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Abstract

H̊astad et al. (2008) prove, using Raz’s lemma (STOC ’95) the first efficient parallel
repetition theorem for protocols with a non-constant number of rounds, for a natural
generalization of public-coin protocols. They show that a parallel prover that convinces
a fraction 1− γ of the embedded verifiers of a k-wise repeated m-message verifier can be
turned into a prover with error probability 1 − γ − O(m

√
− log (ε) /k). This improves

previous results of Impagliazzo et al. (Crypto 2007) and Pass and Venkitasubramaniam
(STOC 2007) that studies the constant round case.

We prove a generalization of Raz’s Lemma to random processes that allows us to
improve the analysis of the reduction of H̊astad et al. in the public-coin case to 1 − γ −
O(
√
− log (ε) /k), i.e., we remove the dependence on the number rounds completely, and

thus the restriction to settings where k > m2.
An important implication of the strengthened parallel repetition theorem is the first

efficient concurrent repetition theorem for protocols with a non-constant number of rounds.
In concurrent repetition, the verifiers execute completely independently and only report
their final decision, i.e., the prover chooses arbitrarily in which order it interacts with the
individual verifiers. This should be contrasted with parallel repetition where the verifiers
are synchronized in each round.

1 Introduction

Arthur-Merlin games [1] and interactive proofs [7] were introduced to allow a prover to convince
a verifier that a statement x belongs to a language L, without transferring an explicit witness
w of this fact. Such a protocol is said to have soundness 1 − δ if the probability that the
verifier accepts when x 6∈ L is at most δ, and δ is then called the error probability. A protocol
is said to be complete if the verifier accepts a true statement when both parties follow the
protocol. In applications, it is often required that the protocol does not leak any knowledge of
the secret information, i.e., that the protocol is zero-knowledge [7], but in this paper we focus
on the error probability of protocols.

The concept of interactive proofs has been generalized in numerous ways. Proofs of knowl-
edge [2] allow the prover to show that it knows some secret information. Note that this may
be interesting even when the existence of the given secret information is obvious. In com-
putationally sound protocols, e.g., interactive arguments [4], the verifier is only safe against
computationally bounded cheating prover, i.e., if a prover violates the soundness property,
then some computational assumption is violated.

1



When the error probability of a protocol is not sufficiently low, one may hope that the error
probability is decreased exponentially if the protocol is executed repeatedly and the verifier
only accepts if all individual executions are accepting. Two forms of repetition are considered
in the literature: sequential repetition and parallel repetition. In sequential repetition, the
execution of one instance of the basic protocol is completed before another execution is started.
This is known to reduce the error probability exponentially for all interesting models.

For parallel repetition the situation is more complicated. On the one hand, parallel repeti-
tion of interactive proofs does reduce the error at an optimal rate, i.e., if the basic protocol has
error probability δ, its the k-wise repetition has error probability δk. On the other hand, Bel-
lare, Impagliazzo and Naor [3] and Pietrzak and Wikström [13] show that parallel repetition
may not reduce the error probability of computationally sound protocols. However, Bellare
et al. also establish an efficient parallel repetition theorem for three-message protocols, i.e.,
an efficient black-box reduction that turns any k-wise parallel prover with error probability
ε into a single instance prover with error probability 1 − O(

√
− log (ε) /k). Canetti, Halevi

and Steiner [5] prove a stronger version of this result where the error probability of the single
instance prover is 1 − O(− log (ε) /k), which is optimal. Pass and Venkitasubramaniam [12]
generalize this result to any constant-round public-coin protocol (with similar parameters).
In a generalization in an other direction Impagliazzo, Jaswal and Kabanets [11] prove, for
tree-message protocols, that even a parallel prover that only convinces a certain fraction 1−γ
of the individual verifiers with probability ε can be used to construct a single instance prover
with error probability roughly 1− γ −O(

√
− log (ε) /k).

H̊astad, Pass, Pietrzak, and Wikström [9] proves the first parallel repetition theorem for
protocols with super-constant number of rounds m. They provide an efficient black-box re-
duction that turns a k-wise parallel prover that convinces a fraction 1− γ of the verifiers with
probability ε into a single instance prover with error probability 1 − γ − O(m

√
− log (ε) /k).

The running time of the reduction is polynomial in m, n, and k, and linear in 1/ε.
In work subsequent to [9], Haitner [8] proves that any interactive argument can be modified

slightly such that the error probability decreases exponentially with parallel repetition. His
single instance prover requires that k ≥ n8m12 and has much worse parameters: the error
probability is 1−γ−O(mk−

1
10 ), and the running time is polynomial in m, n, and k, and cubic

in 1/ε.
In the proofs of all the mentioned efficient parallel repetition theorems the constructed

single instance prover simulates internally an interaction between the parallel prover given as
a black-box and k verifiers V1, . . . ,Vk, except that Vj for some index j in effect is replaced
by the external verifier and the messages of the other verifiers are chosen to maximize the
probability that the external verifier accepts. In other words, any message handed to Vj

in the simulated interaction is forwarded to the external verifier, and any message from the
external verifier is taken as a message output by Vj .

What differs in the proofs of the mentioned results is: (1) how the index j is chosen, (2)
how the messages of the internally simulated verifiers Vi, i 6= j, are chosen to maximize the
accept probability of the external verifier, and (3) how the constructed single instance prover
is analyzed.

In some of the cited works it is proved that a random index j is good on average and in
other works a good index j is found by sampling. However, from an analytical point of view
these two approaches are usually equivalent.
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Both Canetti et al. [5] and Pass and Venkitasubramaniam [12] use extensive sampling in
each round to find choices of messages of the simulated verifiers Vi, i 6= j, that approximate
the optimal computationally unbounded single instance prover. In [12] this leads to a super-
exponential running time in the number of rounds, which explains the restriction to constant-
round protocols. In both cases, the analysis consists of bounding the difference between the
unbounded optimal strategy and its approximation.

