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Abstract

Consider a complex sequence {λk}∞k=0 convergent to λ∗ ∈ C with order p ∈ N. The
convergence factor is typically defined as the fraction ck := (λk+1 − λ∗)/(λk − λ∗)p
in the limit k → ∞. In this paper we prove formulas characterizing ck in the limit
k → ∞ for two different Newton-type methods for nonlinear eigenvalue problems.
The formulas are expressed in terms of the left and right eigenvectors.

The two treated methods are called the method of successive linear problems
(MSLP) and augmented Newton and are widely used in the literature. We prove
several explicit formulas for ck for both methods. Formulas for both methods are
found for simple as well as double eigenvalues. In some cases, we observe in examples
that the limit ck as k →∞ does not exist. For cases where this limit appears to not
exist, we prove other limiting expressions such that a characterization of ck in the
limit is still possible.
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1 Introduction

Consider the very general problem of finding a scalar λ ∈ C such that a given
parameter-dependent matrix is singular. That is, find λ ∈ C and v ∈ Cn\{0}
such that

T (λ)v = 0, (1)

or equivalently, find λ ∈ C and w ∈ Cn\{0} such that

wHT (λ) = 0. (2)
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As usual we will call v a right eigenvector and w a left eigenvector associated
with the eigenvalue λ.

The problem to solve (1) is often called the nonlinear eigenvalue problem. It
is very general and includes many of the fundamental problems of numeri-
cal linear algebra. For instance, it includes the standard eigenvalue problem,
T (λ) = A − λI, the generalized eigenvalue problem, T (λ) = A − λB, the
quadratic eigenvalue problem, T (λ) = Mλ2 +Cλ+K (see e.g. [29]), the poly-
nomial eigenvalue problem, T (λ) = A0 +A1λ+ · · ·+Amλ

m (see e.g. [15]) and
the delay eigenvalue problem, T (λ) = −λI+A0 +A1e

−τλ (see e.g. [18] or [10]).
Moreover, even though not often used in practice, it also includes the problem
of solving a linear system of equations Ax = b. If we let T (λ) = A−λbbH and
assume λbHv 6= 0, then x = v/(λbHv) solves Ax = b. We will assume that the
elements of T depend analytically on λ, which is often the case, in particular
for all the above mentioned sub-problems.

It is not surpising that this somewhat fundamental problem has received a lot
of attention in the literature. See the surveys of numerical methods [17, 24]
and the recent problem collection [2].

Let {λk}∞k=0 be a sequence convergent to λ∗ generated by a numerical method
and denote

ck :=
λk+1 − λ∗
(λk − λ∗)p

,

where p is the convergence order of the sequence. If the limit exists and ck →
c ∈ C then it defines the convergence factor c (or sometimes |c|). In this paper
we are investigating this limit. We give the convergence factor for several
cases, and in other cases we characterize ck with explicit limit expressions.
In several cases we observe in examples that ck does not converge, indicating
that the convergence factor does not always exist. Despite the indication that
the convergence factor does not always exist, the formulas allow us to make
statements about the limit behavior of ck.

The nonlinear eigenvalue problem is a nonlinear equation with a special struc-
ture. As for nonlinear equations, the Newton method is often used to find
accurate solutions when some approximation is available, as in e.g., [4].

The results of this paper are for two Newton-type methods, the method of suc-
cessive linear problems (MSLP) and augmented Newton (or just Newton). The
found explicit formulas for the asymptotic behavior of ck are in terms of the
left and right eigenvectors and include simple as well as non-semisimple double
eigenvalues. Here, semisimple and non-semisimple refers to the definitions in-
duced by the multiplicity concepts of the eigenvalues of nonlinear eigenvalue
problems and Jordan chains in [6, Section 1.4] (and [7]). This definition of
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Jordan chains is a consistent way to define a Jordan structure for nonlinear
eigenvalue problems. The formulas for double non-semisimple eigenvalues will
be expressed in terms of the generalized eigenvectors v̇. Again, following the
terminology in [6, Section 1.4] a generalized eigenvector v̇ is a solution to the
singular linear system

T (λ∗)v̇ = T ′(λ∗)v. (3)

The left generalized eigenvector ẇ is defined analogously.

