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Abstract
In this work we present a method to analyze the robustness of stability of a time-
delay system (TDS) with respect to the delays. This is done by computing the
delays for which the system has a purely imaginary eigenvalue. These delays,
called critical delays, generate potential points for a stability switch, i.e., the point
where the system switches from a stable to unstable. To derive the method, we find
a Lyapunov-type equation, equivalent to the characteristic equation of the TDS.
Unlike the characteristic equation, the Lyapunov-type equation does not have any
non-exponential terms if the eigenvalue is imaginary. This allows us to solve the
Lyapunov-type equation by rewriting it to a quadratic eigenvalue problem for which
there are efficient numerical methods. For the scalar case, we find a new explicit
expression for the curves in the stability chart. The method is applied to previously
solved examples as well as previously unsolved problems of larger dimension.
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1. INTRODUCTION

In this work we consider linear time-delay systems
with multiple constant delays. These types of
systems occur in models where there is a non-
negligible delay, normally originating from some
physical limitation, for instance finite switching
times in controllers, unavailability of the current
state of the system, etc. The stability properties
of the system are highly dependent on the size and
the relations of the delays. We are therefore led to
analyze the stability region in delay space.

The analysis of the stability region in delay space
and delay-dependent stability conditions has, for
special cases, received a lot of attention the last
decades, for instance the treatment of two delay
scalar equation [HH93] and references therein.
The multi-dimensional one-delay case is treated
by Louisell in [Lou01]. Chen et al [CGN95] com-

pute the stability region for the commensurate
case, i.e., the case where the delays are integer
multiples of each other. The large amount of lit-
erature about conservative bounds of the stability
region, often using linear matrix inequalities, is
well described in [Nic01] and [GKC03] which also
contain more thorough descriptions of methods to
analyze stability. For more special cases, see the
survey article [SO05a]. The only existing method
finding the boundaries of the stability region for
multi-dimensional, incommensurate case is pre-
sented in the recent paper by Sipahi and Olgac
[SO05b].

Here, similar to [SO05b], we address the general
problem to find the conservative bounds for the
stability region for the multi-dimensional multi-
delay case. But the approach here is completely
different. In [SO05b] the characteristic equation
is solved by making a Rekasius substitution and



treating the resulting (high order) parameterized
polynomial with a Routh’s array. In the method
presented here, we define a Lyapunov type matrix
operator which, under simple conditions, share
roots with the characteristic equation. Moreover,
the operator turns out to have a particularly
simple structure on the boundary of the stability
region, which makes it possible to rewrite it into
a quadratic eigenvalue problem. This allows us to
apply the rich theories on eigenvalue problems,
and in particular computationally efficient itera-
tive methods for eigenvalue problems.

We also see that the method is consistent with the
theory for the one delay scalar case, for which the
(known) explicit expression is found. As a byprod-
uct we also find an explicit parameterization of
the boundary of the stability region for the scalar
case.

This document is organized as follows. Section 2
defines the problem and some the concepts charac-
teristic eigenproblem and critical curves. Section
3 contains the definition of the Lyapunov type
operator as well as the main theorems allowing
parameterization of the boundary of the stability
region. In Section 4 we provide three examples,
one with an analytic solution, one from [SO05b]
and one problem with larger dimension.

2. BASIC CONCEPTS

The retarded linear m-delay TDS is described by

Σ =











ẋ(t) =

m
∑

k=0

Akx(t − hk), t > 0

x(t) = ϕ(t), t ∈ [−hm, 0]

(1)

with h0 = 0 < h1 < . . . < hm, x : [−hm,∞) 7→ R
n

and Ak ∈ Rn×n. We will sometimes denote the
system Σ with Σ(h1, . . . , hm) in order to stress
the dependence on the delays.

Definition 1. The characteristic eigenvalue prob-
lem of Σ is

M(s)v :=

(

−sIn +

m
∑

k=0

Ake−hks

)

v = 0, ||v|| = 1,

(2)
where v ∈ Cn is called eigenvector and s ∈ C an
eigenvalue. The set of all eigenvalues σ(Σ) is called
the spectrum.

