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Abstract We will establish here a formula for the convergence factor of the method
called residual inverse iteration, which is a method for nonlinear eigenvalue prob-
lems and a generalization of the well-known inverse iteration. The formula for the
convergence factor is explicit and only involves quantities associated with the eigen-
value to which the iteration converges, in particular the eigenvalue and eigenvector.
Residual inverse iteration allows for some freedom in the choice of a vector wk and
we can use the formula for the convergence factor to analyze how it depends on the
choice of wk. We also use the formula to illustrate the convergence when the shift is
close to the eigenvalue. Finally, we explain the slow convergence for double eigenval-
ues by showing that under generic conditions, the convergence factor is one, unless
the eigenvalue is semisimple. If the eigenvalue is semisimple, it turns out that we can
expect convergence similar to the simple case.
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1 Introduction

Suppose M : Ω → Cn×n corresponds to a matrix depending on the parameter λ ∈ C
such that it is analytic in an open set Ω ⊆ C and consider the problem of finding
λ∗ ∈Ω and v∗ ∈ Cn\{0} such that,

M(λ∗)v∗ = 0. (1.1)

This equation is sometimes called the nonlinear eigenvalue problem and includes
many of the fundamental problems of numerical linear algebra as special cases. See,
e.g. the survey papers [13,18] and the more recent problem collection [4].
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The method known as residual inverse iteration is an iterative method for finding
one solution of (1.1) and can be summarized as follows. See [14] for a thorough
introduction. Given an approximation of the eigenvector vk and a vector wk (further
discussed later) compute a solution λ ∈ C to the scalar nonlinear equation

wH
k M(λ )vk = 0. (1.2)

We assign the next eigenvalue iterate the value of a solution to (1.2), i.e., λk+1← λ ,
and compute a new eigenvector approximation vk+1,

vk+1 = βk(vk−M(σ)−1M(λk+1)vk), (1.3)

where the normalization constant βk ∈ C is chosen such that cHvk+1 = 1, with c ∈
Cn\{0} and cHv∗ 6= 0. The complex number σ ∈ C is called the shift and is consid-
ered given by the user. The iteration consists of repeating the two steps corresponding
to (1.2), i.e., solving the scalar equation, and (1.3), i.e., updating the eigenvector ap-
proximation. An attractive property of residual inverse iteration is that the matrix in
the linear system M(σ) remains constant throughout the iteration and can hence be
factorized as a precomputation.

Several choices for the vector wk have been proposed in the literature. In [14],
Neumaier proposes to set

i) wH
k := cHM(σ)−1 if the problem has no particular symmetry; and

ii) wk := vk if M(λ∗) is Hermitian and λ∗ ∈ R.

Schreiber [19] also proposes to use a different type of approximation of the left eigen-
vector. Although these specific recommendations on how to select wk are available,
the understanding of the impact of the choice of wk is not complete in the general
situation. In order to constructively study the impact of the choice of wk, we derive
the theory for the general choice

wk := w(vk)→ w(v∗) =: w∗.

The function w : Cn → Cn is assumed to be infinitely differentiable and such that
wH
∗ M′(λ∗)v∗ 6= 0. This is related to the definition of the Rayleigh functional further

discussed in Section 2.
The iteration converges linearly to simple eigenvalues. Let ∆vk := vk − v∗ and

∆λk := λk−λ∗ denote the error in the eigenvector and eigenvalue correspondingly.
In this paper we will study the quantities αv,k := ‖vk+1−v∗‖2/‖vk−v∗‖2 and αλ ,k :=
|λk+1−λ∗|/|λk−λ∗| in the limit k→∞, which are referred to as the eigenvector con-
vergence factor αv,∗ and eigenvalue convergence factor αλ ,∗. This will be achieved
by first (in Section 2) restating the iteration as a fixed point iteration vk+1 = F(vk),
which is an iteration only in eigenvector approximations. We show (in Section 3) that,
when close to a fixed point, the eigenvector error is given by

∆vk+1 = F ′(v∗)∆vk +O(∆vk)
2,

where F ′(v∗) is a matrix depending on quantities involving the fixed point. Since
the generic situation is that the iteration speed is limited by the largest eigenvalue of
F ′(v∗), we can use ρ(F ′(v∗)) to analyze the (eigenvector) convergence factor.
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We use the formula to analyze several properties of the algorithm. In Section 4
we use it to analyze the situation where σ is close to the eigenvalue λ∗. In particular,
we derive a formula for the first-order expansion when σ is close to λ∗ and see that
for any choice of wk, the convergence factor approaches zero as σ approaches λ∗. We
also analyze the case where wk approaches the left eigenvector and establish that the
eigenvalue convergence factor is smaller for this case, but show by example that it is
not always optimal when σ is close to λ∗.