The new contributions for the two methods can be summarized as follows.

• The method of successive linear problems (Section 2):
· For simple eigenvalues, the convergence factor exists and we prove a for-

mula for it.
· For double eigenvalues, ck asymptotically fulfills a quadratic equation.

Observations in the examples indicate that ck does not approach only one
of the solutions of the quadratic equation but oscillates between the two.
· The formula allows us to characterize a situation where the convergence

factor is large and MSLP hence likely to be inefficient.
• Augmented Newton (Section 3)
· For simple eigenvalues we give an asymptotic expression for ck.
· For a special normalization vector the convergence factor exists and is

equal to that of MSLP. For other normalization vectors we do not observe
convergence of ck.
· For double eigenvalues, the convergence factor is c = 1/2, similar to the

scalar case.

A number of convergence results for variants of Newton methods applied to
nonlinear eigenvalue problems can be found in the literature. To the author’s
knowledge, formulas for convergence factors expressed in terms of eigenvectors
have not been addressed in the general setting. For instance, superlinear con-
vergence was already mentioned in an early publication [30]. Sufficient condi-
tions for quadratic convergence together with expressions for the convergence
region is given in [23]. The approximation error is bounded by norms in [25].
The connection with the convergence of inverse iteration is analyzed in [22].
This applies to this context, since inverse iteration (with Rayleigh shifts) has
indeed been analyzed using eigenvectors [21], but mostly with bounds and
not for the nonlinear eigenvalue problem. See also [5] and [8] for further con-
vergence results of inverse iteration. The existence of a region of quadratic
convergence was also proved in [31, Theorem 1]. See [1] for further bounds
and a proof of quadratic convergence.

There is also a general classical theory for Newton methods. For instance, the
standard references [20] and [26] (see also [25]). The classical theory is often
in terms of norms, and will hence only give bounds of the convergence and the
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convergence factors. Moreover, they are typically not adapted for eigenvalue
computations since the formulas are normally not in terms of eigenvectors.

Finally, we mention some other methods which are sometimes based on deriva-
tions similar to the Newton method but beyond the scope of this paper.
There is a residual inverse iteration [19] and Jacobi-Davidson type meth-
ods [27], [3], [28]. There is also the approach of Kublanovskaya [9, 13] and
similar methods for repeated eigenvalues [16]. Some methods are also based
on the nonlinear Rayleigh functional [14]. More recently, a block version of
Newton was generalized to nonlinear eigenvalue problems [12].

2 Convergence factors for MSLP

Consider the Taylor expansion of T (λ∗) applied to (1),

0 = T (λ∗)v = T (λk)v + (λ∗ − λk)T ′(λk)v +O(λ∗ − λk)2.

In the classical derivation of the method of successive linear problems (pre-
sented in [24]) we neglect the higher order terms and replace λ∗ ≈ λk+1. Hence,
one step of MSLP consists of solving the generalized eigenvalue problem,

T (λk)vk = µT ′(λk)vk, (4)

and setting λk+1 = λk − µ. From this reasoning we expect that (λk, vk) ap-
proximate (λ∗, v) and that the approximation error is decreasing with k if λk
is sufficiently close to λ∗. There are similar methods and derivations in the
literature, e.g., [32]. Existence of a region of quadratic convergence region was
proved in [31, Theorem 3]. The following two theorems contain (unlike [31])
exact formulas for the convergence factors for simple as well as double eigen-
values.

