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Abstract. The Arnoldi method is currently a very popular algorithm to solve large-scale eigen-
value problems. The main goal of this paper is to generalize the Arnoldi method to the characteristic
equation of a delay-differential equation (DDE), here called a delay eigenvalue problem (DEP).

The DDE can equivalently be expressed with a linear infinite dimensional operator whose eigen-
values are the solutions to the DEP. We derive a new method by applying the Arnoldi method to
the generalized eigenvalue problem (GEP) associated with a spectral discretization of the operator
and by exploiting the structure. The result is a scheme where we expand a subspace not only in
the traditional way done in the Arnoldi method. The subspace vectors are also expanded with one
block of rows in each iteration. More importantly, the structure is such that if the Arnoldi method
is started in an appropriate way, it has the (somewhat remarkable) property that it is in a sense
independent of the number of discretization points. It is mathematically equivalent to an Arnoldi
method with an infinite matrix, corresponding to the limit where we have an infinite number of
discretization points.

We also show an equivalence with the Arnoldi method in an operator setting. It turns out that
with an appropriately defined operator over a space equipped with scalar product with respect to
which Chebyshev polynomials are orthonormal, the vectors in the Arnoldi iteration can be interpreted
as the coefficients in a Chebyshev expansion of a function. The presented method yields the same
Hessenberg matrix as the Arnoldi method applied to the operator.

1. Introduction. Consider the linear time-invariant differential equation with
several discrete delays

(1.1) ẋ(t) = A0x(t) +
m∑
i=1

Aix(t− τi),

where A0, . . . , Am ∈ Cn×n and τ1, . . . , τm ∈ R. Without loss of generality, we will
order the delays and let 0 =: τ0 < · · · < τm. The differential equation (1.1) is known
as a delay-differential equation and is often characterized and analyzed using the
solutions of the associated characteristic equation

(1.2) det ∆(λ) = 0,

where

∆(λ) = λI −A0 −
m∑
i=1

Aie
−τiλ.

We will call the problem of finding λ ∈ C such that (1.2) holds, the delay eigenvalue
problem and the solutions λ ∈ C are called the characteristic roots or the eigenvalues
of the DDE (1.1). The eigenvalues of (1.1) play the same important role for DDEs
as eigenvalues play for matrices and ordinary differential equations (without delay).
The eigenvalues can be used in numerous ways, e.g., to study stability or design
systems with properties attractive for the application. See [MN07] for recent results
on eigenvalues of delay-differential equations and their applications.

In this paper, we will present a numerical method for the DEP (1.2), which in
a reliable way computes the solutions close to the origin. Note that due to the fact
that (1.2) can be shifted by the substitution λ ← λ̃ − s, the problem is equivalent
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to finding solutions close to any arbitrary given point s ∈ C, known as the shift.
Also note that focusing on solutions close to the origin is a natural approach to study
stability of (1.1), as the rightmost root which determines the stability of (1.1), is
usually among the roots of smallest magnitude [MN07]. Our method is valid for
arbitrary system matrices A0, . . . , Am. We will however pay special attention to the
case where A0, . . . , Am are large and sparse matrices.

In our method we will also assume that
∑m
i=0Ai is non-singular, i.e., that λ = 0 is

not a solution to (1.2). Such an assumption is not unusual in eigenvalue solvers based
on inverse iteration and it is not restrictive in practice, since, generically a small shift
s 6= 0 will generate a problem for where λ̃ = 0 is not a solution. For a deeper study
on the choice of the shift s in a slightly different setting, see [MR96].

The Arnoldi method is a very popular algorithm for large standard and generalized
eigenvalue problems. An essential component in the Arnoldi method is the repeated
expansion of a subspace with a new basis vector. The presented algorithm is based on
the Arnoldi method for the delay eigenvalue problem where the subspace is extended
not only in the traditional way done in the Arnoldi method. The basis vectors are
also extended with one block row in each iteration.

The method turns out to be very efficient and robust (and it is illustrated with
the examples in Section 5). The reliability of the method can be understood from
several properties and close relations with the Arnoldi method. This will be used to
derive and understand the method.

An important property of (1.2) is that the solutions can be equivalently written as
the eigenvalues of an infinite dimensional operator, denoted A. A common approach
to compute λ is to discretize this operator A and compute the eigenvalues of a matrix
[BMV05, BMV09a]. We will start (in Section 2) from this approach and derive a
variant of the discretization approach resulting in a special structure. Based on the
pencil structure of this eigenvalue problem we derive (in Section 3) a method by
projection on a Krylov subspace as in the Arnoldi method.

This construction is such that performing k iterations with the algorithm can be
interpreted as a standard Arnoldi method applied to the discretized problem with N
grid points, where the number of grid points N is arbitrary but larger than k. This
somewhat remarkable property that the process is independent of N ≥ k makes the
process dynamic in the sense that, unlike traditional discretization approaches, the
number of grid points N does not have to be fixed before the iteration starts. In fact,
the whole iteration is in this sense independent of N . It is therefore not surprising
that the constructed algorithm is also equivalent to the Arnoldi method in a different
setting. The operator A is a linear map of a function segment to a function segment.
With an appropriately defined inner product, it is easy to conceptually construct the
Arnoldi method in an infinite dimensional setting. We prove (in Section 4) that the
presented method is mathematically equivalent to the Arnoldi method applied to an
infinite operator with a special inner product.

Although there are numerous methods for the DEP, the presented method has
several appealing properties not present in other methods. There are several meth-
ods based on discretization such as [BM00, Bre06, BMV05, BMV09a]. The software
package DDE-BIFTOOL [ELR02, ELS01] also uses a discretization approach com-
bined with an iterative method. It is a two-step method based on

1) estimating many roots with a discretization; and then
2) correcting the computed solutions with an iterative method.

In our approach there is no explicit need for a second step as sufficient accuracy can
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be achieved directly by the iteration. Moreover, the grid of the discretization has to
be fixed a priori in classical discretization approaches. See [VLR08] for a heuristic
choice for the discretization used in DDE-BIFTOOL. There is also a software pack-
age called TRACE-DDE [BMV09b], which is an implementation of the discretization
approach in [BMV05] and related works. Note that both software packages TRACE-
DDE and DDE-BIFTOOL are based on computing the eigenvalues of a matrix of
dimension nN ×nN using the QR-method. Unlike these approaches which are based
on discretization, our method only involves linear algebra operations with matrices
of dimension n× n, making it suitable for problems where A0, . . . , Am are large and
possibly sparse. Our method also has the dynamic property in the sense that the
number of discretization points is not fixed beforehand.

There are other approaches for the DEP, e.g., the method QPMR [VZ09] which
is based on the coefficients of the characteristic equation and hence likely not very
suitable for very large and sparse system matrices A0, . . . , Am. Large and sparse
matrices form an important class of problems for the presented approach. See [Jar08,
Chapter 2] for more methods.