Neumaier conjectures by experiments that the method also works for double
eigenvalues. However, observations in an example [17] indicate that the method can
indeed fail for double eigenvalues. The formula allows us to completely explain the
convergence to double eigenvalues. We show (in Section 6) that the iteration con-
verges slowly or not at all for the generic situation (non-semisimple double eigenval-
ues). On the other hand, if the double eigenvalue is semisimple, we show that we can
expect convergence similar to the simple case.

The method has been successfully combined with and used in modern methods
for large-scale nonlinear eigenvalue problems [12]. The relation with the nonlinear
Arnoldi method [22] is particularly noteworthy, since the residual inverse iteration is
the motivation for the subspace expansion in [22] and it has been successfully used
to solve many different types of nonlinear eigenvalue problems; see, e.g., [24,3,2,
23] and related works. Residual inverse iteration has been used in [17] to study the
stability of a time-delay system with periodic coefficients. An extended version of the
method in [22] was presented in [11] and a two-sided variation is given and analyzed
in [19, Section 4.2.2]. Despite the extensive use, no progress has to our knowledge
been made in terms of qualitative understanding of the convergence, apart from the
original paper [14] and some notes in [19].

Finally, we wish to point out that residual inverse iteration can be seen as a vari-
ant of Newton’s method. There are many variations of Newton’s method for non-
linear eigenvalue problems. We have, e.g., the method of successive linear problems
[18], block Newton [10], Rayleigh function iteration [20]. Some of the convergence
properties of Newton’s method (for nonlinear eigenvalue problems) are available [15,
Section 5] and [1] including convergence factor analysis in [8]. The derivation and
analysis of the methods differ substantially and we have not found any direct use of
the analysis of these methods in this work.

2 A fixed point formulation

In order to characterize the convergence in the following sections we will need to
formulate the iteration in a compact way. One component of the iteration consists of
solving a nonlinear scalar equation, which depends on the eigenvector iterate v ∈Cn,

w(v)HM(λ )v = 0. (2.1)

Now suppose (λ∗,v∗) is a solution and

wH
∗ M′(λ∗)v∗ 6= 0. (2.2)
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The implicit function theorem now yields that there is an open neighborhood (which
we denote N(v∗)) of v∗ such that (2.1) defines a function p : N(v∗)→Ω , for which,

w(v)HM(p(v))v = 0 for all v ∈ N(v∗).

This is a common generic assumption for Rayleigh functionals. See [16,6] and [19,
Chapter 3] for more on nonlinear Rayleigh functionals.

Since we are only interested in a local convergence analysis in this work, we can
now assume that the iteration is contained in the neighborhood. An important aspect
in our analysis, is that the unique definition of p allows us to reformulate the iteration
(1.2) and (1.3) as a fixed point iteration in the eigenvector approximation,

vk+1 = F(vk), (2.3)

where
F(v) := β (v)(v−M(σ)−1M(p(v))v), (2.4)

and β (v) is such that cHF(v) = 1, i.e., β (v) := 1/cH(v−M(σ)−1M(p(v))v). The
elimination of the λk iteration variable is illustrated in Fig. 2.1.

In the following result we show that the fixed points of the iteration (2.3) are
indeed solutions to the nonlinear eigenvalue problem. Moreover, the fixed points are
isolated if M(p(v)) has a null space of dimension one, which is the case for simple
eigenvalues. The case where the null space has rank greater than one corresponds
to a non-isolated fixed point and will be further analyzed in the section on double
eigenvalues (Section 6).

Proposition 2.1 (Fixed point equivalence) Consider a vector v ∈ Cn with cHv 6= 0
such that (2.1) has a unique solution λ = p(v). Then the following statements are
equivalent:
i) F(v) = v.

ii) M(p(v))v = 0 and cHv = 1.