Similar to the delay-free case, a system is expo-
nentially stable if and only if all eigenvalues lie in
the open left complex half-plane, i.e. σ(Σ) ⊂ C−.
An essential difference is that, unlike the (delay-
free) dynamical systems, the spectrum contains a
countably infinite number of eigenvalues. Fortu-
nately, it can be proven (see for instance [Hal77])

that there are only a finite number of eigenvalues
in C+.

From continuity it is clear that the TDS at the
boundary of any stability region in the delay-
parameter space h1, h2, . . . , hm, has at least one
purely imaginary eigenvalue. This justifies the
following definitions, inspired by the use of the
word critical in for instance [Pli05] and [GN00].

Definition 2.

(1) Σ is called critical 1 if and only if σ(Σ)∩ iR 6= ∅.
(2) The set of all points in delay-parameter space

(h1, h2, . . . , hm) for which Σ(h1, . . . , hm) is
critical are called the critical curves (m = 2)
and critical surfaces (m > 2). 2

The stability region in the delay-parameter space
is bounded by critical surfaces. The rest of this
article will, for that reason, deal with the compu-
tation of critical surfaces.

3. RESULTS

The computation of the critical surfaces is done by
introducing the following operator of Lyapunov-
type.

Definition 3. Let

L(X, s) := M(s)X + XM(s)∗ =

=
m
∑

k=0

(

AkXe−hks + XAT
k e−hks̄

)

− 2XRe s,

(3)

where ∗ denotes complex conjugate transpose.

Note that for the critical case Re s = 0, the linear
term disappears and the L operator reduces to a
sum of exponential functions.

The following theorem characterizes eigenpairs
using the Lyapunov operator.

Theorem 4. Given s ∈ C and v ∈ Cn, v∗v = 1 the
following are equivalent.

M(s)v = 0 (4)

L(vv∗, s) = 0 ∧ v∗M(s)v = 0 (5)

Proof: The forward implication is trivial from
definitions, i.e., (2) and (3). The backward im-
plication is clear from the following equalities.

1 In the context of nonlinear differential equations a crit-
ical system is normally called non-hyperbolic (at a fixed
point).
2 The critical curves (surfaces) are called offspring curves
and kernel curves in [SO05b] and Hopf bifurcation curves
(surfaces) in [Hal91].



M(s)v = M(s)vv∗v =

= (L(vv∗, s)vv∗ − vv∗M(s)∗vv∗) v = 0

2

Note 1. It is shown in previous work by the
author [Jar05] that the method of Chen, et al
[CGN95] is in fact the application of Theorem 4
to a commensurate time delay system.

3.1 Quadratic eigenproblem

As stated earlier, we will now consider the critical
case, i.e s = iω. By making the substitutions
z = eiω and ϕk = ωhk, k = 0, . . . , m − 1
equation (5) reduces to a quadratic relation which
turns out to be a quadratic eigenvalue problem.
This is demonstrated in the following theorem
which allows parameterization of the (m − 1)-
dimensional critical surface.

Theorem 5. Let h̄ = (h1, . . . , hm) be a point in
delay-parameter space. h̄ lies on the critical sur-
face if and only if there are some ϕk ∈ [−π, π], k =
1, . . . , m− 1, z ∈ C on the unit circle, ω ∈ R such
that z and v is a solution to the equation

z2vv∗AT
m + z

(

m−1
∑

k=0

Akvv∗e−iϕk + vv∗AT
k eiϕk

)

+ Amvv∗ = 0 (6)

ω = −iv∗

(

Amz−1 +

m−1
∑

k=0

Ake−iϕk

)

v,

and hm = Arg z+2pmπ
ω

, hk = ϕk+2pkπ
ω

, k =
1, . . . , m − 1 for some pk ∈ Z, k = 1 . . .m.

