and
wish to compute the sorted list of their inputs without revealing who submit-
ted which message. A trusted party can do this by waiting until all senders
have submitted some input, and then sort and output the list of all inputs. A
protocol that emulates the trusted party is called a mix-net and the parties
M1, . . . , Mk that execute the protocol are referred to as mix-servers. As long as
a certain fraction of the mix-servers are honest, the result should be correct and
nobody should learn the correspondence between input ciphertexts and output
messages. The obvious application for mix-nets is to conduct electronic elections,
and this is also one of the applications Chaum [6] had in mind when he introduced
mix-nets.

Many constructions of mix-nets are proposed in the literature, but few have
provable security properties and many are actually flawed. The basic approach
of all mix-nets with provable properties are based on ideas of Sako and Kilian
[23]. The first rigorous definition of security was given by Abe and Imai [1],
but they did not construct a scheme satisfying their construction. Wikström
[25] gives the first definition of a universally composable (UC) mix-net, the first
UC-secure construction, and also a more efficient UC-secure scheme [26]. An
important building block in the construction of a mix-net is a so called proof
of a shuffle that allows the mix-servers to prove that they follow the protocol.
The first efficient proofs of shuffles were given by Neff [18] and Furukawa and
Sako [13].
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1.1 Mix-Nets Based on Homomorphic Cryptosystems

Recall the mix-net of Sako and Kilian [23]. They present their scheme in terms
of the El Gamal cryptosystem [14], but the idea works for any homomorphic
cryptosystem.

A homomorphic cryptosystem CS = (Kg, E, D) that allows threshold decryp-
tion is employed. A cryptosystem is said to be homomorphic if for every pub-
lic key pk ∈ PK, the plaintext space Mpk , the randomness space Rpk , and the
ciphertext space Cpk are groups, and for every m0, m1 ∈ Mpk and r0, r1 ∈
Mpk : Epk(m0, r0)Epk (m1, r1) = Epk(m0m1, r0r1). A joint public key pk is gen-
erated somehow such that each mix-server holds a secret share of the correspond-
ing secret key sk . Each sender Si, holding a message mi, computes a ciphertext
c0,i = Epk(mi), and then somehow submits it to the mix-servers. The mix-servers
then take turns at re-encrypting and permuting these ciphertexts. Let L0 =
(c0,1, . . . , c0,N) be the list of submitted ciphertexts. For j = 1, . . . , k, Mj chooses a
permutationπ and rj,i ∈ Rpk randomly, computes cj,i = cj−1,π(i)Epk (1, rj,π(i)) for
i = 1, . . . , N , and then publishes Lj = (cj,1, . . . , cj,N ). In other words, each mix-
server randomly re-encrypts each ciphertext and then outputs the resulting cipher-
texts in random order. Then it proves, using a proof of a shuffle, that it formed Lj

from Lj−1 in this way. Finally, the mix-servers jointly threshold-decrypt Lk and
output the resulting list of plaintexts. The idea is that since all mix-servers have
randomly permuted the ciphertexts and the cryptosystem is assumed secure, it is
infeasible to tell which plaintext corresponds to which original ciphertext in L0.

The above description is simplified in that the senders submit homomorphic
ciphertexts directly, which is not secure [22]. In a provably secure construction,
the plaintexts of corrupted senders must be extractable by the simulator with-
out the secret key of the cryptosystem. Until recently, all known submission
schemes were either only heuristically secure, or involved costly interaction, but
there is now a provably secure solution to this problem for several well known
homomorphic cryptosystems [27].

Alternative Constructions. In the scheme of Furukawa et al. [12], each mix-server
not only re-encrypts and permutes its input, but also partially decrypts it. As a
result, the final list Lk essentially contains the plaintexts and no joint decryption
step is needed. In the scheme of Wikström [26], re-encryption is also eliminated
entirely, i.e., each mix-server only partially decrypts and permutes its input. In
a preliminary unpublished version of Neff [18] a proof of a shuffle for the first
type of mix-net is described as well [19]. These schemes have special advantages
over the above, but do not lend themselves well to pre-computation, since partial
decryption must be done sequentially.

Very few other approaches to constructing mix-nets have any provable security
properties [16] and several are actually flawed [1,9,24].

1.2 Previous Work On Improving Efficiency

There are more or less obvious techniques that can be used to reduce the compu-
tational complexity of a mix-net. If a threshold below k is used for the decryption
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key, then all mix-servers do not need to take part in the mixing process. In
the execution of a public-coin honest verifier proof of knowledge the random
challenge of the honest verifier must be generated jointly by the mix-servers,
which is costly. But if unpredictability suffices, then longer challenges can be
extracted from a random seed using a PRG. Pre-computation can also be used in
the coin-flipping protocols. The re-encryption factors can also be pre-computed
and batch proof techniques [4] can be used to reduce the complexity of the proofs
of correctness needed during joint decryption.