Proof Suppose i) holds. Then, F(v) = v and 1 = cHF(v) = cHv. It follows from the
definition of β and F(v), i.e., (2.4), that β (v) = 1 and

v = F(v) = v−M(σ)−1M(p(v))v,

from which we see that ii) holds. The converse follows analogously from direct ma-
nipulations.

(a)

(b)

v0 v1

λ1 λ2 λk

. . .

. . .

vk vk+1

λk+1

. . .

λk+2

v0 v1 . . . vk vk+1 . . .

F F F F F

Fig. 2.1 The computation tree for residual inverse iteration (part (a)) and the fixed point reformulation
(2.3) is shown in part (b).
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3 The convergence factor

We are now ready to study the error of the residual inverse iteration using the fixed
point formulation in the previous section. We first show how the fixed point iteration
behaves close to a fixed point.

Theorem 3.1 (Linearization of fixed point iteration) Consider a solution (λ∗,v∗)
of the nonlinear eigenproblem (1.1) and a function w such that (2.2) is satisfied. Then,
there exists a neighborhood of v∗ denoted N(v∗), such that for any pair vk,vk+1 ∈
N(v∗) corresponding to one step of residual inverse iteration vk+1 = F(vk), the eigen-
vector error ∆vk = vk− v∗ satisfies

∆vk+1 = (I− v∗cH)A∆vk +O(∆vk)
2, (3.1)

where

A := I−M(σ)−1M(λ∗)+
1

wH∗ M′(λ∗)v∗
M(σ)−1M′(λ∗)v∗wH

∗ M(λ∗). (3.2)

Proof Let z(v) := v−M(σ)−1M(p(v))v. Then, the fixed point iteration can be written
as

F(v) =
1

cHz(v)
z(v).

Note that at the fixed point we have cHz(v∗) = 1. By using the chain rule we now find
that the Jacobian (evaluated in a fixed point v∗ = F(v∗)) is

F ′(v∗) = (I− v∗cH)z′(v∗) =

(I− v∗cH)
(
I−M(σ)−1M′(p(v∗))v∗p′(v∗)−M(σ)−1M(p(v∗))

)
, (3.3)

where p′(v) ∈ Cn denotes the (row) vector corresponding to the Jacobian of p. The
Jacobian of p can be directly computed from the definition (2.1) and the implicit
function theorem. Since the fixed point is a solution to the eigenvalue problem in
the sense that M(p(v∗))v∗ = 0 the term involving the Jacobian of w vanishes and it
follows that

p′(v∗) =−
wH
∗ M(p(v∗))

wH∗ M′(p(v∗))v∗
. (3.4)

We now express the eigenvector error and form a Taylor expansion of F(vk) around
v∗,

∆vk+1 = vk+1− v∗ = F(vk)−F(v∗) = F ′(v∗)∆vk +O(‖∆vk‖2). (3.5)

The first-order expansion (3.1) follows from the combination of (3.3), (3.4) and (3.5).

Now note that the first-order characterization of the eigenvector error in (3.1) contains
the information necessary to describe the error of the iteration, when vk is close to v∗.

We will use the traditional approach called the principle of linearization roughly
stating that the behavior of vk+1 = F(vk) when vk is close to v∗ is governed by the
first-order approximation,

∆ ṽk+1 = F ′(v∗)∆ ṽk = (I− v∗cH)A∆ ṽk. (3.6)
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In order to characterize the convergence factor of vk+1 = F(vk) we will consider the
convergence factor of the linearized equation (3.6). We define

α̃v,k :=
‖∆ ṽk+1‖2

‖∆ ṽk‖2
,

and consider the limit as k→∞. Note that αv,k is expected to coincide with α̃v,k when
sufficiently close to the fixed point. Consider one step of (3.1) and one step of (3.6)
started with the same vector ∆vk = ∆ ṽk. Then, the difference is

αv,k− α̃v,k =
‖∆vk+1‖2‖∆ ṽk‖2−‖∆ ṽk+1‖2‖∆vk‖2

‖∆vk‖2‖∆ ṽk‖2
= O(∆vk).

In this way, αv,k corresponding to step of the equation (3.1) is asymptotically the
same as α̃v,k corresponding to one step of the linearized equation (3.6). If started
appropriately, the convergence factor for (3.6) is,

ρ((I− v∗cH)A), (3.7)

where ρ :Cn×n→R denotes the spectral radius, i.e., the modulus of the largest eigen-
value. Formally, we have the following result which is easily derived, e.g., from [21,
Theorem 27.1].