The DEP belongs to a class of problems called nonlinear eigenvalue problems.
There are several general purpose methods for nonlinear eigenvalue problems; see
[Ruh73, MV04]. There are, for instance, the Newton-type methods [Sch08, Neu85]
and a nonlinear version of Jacobi-Davidson [BV04]. There is also a method which is
inspired by the Arnoldi method in [Vos04]. We wish to stress that despite the similar
name, the algorithm presented in this paper and the method in [Vos04] (which has
been applied to the delay eigenvalue problem in [Jar08, Chapter 2]) have very little
in common. In comparison to these methods, the presented method is expected to be
more reliable since it inherits most properties of the Arnoldi method, e.g., robustness
and simultaneous convergence to several eigenvalues. The block Newton method
has recently been generalized to nonlinear eigenvalue problems [Kre09] and has been
applied to the delay eigenvalue problem. The differences between the block Newton
method and the Arnoldi method for standard eigenvalue problems seem to hold here
as well. The Arnoldi method is often more efficient for very large systems since only
the right-hand side and not the matrix of the linear system changes in each iteration.
A decomposition (e.g. LU-decomposition) can be computed before the iteration starts
and the linear system can be solved very efficiently. Moreover, in the Arnoldi method,
it is not necessary to fix the number of wanted solutions before the iteration starts.

The polynomial eigenvalue problem (PEP) is an important nonlinear eigenvalue
problem. There exist recent theory and numerical algorithms for polynomial eigen-
value problems; see, e.g., [MMMM06, MV04, Lan02]. In particular, it was recently
shown in [ACL09] how to linearize a PEP if it is expressed in a Chebyshev polynomial
basis. We will see in Section 4 that our approach has a relation with a Chebyshev
expansion. The derivation of our approach is based on a discretization of an infinite
dimensional operator and there is no explicit need for these results.

Finally, we note that the Arnoldi method presented here is inspired by the Arnoldi
like methods for polynomial eigenvalue problems, in particular the quadratic eigen-
value problem in [BS05, Fre05, Mee08].

2. Discretization and companion-type formulation. Some theory available
for DDEs is derived in a setting where the DDE is stated as an infinite-dimensional
linear system. A common infinite dimensional representation will be briefly summa-
rized in Section 2.1. The first step in the derivation of the main numerical method of
this paper (given in Section 3) is based on a discretization of this infinite dimensional
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representation. The discretization is different from other traditional discretizations
available in the literature because the discretized matrix can be expressed with a
companion like matrix and a block triangular matrix. The discretization and the
associated manipulations are given in Section 2.2 and Section 2.3.

2.1. Infinite dimensional first order form. Let X := C([−τm, 0], Cn) be
the Banach space of continuous functions mapping the interval [−τm, 0] onto Cm and
equipped with the supremum norm. Consider the linear operator A : D(A) ⊆ X → X
defined by

(2.1)
D(A) :=

{
φ ∈ X : dφ

dθ ∈ X, dφ
dθ (0) = A0φ(0) +

∑m
k=1Akφ(−τk)

}
,

(A φ)(θ) := dφ
dθ (θ), θ ∈ [−τm, 0].

The equation (1.1) can now be reformulated as an abstract ordinary differential equa-
tion over X

(2.2)
d

dt
zt = Azt.

See [HV93] for a detailed description of A. The corresponding solutions of (1.1) and
(2.2) are related by zt(θ) ≡ x(t+ θ), θ ∈ [−τm, 0].

The properties of σ(A), defined as the spectrum of the operator A, are described
in detail in [MN07, Chapter 1]. The operator only features a point spectrum and its
spectrum is fully determined by the eigenvalue problem

(2.3) A z = λz, z ∈ X, z 6= 0.

The connections with the characteristic roots are as follows. The characteristic roots
are the eigenvalues of the operator A. Moreover, if λ ∈ σ(A), then the corresponding
eigenfunction takes the form

(2.4) z(θ) = veλθ, θ ∈ [−τm, 0],

where v ∈ Cn \ {0} satisfies

(2.5) ∆(λ)v = 0.

Conversely, if the pair (v, λ) satisfies (2.5) and v 6= 0, then (2.4) is an eigenfunction
of A corresponding to the eigenvalue λ.

We have summarized the following important relation. The characteristic roots
appear as solutions of both the linear infinite-dimensional eigenvalue problem (2.3)
and the finite-dimensional nonlinear eigenvalue problem (2.5). This connection plays
an important role in many methods for computing characteristic roots and assessing
their sensitivity [MN07].

2.2. Spectral discretization. A common way to numerically analyze the spec-
trum of an infinite-dimensional operator is to discretize it. Here, we will take an ap-
proach based on approximating A by a matrix using a spectral discretization method
(see, e.g. [Tre00, BMV05]).

Given a positive integer N , we consider a mesh ΩN of N + 1 distinct points in
the interval [−τm, 0]:

ΩN = {θN,i, i = 1, . . . , N + 1} ,
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where

−τm ≤ θN,1 < . . . < θN,N < θN,N+1 = 0.

Now consider the discretized problem where we have replaced X with the space XN

of discrete functions defined over the mesh ΩN , i.e., any function φ ∈ X is discretized
into a block vector x(N) = (x(N)

1
T · · · x(N)

N+1
T )T ∈ XN with components

x
(N)
i = φ(θN,i) ∈ Cn, i = 1, . . . , N + 1.

Let PNx(N), be the unique Cn valued interpolating polynomial of degree smaller or
equal than N , satisfying(

PNx(N)
)

(θN,i) = x
(N)
i , i = 1, . . . , N + 1.

In this way we can approximate the operator A defined by (2.1), with the matrix
AN : XN → XN , defined as(AN x(N)

)
i

=
(PNx(N)

)′
(θN,i), i = 1, . . . , N,(AN x(N)

)
N+1

= A0

(PNx(N)
)

(0) +
∑m
i=1Ai(PNx(N))(−τi).

Using the Lagrange representation

PNx(N) =
∑N+1
k=1 lN,k x

(N)
k ,

where the Lagrange polynomials lN,k such that, lN,k(θN,i) = 1 if i = k and lN,k(θN,i) =
0 if i 6= k, we get an explicit form for the matrix AN ,

(2.6) AN =


d1,1 . . . d1,N+1

...
...

dN,1 . . . dN,N+1

a1 . . . aN+1

 ∈ R(N+1)n×(N+1)n,

where

di,k = l′N,k(θN,i)In, i = 1, . . . , N, k = 1, . . . , N + 1,
ak = A0lN,k(0) +

∑m
i=1AilN,k(−τi), k = 1, . . . , N + 1.

The numerical methods for computing characteristic roots, described in [BMV05,
BMV06, BMV09a], are similarly based on solving a discretized linear eigenproblem

(2.7) AN x(N) = λx(N), λ ∈ C, x(N) ∈ C(N+1)n, x(N) 6= 0,

by constructing the matrix AN and computing all its eigenvalues with the QR method.
With an appropriately chosen grid ΩN in the discretization, the convergence of

the individual eigenvalues ofAN to corresponding eigenvalues ofA is fast. In [BMV05]
it is proved that spectral accuracy (approximation error O(N−N )) is obtained with a
grid consisting of (scaled and shifted) Chebyshev extremal points.
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2.3. A companion-type reformulation. The matrix AN in equation (2.6)
does not have a simple apparent matrix structure. We will now see that the eigenvalues
of AN are identical to the eigenvalues of a generalized eigenvalue problem where one
of the matrices is a block triangular matrix and the other is a companion like matrix,
if we choose the grid points appropriately. The matrix structure will be exploited in
Section 3.