Impagliazzo et al. [11], H̊astad et al. [9], and Haitner [8] all use a lemma of Raz [14]; in
the latter two cases in the generalized form given by Holenstein [10]. Raz’s lemma states
that if X1, . . . , Xk are independently distributed random variables and W and event, then
1
k

∑k
i=1

∥∥PXi|W − PXi

∥∥ is bounded by
√

log (1/ Pr [W ]) /k. We remark that the first paper
on parallel repetition of Bellare et al. [3] seems to embed the proof of a related statement,
but intertwined with a “trust halving” strategy.

1.1 Our Contribution

We prove a theorem that generalizes Raz’s lemma [14] to certain random processes described
below. Our result allows us to strengthen the parallel repetition theorem of H̊astad et al. in the
public-coin case, including the threshold case, in that we remove the restriction to protocols
where the number of repetitions is greater than the square of the number of rounds. Then
we show that the strengthened parallel repetition theorem gives the first efficient concurrent
repetition theorem for public-coin protocols with a non-constant number of rounds.

Our results are easily extended to extendable and simulatable [9] verifiers, but only in the
case where the verifiers decision to accept or not can be computed publicly from an interaction,
i.e., the decision to accept or not does not depend on any private values.

The Analysis of H̊astad et al. Is Too Pessimistic. Let us take a closer look at the
strategy of H̊astad et al. [9] for the case of public-coin protocols. Consider an interaction
between a parallel prover P(k) and the parallel repetition Vk of an m-message verifier V.
Denote the ith verifier by Vi and denote its lth message by Cl,i, and denote the list of the lth
messages of all verifiers by Cl = (Cl,1, . . . , Cl,k). We also write C[l] = (C1, . . . , Cl) to denote a
partial interaction. Let W be the event that all verifiers accept.

If we choose C[m] randomly conditioned on the event W , then clearly all verifiers accept.
Note that we may think of the process of sampling this distribution as proceeding round by
round, where in the lth round: (1) Vj samples its message conditioned on the interaction so far
and W , and (2) all other verifiers samples their messages jointly conditioned on the interaction
so far (including the message of Vj in Step (1)) and W .

The reduction of H̊astad et al. corresponds to sampling, for a random j, a similar distribu-
tion with the following two modifications. Firstly, it may not be feasible to sample messages
conditioned on W in a given round given some particular partial interactions. They show that
such partial interactions occur with a correspondingly low probability. We now consider the
more interesting modification, namely that Vj no longer conditions the choice of its message
on W in Step (1) of the sampling of the lth round. To deal with this they apply, for each round
l, Raz’s lemma (in Holenstein’s form) to conclude that the distribution of Cl,j for a randomly
chosen j remains approximately the same even without conditioning on W . Then using the
triangle inequality of statistical distance, the probability that all accept, and in particular Vj ,
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in the modified process is 1−O(m
√
− log (ε) /k), where ε = Pr [W ]. It is natural to ask if this

bound is tight with respect to m, since the bound is useless unless k > m2.
Let us give some intuition why the bound is not tight. Suppose that the repeated proto-

col itself consists of the O (m)-wise sequential repetition of some other constant-round basic
protocol. Then we may just as well view the protocol as the O (m)-wise sequential repetition
of the k-wise parallel repetition of the basic protocol. Consider now what conditioning on W
somewhere in the execution of the lth sequential copy of the parallel repetition of the basic
protocol means. It simply means conditioning on the event Wl that the lth sequential copy of
the k-wise parallel repetition of the basic protocol accepts, i.e., all the basic verifiers in the lth
round accept. This event is on average over l much more likely than the event W = ∧s

l=1Wl

that all basic verifiers in each sequential copy accepts, where s is the number of sequential
copies. This indicates, that at least in some situations, H̊astad et al. are too pessimistic when
they in each round use the probability of the event W to bound the effect of conditioning on
W .

In the general case there exist no events such as Wl that can be used for conditioning
instead of W . The main contribution of this work is the observation that we can mimic the
above intuition in the general case using the notion of relative entropy, and improve H̊astad
et al.’s bound to 1−O(

√
− log (ε) /k).

An Efficient Concurrent Repetition Theorem. A natural generalization of parallel
repetition is concurrent repetition. The k-wise concurrent repetition of a verifier V, denoted
V#k, executes k independent verifiers and accepts iff all verifiers accept. In contrast to the
parallel repetition, the messages of the individual verifiers are not synchronized. Thus, a
concurrent prover may adaptively choose to delay the further interaction with some verifiers
of its choosing until it has interacted some more with other verifiers. In other words, the
concurrent prover may arbitrarily schedule the interactions with the individual verifiers.

We show that any k-wise concurrent repetition of a m-message verifier V may be viewed as
the k-wise parallel repetition of a related mk-message verifier V ′. What makes this observation
useful is: (1) that a concurrent prover P{k} with error probability ε against V#k can be turned
into a related parallel prover P(k) against V ′k with the same error probability, and (2) that
any prover P̃ ′ with error probability δ against V ′ can be turned into a prover P̃ with the same
error probability against V.

Thus, the concurrent setting can be reduced to the parallel setting at the cost of increasing
the number of rounds to mk. Recall that the parallel repetition theorems of H̊astad et al. [9]
and Haitner [8] requires that k > m2 and k > n8m12 respectively. Thus, these theorems can
not be used to argue about a parallel interaction derived from a concurrent interaction as
explained above.