Lemma 3.2 (Convergence of linearized iteration map) Let γ1, . . . ,γn be the eigen-
values of (I− v∗cH)A with corresponding eigenvectors x1, . . . ,xn. Suppose |γ1|> |γi|
for all i 6= 1 and xH

1 ∆v0 6= 0. Then, the iterates {∆ ṽi}i∈N satisfy

∆ ṽk

‖∆ ṽk‖2
→ x1 as k→ ∞, (3.8)

and

α̃v,k :=
‖∆̃vk+1‖2

‖∆̃vk‖2
→ |γ1|= ρ((I− v∗cH)A) as k→ ∞. (3.9)

Remark 3.1 (The matrix A and the iteration matrix) The construction of the iteration
matrix

(I− v∗cH)A

can be interpreted as follows. The operation of multiplying the matrix A from the
left by (I− v∗cH) only changes one of the eigenvalues of A. Note that the matrix A
always has an eigenvalue equal to one since Av∗ = v∗. Moreover, we have that cHv∗ =
1 and the multiplication from the left with (I− v∗cH) corresponds to transforming
the eigenvalue of v∗ to zero and leaving all other eigenvalues unchanged. Hence,
the eigenvalues of (I− v∗cH)A are the same as the eigenvalues of A except for the
eigenvalue 1 corresponding to eigenvector v∗.

This is consistent with the fact that the iteration is independent of c (as long as
cHvk 6= 0). Although the iteration matrix in (3.1) depends on c, the convergence factor
given by (3.7) is also the modulus of an eigenvalue of A which is independent of c.
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The convergence factor of the fixed point iteration (2.3) is completely character-
ized by (3.7). Since the fixed point iteration is an iteration in the eigenvector approx-
imations vk, the result in Theorem 3.1 does not directly imply anything about the
convergence factor corresponding the eigenvalue iterates λk. We will now character-
ize eigenvalue iterates also using the matrix A.

For the eigenvalue convergence factor we need to distinguish between two cases.
We essentially establish that the convergence factor is the same as in Theorem 3.1
for one case and square that of Theorem 3.1 for the other. Note that in this corollary
we assume that ∆vk/‖∆vk‖ → x1, which is the case for the linearized iteration in
Lemma 3.2 and it is the generic situation also for the nonlinear case.

Corollary 3.3 (Eigenvalue convergence factor) Consider a solution (λ∗,v∗) of the
nonlinear eigenproblem (1.1) and a sequence (λk,vk) generated by residual inverse
iteration convergent to (λ∗,v∗). Suppose the assumptions of Theorem 3.1 are satisfied
for all k. Let x1 ∈ Cn be as in Lemma 3.2. Moreover, suppose ∆vk/‖∆vk‖ → x1 as
k→ ∞. Suppose w : Cn→ Cn is infinitely differentiable in v = v∗.

i) If wH
∗ M(λ∗)x1 6= 0, then

lim
k→∞

|∆λk+1|
|∆λk|

= ρ((I− v∗cH)A). (3.10)

ii) If, on the other hand, wH
∗ M(λ∗) = 0 but xH

1 p′′(v∗)x1 6= 0, then,

lim
k→∞

|∆λk+1|
|∆λk|

= ρ((I− v∗cH)A)2. (3.11)

Proof We will consider two steps and the corresponding expansions for λk+1 = p(vk)
and λk = p(vk−1),

λk = p(vk−1) = p(v∗+∆vk−1) =

p(v∗)+ p′(v∗)∆vk−1 +
1
2

∆vH
k−1 p′′(v∗)∆vk−1 +O(∆vk−1)

3, (3.12)

and

λk+1 = p(v∗+∆vk) = p(v∗)+ p′(v∗)(I− v∗cH)A∆vk−1+

1
2

∆vH
k−1AH(I− v∗cH)H p′′(v∗)(I− v∗cH)A∆vk−1 +O(∆vk)