We start with the observation that the discretized eigenvalue problem (2.7) can
be directly obtained by requiring that there exists a polynomial of degree N ,

(PNx(N))(t) =
N∑
k=0

lN,k(t) x(N)
k ,

satisfying the conditions

(PNx(N))′(θN,i) = λ(PNx(N))(θN,i), i = 1, . . . , N,(2.8)

A0(PNx(N))(0) +
m∑
i=1

Ai(PNx(N))(−τi) = λ(PNx(N))(0).(2.9)

Hence, an eigenvalue problem equivalent to (2.7) can be obtained by expressing
PNx(N) in another basis and imposing the same conditions.

Consider the representation of PNx(N) in a basis of Chebyshev polynomials

(PNx(N))(t) =
N∑
i=0

ciTi

(
2
t

τm
+ 1
)
,

where Ti is the Chebyshev polynomial of the first kind and order i, and ci ∈ CN for
i = 0, . . . , N . By requiring that this polynomial satisfies the conditions (2.8)-(2.9) and
by taking into that T ′i (t) = iUi−1(t), i ≥ 1, where Ui is the Chebyshev polynomial of
the second kind and order i, we obtain the following equivalent eigenvalue problem
for (2.7):
(2.10)„

λ

„
1 T1(1) · · · TN−1(1) TN (1)

Γ1 Γ2

«
⊗ In −

„
R0 R1 · · · RN
0 U ⊗ In

««0B@ c0
...
cN

1CA = 0,

where the submatrices are defined as

Γ1 =

0B@ 1 T1 (α1) · · · TN−1 (α1)
...

...
1 T1 (αN ) · · · TN−1 (αN )

1CA , Γ2 =

0B@ TN (α1)
...
TN (αN )

1CA ,

(2.11) U =
2

τm

0B@ U0 (α1) 2U1 (α1) · · · NUN−1 (α1)
...

...
U0 (αN ) 2U1 (αN ) · · · NUN−1 (αN )

1CA ,

Ri = A0Ti(1) +
m∑
k=1

AkTi

(
−2

τk
τm

+ 1
)
, i = 0, . . . , N,
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and

αi = 2
θi
τm

+ 1, i = 1, . . . , N + 1,

are the normalized grid-points, that is, scaled and shifted to the interval [−1, 1].
In order to simplify (2.10), we use the property

(2.12) T1(t) =
1
2
U1(t), Ti(t) =

1
2
Ui(t)− 1

2
Ui−2(t), i ≥ 2.

This implies that

(2.13) Γ1 = ULN ,

where LN is a band matrix, defined as

(2.14) LN =
τm
4



2 0 −1
1
2 0 − 1

2

1
3 0

. . .

1
4

. . . − 1
N−2

. . . 0
1
N


.

If the grid points are such that U is nonsingular, we can use the relation (2.13) to
transform (2.10) to the eigenvalue problem
(2.15)„

λ

„
1 T1(1) · · · TN−1(1) TN (1)

LN U−1Γ2

«
⊗ In −

„
R0 R1 · · · RN
0 INn

««0B@ c0
...
cN

1CA = 0.

An important property of the eigenvalue problem (2.15) is that all information
about the grid ΩN is concentrated in the column U−1Γ2. We now show that with an
appropriately chosen Chebyshev type grid, the structure of LN is continued in this
column. For this, choose the nonzero grid points as scaled and shifted zeros of UN ,
the latter given by

(2.16) αi = − cos
πi

N + 1
, i = 1, . . . , N.

First, this choice implies that the matrix (2.11) is invertible. Second, from (2.12) it
can be seen that the numbers (2.16) satisfy

TN (αi) = −1
2
UN−2(αi), i = 1, . . . , N, N ≥ 2,

which implies on its turn that

U−1Γ2 =
(

0 · · · 0 − τm

4(N−1) 0
)T

.

By combining the results above, we arrive at the following theorem.
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Theorem 2.1. If the grid points in the spectral dicretization of the operator (2.1)
are chosen as

(2.17) θi =
τm
2

(αi − 1), αi = − cos
πi

N + 1
, i = 1, . . . , N + 1,

then the discretized eigenvalue problem (2.7) is equivalent to

(2.18) (λΠN − ΣN ) c = 0, λ ∈ C, c ∈ C(N+1)n, c 6= 0,

where

(2.19) ΠN =
τm
4

0BBBBBBBBBBBB@

4
τm

4
τm

4
τm

· · · · · · 4
τm

2 0 −1
1
2

0 − 1
2

1
3

0
. . .

1
4

. . . − 1
N−2

. . . 0 − 1
N−1

1
N

0

1CCCCCCCCCCCCA
⊗ In

and

(2.20) ΣN =


R0 R1 · · · RN

In
. . .

In

 ,

with

Ri = A0 +
m∑
k=1

AkTi

(
−2

τk
τm

+ 1
)
, i = 0, . . . , N.

Remark 2.2 (The choice of discretization points). A grid consisting of the points
αi as in (2.17) is very similar to a grid consisting of Chebyshev extremal points as in
[BMV05], where the latter is defined as

(2.21) − cos
π(i− 1)
N

, i = 1, . . . , N + 1.

Note that the convergence theory of spectral discretizations is typically shown using
reasoning with a potential function defined from a limit of the grid distribution. See,
e.g., [Tre00, Theorem 5]. Since the discretization here (2.17) and the grid in [BMV05],
i.e., (2.21) have the same asymptotic distribution, we expect the convergence properties
to be the same. For instance, the eigenvalues of AN exhibit spectral convergence
to eigenvalues of A. Moreover, the part of the spectrum of AN which has not yet
converged to corresponding eigenvalues of A, is typically located to the left of the
converged eigenvalues. This is an important property when assessing stability.

We have chosen a new grid as this grid allows us to construct matrices with a
particularly useful structure. The structure which will be used in the next section is
that the matrices (2.19) and (2.20) are such that ΠN1 and ΣN1 are submatrices of
ΠN2 and ΣN2 whenever N2 ≥ N1.
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3. A Krylov method for the DEP. The discretization in the previous section
can be directly used to find approximations of the eigenvalues of (1.1) by computing
the eigenvalues of the GEP (2.18), (λΠN − ΣN )x = 0, with a general purpose eigen-
value solver. The Arnoldi method (first introduced in [Arn51]) is one popular general
purpose eigenvalue solver. In a traditional approach for the DEP, it is common to
fix N and apply the Arnoldi method to an eigenvalue problem, here the GEP (2.18).
This has the drawback that the matrices ΣN and ΠN are large if N is large. Another
drawback is that N has to be fixed before the iteration starts. The choice of N is a
trade-off between computation time and accuracy, as the error decreases with grow-
ing N and the computation time grows with increasing N . Unless we wish to solve
several eigenvalue problems, N has chosen entirely based on the information about
the problem available before the iteration is carried out.

We will adapt a version of the Arnoldi method to the GEP (λΠN − ΣN )x = 0
and exploit the structure in such a way that the method has the (somewhat remark-
able) property that it is, in a sense, independent of N . The constructed method is
in this way a solution to the mentioned drawbacks and trade-offs of a traditional ap-
proach. It turns out that if we start the Arnoldi method corresponding to Π−1

N ΣN in
an appropriate way, the approximations after k iterations are identical to the approx-
imations computed by k iterations of the Arnoldi method applied to the eigenvalue
problem corresponding to any N > k. That is, it can be seen as carrying out an
Arnoldi process associated with the limit N → ∞. In the light of this we will show
in Section 4 that the method is also equivalent to the Arnoldi method applied to the
infinite-dimensional operator A−1.