If such optimizations and pre-computations are used, the main computational
cost lies in the proofs of shuffles. Thus, most previous work on reducing the
complexity, e.g. [12,13,18,15,26], focus on reducing the complexity of a particular
proof of a shuffle. Some parts of these proofs can easily be pre-computed as well.

An alternative approach is used by Adida and Wikström [3], who show that
when the number of senders is relatively small, ideas from homomorphic election
schemes [5] can be used to construct a mix-net where the online phase only
requires decryption of a single ciphertext. The public-key obfuscated shuffle of
Adida and Wikström [2] may also be viewed as a form of pre-computation, but
their goal is not improved efficiency. In fact, their scheme is quite inefficient.

1.3 Our Contribution

Weshowhow to split a proof of a shuffle into twoprotocols.The first protocol is used
byamix-server in the offlinephase toproveknowledgeofhowtoopenacommitment
to a permutation. The second protocol is used by a mix-server in the online phase
to prove that it uses the permutation it committed to also during shuffling.

The first protocol is almost as efficient as the known proofs of shuffles; in fact it
can be constructed from these, e.g., [13,15,18,26]. Even without any standard op-
timization techniques such as simultaneous exponentiations, the computational
complexity of the second protocol is half an exponentiation per sender in the El
Gamal case and has similar properties for other cryptosystems. Thus, our pre-
computation technique reduces the online computational complexity of virtually
all mix-nets.

We also show that all known types of shuffles are instances of a generalized
shuffle, where some homomorphic map φpk : Cpk ×Rpk → Cpk is applied to each
ciphertext and randomizer pair, and the resulting ciphertexts are permuted. In
fact, we prove our results for this generalized shuffle. The generality of our result
immediately gives that ciphertexts can be shuffled in parallel. Even ciphertexts
of different cryptosystems can be shuffled in parallel, and distinct homomorphic
maps can be used for ciphertexts of different cryptosystems.

The inspiration of this work comes from both Neff [18] and Furukawa and
Sako [13]. Neff writes as follows about his “simple shuffle”: “A single instance of
this proof can be constructed to essentially ‘commit’ a particular permutation”,
but we are unable to derive our results starting from his “commitment”. On the
other hand, the Pedersen permutation commitment scheme used implicitly in
the proof of a shuffle of Furukawa and Sako is perfectly suitable for constructing
a fast commitment-consistent proof of a shuffle.
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1.4 Notation

Natural numbers and integers are denoted by N and Z respectively. The ring of
integers modulo n is denoted by Zn, Z

∗
n denotes its multiplicative group, and

SQn denotes the subgroup of squares in Z
∗
n. We use κ as the main security

parameter, but also introduce several related parameters, e.g., the bit-size of
challenges κc. We identify the set of κ-bit strings and the set of positive integers
in [0, 2κ−1] when convenient. A function ε(κ) is negligible if for every constant c
and sufficiently large κ it holds that ε(κ) < κ−c. A function f(κ) is overwhelming
if 1 − f(κ) is negligible. We denote the set of N -permutations by SN .

The Discrete Logarithm (DL) assumption for a group Gq with generator g
states that given a random element y ∈ Gq, it is infeasible to compute x such that
y = gx. The decision Diffie-Hellman (DDH) assumption states that when x, y, r ∈
Zq are randomly chosen, then it is infeasible to distinguish the distributions of
(gx, gy, gxy) and (gx, gy, gr). See full version for formal definitions.

We view a commitment scheme as consisting of a parameter generation algo-
rithm Gen and a deterministic commitment algorithm Com. On input 1κ, Gen out-
puts a parameter ck which defines a message set Mck , a polynomially sampleable
randomness space Rck , and a commitment space Kck . We write CK for the set of
commitment parameters. On input ck ∈ CK, m ∈ Mck , and r ∈ Rck , Com outputs
a commitment. To open a commitment the message and randomness is revealed.

We write CS = (Kg, E, D) for a homomorphic cryptosystem and Mpk , Rpk ,
and Cpk for the abealian groups of messages, randomness, and ciphertexts defined
by a public key pk . We let PK denote the set of all public keys. A homomorphic
cryptosystem satisfies Epk(m1, r1)Epk (m2, r2) = Epk (m1m2, r1r2) for every pk ∈
PK, m1, m2 ∈ Mpk , and r1, r2 ∈ Rpk .

We denote the set {1, . . . , l} by [l] and sometimes denote a list of elements
(a1, . . . , al) by a[l].

Throughout we assume that the order of the largest cyclic subgroup of Cpk ,
and the order of any groups on which we base our commitment schemes, are
bounded by 2κ.

2 Background and Informal Description

Before we give details, it is worthwhile to recall some properties of batch proofs
of discrete logarithms and proofs of shuffles. We also give a brief informal de-
scription of our commitment-consistent proof of a shuffle.