Our parallel repetition theorem does not suffer from any such restriction. Thus, we get a
concurrent repetition theorem for public-coin protocols.

1.2 Organization of Paper

In Section 3 we recall the definition of relative entropy (Kullback-Leibler distance) and derive
the elementary properties we need to prove our main theorem. Then we state and prove in
Section 4 our generalization of Raz’s lemma. In Section 5 we then show how the parallel
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repetition theorem of H̊astad et al. [9] can be strengthened. Finally, in Section 6 we formalize
concurrent repetition and extend the strengthened parallel repetition theorem to cover also
this type of repetition.

2 Notation

We denote the set {1, . . . ,m} by [m]. We denote the binary logarithm of x by log x. If X is a
random variable we write PX (x) = Pr [X = x] to denote the probability that it assumes the
value x, and we denote its support by [X]. If X and Y are random variables we denote the
conditional distributions of Y given X by PY |X , and when we condition on a fixed value x ∈
[X] we denote the corresponding probability function by PY |X ( · |x). Thus, PY |X (y |x) =
PXY (x, y) /PX (x). When W is an event, we write PX|W (x) = Pr [X = x |W ].

We use the convention that PY |XW (⊥ |x) = 1, where ⊥ is a special symbol, for all x ∈ [X]
such that Pr [W |X = x ] = 0. Similarly, we set PY |XW (⊥ |⊥) = 1. This allows us to consider
expressions like PXPY |XW to be distributions, which is otherwise not necessarily the case.

The algorithmic interpretation of the first convention is a process where we first sample x
according to PX and then if possible sample y according to PY |XW . If the latter is not possible
the we set y equal to the failure symbol ⊥. The second convention simply says that once we
have failed to sample some component, then we fail to sample all remaining components as
well.

Definition 1. The statistical distance between two distributions PX and PY over a set X is

‖PX − PY ‖ =
1
2

∑
x∈X
|PX (x)− PY (x) | .

2.1 Protocols and Parallel Repetition

For simplicity we consider only interactive proofs and arguments and not general computa-
tionally sound protocols. Our results are, however, easily generalized along the lines of [9].

We write 〈P,V〉(x) to denote the output of the verifier V when a prover P and a verifier
V interact on common input x. Without loss we assume that x contains any auxiliary input
to P, since we can always replace V by a verifier that ignores a prefix of x.

We denote the k-wise parallel repetition of a verifier V by Vk. The repeated verifier simu-
lates the individual verifiers independently, except that their message rounds are synchronized.
It accepts if all, or a given fraction of, the individual verifiers accept. We are also interested
in repeated threshold verifiers, denoted by Vk

γ , that accept if at least (1− γ)k of the individ-
ual verifiers accept. We denote the number of accepting individual verifiers in an interaction
between a parallel prover P(k) and Vk by #〈P(k),Vk〉(x).

We denote the lth message of the ith verifier Vi by Cl,i and its state after the lth message
has been computed by Tl,i. We denote the lth message sent by the prover to the ith verifier
Vi by Al,i, and we denote the state of the prover after it has computed its lth message by Sl.
Then we define Cl = (Cl,1, . . . , Cl,k) and Al = (Al,1, . . . , Al,k). The variables are then related
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as follows given an instance x

T0,i = x

(S0, A0) = P(k)(x)
(Tl+1,i, Cl+1,i) = VRi(Tl,i, Al,i) for 0 ≤ l < m

(Sl, Al) = P(k)(Sl−1, Cl) for 0 < l ≤ m

Di = V(Tm,i, Am,i) ,

where we think of both the prover and verifier as deterministic algorithms and denote the
random tape of Vi by Ri.

Without loss we assume that there is a dedicated symbol ⊥ such that: Al = (⊥, . . . ,⊥)
when Cl,i = ⊥ for some i, Cl+1,i = ⊥ when Al,i = ⊥, and Di = 0 when Am,i = ⊥. In other
words, we assume that if the prover outputs the special symbol, then it propagates through the
complete process. The prover uses the special symbol to fail explicitly, if it can not compute
a good reply of a message of the verifier.

3 Relative Entropy

We use the notion of relative entropy (Kullback-Leibler distance) in the statement and proof
of our main theorem. In this section we recall its definition and state a number of elementary
results. For completeness we provide proofs of all results in Appendix A. A good source on
relative entropy is [6].

Definition 2 (Relative Entropy). The relative entropy (Kullback-Leibler distance), denoted
D (PX ‖PY ), of two distributions PX and PY over a set X is defined by

D (PX ‖PY ) =
∑
x∈X

PX (x) log
PX (x)
PY (x)

,

where we use the conventions that 0 log 0
a = 0 log 0

0 = 0 and a log a
0 =∞ for 0 < a ≤ 1.

We remark that although the relative entropy is always non-negative, it is not a true distance
metric, since it is not symmetric and it does not satisfy the triangle inequality. It is, however,
related to the statistical distance by the following lemma (Lemma 11.6.1 in [6]).

Lemma 3 (Bound Statistical Distance). Let PX and PY be distributions. Then

‖PX − PY ‖2 ≤
ln 2
2

D (PX ‖PY ) .

The chain rule of relative entropy given below plays an important part in the proof of our
results. We use this rule in both directions.

Lemma 4 (Chain Rule). Let PX1X2 and PY1Y2 be distributions over a set X1 ×X2. Then

D (PX1X2 ‖PY1Y2 ) = D (PX1 ‖PY1 ) +
∑
x∈X1

PX1 (x) D
(
PX2|X1

( · |x)
∥∥PY2|Y1

( · |x)
)

.
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The sum of the right hand side is sometimes called conditional relative entropy, but we do
not use this notion explicitly. The next lemma allows bounding the average relative entropy
of marginal distributions and their conditioned counterpart in terms of the relative entropy of
the joint distribution and its conditioned counterpart.