Proof: This follows from Theorem 4 by letting
ϕk = ωhk and z = eiϕ. 2

From this theorem we can parameterize the criti-
cal surface using the m − 1 free parameters ϕk ∈
[−π, π], k = 1, . . . , m−1. We now note that (6) can
be vectorized into the following vector equation

0 =

(

z2Am ⊗ I +

z

(

m−1
∑

k=0

I ⊗ Ake−iϕk + Ak ⊗ Ieiϕk

)

+ I ⊗ Am

)

u

where u = vec vv∗ = v̄ ⊗ v. This is a quadratic
eigenvalue problem. For a survey on quadratic
eigenvalue problems see [TM01]. Quadratic eigen-
value problems can be solved using the companion
form or generalization thereof (see [MMMM05]),
which transforms it to a (generalized) eigenvalue
problem.

For the one-dimensional case, the quadratic eigen-
value problem reduces to the problem of finding

roots of a quadratic equation. The theorem can
then be simplified to

Corollary 6. Let h̄ = (h1, . . . , hm) be a point
in delay-parameter space for the one-dimensional
TDS with Ak = ak. h̄ lies on the critical surface
if and only if there are some ϕk ∈ [−π, π], k =
1, . . . , m − 1, and

hm =

atan
( ω+

∑

m−1

k=1
ak sin ϕk

a0+
∑

m−1

k=1
ak cos ϕk

)

+ 2pmπ

ω

hk =
ϕk + 2pkπ

ω
, k = 1, . . . , m − 1,

ω = ±

√

√

√

√a2
m −

(

a0 +

m−1
∑

k=1

ak cosϕk

)2

−
m−1
∑

k=1

ak sin ϕk

for some pk ∈ Z, k = 1 . . .m.

Here, atan
(

a
b

)

= Arg (b + ai), i.e., the four quad-
rant inverse tangent.

For the first positive branch of the one delay case,
the corollary reduces to the following well known
bound for stability region (see for instance [Nic01]
Section 3.4.1)

h =
atan(

√
b2−a2

a
)√

b2 − a2
=

acos(−a
b
)√

b2 − a2
.

3.2 Notes on numerical methods

The computationally demanding part when ap-
plying the theorem above is finding the solutions
of the quadratic eigenvalue problem (6). From a
computational point of view, we have the follow-
ing properties to make use of, when solving the
quadratic eigenvalue problem.

• The eigenvalues of interest lie on the unit
circle.

• The matrices resulting from the companion
form are sparse.

• Only eigenvectors of the form u = vec vv∗,
i.e. a vectorization of an hermitian rank one
matrix, are of interest.

• The eigenvalues and eigenvectors are contin-
uous with respect to the parameters.

• The quadratic eigenvalue problem has an
eigenvalue pairing similar to a palindromic
eigenvalue problem [MMM05].

In the implementations for the examples in this
work, only the first two properties are explicitly
used. The continuity property is used to approxi-
mate the critical surface by interpolation of points
on the surface.

Searching for eigenvalues along the real axis is
a much more investigated problem than finding



eigenvalues on the unit circle. We therefore make
the a Cayley transformation, z = 1+iσ

1−iσ
which

has the inverse transformation σ = tan(Arg z
2 ) on

the real axis. Note that σ ∈ R iff z is on the
unit circle. The transformed eigenvalue problem
is, (A − B)v = σ(iA + iB)v, where A and B are
the matrices in the generalized eigenvalue problem
(on companion form).

We stress that the system is very large but has
very few non-zero components, which suggests
that sparse representation of the matrix and iter-
ative eigensolver. Finding all real eigenvalues can
be done by, for instance rational Krylov type scans
along the real axis. One implementation of that is
the Matlab-command sptarn.

It is shown in other work by the author that the
matrix vector of the Caley-transformed companion-
form eigenvalue problem can be efficiently com-
puted by solving a Lyapunov-equation. Similar
results holds for the shift-and-invert operation.
This can be exploited to construct an efficient
iterative solver.