Batch Proofs. Consider a setting where many group elements y1, . . . , yN in some
prime order group Gp with generator g are given, and the prover knows xi ∈ Zp

such that yi = gxi

i . It is expensive to prove knowledge of each logarithm xi

independently, but the use of batching [4] decreases this cost substantially as
the following example shows.

1. Verifier picks e1, . . . , eN ∈ Zp randomly and hands them to prover.
2. Both parties compute y =

∏N
i=1 yei

i .
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3. Prover shows that it knows the logarithm w such that y = gw using a
standard honest verifier zero-knowledge proof of knowledge.

The reason that this is a proof of knowledge is that the extractor may rewind the
prover to the first step several times until it has found N linearly independent
vectors ej = (ej,1, . . . , ej,N ) in Z

N
p for j = 1, . . . , N and extracted logarithms

w1, . . . , wN such that
∏N

i=1 y
ej,i

i = gwj . Note that linear independence imply that
for every l = 1, . . . , N there are dl,j such that

∑N
j=1 dl,jej is the lth standard

unit vector in Z
N
p . This gives

yl =
∏N

j=1

(∏N

i=1
y

ej,i

i

)dl,j

=
∏N

j=1
(gwj )dj,i = g

∑N
j=1 dl,jwj ,

which means that the logarithm of every individual element yl can be computed
as xl =

∑N
j=1 dl,jwj . We remark that the components of the vectors can be cho-

sen randomly in {0, 1}κe for a κe much smaller than κ. From now on we use κe to
denote the bit-size of components of random vectors as the above. Another impor-
tant observation, used to reduce the need for jointly generated randomness when
the honest verifier is implemented jointly by several parties, is that it suffices that
the vectors are unpredictable, e.g., the verifier may instead choose a random seed
z for a PRG, hand it to the prover, and define (e1, . . . , eN) = PRG(z).

Proofs of Shuffles. Due to space restrictions, we can not go into the details of
any particular proof of a shuffle, but we can explain one of the ideas that appear
in different forms in all known efficient schemes.

Consider a homomorphic cryptosystem such that the order of every non-trivial
element in Cpk equals a prime p. Given are a public key pk and ciphertexts
(c1, . . . , cN ) and (c′1, . . . , c

′
N ) that are related by c′i = cπ(i)Epk (1, rπ(i)) for some

permutation π and randomness r1, . . . , rN .
A key observation, first made by Neff [18] and Furukawa and Sako [13], is that

batch proofs are in some sense invariant under permutation and that this means
that we can use batch techniques to construct an efficient proof of a shuffle. The
idea can be described as follows, where we use a PRG to expand a seed into an
unpredictable vector.

1. V picks a seed z ∈ {0, 1}κ randomly and hands it to P .
2. Both parties compute c =

∏N
i=1 cei

i , where (e1, . . . , eN) = PRG(z) and ei ∈
[0, 2κe − 1].

3. P computes c′ =
∏N

i=1(c
′
i)

eπ(i) , hands it to V , and convinces V that it is
formed correctly.

4. P proves knowledge of r ∈ Rpk such that c′ = cEpk (1, r).

Note that the linear independence argument used in the basic batch proof
above carries over to the shuffle setting, despite that some of the exponents
are permuted (see Proposition 3 in full version for details). The above descrip-
tion is simplified in that the prover must blind c′ to avoid leaking knowledge. The
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problem of convincing the verifier that the original exponents, re-ordered using
a fixed permutation π, are used to form c′ is non-trivial, and solved differently
in the various proofs of shuffles. If we ignore the cost of Step 3, then the above
protocol is very efficient.

2.1 Commitment-Consistent Proofs of Shuffles

We observe that we can design Step 3 in such a way that almost all of it can be
moved to the offline phase. Generators g1, . . . , gN of a group Gp of prime order
p are given as part of the setup of the proof of a shuffle, and it is assumed to be
infeasible to compute any non-trivial relations among these (this follows from
the DL assumption).

Suppose that each mix-server commits to a permutation π using Peder-
sen commitments [21] (a1, . . . , aN ) = (gr1gπ−1(1), . . . , g

rN gπ−1(N)) for random
r1, . . . , rN ∈ Zp, and also proves knowledge of the ri and π such that (a1, . . . , aN)
was formed in this way. Then in the online phase the verifier can choose, and hand
to the prover, a random seed z ∈ {0, 1}κ, set (e1, . . . , eN) = PRG(z), and compute

a =
∏N

i=1
aei

i =
∏N

i=1
grieigei

π−1(i) = gr
∏N

i=1
g

eπ(i)
i ,

where r =
∑N

i=1 riei. Note that a is of a perfect form for executing a standard
proof of knowledge of equal exponents. More precisely, we may now replace Step
3 above in the online phase by:

– Prover computes c′ =
∏N

i=1(c
′
i)

eπ(i) and hands it to the verifier.
– Prover proves knowledge of r′ ∈ Zp and e′1, . . . , e

′
N ∈ {0, 1}κe with

a = gr′ ∏N

i=1
g

e′
i

i and c′ =
∏N

i=1
(c′i)

e′
i .