Lemma 5 (Splitting). Let PX =
∏k

i=1 PXi be a product distribution and W an event. Then

D

(
PX|W

∥∥∥∥∏k

i=1
PXi

)
=

k∑
i=1

D
(
PXi|W

∥∥PXi

)
+ D

(
PX|W

∥∥∥∥∏k

i=1
PXi|W

)
.

The next lemma allows us, following Holenstein [10], to bound the relative entropy of a dis-
tribution and its counterpart conditioned on an event W by the probability of the event W .

Lemma 6 (Bound Relative Entropy). Let PX be a distribution and W an event. Then

D
(
PX|W

∥∥PX

)
≤ log

(
1

Pr [W ]

)
.

4 Main Theorem

In this section we state and prove our main result.

Theorem 7 (Main Theorem). Let X[m] = (X1, . . . , Xm), with Xl = (Xl,1, . . . , Xl,k), be a
random process where in step l the components of Xl are chosen independently conditioned on
the previous steps X[l−1] = (X1, . . . , Xl−1) of the process, i.e.,

PX[l]
= PX[l−1]

k∏
i=1

PXl,i|X[l−1]
.

Let W be an event and define for j = 1, . . . , k a modified process Y
(j)
[m] = (Y (j)

1 , . . . , Y
(j)
m ) by1

P
Y

(j)
[l]

= P
Y

(j)
[l−1]

PXl,j|X[l−1]
PXl,〈j〉|X[l−1],Xl,j ,W ,

where Xl,〈j〉 = (Xl,1, . . . , Xl,j−1, Xl,j+1, . . . , Xl,k), i.e., in each step all except the jth component
are chosen conditioned on all previous steps and on W . Then

k∑
j=1

D

(
PX[m]|W

∥∥∥∥PY
(j)
[m]

)
= D

(
PX[m]|W

∥∥∥PX[m]

)
−D

(
PX[m]|W

∥∥∥∥∏m

l=1

∏k

i=1
PXl,i|X[l−1]W

)
.

1Note that this is a well defined distribution due to our notational conventions described in Section 2.
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4.1 Bounds In Terms of the Probability of the Event

In applications, one is often interested in bounding the statistical distance, and not the relative
entropy, between distributions. Furthermore, the goal is usually to bound the distance in terms
of the probability of the event W . Here we derive such corollaries.

Corollary 8. With the hypothesis of Theorem 7,

k∑
j=1

D

(
PX[m]|W

∥∥∥∥PY
(j)
[m]

)
≤ log

(
1

Pr [W ]

)
.

Proof. This follows immediately from Lemma 6 and the non-negativity of relative entropy.

Corollary 9. With the hypothesis of Theorem 7,

1
k

k∑
j=1

∥∥∥∥PX[m]|W − P
Y

(j)
[m]

∥∥∥∥ ≤
√

ln 2
2k

√
log
(

1
Pr [W ]

)
.

This follows straightforwardly from Corollary 8 using the Cauchy-Schwarz inequality and
Lemma 3 (see Appendix A for a proof).

4.2 Proof of Main Theorem

Repeated application of the chain rule of relative entropy (Lemma 4) gives

D

(
PX[m]|W

∥∥∥∥PY
(j)
[m]

)
=

m∑
l=1

∑
x∈[X[l−1]]

PX[l−1]|W (x) Dj,l(x) ,

where

Dj,l(x) = D
(
PXl|X[l−1]W

( · |x)
∥∥∥PXl,j|X[l−1]

( · |x) PXl,〈j〉|X[l−1],Xl,jW ( · |x, ·)
)

.

Another application of the chain rule gives

Dj,l(x) = D
(
PXl,j|X[l−1]W

( · |x)
∥∥∥PXl,j|X[l−1]

( · |x)
)

+
∑

y

PXl,j|X[l−1]W
(y |x) D

(
PXl,〈j〉|X[l−1],Xl,jW ( · |x, y )

∥∥∥PXl,〈j〉|X[l−1],Xl,jW ( · |x, y )
)

= D
(
PXl,j|X[l−1]W

( · |x)
∥∥∥PXl,j|X[l−1]

( · |x)
)

,

since D (PX ‖PX ) = 0 for any distribution PX . We write

B =
k∑

j=1

D

(
PX[m]|W

∥∥∥∥PY
(j)
[m]

)
=

m∑
l=1

∑
x∈[X[l−1]]

PX[l−1]|W (x)
k∑

j=1

Dj,l(x) ,
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and use the conditional independence of the Xl,j and splitting (Lemma 5) to get

k∑
j=1

Dj,l(x) = D

(
PXl|X[l−1]W

( · |x)
∥∥∥∥∏k

i=1
PXl,i|X[l−1]

( · |x)
)

−D

(
PXl|X[l−1]W

( · |x)
∥∥∥∥∏k

i=1
PXl,i|X[l−1]W

( · |x)
)

,

which implies

B =
m∑

l=1

∑
x∈[X[l−1]]

PX[l−1]|W (x) D
(
PXl|X[l−1]W

( · |x)
∥∥∥PXl|X[l−1]

( · |x)
)

−
m∑

l=1

∑
x∈[X[l−1]]

PX[l−1]|W (x) D

(
PXl|X[l−1]W

( · |x)
∥∥∥∥∏k

i=1
PXl,i|X[l−1]W

( · |x)
)

.