4. EXAMPLES

Example (n = 1, m = 2)
Applying Corollary 6 on the 1-dimensional two
delay system,

ẋ(t) = ax(t) + bx(t − h1) + cx(t − h2),

studied in for instance [Nus78] and [HH93], yields
critical curves with the following parameterization

hp,q(ϕ) =











ϕ + 2qπ
√

c2 − (a + b cosϕ)2 − b sinϕ

atan
(

√
c2−(a+b cos ϕ)2

a+b cos ϕ

)

+ 2pπ
√

c2 − (a + b cosϕ)2 − b sinϕ











where ϕ ∈ [−π, π], c2−(a+b cosϕ)2 > 0, p, q ∈ Z.
Fig. 1 shows the critical curves for the two delay
hot shower problem a = 0, b = −1, c = −2.

Example (n = 3, m = 2 from [SO05b])
Consider the 3-dimensional system

ẋ(t) = A0x(t) + A1x(t − h1) + A2x(t − h2)

where

A0 =





−1 13.5 −1
−3 −1 −2
−2 −1 −4



 , A1 =





−5.9 0 0
2 0 0
2 0 0



 ,

A2 =





0 7.1 −70.3
0 −1 5
0 0 6



 ,

which is stable for h1 = h2 = 0. The critical curves
for this system are plotted in Fig. 2. The plot is

the result of application of Theorem 5 evaluated
using sptarn at 100 equally distributed points on
ϕ ∈ [−π, π]. For visibility the resulting points are
connected with lines. The production of the plot
took less than 1 second on a computer running
Linux and Matlab 7 on a 2.4 GHz Intel Pentium 4
processor with 512 Mb RAM. Using the method of
Sipahi and Olgac to produce a plot with visually
equivalent steplenths requires 19.2 s on a faster
computer, see [SO05b]. However, we note that the
method of Sipahi and Olgac also computes the
number of unstable eigenvalues for each region.
The comparison is hence not completely fair.

Example (n = 24, m = 3)
In comparison other methods, the method pre-
sented here is expected to scale with dimension
and number of delays much better. We demon-
strate that with the discretization of the three
delay partial differential equation,


































u′
t(x, t) = u′′

xx(x, t) + β(1 + sin(3πx))u(x, t)

− κ0δ(x − x0)u(0, t − h1)

− κ1δ(x − x1)u(x1, t − h2)

− κ2δ(x − x2)u(1, t − h3)

ux(0, t) = 0

ux(1, t) = 0,
(7)

where we pick κ0 = κ2 = 4, κ1 = 10, x0 = 1/3,
x1 = 1/2, x2 = 3/4 and β = 10. The physical
interpretation of equation (7) is the heat equation
on a rod with length one with heat production
over the whole rod causing instability and three
delayed stabilizing pointwise feedbacks. This sys-
tem is discretized with central difference in space
with n equally distributed intervals, yielding a
system of the form ẋ(t) = A0x(t) + A1x(t− h1)+
A2x(t − h2) + A3x(t − h3), where x(t) ∈ Rn, i.e.,
a three delay TDS.

The critical surface closest to the origin of the
discretized system is plotted in Fig. 3. The method
applies Theorem 5 for 1530 different combinations
of the parameters ϕ1 and ϕ2 with n = 24 dis-
cretization points.

We have not presented any error estimation.
Therefore, we cannot say anything about how
the stability region changes when discretized. As
we only know the critical surface in some points,
connecting the points with planes as done in Fig.
3 may not be an accurate interpolation.

5. CONCLUSIONS

We study the conditions on the delay parame-
ters for multiple delay time delay systems such



that the system has an imaginary eigenvalue.
This is done by introducing a condition on a
Lyapunov type operator. The condition is trans-
formed into conditions on the delay parameters
using a quadratic eigenvalue problems, which is
solved using the companion form and the itera-
tive eigenproblem solver rational Krylov. For the
one dimensional multiple delay system, we find a
closed expression for the condition on the delay
parameters. In the numerical examples we solve
a problem considered in previous literature faster
than previous methods and we solve a previously
unsolved problem of larger dimension. It is hence
demonstrated that exact bounds for stability re-
gion in delay parameter space are computable
for moderate size problems. We also expect that
more adapted numerical methods will allow us to
analyze large dimensional problems.
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Figure 1. Critical curves for Example 1
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