Theorem 1 (MSLP, simple eigenvalue) Let {λk}∞k=0 be a sequence gen-
erated by MSLP convergent to the semisimple eigenvalue λ∗ ∈ C, and {vk}∞k=0

the corresponding sequence of vectors (fulfilling (4)) convergent to right eigen-
vector v. Suppose λk 6= λ∗, k ∈ N. Let w ∈ Cn\{0} be a left eigenvector
corresponding to the eigenvale λ∗ and suppose wHT ′(λ∗)v 6= 0. Then

c := lim
k→∞

λk+1 − λ∗
(λk − λ∗)2

=
1

2

wHT ′′(λ∗)v

wHT ′(λ∗)v
.

Proof. Let

ϕk(λ) := λ− wHT (λ)vk
wHT ′(λ)vk

,
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and note that the iteration fulfills λk+1 = ϕk(λk). Moreover, ϕk(λ∗) = λ∗ and
ϕ′k(λ∗) = 0 for all k and

ϕ′′k(λ) =
wHT ′′(λ)vk
wHT ′(λ)vk

+ ϕ′k(λ)wHT ′′′(λ)wk − 2ϕ′k(λ)
(wHT ′′(λ)vk)

2

wHT ′(λ)vk
.

Consider the Taylor expansion

ϕk(λk) = ϕk(λ∗) + (λk − λ∗)ϕ′k(λ∗) +
1

2
(λk − λ∗)2ϕ′′k(λ∗) +O((λk − λ∗)3).

From the Taylor expansion and the properties of ϕk, the convergence factor
can now be expressed in terms of ϕ′′k,

λk+1 − λ∗
(λk − λ∗)2

=
ϕk(λk)− ϕk(λ∗)

(λk − λ∗)2
=

1

2
ϕ′′k(λ∗) +O(λk − λ∗).

The proof is completed by noting that

ϕ′′k(λ∗) =
wHT ′′(λ∗)vk
wHT ′(λ∗)vk

→ wHT ′′(λ∗)v

wHT ′(λ∗)v
as k →∞.

2

Remark 2 (The degeneracy condition) In the theorem above (Theorem 1)
we assumed that wHT ′(λ∗)v 6= 0. If the eigenvalue is simple, then the condi-
tion wHT ′(λ∗)v 6= 0 is always fulfilled. For semisimple eigenvalues of multi-
plicitly greater than one, there are situations where the left and right eigen-
vectors, which are elements of the left and right null-space of T (λ∗), yield
wHT ′(λ∗)v = 0. However, given a sequence convergent to the right eigenvector
v, there is always a left eigenvector which can be used in Theorem 1 unless the
left null-space of T (λ∗) is orthogonal to T ′(λ∗)v. This is a degenerate situation.

The following characterization of ck is possible using generalized eigenvectors
defined by (3). Note that in the terminology of [6,7], a non-semisimple double
eigenvalue always has a generalized eigenvector v̇.

Theorem 3 (MSLP, double eigenvalue) Let {λk}∞k=0 be a sequence gen-
erated by MSLP convergent to a non-semisimple double eigenvalue λ∗ ∈ C and
let {vk}∞k=0 be the corresponding sequence of vectors (fulfilling (4)) convergent
to right eigenvector v. Suppose wHT ′′(λ∗)v 6= 0. Let ẇ ∈ Cn and v̇ ∈ Cn

be generalized left eigenvector and right eigenvector of the double eigenvalue,
i.e., ẇHT (λ∗) = wHT ′(λ∗) and T (λ∗)v̇ = T ′(λ∗)v. Suppose λk 6= λ∗, k ∈ N.
Moreover, let

ck :=
λk+1 − λ∗
λk − λ∗

.
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Then, in the limit, ck fulfills a quadratic equation,

lim
k→∞

(
ẇHT (λ∗)v̇

wHT ′′(λ∗)v
c2k − ck +

1

2

)
= 0. (5)

Proof. From the definition of the sequence, it holds that

(1− ck)(λk − λ∗)T ′(λk)vk = T (λk)vk, (6)

and in particular

(1− ck)(λk − λ∗)wHT ′(λk)vk = wHT (λk)vk. (7)