Repeated application of the chain rule simplifies this quantity to

D
(
PX[m]|W

∥∥∥PX[m]

)
−D

(
PX[m]|W

∥∥∥∥∏m

l=1

∏k

i=1
PXl,i|X[l−1]W

)
,

which concludes the proof. �

5 A Sharper Parallel Repetition Theorem

We illustrate the use of Theorem 7 by proving a parallel repetition theorem for public-coin
protocols, but our result is easily adapted to he slightly more general case of extendable and
simulatable [9] verifiers which allow computing the decision to accept or not without using
any private values.

Theorem 10. Let V ∈ P be public-coin and let P(k) ∈ P be a parallel prover. Then there
exists a prover P̃ running in time Poly(n, k,m, 1/ε), such that for every instance x where
Pr[〈P(k),Vk

γ 〉(x) = 1] ≥ ε, for some 0 ≤ γ < 1, we have

Pr
[
〈P̃,V〉(x) = 1

]
≥ 1− γ − 2

√
− log(ε)/k −

√
1/k ,

where n is the security parameter, m is the number of messages sent by V, and k is the number
of verifiers interacting with the parallel prover.

The lower bound of [9] is 1− (m + 1)
√
− log(ε)/k. Thus, perhaps surprisingly, we are able to

remove the dependence on m in the error term entirely. The running time on the other hand
still depends linearly on m. In Section 6 we use the new bound to generalize the theorem to
concurrent repetition.

5.1 Proof of Theorem 10

There is no need to modify the reduction of [9]; we only perform a tighter analysis.
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The Reduction. Recall the reduction of [9]. The constructed single instance prover P̃u

simulates an interaction with the parallel prover P(k) and interacts with a single external
verifier by plugging in the external verifier at the jth “slot” of the interaction, where j is
chosen randomly in [k]. More precisely, for l = 1, . . . ,m, P̃u waits for the lth message from
the external verifier and takes this to be the message from its internal jth simulated verifier.
Then it tries to choose the lth messages of all the other simulated verifiers conditioned on the
event that a completion of the current partial interaction makes all the verifiers accept. This
is done by sampling a completion of a partial interaction until one is found where at least
(1− γ)k accept, or until u = m

√
k/ε attempts have been done. In the latter case, P̃u simply

gives up. Below we write Complete(c[l], a[l]) to denote the output of the completion procedure
starting from a partial interaction (c[l], a[l]), i.e., the output of the completion procedure is the
list of decisions of the individual verifiers. We write #(·) to count the number of ones in such
a list of decisions. Below we recall the details of this reduction from [9].

Algorithm 11. P̃u,γ(x)

if x is an instance then
(s0, a0)← P(k) (x) // Compute prover’s first message
j ←R [k] // Choose random index
return

([
j, s0, ∅, a[0]

]
, a0,j

)
// Output state and first message

else
Interpret x as

([
j, sl−1, c[l−1], a[l−1]

]
, cl,j

)
// Read state and verifier’s message

for v = 1, . . . , u do
cl,〈j〉 ←R {0, 1}p(n)×(k−1) // Sample verifiers’ messages
(sl, al)← P(k) (sl−1, cl) // Compute prover’s reply
if #(Complete(c[l], a[l])) ≥ (1− γ)k then // If messages are good,

return
([

j, sl, c[l], a[l]

]
, al,j

)
// then output reply

done
done
cl,〈j〉 ← (⊥, . . . ,⊥) // Give up if no good messages are found
(sl, al)← P(k) (sl−1, cl)
return

([
j, sl, c[l], a[l]

]
, al,j

)
end

Note that if the for-loop does not return, then the special symbol ⊥ is propagated through
the rest of the process and all verifiers reject. The prover could of course pick any message
instead of explicitly admitting failure, but it is convenient in the analysis below that a failure
in the for-loop is propagated.

Our Analysis. In the analysis we consider the common input x to be fixed. Since the prover
is deterministic, this means that an interaction is completely determined by the messages of
the verifier. We consider three processes defined below. In all three processes J denotes the
same random variable uniformly distributed in {1, . . . , k}.

• Real Process. The real process is generated by an interaction between P̃ and V.
We denote the lth message of Vi in the real process by C̃l,i. Here Vi denotes either an
internally simulated verifier, or the external real verifier V depending on if i = j or not.

10



The list of the lth messages of all verifiers in such an interaction is denoted by C̃l, and
we use C̃[l] to denote the list (C̃1, . . . , C̃l). We use D̃i to denote the decision of Vi.

• Idealized Real Process. The idealized real process is identical to the real process
except P̃ is replaced by P̃ ′, which is identical to P̃ except for the following modification.
Before entering the for-loop, P̃ ′ checks if the probability (over the randomness of the
for-loop) that the for-loop returns is positive. If not, then it skips the for-loop and
completes the simulation of P̃. Otherwise, it samples a random execution of the for-loop
conditioned on it returning a tuple, i.e., conceptually it sets u = ∞ and executes the
for-loop. We denote the random variables of this idealized process by adding a prime
symbol to the corresponding random variables of the real process, i.e., we write C̃ ′

l,i, C̃ ′
l ,

C̃ ′
[l], and D̃′

i.

• Ideal Process. The ideal process is identical to the idealized real process except that
the external verifier in each round chooses its message conditioned on the interaction so
far and that at least (1 − γ)k verifiers accept. We denote the random variables of this
process by removing the tilde from the corresponding random variables of the idealized
real process, i.e., we write C ′

l,i, C ′
l , C ′

[l], and D′
i.

In the ideal process the oracle can always find good messages, but the ability of the oracle
to output a failure symbol is needed in the idealized real process.