We will use the natural limit interpretation of ΣN and ΠN . Let vec(Cn×∞) denote
the set of all ordered infinite sequences of vectors of length n exponentially convergent
to zero. The natural interpretation of the limits of the operators Σ∞ and Π∞ is with
this notation Σ∞ : vec(Cn×∞) → vec(Cn×∞) and Π∞ : vec(Cn×∞) → vec(Cn×∞).
We will call an element of vec(Cn×∞) an infinite vector and Σ∞ and Π∞ infinite
matrices. In many results and applications of the Arnoldi method, the method is
implicitly equipped with the Euclidean scalar product. We will use natural extension
of the Euclidean scalar product to infinite vectors, x∗y :=

∑∞
i=0 x

∗
i yi, where xi, yi are

the elements of x, y respectively.
The Arnoldi method is a construction of an orthogonal basis of the set of linear

combinations of a power sequence associated with matrixA ∈ Rn×n and vector b ∈ Rn,

Kk(A, b) := span{b, Ab, . . . , Ak−1b}.

This subspace is called a Krylov subspace. The Arnoldi method approximates eigen-
values of A by the eigenvalues of Hk = V ∗k AVk (which are called the Ritz values) where
the columns of Vk ∈ Cn×k form an orthonormal basis of Kk(A, b). The eigenvalues of
Hk converge to the extreme well-separated eigenvalues first [Saa92, Chapter VI]. In
this paper we are interested in eigenvalues close to the origin. In many applications
those are not very well-separated, so convergence is expected to be slow. However,
convergence can be drastically improved by applying the Arnoldi method to A−1, as
the eigenvalues of A near zero become typically well-separated extreme eigenvalues of
A−1, and so, fast convergence is expected. For this reason we will apply the Arnoldi
method to form Kk(A−1, b) and call the inverse of the Ritz values the reciprocal Ritz
values.

As in the definition of the Krylov subspace, the matrix vector product is an
important component in the Arnoldi method. The underlying property which we will
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use next is the matrix vector product associated with the infinite matrix Σ−1
∞ Π∞. It

turns out to be structured in such a way that it has a closed form for a special type
of vector.

Theorem 3.1 (Matrix vector product). Suppose
∑m
i=0Ai is non-singular. Let

Σ∞,Π∞ be as in Theorem 2.1 and Y ∈ Cn×k. Then

Σ−1
∞ Π∞vec(Y, 0, . . .) = vec(x̂, Z, 0, . . .)

and

(3.1) Z = Y LTk ,

where Lk ∈ Rk×k is given by (2.14) and

(3.2) x̂ =

 m∑
j=0

Aj

−1k−1∑
i=0

yi −A0

k−1∑
i=0

zi −
m∑
j=1

Aj

(
k−1∑
i=0

Ti+1(1− 2
τj
τm

)zi

) .

Proof. The proof is based on forming the limits for Σ∞vec(x̂, Z, 0, . . .) and
Π∞vec(Y, 0, . . .) and noting that the result yields (3.1) and (3.2). Note that from
(2.20) we have that

Σ∞vec(x̂, Z, 0, . . .) =

 R0 R1 · · ·
In

. . .

 vec(x̂, Z, 0, . . .) = vec(y, Z, 0, . . .),

where y = R0x̂+R1z0 + · · ·+Rkzk−1. Let vTk = (1, . . . , 1)T ∈ Rk. We now have from
(2.19) and rules of vectorization and Kronecker products that

Π∞vec(Y, 0, . . .) =
((

vT∞
L∞

)
⊗ In

)
vec(Y, 0, . . .) =

vec
(
(Y, 0, . . .)v∞, (Y, 0, . . .)LT∞,

)
= vec

(
Y vk, Y L

T
k , 0, . . .

)
.

The proof is completed by solving y = Y vk.

3.1. Algorithm. Now consider the power sequence for the operator Σ−1
∞ Π∞

started with vec(w, 0, · · · ), w ∈ Rn. From Theorem 3.1 we see that the non-zero part
of the infinite vector grows by one vector (of length n) in each iteration such that at
the jth step, the resulting infinite vector is vec(Y, 0, . . .) where Y ∈ Rn×(j+1).

The Arnoldi method builds the Krylov sequence vector by vector, where in ad-
dition, the vectors are orthogonalized. In step k, the orthogonalization is a linear
combination of the k+ 1st vector and the previously computed k vectors. Hence, the
orthogonalization at the kth iteration does not change the general structure of the
k + 1st vector.

This allows us to construct a scheme similar to the Arnoldi method where we
dynamically increase the size of the basis vectors. Let Vk be the matrix consisting of
the basis vectors and vij ∈ Cn the vector corresponding to block element i, j. The
dependency tree of the basis vectors is given in Figure 3.1, where the gray arrows
represent the computation of the first component x̂.

The algorithm given in Algorithm 1 is (from the reasoning above) mathematically
equivalent to the Arnoldi method applied to Σ−1

∞ Π∞, as well as the Arnoldi method
10



v11 v12 v13 v14 · · · v1k f1

v22 v23 v24 v2k f2

v33 v34 v3k f3

v44 v4k f4

. . .
...

...

vkk fk

fk+1

Figure 3.1. Dependency tree of the basis matrix Vk. The column added in Step 11 in Algo-
rithm 1 has been denoted f := (fT1 , . . . , f

T
k+1)T := (vTk+1,1, . . . , v

T
k+1,k+1)T .

applied to the matrix Σ−1
N ΠN , where N is larger than the total number of iteration

steps taken. We use notation common for Arnoldi iterations; we let Hk ∈ C(k+1)×k

denote the dynamically constructed rectangular Hessenberg matrix and Hk ∈ Ck×k
the corresponding k × k upper part.

Algorithm 1 A Krylov method for the DEP
Require: x0 ∈ Cn and time-delay system (1.1)

1: Let v1 = x0/‖x0‖2, V1 = v1, k = 1, H0 =empty matrix,
2: Factorize

∑m
i=0Ai

3: for k = 1, 2, . . . until converged do
4: Let vec(Y ) = vk
5: Compute Z according to (3.1) with sparse Lk
6: Compute x̂ according to (3.2) using the factorization computed in Step 2
7: Expand Vk with one block row (zeros)
8: Let wk := vec(x̂, Z), compute hk = V ∗k wk and then ŵk = wk − Vkhk
9: Compute βk = ‖ŵk‖2 and let vk+1 = ŵk/βk

10: Let Hk =
(
Hk−1 hk

0 βk

)
∈ C(k+1)×k

11: Expand Vk into Vk+1 = [Vk, vk+1]
12: end for
13: Compute the eigenvalues µ from the Hessenberg matrix Hk

14: Return approximations 1/µ

3.2. Implementation details. The efficiency and robustness of Algorithm 1
can only be guaranteed if the important implementational issues are addressed. We
will apply some techniques used in standard implementations of the Arnoldi method
and some techniques which are adapted for this problem.