3, (3.13)

where we used Theorem 3.1 to derive (3.13). Now we subtract λ∗ = p(v∗) from both
equations (3.12) and (3.13) and form the quotient |λk+1−λ∗|/|λk−λ∗|. Then we take
the limit and note that ∆vk−1/‖∆vk−1‖ → x1 which is an eigenvector of (I− v∗cH)A
(corresponding to the largest eigenvalue). When using the formula for p(v∗), (3.4),
the first term is non-zero in case i and we directly establish (3.10). Case ii, follows
similarly by noting that if p′(v∗)x1 = 0, i.e., the first term cancels and (3.13) follows
from the second term.
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Remark 3.2 (Eigenvalue convergence factor and wH
∗ M(λ∗)x1 = 0) If w∗ is a left

eigenvector we have that wH
∗ M(λ∗) = 0 and we have case ii) in Corollary 3.3. This is

the case in particular when M(λ∗) is Hermitian and λ∗ real and we set (as Neumaier
proposes) wk = vk.

Note that squaring the convergence factor does not imply a higher convergence
order. The convergence is still linear, but faster. As an illustration we consider the
nonlinear eigenvalue problem

M(λ ) =−λ I +

3 1 0
1 3 1
0 1 3

+

3 0 0
0 3/2 0
0 0 6

e−λ , (3.14)

which is symmetric and has a real eigenvalue λ∗ ≈ 3.18581. We carry out residual
inverse iteration with c= (1,1,1)T and σ = 3, for different choices of wk. The error is
illustrated in Figure 3.1. We clearly see that the convergence factor for the eigenvalue
is the essentially the square of the convergence factor for the eigenvector if wk = vk.
The eigenvector convergence, however, does not appear faster than for the choice
wk = c.

Note that in all simulations in this paper we used software for high precision
arithmetic, with such precision that the round-off error does not influence the figure.

4 Convergence factor for shift close to the eigenvalue

Due to the interpretation of σ as a shift, it is to be expected that we have fast con-
vergence if it is close to an eigenvalue. This was already proven in Neumaier [14,
page 919] for the choices of the vector wH

k = cHM(σ)−1 and wk = vk, where it is
shown that the convergence factor grows linearly with the distance between the shift
and the eigenvalue. We will in this section see that this statement holds for arbitrary
wk.

0 5 10 15 20 25 3010−60

10−40

10−20

100

Iteration k

E
rr

or

|λk−λ∗|, wk = vk

‖vk− v∗‖2, wk = vk

|λk−λ∗|, wk = c
‖vk− v∗‖2, wk = c
∼ αv,∗, ∼ αλ ,∗

Fig. 3.1 The difference between the exact eigenvalue and the eigenvalue iterate for different choices of
wk , when applied to problem (3.14). The limits of αv,k and αλ ,k predicted by (3.7), (3.10) and (3.11) are
consistent with the numerical experiment.
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Moreover, we derive explicit formulas for the growth of convergence factor as
a function of the shift-eigenvalue distance. With the explicit formulas we can also
characterize what is an optimal choice of wk in terms of growth rate, here defined as
the modulus of the derivative of the convergence factor as a function of the shift. We
use an example to show that the optimal choice is not necessarily the left eigenvector.

In order to derive the main result we need the following lemma, which is essen-
tially an extension of the zeroth-order expansion [14, Proposition 1] to a first-order
expansion. The proof is available in Appendix A.

Lemma 4.1 Let λ∗ ∈Ω be a solution to the nonlinear eigenvalue problem (1.1) with
corresponding left and right eigenvectors u and v. Suppose M(λ∗) has a null space
of dimension one and uHM′(λ∗)v 6= 0. Then, for any σ ∈Ω ,

M(λ∗)M(σ)−1 = B0 +(σ −λ∗)B1 +O(σ −λ∗)2, (4.1)

where B0 ∈ Cn×n is given by

B0 = I− M′(λ∗)vuH

uHM′(λ∗)v

and B1 ∈ Cn×n is

B1 = B0

(
−M′(λ∗)M(λ∗)+B0−

M′′(λ∗)vuH

uHM′(λ∗)v

)(
I +

M′(λ∗)vuH

uHM′(λ∗)v

)−1

,

where (·)+ denotes the pseudo inverse.

It turns out that when the shift is close to the eigenvalue, the convergence factor
is also small.