Conceptual Modifications. It is convenient to introduce some conceptual modifications.
These modifications do change the joint distribution of the three processes considered together,
but since we only consider one process at a time this is not a problem. We also define indicator
variables for the event that at most u samples are needed in the for-loop of the respective
processes.

Let SampleRound be the probabilistic function which takes as input a tuple (j, c̃[l−1], c̃l,j)
and simulates P̃ ′ of the idealized real process using these verifier messages. When P̃ ′ returns,
it returns (z̃l, c̃[l]), where z̃l is one if P̃ ′ needed at most u of the for-loop to return and zero
otherwise, and c̃[l] is extracted from the prover state

[
j, sl, c[l], a[l]

]
output by P̃ ′. Recall that

the instance x is fixed and that the verifier messages then determine the prover messages since
P(k) is deterministic, so all the values needed to simulate P̃ ′ are determined, and SampleRound
is well-defined. We now use SampleRound to re-interpret the idealized real process and the
real process.

Let Z̃ ′
l be the indicator variable of the event that at most u samples are needed in the for-

loop of P̃ ′ in round l of the idealized real process. Then we may sample ((Z̃ ′
1, . . . , Z̃

′
m), C̃ ′

[m]) by
first generating an index j and a sample c̃′[m] of the idealized real process conditioned on this
index, and then sample the indicator variables by setting (z̃′l, ·) = SampleRound(j, c̃′[l−1], c̃

′
l,j),

where we use · to indicate that we ignore the second output. Thus, we may define another
probabilistic function Indicators which calls SampleRound internally, and simply write

(Z̃ ′
1, . . . , Z̃

′
m) = Indicators(J, C̃ ′

[m]) . (1)

Similarly, if we let Z ′
l be the indicator variable of the event that at most u samples are needed

11



in the for-loop of P̃ ′ in round l in the ideal process, then we may write

(Z ′
1, . . . , Z

′
m) = Indicators(J,C ′

[m]) . (2)

We now argue that also the real process can be interpreted in a similar way. Let Z̃l be
the indicator variable of the event that at most u samples are needed in the for-loop of P̃ in
round l of the real process. Furthermore, let Real denote the deterministic function that takes
a tuple (j, (z̃′1, . . . , z̃

′
m), c̃′[m]) as input and returns ((z̃1, . . . , z̃m), c̃[m]), where

1. z̃l = z̃′l, and

2. (c̃[l], c̃l,j) = (c̃′[l], c̃
′
l,j) and (c̃l,〈j〉, c̃l+1, . . . , c̃m) = (⊥k−1,⊥(m−l)×k), where l is the smallest

index such that z̃′l = 0 or m + 1 if no such index exist.

Then we may write

((Z̃1, . . . , Z̃m), C̃[m]) = Real(J, Indicators(J, C̃ ′
[m]), C̃

′
[m]) .

Define Z̃ = ∧m
l=1Z̃l and Z̃ ′ = ∧m

l=1Z̃
′
l . Then, by definition of Indicators and Real,

Pr[Z̃ = 1] = Pr[Z̃ ′ = 1] and (3)
P C̃[m]|Z̃ ( · |1) = P

C̃′
[m]

˛̨̨
Z̃′ ( · |1) . (4)

Sampling In the Ideal Process. We let Z ′ = ∧m
l=1Z

′
l and use the lemma below, taken

from [9], to analyze the probability that Z ′ = 1. For completeness, the proof of the lemma is
given in Appendix A.

Lemma 12. Let Y be a random variable and X0, X1, X2, . . . be identically distributed binary
random variables which are only dependent through Y , i.e. PY X0...Xj = PY

∏j
i=0 PXi|Y and

PXi|Y = PXj |Y for any i, j. Let J be the random variable denoting the smallest nonzero index
such that XJ = 1. Then E [J |X0 = 1] ≤ 1

Pr[X0=1] .

We apply the lemma to round l in the ideal process with Y equal to (C ′
[l−1], C

′
l,j) and Xi

equal to one iff the output of Complete in the for-loop of P̃ ′ in the ith sampling in the lth
round contains at least (1− γ)k ones. Then the lemma and Markov’s inequality implies that
if we set u = 2m

√
k/ε, then P̃ fails to find good messages in the lth round with probability

at most 1/(2m
√

k). The union bound then implies that

Pr[Z ′ = 0] ≤ 1
2
√

k
. (5)

Relating the Idealized Real Process and the Ideal Process. Recall that Cl,i is the
lth message of Vi in an interaction between P(k) and Vk. We apply Theorem 7 with Xl,i = Cl,i

and W equal to the event that at least (1−γ)k verifiers accept. Thus, X[m] conditioned on W
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is identically distributed to C ′
[m], and the modified process Y

(j)
[m] in the theorem is identically

distributed to C̃ ′
[m] conditioned on J = j. In other words,

PX[m]|W = PC′
[m]

and Y
(j)
[m] = P

C̃′
[m]

˛̨̨
J

( · |j ) ,

and the theorem then implies that∥∥∥∥PC′
[m]
− PC̃′

[m]

∥∥∥∥ ≤√− log (ε) /k , (6)

since J is uniformly distributed.