As is usually done in eigenvalue computations using the Arnoldi method,
∑m
k=0Ak

is factorized by a sparse direct solver and then each Arnoldi step requires a backward
solve with the factors for computing (

∑m
k=0Ak)−1y. Examples of such direct solvers
11



are [ADLK01, SG04, DEG+99, Dav04]. In Step 8, the vector wk should be orthogo-
nalized against V . We use iterative reorthogonalization as in ARPACK [LSY98].

The derivation of the method is based on the assumption that A0 + · · · + Am is
nonsingular, i.e., that λ = 0 is not a solution to the characteristic equation (1.2). This
can be easily verified in practice since for most types of factorizations, e.g., the LU-
factorization, it can be directly established if the matrix is singular. If we establish
(in Step 2) that the A0 + · · ·+Am is singular then the problem can be shifted (with
a small shift) such that the shifted problem is nonsingular.

The Ritz vectors associated with Step 13 in Algorithm 1 are u = Vkz where z is
an eigenvector of the k × k Hessenberg matrix Hk. Note that the eigenvalues µ of
Hk are approximations to eigenvalues of Σ−1

N ΠN , so λ = µ−1 are the corresponding
approximate eigenvalues of (1.1). Note that u ∈ Cnk and that an eigenpair of a time-
delay system can be represented by the eigenvalue λ ∈ C and a (short) eigenvector v ∈
Cn. A user is typically only interested in approximations of v and not approximations
of u. For this reason we will now discuss adequate ways to extract v ∈ Cn from
u ∈ Cnk. This will also be used to derive stopping criteria.

Note that the eigenvectors of Σ−1
N ΠN approach in the limit the structure w = c⊗v.

Given a Ritz vector u ∈ Cnk we will construct the vector v ∈ Cn from the first n
components of u. This can be motivated by the following observation in Figure 3.1.
Note that the vector vk−p,k does not depend on the nodes in the right upper triangle
with sides of length p − 1 in the graph. In fact, vk−p,k is a linear combination of
v1,i, i = 1, . . . , p + 1. Hence, the quality of the vector vk−p,k cannot be expected to
be much better than the first p iterations. With inductive reasoning, we conclude
that the first block of n rows of V contains the information with the highest quality,
in the sense that all other vectors are linear combinations of previously computed
information. This is similar to the reasoning for quadratic eigenvalue problem in
[Mee08, Section 4.2.1].

Another natural way to extract an approximation of v is by using the singular
vector associated with the dominant singular value of the matrix U ∈ Cn×k, where
vec(U) = u, since the dominant singular value corresponds to a best rank-one approx-
imation of U . In general, our numerical experiments are not conclusive and indicate
only a very minor difference between the two approaches. We propose to use the
former approach, since it is cheaper.

Remark 3.2 (Residuals). The termination criterion in the standard Arnoldi
method is typically an expression involving the residual. In the setting of Algorithm 1
there are two natural ways to define residuals. There is the residual

r := Σ−1
N ΠNu− λ−1u ∈ CnN

and the (short) residual r̂ := ∆(λ)v ∈ Cn. The norm of the residual r is cheaply
available as a by-product of the Arnoldi iteration as for the standard Arnoldi method:
let Hkz = λ−1z with ‖z‖2 = 1, then ‖r‖2 = hk+1,k|eTk z|. It is however more natural
to have termination criteria involving ‖r̂‖ since from the residual norm it is easy
to derive a backward error. Unfortunately, even though v can easily be extracted
from u (as is mentioned above) the computation ∆(λ)v is too expensive to evaluate
in each iteration for each eigenvector candidate. In the examples section we will
(for illustrative purposes) use a fixed number of iterations, but in a general purpose
implementation we propose to use a heuristic combination, where the cheap residual
norm ‖r‖ is used until it is sufficiently small and in a post-processing step, the residual
norms ‖r̂‖ can be used to check the result. The residual ‖r‖2 will be further interpreted
in Remark 4.6.

12



Remark 3.3 (Reducing memory requirements). The storage of the Arnoldi vec-
tors, i.e., Vk, is of order O(k2n), and may become prohibitive in some cases. As
for the polynomial eigenvalue problem, it is possible to exploit the special structure
illustrated in Figure 3.1 to reduce the cost to O(kn). This is the same complexity
as for standard Arnoldi. See the similar approach for polynomial eigenvalue prob-
lems [BS05], [Fre05] and [Mee08]. Note that attention should be payed to issues of
numerical stability [Mee08].

4. Equivalence with an infinite dimensional operator setting. The orig-
inal problem to find λ is already a standard eigenvalue problem in the sense that λ
is an eigenvalue of the infinite dimensional operator A. Since A is a linear operator,
one can consider the Arnoldi method applied to A−1 in an abstract setting, such that
the Arnoldi method constructs a Krylov subspace of functions, i.e.,

(4.1) Kk(A−1, ϕ) := span{ϕ,A−1ϕ, . . . ,A−(k−1)ϕ},
and projects on it. In this section we will see that Algorithm 1 has a complete
interpretation in this setting if a scalar product is appropriately defined. The vector
vk in Algorithm 1 turns out to play the same role as the coefficients in the Chebyshev
expansion. The Krylov subspace (4.1) is constructed for the inverse of A. The inverse
is explicitly given as follows.

Proposition 4.1 (The inverse of A). The inverse of A : X → X exists iff
A0 +

∑m
i=1Ai is nonsingular. Moreover, it is explicitly given as

(4.2)
D(A−1) = X(A−1 φ

)
(θ) =

∫ θ
0
φ(s)ds+ C(φ), θ ∈ [−τm, 0], φ ∈ D(A−1),

where the constant C(φ) satisfies

(4.3) C(φ) =

(
A0 +

m∑
i=1

Ai

)−1 [
φ(0)−

m∑
i=1

Ai

∫ −τi

0

φ(s)ds

]
.

Proof. First assume A0 +
∑m
i=1Ai is nonsingular and note that if φ ∈ X then φ is

continuous and bounded on the closed interval [−τm, 0]. Hence, the integrals in (4.2)
and (4.3) exist and (4.2) defines an operator, which we first denote by T . It can be
easily verified that T Aφ = φ when φ ∈ D(A) and AT φ = φ when φ ∈ D(T ). Hence,
T = A−1. It remains to show that the inverse is not uniquely defined if A0 +

∑m
i=1Ai

is singular. Let v ∈ Cn\{0} be a null vector of A0 +
∑m
i=1Ai and consider a constant

function ϕ(t) := v. From the definition (2.1) we have that Aϕ = 0 and the inverse is
not uniquely defined.

4.1. Action and Krylov subspace equivalence. The key to the functional
setting duality of this section is that we consider a scaled and shifted Chebyshev
expansion of entire functions. Consider the expansion of two entire functions ψ and
φ in series of scaled Chebyshev polynomials,

(4.4)
φ(t) =

∑∞
i=0 ciTi

(
2 t
τm

+ 1
)

ψ(t) =
∑∞
i=0 diTi

(
2 t
τm

+ 1
)
, t ∈ [−τm, 0].