The rest of the proof essentially consists of forming several Taylor expansions
of the left and right hand side of (7). First consider the Taylor expansion of
the right hand side of (7) and use wHT ′(λ∗) = ẇHT (λ∗),

wHT (λk)vk =

wHT (λ∗)vk+(λk−λ∗)wHT ′(λ∗)vk+
1

2
(λk−λ∗)2wHT ′′(λ∗)vk+O(λk−λ∗)3

= (λk − λ∗)ẇHT (λ∗)vk +
1

2
(λk − λ∗)2wHT ′′(λ∗)vk + O(λk − λ∗)3.

We now again consider a Taylor expansion but only of the first term and in
the other direction, i.e., the expansion point λk,

ẇHT (λ∗)vk = ẇHT (λk)vk − (λk − λ∗)ẇHT ′(λk)vk +O(λk − λ∗)2 =

(1− ck)(λk − λ∗)ẇHT ′(λk)vk − (λk − λ∗)ẇHT ′(λk)vk +O(λk − λ∗)2 =

− ck(λk − λ∗)ẇHT ′(λk)vk + O(λk − λ∗)2, (8)

where we used the iteration expression (6). Now consider the Taylor expansion
of

wHT ′(λk)vk = wHT ′(λ∗)vk + (λk − λ∗)wHT ′′(λ∗)vk +O(λk − λ∗)2.

For the first term we again have wHT ′(λ∗)vk = ẇHT (λ∗)vk and can use (8) to
establish that

wHT ′(λk)vk = (λk−λ∗)(−ckẇHT ′(λk)vk +wHT ′′(λ∗)vk) +O(λk−λ∗)2. (9)

By combining (7), (8) and (9) we find that,

(1− ck)(−ckẇHT ′(λ∗)vk + wHT ′′(λ∗)vk) =

1

2
wHT ′′(λ∗)vk − ckẇHT ′(λ∗)vk + O(λk − λ∗).
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One term cancels and since the limit vk → v exists, we have in the limit that

c2kẇ
HT ′(λ∗)v − ckwHT ′′(λ∗)v +

1

2
wHT ′′(λ∗)v → 0.

By using that T ′(λ∗)v = T (λ∗)v̇ we have completed the proof.

2

Remark 4 (Existence of convergence factors) In Theorem 3 we demon-
strated that a limit expression containing ck exists and is zero. Note that this
result does not imply or depend on the existence of limk→∞ ck. In fact, in Ex-
ample 2 we observe that ck oscillates between the two roots of the quadratic
equation (5). This indicates that the limit does not always exist, which also
seems to be the generic case.

Remark 5 (Numerical instability) A numerical method is likely to be in-
efficient if the convergence factor is large. Such a situation can be identified
from Theorem 3. If ẇHT (λ∗)v̇/w

HT ′′(λ∗)v = 1/2 then both roots will be unity.
Hence, |ck| → 1 and MSLP will have slow convergence.

3 Convergence factors for augmented Newton

The nonlinear eigenvalue problem (1) is equivalent to the set of nonlinear
equations with the unknowns xH = (vH , λ∗∗),

F (x) :=

 T (λ)v

dHv − 1

 = 0, (10)

for a given normalization vector d ∈ Cn\{0} which must be chosen in such a
way that it is not orthogonal to the eigenvector. The Newton method applied
to (10) is often called augmented Newton. For the theoretical reasoning in this
section we need a different formulation. Some manipulations, which are often
attributed to [30], (see also [25, Proposition 4.4]) result in the iteration

vk = αkT (λk)
−1T ′(λk)vk−1. (11)

with

λk+1 = λk − αk, α−1
k = dHT (λk)

−1T ′(λk)vk−1.