The above is simplified in that some blinding factors are missing. The proof
of knowledge of the exponents r′, e′1, . . . , e′N , combined with the computational
binding property of multi-base Pedersen commitments implies that e′i = eπ(i)

for some permutation π(i). The computational complexity of the above protocol
is very low, since almost all exponents have very few bits also in the proof of
knowledge of equal exponents.

3 A Commitment-Consistent Proof of a Shuffle

In this section we first give more details of the commitment scheme and explain
how any of the known proofs of shuffles can be used to prove knowledge of an
opening of the commitment to a permutation. Then we present the commitment-
consistent proof of a shuffle.
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3.1 Permutation Commitments

We formalize the property we need from the Pedersen commitments above. A
permutation commitment should allow the committer to compute a commitment
Com�(π) of a permutation π, but obviously any string commitment can be used
to commit to a permutation. The special property of a permutation commitment
is that if the receiver holds a list (e1, . . . , eN), it can transform the permutation
commitment into a commitment Come(eπ(1), . . . , eπ(N)), of another type, of the
the list elements, but in order defined by π. Here κcom denotes the maximal bit
size of each component of a list commitment.

Definition 1. Let (Gen�, Com�) be a commitment scheme for SN and let
(Gene, Come) be a commitment scheme for [0, 2κcom − 1]N . The former is a κcom-
permutation commitment scheme of the latter if Gen� = Gene and there exist
deterministic polynomial time algorithms Map and Rand s.t. for every ck ∈ CK,
r� ∈ R�

ck , π ∈ SN and e = (e1, . . . , eN ) ∈ [0, 2κcom − 1]N

Mapck (Com�
ck (π, r�), e) = Come

ck ((eπ(1), . . . , eπ(N)), Rand(r�, e)) .

Construction 1 (Pedersen Commitment). The generation algorithm Gen�

outputs random generators g1, . . . , gN ∈ Gq, where Gq is a cyclic group of
known order q =

∏t
i=1 pi with pi ≥ 2κcom . On input π ∈ SN and r1, . . . , rN ∈

Zq, the commitment algorithm Com� computes ai = grigπ−1(i), and outputs
(a1, . . . , aN ). The parameter algorithm Gene is identical to Gen�. On input
(e1, . . . , eN) ∈ [0, 2κcom − 1]N and r ∈ Zq, the algorithm Come computes
a = gr

∏N
i=1 gei

i , and outputs a.

The idea of using (generalized) Pedersen commitments [21] to commit to per-
mutations is not novel, e.g., it is used implicitly in [13], but the observation that
a commitment of the first kind can be transformed into a commitment of the
second kind seems new.

Proposition 1. Both (Gen�, Com�) and (Gene, Come) of Construction 1 are per-
fectly hiding and computationally binding under the DL assumption. The former
is a permutation commitment of the latter.

The proof of the binding property is well known for prime order groups. A proof
is given in the full version.

We will later make use of the following relation that corresponds to breaking
a commitment scheme, i.e., finding two different ways to open a commitment.

Definition 2. The relation R twin

ck consists of all pairs
(
ck , (s[l], s0, s

′
[l], s

′
0)

)
such

that s[l] �= s′[l] and Come
ck(s[l], s0) = Come

ck (s′[l], s
′
0).

Suppose a committer produces a permutation commitment a� and the verifier
computes a = Mapck(a�, (e1, . . . , eN )). Then we expect that the committer only
can open a as (eπ(1), . . . , eπ(N)) for a fixed permutation π, i.e., if we repeat this
procedure with different lists (e1, . . . , eN ) the same permutation must be used
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by the committer every time. We can not prove this, but it is easy to see that if
it also can open a� to a permutation π, then it must use this permutation every
time. Recall that in our application, each mix-server proves knowledge of how
to open a� during the offline phase. Thus, if a witness for the following relation
can be extracted in the online phase we reach a contradiction. This suffices to
prove the overall security of a mix-net.

Definition 3. The relation Rperm

ck consists of all
(
ck , (a�, s[N ], s0, s

′
[N ], s

′
0)

)

such that Mapck(a�, s[N ]) = Come
ck ((sπ(1), . . . , sπ(N)), s0), Mapck (a�, s′[N ]) =

Come
ck ((s′π′(1), . . . , s

′
π′(N)), s

′
0), π �= π′, and si �= sj and s′i �= s′j for all i �= j.