We will now see that the operation ψ = A−1φ can be expressed as a mapping of the
coefficients, c0, c1, . . . and d0, d1, . . .. This mapping turns out to reduce to the matrix
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vector product in Theorem 3.1. Suppose ψ = A−1φ, then

ψ ∈ D(A),(4.5)
Aψ = ψ′ = φ.(4.6)

From the fact that the derivative of a Chebyshev polynomial of the first kind can be
expressed as a Chebyshev polynomial of the second kind, we note that

ψ′(t) =
∑∞
i=1

2dii
τm

Ui−1

(
2 t
τm

+ 1
)
.

Moreover, the relation between Chebyshev polynomials of the first kind and Cheby-
shev polynomials of the second kind, i.e., property (2.12), yields

φ(t) = c0U0

“
2 t
τm

+ 1
”

+ 1
2
c1U1

“
2 t
τm

+ 1
”

+
P∞
i=2

ci
2

“
Ui
“

2 t
τm

+ 1
”
− Ui−2

“
2 t
τm

+ 1
””

= c0U0

“
2 t
τm

+ 1
”

+ 1
2
c1U1

“
2 t
τm

+ 1
”

+
P∞
i=3

ci−1
2
Ui−1

“
2 t
τm

+ 1
”
−
P∞
i=1

ci+1
2
Ui−1

“
2 t
τm

+ 1
”
.

By matching coefficients in (4.6) we obtain the following recurrence relation for the
coefficients,

(4.7) di =
{ τm

4 (2c0 − c2) i = 1,
τm

4
ci−1−ci+1

i i ≥ 2.

From (4.5) and (4.6) we get

φ(0) = A0ψ(0) +
m∑
k=1

Akψ(−τk).

Hence,

(4.8)
∞∑
i=0

ciTi(1) =
∞∑
i=0

m∑
k=0

AkTi

(
−2

τk
τm

+ 1
)
di =

∞∑
i=0

Ridi.

By combining the results above and the fact that the Chebyshev coefficients
of entire functions decay exponentially [Tre00, Theorem 1] (as they are the Fourier
coefficients of an entire function) we have proved the following relation.

Theorem 4.2 (Action equivalence). Consider two entire functions φ and ψ and
the associated Chebyshev expansion (4.4). Denote c = (cT0 , c

T
1 , . . .)

T , d = (dT0 , d
T
1 , . . .)

T ∈
vec(Cn×∞). Suppose

∑m
i=0Ai is non-singular. Then the following two statements are

equivalent
i) ψ = A−1φ

ii) d = Σ−1
∞ Π∞c where c, d fulfill (4.7)-(4.8).

Moreover, if c = (cT0 , . . . , c
T
k−1, 0, . . . , 0)T = vec(Y, 0, . . . , 0), Y ∈ Rn×k then d =

vec(x̂, Z, 0, . . . , 0) where x̂ and Z are the formulas in Theorem 3.1.
Remark 4.3 (Krylov subspace equivalence). The equivalence between A−1 and

Σ−1
∞ Π∞ in Theorem 4.2 propagates to an equivalence between the corresponding Krylov

subspaces. Let φ0(t) = x0 be a constant function. It now follows from the fact that
Theorem 4.2 implies

φ ∈ Kk(A−1, φ0),

if and only if

vec(c0, c1, . . . , ck−1) ∈ Kk(Σ−1
k Πk, vec(x0, 0, . . . , 0)),

where c0, . . . , ck−1 are the Chebyshev coefficients of φ, i.e., (4.4).
14



4.2. Orthogonalization equivalence. We saw in Section 4.1 that the ma-
trix vector operation associated with Σ−1

∞ Π∞ is equivalent to the operation A−1, in
the sense that A applied to a function corresponds to a map between Chebyshev
coefficients of two functions. The associated Krylov subspaces are also equivalent.

The Arnoldi method is a way to project on a Krylov subspace. In order to define
the projection and compute the elements of Hk, we need to define a scalar product.
In Algorithm 1 we use the natural way to define a scalar product, the Euclidean scalar
product on the Chebyshev coefficients. In order to define a projection equivalent to
Algorithm 1 in a consistent way, we define a scalar product in the function setting as

(4.9) 〈φ, ψ〉 := c∗d =
∞∑
i=0

c∗i di,

where φ, ψ, c and d are as in Theorem 4.2. We combine this with Theorem 4.2 to
conclude that the Hessenberg matrix generated in Algorithm 1 and the Hessenberg
matrix generated by the standard Arnoldi method applied to A−1 with the scalar
product (4.9) are equal.

Theorem 4.4 (Hessenberg equivalence). Let φ, ψ, c and d be as in Theorem 4.2.
The Hessenberg matrix computed (with exact arithmetic) in Algorithm 1 is identical
to the Hessenberg matrix of the Arnoldi method applied to A−1 with the scalar product
(4.9) and the constant starting vector ϕ(t) = x0.

The definition (4.9) involves the coefficients of a Chebyshev expansion. We will
now see that this definition can be reformulated to an explicit expression with weighted
integrals involving the functions φ and ψ. First note that Chebyshev polynomials are
orthogonal (but not orthonormal) in the following sense,

2
τm

∫ 0

−τm

Ti( 2
τm
t+ 1)Tj( 2

τm
t+ 1)√

1− ( 2
τm
t+ 1)2

dt =
∫ 1

−1

Ti(x)Tj(x)√
1− x2

dx =


0, i 6= j,

π, i = j = 0,
π/2 i = j 6= 0.

In order to simplify the notation, we introduce the functional

I(f) :=
2
τm

∫ 0

−τm

f(t)√
1− ( 2

τm
t+ 1)2

dt.

We will now show that

(4.10) 〈φ, ψ〉 =
2
π
I(φ∗ψ)− 1

π2
I(φ∗)I(ψ),

where (φ∗ψ)(t) = φ(t)∗ψ(t), by inserting the expansion of φ and ψ, i.e., (4.4), into
(4.10). Note that from the orthogonality of Chebyshev polynomials we have that

I(φ∗ψ) =
∞∑

i,j=0

c∗i dj
2
τm

∫ 0

−τm

Ti( 2
τm
t+ 1)Tj( 2

τm
t+ 1)√

1− ( 2
τm
t+ 1)2

dt =
π

2
(
∞∑
i=0

c∗i di + c∗0d0),

and from the fact that T0(x) = 1,

I(φ∗) =
∞∑
i=0

c∗i
2
τm

∫ 0

−τm

Ti( 2
τm
t+ 1)T0( 2

τm
t+ 1)√

1− ( 2
τm
t+ 1)2

dt = πc∗0.
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Analogously I(ψ) = πd0. We have shown that 〈φ, ψ〉 =
∑∞
i=0 c

∗
i di.

Remark 4.5 (Computation with functions). From the reasoning above we see
that Algorithm 1 can be interpreted as the Arnoldi method applied to A−1 with the
scalar product (4.10) for functions on C([−τm, 0], Cn) with a constant starting func-
tion, where the computation is carried out by mapping Chebyshev coefficients. We
note that the representation of functions with Chebyshev coefficients and associated
manipulations are also done in the software package chebfun [BT04].

Remark 4.6 (Residual equivalence). Note that there is a complete duality be-
tween Σ−1

∞ Π∞ and A−1. A direct consequence is that the residual norm, which can be
used as a stopping criterion as described in Remark 3.2, has an interpretation as the
norm of function residual with respect to the norm induced by the scalar product (4.9).
That is, ‖(Σ−1

∞ Π∞ − µ)ũ‖2 = ‖(Σ−1
N ΠN − µ)u‖2 = hk+1,k|eTk z| = ‖A−1φ − µφ‖c :=√〈A−1φ− µφ,A−1φ− µφ〉.