There are formulations with better numerical properties in terms of rounding
errors. The formulation (11) is however suitable for our purposes and in this
paper we only consider exact arithmetic, i.e., no rounding errors. In the next
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two theorems we give formulas for ck for the iteration (11). More precisely, for
simple eigenvalues, we find that the convergence factor exists for a special nor-
malization vector. If we do not have the special normalization vector, we still
have a limit expression which now contains the quantity ∆vk, defined as the
quotient of the difference between two consecutive eigenvector approximations
and the error in the eigenvalue.

Theorem 6 (Augmented Newton, simple eigenvalue) Let {λk}∞k=0 be a
sequence generated by augmented Newton convergent to a semisimple eigen-
value λ∗ ∈ C and let {vk}∞k=0 be the corresponding sequence of vectors conver-
gent to a right eigenvector v. Let w ∈ Cn\{0} be a left eigenvector correspond-
ing to the eigenvale λ∗ and suppose wHT ′(λ∗)v 6= 0. Suppose λk 6= λ∗, k ∈ N.
Let

∆vk :=
vk − vk−1

λk − λ∗
.

and

ck :=
λk+1 − λ∗
(λk − λ∗)2

.

Then

lim
k→∞

(
ck +

wHT ′(λ∗)

wHT ′(λ∗)v
∆vk

)
=

1

2

wHT ′′(λ∗)v

wHT ′(λ∗)v
. (12)

If, moreover, the normalizalization vector is dH = wHT ′(λ∗), then the conver-
gence factor exists and is given by

c := lim
k→∞

ck =
1

2

wHT ′′(λ∗)v

wHT ′(λ∗)v
. (13)

Proof. Similar to the proof of MSLP we can define

ϕk(λ) := λ− wHT (λ)vk
wHT ′(λ)vk−1

.

Note that ϕk(λ∗) = λ∗ and λk+1 = ϕk(λk). However,

ϕ′k(λ∗) = 1− wHT ′(λ∗)vk
wHT ′(λ∗)vk−1

= −(λk − λ∗)
wHT ′(λ∗)∆vk
wHT ′(λ∗)vk−1

,
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and (unlike the corresponding iteration for MSLP) the derivative does not
vanish for any k, i.e., generically, ϕ′k(λ∗) 6= 0. The Taylor expansion is

ϕk(λk) = λ∗ − (λk − λ∗)(λk − λ∗)
wHT ′(λ∗)∆vk
wHT ′(λ∗)vk−1

+

1

2
(λk − λ∗)2ϕ′′k(λ∗) + O((λk − λ∗)3). (14)

Hence,

ck =
λk+1 − λ∗
(λk − λ∗)2

=
ϕk(λk)− λ∗
(λk − λ∗)2

= −w
HT ′(λ∗)∆vk

wHT ′(λ∗)vk−1

+
1

2
ϕ′′k(λ∗)+O(λk−λ∗).

(15)

We now solve (15) for 1
2
ϕ′′k(λ∗) +O(λk − λ∗) and take the limit on both sides.

Note that

lim
k→∞

ϕ′′k(λ∗) =
wHT ′′(λ∗)v

wHT ′(λ∗)v
,

and wHT ′(λ∗)∆vk is bounded. We have shown (12).

It remains to show (13). Since the normalization vector is the same for all
iterations, we have dHvk = 1 for all k > 1. Now note that (14) can be simplified
since,

wHT ′(λ∗)(vk − vk−1) = dH(vk − vk−1) = 0.

The proof is completed by repeating the steps leading to (15) which now does
not contain the term ∆vk. 2

Remark 7 (Existence) In the theorem we used the quantity ∆vk := (vk −
vk−1)/(λk − λ∗). If wHT ′(λ∗)∆vk is unbounded then convergence would not be
quadratic, hence, by contradiction with the fact that Newton converges quadrat-
ically, the sequence wHT ′(λ∗)∆vk is bounded. However, in the examples section
we do not observe convergence of wHT ′(λ∗)∆vk. It also seems to be the generic
case that the sequence does not converge and hence ck also does not converge.