3.2 Proof of Knowledge of Opening

We now explain how we can construct, from any proof of a shuffle of El Gamal
ciphertexts over a prime order group Gp, a proof of knowledge that a Pedersen
permutation commitment indeed is a commitment to a permutation.

Definition 4. The relation Ropen

ck consists of all
(
(ck , a�), (π, r�)

)
such that a� =

Com�
ck (π, r�).

Protocol 1 (Proof of Knowledge of Correct Opening).
Common Input: Pedersen commitment parameters g, g1, . . . , gN ∈ Gp and a com-
mitment (a1, . . . , aN) ∈ GN

p .
Private Input: Permutation π ∈ SN and exponents r1, . . . , rN ∈ Zp such that
ai = grigπ−1(i).

1. P chooses r′i ∈ Zp and h ∈ Gp randomly, computes a′
i = gr′

iai and bi = hri+r′
i ,

and hands (a′
1, . . . , a

′
N ) and (h, b1, . . . , bN ) to V.

2. P proves to V that it knows r′i such that a′
i = gr′

iai.
3. P and V view (h, g) as an El Gamal public key, and P uses its random com-

mitment exponents r1 + r′1, . . . , rN + r′N to give a proof of a shuffle that the
list (b1, a

′
1), . . . , (bN , a′

N) is a re-encryption and permutation of the list of trivial
ciphertexts (1, g1), . . . , (1, gN) using the public key (h, g), i.e., it proves that it

knows some r′′i such that (bi, ai) = (hr′′
i , gr′′

i gπ−1(i)).

Proposition 2. The protocol inherits properties of the proof of a shuffle.

1. If the proof of a shuffle is public-coin, overwhelmingly (computationally)
sound, and a proof of knowledge, then so is the protocol above.

2. If the proof of a shuffle is honest verifier (computationally under assumption
A) zero-knowledge, then the above protocol is computationally zero-knowledge
under the DDH assumption (and assumption A).

A proof is given in the full version. Without the blinding exponent r′i the protocol
is not even computationally zero-knowledge, since the adversary could in prin-
ciple know ri. Some proofs of shuffles do not satisfy the standard computational
versions of soundness, proof of knowledge, and zero-knowledge. In those cases
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the correspondingly more complicated security properties are also inherited, but
we use the above proposition for simplicity. Readers with deeper understanding
of proofs of shuffles should note that the basic principles of any proof of a shuffle
can be used directly to construct a more efficient protocol, but this is not our
focus here. We stress that the above simple solution is presented for completeness
and ease of presentation. It is non-trivial to extend the above result to groups
of composite order such as those considered in Construction 1.

3.3 Proof of Knowledge of Equal Exponents

Recall from our sketch in Section 2.1 that in our commitment-consistent proof
of a shuffle, the prover essentially hands the product

∏N
i=1(c

′
i)

eπ(i) to the ver-
ifier and shows that the exponents used are those committed to in a commit-
ment Come(eπ(1), . . . , eπ(N)). More precisely, we assume that: {h1, . . . , hk} is
a generator set of the group Cpk of ciphertexts, ck is a commitment param-
eter, and that the prover hands

∏N
i=1(c

′
i)

eπ(i) to the verifier in blinded form,
i.e., it hands

(
Come

ck (s[k], s0),
∏k

i=1 hsi

i

∏N
i=1(c

′
i)

eπ(i)
)

to the verifier for random
exponents s[k] (and s0 ∈ Rck ), and then proves that it knows all of these
exponents and that they are consistent with the exponents committed to in
Come

ck ((eπ(1), . . . , eπ(N)), e0) for some e0 ∈ Rck . Thus, we construct a protocol
for the following relation.

Definition 5. From a scheme (Gene, Come) for [0, 2κcom − 1]N , a commit-
ment parameter ck output by Gene, and a public key pk ∈ PK we define
Req

ck,pk to consist of all
(
(pk , ck, h[k], c[N ], a, b1, b2), (e0, e[N ], s0, s[N ])

)
satisfying

a = Come
ck (e[N ], e0), b1 = Come

ck (s[k], s0), and b2 =
∏k

i=1 hsi

i

∏N
i=1 cei

i .

If the largest cyclic subgroup of Cpk has order q =
∏t

i=1 pi with pi ≥ 2κc , and a
group Gq of order q is available for which the DL problem is hard, then a sigma
protocol with the challenge chosen from [0, 2κc − 1], can be constructed using
fairly standard methods. For completeness we give such a protocol in the full
version.

Otherwise, we can either use Pedersen commitments over some prime order
group Gp and use a proof of equal exponents over groups of different orders
using a Fujisaki-Okamoto commitment [11] as a “bridge”, or we can replace
the permutation commitment by a corresponding Fujisaki-Okamoto commitment
directly. It is not hard to derive a shuffle of such commitments from Wikström’s
shuffle [26]. The drawback of using Fujisaki-Okamoto commitments is that they
are based on the use of an RSA modulus, and such moduli are costly to generate
in a distributed setting. We detail both solutions in the the full version.