4.3. The block Arnoldi method and full spectral discretization. In the
setting of functions, the definition of the scalar product (4.9) and the correspond-
ing function representation (4.10) seem artificial in the sense that one cannot easily
identify a property why this definition is better than any other definition of a scalar
product.

In fact, in earlier works [JMM10] we derived a scheme similar to Algorithm 1 by
using a Taylor expansion instead of a Chebyshev discretization. It is not difficult to
show that the Taylor approach also can be interpreted in a function setting, where
the scalar product is defined such that the monomials are orthogonal, i.e., 〈φ, ψ〉T :=
(1/2π)

∫ 2π

0
φ(eiθ)∗ψ(eiθ) dθ.

In this paper, the attractive convergence properties of Algorithm 1 are motivated
by the connection with the discretization scheme. Discretization schemes similar to
what we present in Section 2 have been used in the literature and are known to be
efficient for the delay eigenvalue problem.

We will now see that Algorithm 1 is not only the Arnoldi method applied to
the discretized problem. The block version of Algorithm 1 produces the same ap-
proximation as the full discretization approach, i.e., computing the eigenvalues of the
generalized eigenvalue problem associated with ΠN , ΣN .

The block Arnoldi method is a variant of the Arnoldi method, where each vector is
replaced by a number of vectors, which are kept orthogonal in a block sense. The block
Arnoldi method is described in, e.g., [BDD+00]. It is straightforward to construct a
block version of Algorithm 1. In the following result we see that this construction is
equivalent to the full spectral discretization approach, if we choose the block size n,
i.e., equal to the dimension of the system.

Theorem 4.7. Let V[k] = (V1, . . . , Vk), V Ti = (WT
i,1, . . . ,W

T
i,i, 0, . . .) where Wi,j ∈

Rn×n. Suppose V[k] is orthogonal, i.e., V ∗[k]V[k] = I ∈ Rnk×nk, then

H = V ∗[k]Σ
−1
∞ Π∞V[k] ∼ Σ−1

k−1Πk−1 ∼ A−1
k−1.

In words, when performing k steps of the block Arnoldi method, the resulting
reciprocal Ritz values are the same approximations as those from [BMV05] (but with
the grid points (2.16)) where N discretization points are used.

5. Numerical Examples.
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Figure 5.1. Convergence and eigenvalue approximations for the example in Section 5.1 using
Algorithm 1.

5.1. A scalar example. We first illustrate several properties of the method by
means of an academic example. Consider the scalar DDE (also studied in [Bre06])

ẋ(t) = (2− e−2)x(t) + x(t− 1).

The convergence of the reciprocal Ritz values is shown in Figure 5.1. There are
two different ways to interpret the error between the reciprocal Ritz values and the
characteristic roots of the time-delay system.

1. In Section 4, and in particular in Section 4.1 and Section 4.2, we have seen
that Algorithm 1 is equivalent to a standard Arnoldi method, applied to the
infinite-dimensional operator A−1. In this interpretation the observed error
is due to the Arnoldi process.

2. Since the example is scalar, the Arnoldi method and the block Arnoldi method
with blocks of width n are equivalent. Hence, one can alternatively interpret
the results in the light of Theorem 4.7 in Section 4.3: the computed Ritz values
for a given value of k correspond to the eigenvalues of A−1

k−1. Accordingly, the
error between the reciprocal of the Ritz values and the characteristic roots
can be interpreted as the error due to an approximation of A by Ak−1.

In Figure 5.1 we observe geometric convergence. This observation is consistent with
the two interpretations above. More precisely, it is consistent with the convergence
theory for the standard Arnoldi method as well as the convergence theory for the
spectral discretization method. The spectral method is expected to converge expo-
nentially [Tre00]. The generic situation for the Arnoldi method is that the angle
between the Krylov subspace and the associated eigenvector converges geometrically
[Saa92, Section VI.7].

With Figure 5.2 we wish to illustrate the impact and importance of the underlying
approximation type. The plot shows the convergence for the method based on a Taylor
approximation in [JMM10], which also has an interpretation as the Arnoldi method
on a function; see Section 4.3. In comparison to Algorithm 1 very few eigenvalues
are captured with [JMM10]. This is true despite the fact that the convergence to
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each individual eigenvalue is exponential. Moreover, we observe that high accuracy
is not achieved for eigenvalues of larger modulus. Further analysis shows that the
reciprocal Ritz values have a large condition number, such that high accuracy can not
be expected.
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50)

Figure 5.2. Convergence and eigenvalue approximations for the example in Section 5.1 using
the Taylor approach in [JMM10]. The remaining (not-shown) reciprocal Ritz values are distributed
circular fashion outside the range of the plot.

5.2. A large-scale problem. The numerical methods for sparse standard eigen-
value problems have turned out to be very useful because many applications are
discretizations of partial differential equations (PDEs) which are (by construction)
typically large and sparse. In order to illustrate that the presented method is par-
ticularly well suited for such problems, we consider a PDE with a delayed term. See
[Wu96] for many phenomena modeled as PDEs with delay and see [BMV09a] for pos-
sibilities to combine a spatial discretization of the PDE with a discretization of the
operator. Consider

∂v(x, t)
∂t

=
∂2v(x, t)
∂x2

+ a0(x)v(x, t) + a1(x)v(π − x, t− 1).

with a0(x) = −2 sin(x), a1(x) = 2 sin(x) and vx(0, t) = vx(π, t) = 0.
We discretize the PDE and construct a DDE by approximating the second deriva-

tive in space with central difference. This is a variant of a PDE considered in
[BMV09a], where we have modified the delayed term. In the original formulation,
the matrices are tridiagonal, which is not representative for our purposes. The con-
vergence is visualized in Figure 5.3. For a system of size n = 5000, we carry out 100
iterations of Algorithm 1, in a total CPU time 16.2s.

We see in Figure 5.3c that the iteration converges first to the extreme eigenvalues
of the inverted spectrum (which are well isolated). This is the behavior we would
expect with the standard Arnoldi method and confirms the equivalence between Al-
gorithm 1 with an infinite dimensional Arnoldi method shown in Section 4.

The general purpose software package DDE-BIFTOOL [ELR02, ELS01] as well as
the more recent software package TRACE-DDE [BMV09b] are based on constructing
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Figure 5.3. Convergence and eigenvalue approximations for the example in Section 5.2.

a large full matrix and computing its’ eigenvalues using the QR-method. In our case,
n = 5000, and constructing a larger full matrix with such an approach is not compu-
tationally feasable. We will here use an adaption of the software package [BMV09b]
where we construct large sparse matrices and compute some eigenvalues using the
Matlab command eigs. This approach, which associated matrix is in fact the spec-
tral discretization discussed in Section 2.2 (with the grid (2.21)), will for brevity here
be referred as spectral + eigs.