Concluding the Proof. Recall that the decision of Vi is a deterministic function of its
interaction. Thus, we may define a deterministic function d(·)(·) and write D̃J = dJ(C̃[m]),
D̃′

J = dJ(C̃ ′
[m]), and D′

J = dJ(C ′
[m]). We have, with ω =

√
− log (ε) /k,

Pr[D̃J = 1] = Pr[D̃J = 1 ∧ Z̃ = 1] (explicit failures using ⊥)

≥ Pr[D̃J = 1 | Z̃ = 1]− Pr[Z̃ = 0]

= Pr[D̃′
J = 1 | Z̃ ′ = 1]− Pr[Z̃ ′ = 0] (from (3) and (4))

= Pr[D̃′
J = 1]− Pr[Z̃ ′ = 0] (from (1))

≥ Pr[D′
J = 1]− ω − (Pr[Z ′ = 0] + ω) (from (2) and (6))

≥ 1− γ − 2ω − 1√
k

, (from (5))

where we use the fact that Pr[D′
J = 1] ≥ 1− γ. This concludes the proof. �

6 Concurrent Repetition

Although verifiers repeated in parallel perform their computations independently and use
independently generated randomness, their communication is synchronized. It is natural to
consider a more general form of repetition where this restriction is removed, i.e., the prover
may arbitrarily schedule its interaction with the individual verifiers.

More precisely, the k-wise concurrent repetition of a verifier V, denoted V#k, executes
k independent copies of V and accepts iff each individual verifier accepts. In each round,
the concurrent prover sends messages only to a subset of the verifiers, and as a result only
these verifiers send a message back to the prover. This generalization fits in our formalization
of a parallel execution between P(k) and Vk if we use the convention that Tl+1,i = Tl,i and
Cl+1,i = ∅, whenever Al,i = ∅. In other words, Al,i = ∅ means that the concurrent prover did
not send Vi anything as part of its lth message, in which case the state of Vi is unchanged and
it does not send anything back.

We provide a general reduction of the concurrent repetition setting to the parallel repetition
setting, which allows us to fall back on our parallel repetition theorem.

Theorem 13. For every instance x, m-message verifier V ∈ P, and k > 0 there exists an
mk-message verifier V ′ ∈ P with the following properties.
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1. For every concurrent prover P{k} ∈ P there exists a parallel prover P(k) ∈ P such that
#〈P(k), (V ′)k〉(x) and #〈P{k},V#k〉(x) are identically distributed.

2. For every prover P̃ ′ ∈ P there exists prover P̃ ∈ P such that

Pr
[
〈P̃,V〉(x) = 1

]
= Pr

[
〈P̃ ′,V ′〉(x) = 1

]
.

Furthermore, if V is public-coin, then V ′ is public-coin.

To see how this theorem can be used, consider a concurrent prover P{k} with error prob-
ability probability ε against the concurrent repetition of a public-coin verifier V. The first
claim of the theorem says in particular that there is a related verifier V ′ such that P{k} can
be turned into a parallel prover P(k) with error probability ε against the parallel repetition
of V ′. Theorem 10 says that P(k) can be turned into a single instance prover P̃ ′ with error
probability 1 − 2

√
− log (ε) /k −

√
1/k against V ′. Finally, the second claim of the theorem

let us convert P̃ ′ into a prover P̃ with the same error probability against V. The threshold
case is similar.

Interestingly, the parallel repetition theorem in [9] for protocols with non-constant number
of rounds can not be used as illustrated above. The problem is that it only guarantees an error
probability of 1−O(m′√− log (ε) /k), where m′ is the number of messages sent by V ′, and we
have m′ = mk, which would make the resulting statement vacuously true. In [8] the parameters
are even worse. We remark that the optimal result of Pass and Venkitasubramaniam [12] for
constant round public-coin protocols seems to allow a direct generalization to concurrent
repetition, despite that it can not be applied as above.

6.1 Proof of Theorem 13

The verifier V ′ simulates V internally. When handed a message none, it checks if it has already
received mk messages. If not, then it returns none. If so, and if V has previously output a
decision, then V ′ outputs this decision and otherwise it outputs 0. When handed a message
different from none, V ′ forwards it to its internal copy of V and forwards the response produced
by V to the external prover. When V produces an output decision, V ′ checks if it has received
mk messages in total. If so, then it outputs the decision of V and otherwise it stores the
decision and sends none to the external prover. Note that V ′ sends exactly mk messages.

The parallel prover P(k) simulates the concurrent prover P{k} internally. When given the
lth messages Cl from the external verifiers, P(k) first checks if it has received less than mk
lists of messages and if all components of Cl equal none. If so, then it sets Al+1,i = none
for i = 1, . . . , k and returns Al+1. If not, then any component Cl,i equal to ∅ is set to none
before forwarding Cl to P{k}. When the concurrent prover produces its response Al+1, any
component Al+1,i equal to ∅ is set to none before Al+1 is handed to the external verifiers by
P(k). Note that the constructed parallel prover accepts exactly mk messages.

Consider now a prover P̃ ′ expecting to interact with V ′. The prover P̃ simulates P̃ ′ and
V ′ internally except that every call to V made internally by V ′ is forwarded to the external
verifier and its response is taken by V ′ as the response of V.

Both claims now follow by inspection. �
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A Omitted Proofs

We need two additional elementary lemmas to restate the proof of Lemma 3 taken from [6].
Since these lemmas are not needed in the body of the paper we only state them here.

Lemma 14 (Dataprocessing Inequality For Relative Entropy). Let PX and PY be distributions
over a set X and let φ : X → {0, 1} be a predicate. Then D (PX ‖PY ) ≤ D

(
Pφ(X)

∥∥Pφ(Y )

)
.

Proof. The chain rule of relative entropy implies

D
(
PXPφ(X)

∥∥PY Pφ(Y )

)
= D (PX ‖PY ) +

∑
x

PX (x) D
(
Pφ(X)|X ( · |x)

∥∥Pφ(Y )|Y ( · |x)
)

= D (PX ‖PY ) , and
D
(
PXPφ(X)

∥∥PY Pφ(Y )

)
= D

(
Pφ(X)

∥∥Pφ(Y )

)
+
∑

x

Pφ(X) (x) D
(
PX|φ(X) ( · |x)

∥∥PY |φ(Y ) ( · |x)
)

,

which gives the claim, since relative entropy is non-negative.