3.4 Shuffle-Friendly Maps

To randomly shuffle a list of homomorphic ciphertexts (c1, . . . , cN ) usually means
that each ciphertext is randomly re-encrypted and the resulting ciphertexts ran-
domly permuted, but there are other possible shuffles. For the El Gamal cryp-
tosystem, one can also partially decrypt during shuffling [12], or if a special key
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set-up is used one can avoid random re-encryption entirely [26]. There are also at
least two types of shuffles of (variants of) Paillier [20] ciphertexts. A careful look
at these shuffles reveal that they are all defined by evaluating a homomorphic
map and permuting the result.

Definition 6. A map φpk is shuffle-friendly for a public key pk ∈ PK of a
homomorphic cryptosystem if it defines a homomorphic map φpk : Cpk ×Rpk →
Cpk .

Example 1. Using the El Gamal cryptosystem over a group Gp with public key
pk = (g, y), where y = gx and x is the secret key, we have Mpk = Gp, Rpk = Zp,
and Cpk = Gp × Gp. Then φ(g,y)((u, v), r) = (gru, yrv) describes re-encryption
when r ∈ Zp is randomly chosen. If yi = gxi , y = y1y2y3, and x = x1 + x2 + x3,
then φx1

(g,y)((u, v), r) = (gru, (y/y1)ru−x1v) denotes partial decryption and re-
encryption using the secret share x1 and randomness r. The decryption shuffle
in [26] can be described similarly.

Example 2. Using the Paillier cryptosystem with a public key pk = n consisting
of a random RSA modulus, we have Mpk = Zn, Rpk = Z

∗
n, and Cpk = Z

∗
n2 with

encryption defined by Epk(m, r) = (1 + n)mrn mod n2. Re-encryption is then
defined by φn(c, r) = crn mod n2.

Suppose we wish to prove that a ciphertext c′ is the result of invoking a particular
shuffle-friendly map φpk on another ciphertext c. If the shuffle-friendly map φpk

is public, e.g., it represents re-encryption, then what is needed is a proof that
there exists some randomness r such that φpk (c, r) = c′. If the shuffle-friendly
map itself is not public, e.g., re-encryption and partial decryption, then the map
φpk must then be defined by some hidden parameters. Without loss we assume
that the map is defined by some relation to the public key. In the typical cases,
the public key defines a secret key and the shuffle-friendly map is defined by the
secret key. We consider a situation where the output ciphertext c′ is committed
to as (Come

ck ((s1, . . . , sk), s0), c′
∏k

i=1 hsi

i ), and define a relation for a shuffle-
friendly map as follows.

Definition 7 (Shuffle-Friendly Relation). Let pk ∈ PK, let φpk be a
shuffle-friendly map for pk and let ck be a commitment parameter. We de-
fine Rmap

φpk
to consist of all pairs

(
(pk , ck , h[k], c, b1, b2), (r, s0, s[k])

)
such that

b1 = Come
ck (s[k], s0) and b2 = φpk (c, r)

∏k
i=1 hsi

i .

Example 3 (Example 1 continued). Note that Cpk = Gp × Gp is generated by
h1 = (g, 1) and h2 = (1, g) with component-wise multiplication. If we consider
a re-encryption and permutation shuffle and use Pedersen commitments over
the group Gp with parameter ck = (g1, g2), then the relation consists of all
pairs

(
((g, y), (g1, g2), (u, v), b1, b2), (r, s0, s1, s2)

)
such that b1 = gs0gs1

1 gs2
2 and

b2 = hs1
1 hs2

2 (gru, yrv).

For the typical shuffle-friendly maps of the El Gamal and Paillier cryptosystems,
it is well known how to construct sigma protocols [7] for the corresponding
shuffle-friendly relation using standard methods. We give some examples in the
full version.



A Commitment-Consistent Proof of a Shuffle 417

3.5 Details of the Commitment-Consistent Proof of a Shuffle

Next we give a detailed description of the protocol that allows a mix-server to
prove in the online phase that it re-encrypted and permuted its input and that
the permutation used is the same permutation it committed to in the offline
phase. We denote by κr a parameter that decides how well the commitments
hide the committed values.

The two subprotocols can be executed in parallel and the second step of the
protocol can be combined with the first move of the combined subprotocols.

Protocol 2 (Commitment-Consistent Proof of a Shuffle).
Common Input: A public key pk of a cryptosystem CS, a generating set {h1, . . . , hk}
of Cpk , a commitment parameter ck , a permutation commitment a� ∈ Kπ

ck , cipher-
texts (c1, . . . , cN ) ∈ CN

pk , and (c′1, . . . , c
′
N ) ∈ CN

pk .
Private Input: Permutation π ∈ SN , s� ∈ R�

ck and r1, . . . , rN ∈ Rpk such that
a� = Com�

ck (π, s�), and c′i = φpk(cπ(i), rπ(i)).