Remark 8 (Convergence factor MSLP vs. augmented Newton) For
the very special normalization vector dH = wHT ′(λ∗), the convergence factor
exists. Moreover, for this normalization vector the convergence factor is ac-
tually equal to the convergence factor of MSLP in Theorem 1. The quantity
wHT ′(λ∗) is of course not available in practice and in general (unless infor-

mation about the left eigenvector and the eigenvalue is available) wHT ′(λ∗)
wHT ′(λ∗)v

∆vk
will not vanish. Hence, since the convergence factor of MSLP will converge (for
simple eigenvalues) it is in a sense more predictable than augmented Newton.
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Finally, we prove that the convergence factor exists for double eigenvalues and
that it is given by c = 1/2.

Theorem 9 (Augmented Newton, double eigenvalue) Let {λk}∞k=0 be a
sequence generated by augmented Newton convergent to a non-semisimple dou-
ble eigenvalue λ∗ ∈ C and wHT ′′(λ∗)v − 2ẇHT ′(λ∗)v 6= 0. Suppose λk 6= λ∗,
k ∈ N and let,

ck :=
λk+1 − λ∗
λk − λ∗

.

Then,

lim
k→∞

ck =
1

2
. (16)

Proof. Note that the augmented Newton iteration fulfills,

(1− ck)(λk − λ∗)T ′(λk)vk−1 = T (λk)vk, (17)

and in particular

(1− ck)(λk − λ∗)wHT ′(λk)vk−1 = wHT (λk)vk. (18)

The proof follows the same ideas as in the proof of the convergence MSLP to
double eigenvalues (Theorem 3), but different terms cancel and we use that
uk := (vk−1 − vk)→ 0.

First note that by Taylor expansion around λk and using (17) we have that,

T (λ∗)vk = −ck(λk−λ∗)T ′(λk)vk−1 + (λk−λ∗)T ′(λk)uk +O(λk−λ∗)2. (19)

Taylor expansion and (19), yields

wHT (λk)vk =

wHT (λ∗)vk+(λk−λ∗)ẇHT (λ∗)vk+
1

2
(λk−λ∗)2wHT ′′(λ∗)vk+O(λk−λ∗)3 =

(λk − λ∗)2
(
−ckẇHT ′(λk)vk−1 + ẇHT ′(λk)uk +

1

2
wHT ′′(λ∗)vk

)
+

O(λk − λ∗)3 (20)

The expression wHT ′(λk)vk−1 is now expanded in λ∗. After using (19) for k−1
instead of k we have that,

wHT ′(λk)vk−1 =

(λk−λ∗)(−ẇHT ′(λk−1)vk−2+(1/ck−1)ẇ
HT ′(λk−1)uk−1+wHT ′′(λ∗)vk−1)+

O(λk − λ∗)2. (21)
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We insert (21) and (20) into (18) and cancel the quadratic term

(1−ck)(−ẇHT ′(λk−1)vk−2 +(1/ck−1)ẇ
HT ′(λk−1)uk−1 +wHT ′′(λ∗)vk−1) =

− ckẇHT ′(λk)vk−1 + ẇHT ′(λk)uk +
1

2
wHT ′′(λ∗)vk + O(λk − λ∗).

Note that 1/ck is bounded since the convergence is otherwise superlinear and
uk → 0. By forming the limit and removing the vanishing terms, we find that

0 = lim
k→∞

(
(1− ck)(−ẇHT ′(λ∗)v + wHT ′′(λ∗)v)+

ckẇ
HT ′(λ∗)v −

1

2
wHT ′′(λ∗)v

)
.