We report results of numerical simluations for spectral+eigs and Algorithm 1 in
Table 5.1. The first column shows the number of eigenvalues which have an absolute
error less than 10−6 and the second column the total CPU time for the simulation.
The table can be interpreted as follows. If we are interested in only 10 eigenvalues
(to an accuracy of 10−6), Algorithm 1 is slightly faster whereas if we are interested
in 20 eigenvalues spectral+eigs is slightly faster. Hence, for this particular example,
finding 10 or 20 eigenvalues, the two approaches have roughly the same CPU time,
under the condition that optimal values of N and k are known.

19



Spectral+eigs Algorithm 1
N 10 11 12 13 14 15 16 k 40 50 70 75 80 100

#λ 5 8 11 20 29 47 75 8 11 17 20 22 27
CPU 1.3 2.2 3.8 6.9 12.2 25.9 68.4 1.9 3.1 6.8 8.0 9.4 16.2

Table 5.1
The number of accurate eigenvalues and CPU time for a direct spectral discretization approach

and Algorithm 1. The CPU time is given in seconds and #λ denotes the number of eigenvalues
which are more accurate than 10−6.

Note also that for this particular example, (A0 + A1)−1x can be computed very
efficiently by solving a linear system. In our implementation, we use the factorization
implemented in the Matlab function [L,U,P,Q]=lu(A0+A1). In fact, the CPU time
consumption in the orthogonalization part was completely dominating (99% of the
total computation time), since the automatic reordering implemented in the LU-
factorization can exploit the structure of the matrices. Similar properties hold for the
memory requirements.

An important property of Algorithm 1 is the dynamic iterative feature. It is
easier to find a good value for the number of iterations k in Algorithm 1, than it is
to find a good number of discretization points N in spectral+eigs. This is due to the
fact that the iteration can be inspected and continued if deemed insufficient. The
corresponding situation for spectral+eigs requires recomputation, since if we for some
value N do not find a sufficient number of eigenvalues, the whole computation has to
be restarted with a larger value of N .

We would additionally like to stress that the computational comparison is in
a sense somewhat unfair to the disadvantage of Algorithm 1. The function eigs
is based on the software package ARPACK [LSY98] which is an efficient compiled
code. This issue is not present in the example that follows. Moreover, due to the
advanced reordering schemes in the software for the LU-factorization, the very struc-
tured nN × nN matrix in spectral+eigs can be computed almost as efficiently as the
LU-factorization of A0 +A1 ∈ Rn×n used in Algorithm 1.

5.3. A DDE with random matrices. In the previous example we saw that
the factorizations and matrix vector products could, for that example, be carried out
very efficiently, both for Algorithm 1 and for spectral+eigs. The structured matrices
A0 and A1 (and the discretized matrix) were such that a very efficient factorization
could be computed. We will now, in order to illustrate a case where such an ex-
ploitation is not possible, consider a random sparse DDE with a single delay where
both matrices are generated with the command sprandn(n,n,0.005) and n = 4000.
The factorization of random matrices generated in this way is very computationally
demanding.

We also mentioned in the previous section that a comparison involving the com-
mand eigs is not entirely fair (to the disadvantage of Algorithm 1) since eigs is
based on compiled and optimized code. In this example we wish to compare numeri-
cal methods in such a way that the implementation aspects of the code play a minor
role. To this end we carry out Algorithm 1 and a direct spectral discretization ap-
proach (as in the previous example) combined with the standard Arnoldi method with
100 iterations. Unlike the previous example, we combine the direct spectral approach
with our own implementation of the (standard) Arnoldi method in Matlab, such that
orthogonalization and other implementation aspects can be done very similar to the
way done in Algorithm 1. We here call this construction spectral+Arnoldi.
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CPU time
#λ : |λ− λ∗| ≤ 10−6 LU Mat.vec. Orth. Total

Spectral + Arnoldi:
N = 4 27 16.4s 7.5s 0.5s 25s
N = 5 52 16.2s 7.3s 0.7s 25s
N = 7 52 16.7s 7.3s 1.0s 26s
N = 10 52 17.7s 6.0s 1.6s 27s
N = 12 52 17.4s 6.1s 1.9s 28s
N = 15 52 15.5s 6.3s 2.3s 27s
N = 20 52 14.8s 7.6s 3.4s 30s

Algorithm 1: 52 8.7s 4.9s 2.8s 16.9s
Table 5.2

Computation time and number of accurate eigenvalues for several runs of the direct spectral
approach and Algorithm 1 applied to the example with random matrices in Section 5.3. The number
of Arnoldi iterations is fixed to 100.

A comparison of spectral+Arnoldi and Algorithm 1 is given in Table 5.2. We see
that 100 iterations of Algorithm 1 yields better results or is more efficient than 100
iterations of spectral+Arnoldi, since it can be carried out in 16.9s and the approach
spectral+Arnoldi is either slower or does not find the same number of eigenvalues.

We wish to point out some additional remarkable properties in Table 5.2. The
CPU time for spectral+Arnoldi grows very slowly (and not monotonically) in N . This
is due to the fact that the structure can be automatically exploited in the factorization.
In fact, the number of nonzero elements of the LU-decomposition also grows very
slowly and irregularly with N . It is also not even monotone.

Moreover, for spectral+Arnoldi, increasing N does eventually not yield more
eigenvalues. In order to find more eigenvalues with spectral+Arnoldi one has to
increase the number of Arnoldi iterations. Determining whether it is necessary to
increase the number of Arnoldi iterations or the number of discretization points N
can be a difficult problem. This problem is not present in Algorithm 1 as there
is only (iteration) parameter k, and iterating further yields more eigenvalues. For
instance, with 110 iterations we find 58 eigenvalues with a total CPU time of 18s,
i.e., six additional eigenvalues by only an additional computation cost of less than two
seconds.

6. Conclusions and outlook. The approach of this paper is in a sense very
natural. It is known from the literature that spectral discretization methods tend to
be efficient for the DEP. The main computational part of a discretization approach is
to solve a large eigenvalue problem. The Arnoldi method is typically very efficient for
large standard and generalized eigenvalue problems. Our construction is natural in
the sense that we combine an efficient discretization method (a spectral discretization)
with an efficient eigenvalue solver (the Arnoldi method) and exploit the non-zero pat-
tern in the iteration vectors and the connection with an infinite dimensional operator.

Although the approach is very natural, several issues related to the Arnoldi
method appear difficult to extend in a natural way. We will now list some tech-
niques and theory for the standard Arnoldi method which appear to extend easily
and some which appear to be more involved.

Algorithm 1 can conceptually be fitted with explicit or implicit restarting (as
in e.g. [Sor92, LS96]) after k iterations by restarting the iteration with a vector of
length kn. However, the reduction of processing time and memory would not be as
dramatic as the standard case since the starting vector would be of length kn. There
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are different approaches to convergence theory of the Arnoldi method. Some of the
convergence theory in [Saa92] is expressed in terms of angles between subspaces. The
scalar product in Section 4 induces an angle definition, and it is to expect that at
least some theory in [Saa92] is applicable with the appropriate angle definition. There
is also theory based on potential theory [Kui06].

In this paper we assumed we are looking for eigenvalues close to the origin. Note
that this assumption is not a restriction since the matrices A0, . . . , Am can be shifted
and scaled such that an arbitrary point is shifted to the origin. Changing the shift
throughout the iteration in the sense of rational Krylov [Ruh98] seems somewhat
involved.
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