1. V chooses a seed z ∈ {0, 1}κ randomly and hands it to P . Then both par-
ties set (e1, . . . , eN) = PRG(z), where ei ∈ {0, 1}κe , and computes a =
Mapck(a

�, (e1, . . . , eN)).
2. P chooses t0 ∈ Rck and t1, . . . , tk ∈ [0, 2κ+κr − 1] randomly, and computes and

hands to V

b1 = Come
ck ((t1, . . . , tk), t0) and b2 =

∏k

i=1
hti

i

∏N

i=1
(c′i)

eπ(i) .

3. P proves, using a proof of equal exponents, that it knows exponents
t0, . . . , tk, (e′1, . . . , e

′
N ) (computed as (eπ(1), . . . , eπ(N))), and e0 (computed as

Rand(s�, (e1, . . . , eN))) such that

b1 = Come
ck ((t1, . . . , tk), t0) , b2 =

∏k

i=1
hti

i

∏N

i=1
(c′i)

e′i , and

a = Come
ck ((e

′
1, . . . , e

′
N), e0) .

4. P proves, using a proof of a shuffle map, that it knows exponents t0, . . . , tk and
r (computed as

∏N
i=1 rei

i ) such that

b1 = Come
ck ((t1, . . . , tk), t0) and b2 =

∏k

i=1
hti

i φpk

(∏N

i=1
cei
i , r

)
.

Note that the protocol and the proposition below are quite general; they
apply for all the usual homomorphic cryptosystems, any shuffle-friendly map,
and any number of ciphertexts shuffled in parallel (this is considered as a separate
case in [18]). It even applies to mixed settings where ciphertexts from different
cryptosystems are shuffled in parallel. To state the security properties of the
protocol we need to define a relation that captures a shuffle.

Definition 8. Let pk ∈ PK, let φpk be a shuffle-friendly map for pk.
Then we define the shuffle relation Rshuf

φpk
to consist of all pairs of the form

(
(pk , c[N ], c

′
[N ]), (π, r[N ])

)
with c′i = φpk (cπ(i), rπ(i)).
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In the proposition we consider the relation Rshuf

φpk
∨ R twin

ck ∨ Rperm

ck . In general, for
two relations R1 and R2, the relation R1 ∨ R2 denotes the relation consisting
of all pairs ((x1, x2), w) such that (x1, w) ∈ R1 or (x2, w) ∈ R2.

Proposition 3. Let the subprotocols be overwhelmingly complete sigma proto-
cols for the relations Req

ck,pk∨R twin

ck and Rmap

φpk
respectively, and let the commitment

scheme be statistically hiding.
Then for every pk ∈ PK and ck ∈ CK, the protocol is an sound public-coin

honest verifier statistical zero-knowledge proof of the relation Rshuf

φpk
∨R twin

ck ∨Rperm

ck ,
and overwhelmingly complete for witnesses of Rshuf

φpk
.

It is a proof of knowledge with negligible knowledge error of a string w such
that Rshuf

φpk

(
(pk , c[N ], c

′
[N ]), (w, r[N ])

)
= 1, R twin

ck (ck , w) = 1, or Rperm

ck (ck , w) = 1, is
satisfied for some randomness r[N ] ∈ Rpk , where we use the notation for inputs
to the protocol as defined above.

Remark 1. It is observed in [26] that it does not suffice that a proof of a re-
encryption and permutation shuffle is sound to be used in a provably secure mix-
net. The permutation used by the mix-server to shuffle must also be extractable.
However, extracting the permutation suffices.

A proof of the proposition is given in the full version. The basic idea is explained
already in Section 2.1, except that in the general case the order q of the maximal
cyclic subgroup of Cpk may not be prime or may even be unknown. Note that
if q is not prime, then the “random vectors” are in fact defined over a ring
and not over a field, and consequently they are not vectors at all. Thus, not
all elements are invertible, which potentially is a problem when trying to find a
linear combination of the “random vectors” equal to any standard unit vector,
which is needed to extract a witness. Since we assume that all factors of the
order of Cpk are large and all elements that must be inverted are random, this
is not a problem and a witness can be extracted. However, if it is infeasible to
compute the factorization of the order of Cpk , or if the order itself is unknown,
then this seems difficult. Fortunately, it suffices for the overall security of the
mix-net that only the permutation can be extracted.

4 Application To Mix-Nets

At this point the reader should be comfortable with the idea that a proof of a
shuffle can be split into a relatively costly offline part (Protocol 1) and a very
efficient online part (Protocol 2), but how exactly do they fit into a mix-net?