We arrive at (16) by rearrangement of terms and using the assumption that
wHT ′′(λ∗)v − 2ẇHT ′(λ∗)v 6= 0. 2

4 Examples

Example 1 (Simple eigenvalue) Consider the polynomial eigenvalue prob-
lem with

T (λ) = A0 + A1λ+ A2λ
2 + A3λ

3,

where

A0 =


−16 −4 7

−14 7 13

6 8 7

 , A1 =


0 0 0

0 0 0

0 0 0



A2 =


2 −6 1

−2 22 11

7 −1 1

 , A3 =


−4 3 12

−17 −11 0

1 −1 3

 .
We consider the iterations where we start the methods in such a way that the
simple eigenvalue λ∗ ≈ 0.0257 + 0.4701i is found. We let d = (5, 3, 0)T =: dT1 ,
λ0 = −0.4 + 0.6i and v0 = (3,−2, 0.1)T .

We observe in Figure 1 that ck for MSLP quickly converges to the expected
value whereas the corresponding value for augmented Newton (with d = d1)
has not yet converged after 15 iterations.

In order to illustrate that the convergence factor of augmented Newton and
MSLP coincide if dH = wHT ′(λ∗) =: dH∗ , we also computed the left eigenvector
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Fig. 1. The convergence factor for Example 1.

and used the corresponding vector d∗ as a normalization vector in augmented
Newton. In Figure 1, we observe, as expected from Theorem 6, that the con-
vergence factors for augmented Newton with d = d∗ equals the convergence
factor of MSLP. In fact, the difference is small, already after a few iterations.

Note that we are not considering rounding errors in this work. We have used
software for (very) high precision arithmetic in order to carry out the numer-
ical experiments in such a way that rounding errors are not influencing the
plots.

Example 2 (Double eigenvalue) Consider the delay eigenvalue problem

M(λ) = −λI + A0 + A1e
−λ,

where

A0 =


0 1 0

0 0 1

−a3 −a2 −a1

 , A1 =


0 0 0

0 0 0

−b3 −b2 −b1

 ,

and

a1 =
2

5

(65π + 32)

8 + 5π
≈ 3.98, a2 =

9π2(13 + 5π)

8 + 5π
≈ 108,

a3 =
324

5

π2(5π + 4)

8 + 5π
≈ 531, b1 =

260π + 128 + 225π2

10(8 + 5π)
≈ 13.6,

b2 =
45π2

10(8 + 5π)
≈ 18.7 and b3 =

81π2(40π + 32 + 25π2)

10(8 + 5π)
≈ 1363.
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This time-delay system which is presented in [11], has a double non-semisimple
eigenvalue in λ = 3πi. As expected, we observe linear convergence of both aug-
mented Newton and MSLP in Figure 2. We also see that augmented Newton
converges faster. This can be explained by the fact that one of the roots of
the quadratic equation (5) is considerably larger than 1/2 which is the conver-
gence factor for Newton. In Figure 3 we observe that for Newton, ck quickly
converges to c = 1/2 whereas for MSLP, ck is alternating in an irregular way
between the two roots of quadratic equation.

0 20 40 60 80 100
10

−40

10
−30
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−20

10
−10
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0

Iteration

|λ
k−

λ *|

 

 
Augmented Newton
MSLP

Fig. 2. The convergence for Example 2.
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Fig. 3. The convergence factor for Example 2.
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5 Conclusions

The purpose of this paper has been to provide explicit formulas for the fraction
ck := (λk+1−λ∗)/(λk−λ∗)p in the limit when k →∞, where λk are generated
by two different methods for nonlinear eigenvalue problems. We have shown
formulas for simple as well as double eigenvalues. Even though the limit ck
apparently does not always exist, we find expressions which can be used to
analyze the asymptotic behavior.

Finally, we comment on extensions and further interpretations of the presented
results. Convergence factors c := limk→∞ ck are often used to understand and
improve numerical methods. Hence, our results open up a possibility to con-
struct error indicators and further characterization of numerical instabilities.
We have also provided further understanding to the two methods MSLP and
augmented Newton by showing that for special normalization vectors they
have the same convergence factors.
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