Lemma 15. Let PX and PY be distributions over a set X and let Φ = {x : PX (x) > PY (x)}.
Then ‖PX − PY ‖ = PX (Φ)− PY (Φ).

Proof. We have

‖PX − PY ‖ =
1
2

∑
x∈Φ

(PX (x)− PY (x)) +
1
2

∑
x 6∈Φ

(PY (x)− PX (x))

=
1
2
(PX (Φ)− PY (Φ)) +

1
2
(PY (X − Φ)− PX (X − Φ))

= PX (Φ)− PY (Φ) .

Proof of Lemma 3. This proof taken from the proof of Lemma 11.6.1 in [6]. Suppose first that
PX and PY are binary distributions and write PX (1) = p and PY (1) = q, where p ≥ q. We
show that

p log
p

q
+ (1− p) log

1− p

1− q
≥ 4

2 ln 2
(p− q)2 .

We denote the difference between the left and right sides by g(p, q). Then

∂g(p, q)
∂q

= − p

q ln 2
+

1− p

(1− q) ln 2
− 4

2 ln 2
2(q − p)

=
q − p

q(1− p) ln 2
− 4

ln 2
(q − p) ≤ 0 ,
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since q(1 − q) ≤ 1
4 and q ≤ p. For q = p, g(p, q) = 0, and hence g(p, q) ≥ 0 for q ≤ p, which

proves the lemma for the binary case.
To prove the general case we define a set A by

Φ = {x : PX (x) > PY (x)},

and let φ be the characteristic function of Φ, i.e., φ(x) ⇐⇒ x ∈ Φ. Then by Lemma 14, the
binary case, and Lemma 15 we have

D (PX ‖PY ) ≥ D
(
Pφ(X)

∥∥Pφ(Y )

)
≥ 4

2 ln 2
(PX (Φ)− PY (Φ))2 =

2
ln 2
‖PX − PY ‖2 ,

which concludes the proof.

Proof of Lemma 4. We have

D (PX1X2 ‖PY1Y2 )

=
∑
x1,x2

PX1X2 (x1, x2) log
(

PX1 (x1)
PY1 (x1)

·
PX2|X1

(x2 |x1 )
PY2|Y1

(x2 |x1 )

)

=
∑
x1,x2

PX1X2 (x1, x2) log
(

PX1 (x1)
PY1 (x1)

)
+
∑
x1,x2

PX1X2 (x1, x2) log
(

PX2|X1
(x2 |x1 )

PY2|Y1
(x2 |x1 )

)

=
∑
x1

PX1 (x1) log
(

PX1 (x1)
PY1 (x1)

)
+
∑
x1

PX1 (x1)
∑
x2

PX2|X1
(x2 |x1 ) log

(
PX2|X1

(x2 |x1 )
PY2|Y1

(x2 |x1 )

)
= D (PX1 ‖PY1 ) +

∑
x1

PX1 (x1) D
(
PX2|X1

( · |x1 )
∥∥PY2|Y1

( · |x1 )
)

.

Proof of Lemma 5. We have

D

(
PX|W

∥∥∥∥∏k

i=1
PXi

)
=
∑

x

PX|W (x) log

(
PX|W (x)∏k
i=1 PXi (xi)

)

=
∑

x

PX|W (x) log

(∏k
i=1 PXi|W (xi)∏k

i=1 PXi (xi)

)
+
∑

x

PX|W (x) log

(
PX|W (x)∏k

i=1 PXi|W (xi)

)

=
k∑

i=1

∑
x

PX|W (x) log
(

PXi|W (xi)
PXi (xi)

)
+
∑

x

PX|W (x) log

(
PX|W (x)∏k

i=1 PXi|W (xi)

)

=
k∑

i=1

D
(
PXi|W

∥∥PXi

)
+ D

(
PX|W

∥∥∥∥∏k

i=1
PXi|W

)
.
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Proof of Lemma 6. We have

D
(
PX|W

∥∥PX

)
=
∑

x

PX|W (x) log
(

PX|W (x)
PX (x)

)
=
∑

x

PX|W (x) log
(

Pr [W |X = x ]
Pr [W ]

)
= log

(
1

Pr [W ]

)
+
∑

x

PX|W (x) log (Pr [W |X = x ]) .

Proof of Corollary 9. For any distributions PX ,PY1 , . . . ,PYk
we have(

k∑
i=1

‖PX − PYi‖

)2

≤ k

k∑
i=1

‖PX − PYi‖
2 ≤ ln 2

2
k

k∑
i=1

D (PX ‖PYi ) ,

where the first inequality is an instance of the Cauchy-Schwarz inequality, and the second is
an application of Lemma 3.

Proof of Lemma 12. This proof is taken from [9]. We can consider only values y of Y such
that Pr [X0 = 1 |Y = y ] > 0 and summing over those we have

E [J |X0 = 1] =
∑

y

Pr [Y = y |X0 = 1] E [J |Y = y ∧X0 = 1]

=
∑

y

Pr [Y = y |X0 = 1] / Pr [X1 = 1 |Y = y ∧X0 = 1]

=
∑

y

Pr [Y = y |X0 = 1] / Pr [X1 = 1 |Y = y ]

=
∑

y

Pr [Y = y ∧X1 = 1]
Pr [X0 = 1]

· Pr [Y = y]
Pr [X1 = 1 ∧ Y = y]

≤ 1
Pr [X0 = 1]

,

where the third equality follows from the conditional independence of the Xi’s and the fourth
equality follows since the Xi’s are also identically distributed.

18