Below we give a brief informal description of a mix-net based on the El Gamal
cryptosystem over a group Gp of prime order p. This illustrates how our protocols
are used and gives an idea of the complexity of a complete mix-net using our
approach.
Offline Phase

1. The mix-servers, M1, . . . , Mk, run a distributed key generation protocol to
generate a joint public key (g, y) such that the corresponding secret key x,
with y = gx, is secret shared among the mix-servers.
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2. Mj chooses rj,i ∈ Zp randomly and computes (grj,i , yrj,i) for i = 1, . . . , N .
3. Mj chooses a random permutation πj ∈ SN , publishes a permutation com-

mitment a�
j = Com�(πj), and proves knowledge of the committed permu-

tation using Protocol 1 (and verifies the proofs of knowledge of all other
mix-servers).

Online Phase

4. Si chooses ri ∈ Zp randomly, computes (u0,i, v0,i) = E(g,y)(mi, ri), where
mi ∈ Zp is its message, and publishes this ciphertext.

5. Let L0 = (u0,i, v0,i)N
i=1 be the input ciphertexts. For l = 1, . . . , k:

(a) If l = j, then Mj computes (uj,i, vj,i) = (grj,iuj−1,πj(i), y
rj,ivj−1,πj(i)),

publishes Lj = (uj,i, vj,i)N
i=1, and proves using Protocol 2 that Lj−1 and

Lj are consistent with a�
j .

(b) If l �= j, then Mj verifies the proof of Ml, i.e., that Ll−1 and Ll are
consistent with a�

l .
6. The mix-servers perform a threshold decryption of Lk using their shares of

x and output the list of plaintexts (mπ(1), . . . , mπ(N)), where π = πk · · ·π1.

The random challenges needed in the subprotocols are generated jointly using
a coin-flipping protocol over a broadcast channel or bulletin board. Thus, all
verifiers jointly either accept or reject proofs. It is natural to ask why the secu-
rity property of our commitment-consistent proof suffices, since it is sound for
Rshuf

φpk
∨ R twin

ck ∨ Rperm

ck and not for Rshuf

φpk
. This follows from the proof of knowledge

property. For any successful prover there exists an extractor that outputs: a
valid permutation π used to shuffle, a witness for R twin

ck , or a witness for Rperm

ck .
The second type of output directly contradicts the security of the commitment
scheme. The third type of output combined with knowledge of how to open a�

j

(such an opening can be extracted during the offline phase), also contradicts the
security of the commitment scheme. Thus, in a simulation the extractor out-
puts the permutation with overwhelming probability, which suffices to prove the
overall security of the mix-net.

Depending on the secret sharing threshold, all mix-servers may not need to
shuffle the ciphertexts, and there are obvious ways to avoid the assumption
that all senders submit an input. Many details are of course missing from the
above description, but in the El Gamal case all subprotocols missing from the
description are available. Distributed key generation can be done using Feld-
man and Pedersen secret sharing [10,21]. The submission of inputs must allow
extraction of the plaintexts of corrupt senders without using the secret key of
the cryptosystem. This can be done [27] based on the Cramer-Shoup cryptosys-
tem [8] in such a way that each mix-server essentially pays the cost of checking
the validity of N Cramer-Shoup ciphertexts. Batch techniques [4] can be used
to reduce this further if most ciphertexts are expected to be valid, and valid-
ity checks can be done concurrently with receiving new ciphertexts. Random
challenges can be generated using Pedersen verifiable secret sharing [21]. The
sharing phase of many coins can be pre-computed, but since we only need a
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small number of bits in each challenge this type of optimization does not give
much. Finally, during threshold decryption each mix-server must exponentiate
N group elements to decrypt, but proving that this was done correctly can be
done using batch proofs [4]. To summarize, the online running time of the mix-
net is roughly the time to: validate N Cramer-Shoup ciphertexts, run the prover
or verifier of k commitment-consistent proofs of shuffles of lists of ciphertexts of
length N , decrypt N El Gamal ciphertexts, and prove or verify correctness of
joint decryption, which is done using a batch proof.

Recall that κe denotes the bit-size of elements in random “vectors”, κc denotes
the bit-size of challenges, and κr decides the statistical error in simulations and
also the completeness of our subprotocols. For practical security parameters,
e.g., κ = 1024, κe = κc = 80 and κr = 20, we estimate the complexity of our
protocol to N/2 square-and-multiply exponentiations. This can be reduced by
a factor of 1/5 if simultaneous exponentation [17] is used, giving a complexity
corresponding to N/10 square-and-multiply exponentations (see full version for
details).

Thus, our commitment-consistent proof of a shuffle is several times faster in
the online phase than any of the known proofs of shuffles. As far as we know
this makes our mix-net faster in the online phase than any previous mix-net.
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