Theorem 4.2 (Shift close to the eigenvalue) Suppose λ∗ ∈ Ω is a solution to the
nonlinear eigenvalue problem (1.1) with corresponding normalized left and right
eigenvectors u and v. Consider residual inverse iteration with shift σ ∈ Ω . Suppose
the largest eigenvalue (in modulus) of the iteration matrix (I− v∗cH)A is unique and
simple and suppose 1 is a simple eigenvalue of A. Then, the convergence factor as a
function of σ is to first order given by,

ρ((I− v∗cH)A) = |σ −λ∗|ρ
((

I− M′(λ∗)v∗wH
∗

wH∗ M′(λ∗)v∗

)
B1

)
+o(σ −λ∗) (4.2)

and in particular if w∗ = u∗,

ρ((I− v∗cH)A) = |σ −λ∗|ρ(B1)+O(σ −λ∗)2. (4.3)

Proof Consider the matrix M(σ)−1AM(σ), which has the same eigenvalues as A.
It is straightforward to verify from the definition of A that w∗ is a left eigenvector
of M(σ)−1AM(σ) corresponding to the (simple) eigenvalue one. Let the columns
of V ∈ Cn×(n−1) be an orthogonal basis of the subspace perpendicular to w∗, i.e.,
wH
∗ V = 0. Since, according to Remark 3.1, the eigenvalues of A are the the eigenval-

ues of (I− v∗cH)A except the eigenvalue at one, we can now study ρ(I− v∗cH)A) =
ρ(V HM(σ)−1AM(σ)V ).
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In the following, we will need the following relation several times,

(I− M′(λ∗)vrH

rHM′(λ∗)v
)B0 =

I−M′(λ∗)v
(

rH

rHM′(λ∗)v
+

uH

uHM′(λ∗)v
− rH

rHM′(λ∗)v
M′(λ∗)vuH

uHM′(λ∗)v

)
=

I− M′(λ∗)vrH

rHM′(λ∗)v
. (4.4)

Now form the Taylor expansion of A (as a function of σ ) and simplify,

M(σ)AM(σ)−1 = I−
(

I− M′(λ∗)v∗wH∗
wH∗ M′(λ∗)v∗

)
M(λ∗)M(σ)−1

I−
(

I− M′(λ∗)v∗wH∗
wH∗ M′(λ∗)v∗

)(
I +(σ −λ∗)

(
−M′(λ∗)M(λ∗)+B0

−M′′(λ∗)v∗uH

uH M′(λ∗)v∗

)(
I + M′(λ∗)v∗uH

uH M′(λ∗)v∗

)−1
+O(σ −λ∗)2

)
= T1 +T2(σ −λ∗)+O((σ −λ )2),

(4.5)
where

T1 =
M′(λ∗)v∗wH

∗
wH∗ M′(λ∗)v∗

, T2 =

(
I− M′(λ∗)v∗wH

∗
wH∗ M′(λ∗)v∗

)
B1.

The projection now takes the form

V HM(σ)AM(σ)−1V =V HT1V +V HT2V (σ −λ0)+O((σ −λ∗)2).

We have V HT1V = 0. Furthermore, we have ρ(V HT2V ) = ρ(T2), because wH
∗ T2 = 0,

which implies on its turn that σ(V T T2V ) = σ(T2)∪ {0}. Assertion (4.3) follows.
Formula (4.3) is proven analogously, by directly applying Lemma 4.1.

Remark 4.1 (The choice of wk) Neumaier [14] and Schreiber [19] propose to choose
wk as an approximation of the left eigenvector. Although this is a natural choice since
the eigenvalue convergence factor is expected to be small (see Remark 3.2), we will
now see that it is not necessarily optimal in terms of growth rate. Consider the fol-
lowing cubic polynomial eigenvalue problem,

M(λ ) :=

−16 −4 7
−14 7 13

6 8 7

+λ 2

 2 −6 1
−2 22 11
7 −1 1

+λ 3

 −4 3 12
−17 −11 0

1 −1 3

 . (4.6)

In Figure 4.1, where we illustrate the convergence factor and the growth rate for
this example, we see the growth rate for c = (1,1,1) and for wH

k = cHM(σ)−1.
The growth rate for wk = u is ρ ′ ≈ 0.685. By sampling with random w in the re-

gion [−1,1]3 we find a better growth rate ρ ′≈ 0.658 for wk =(0.630,−0.754,0.185)T .
In a sense, this contradicts the idea that Neumaiers choice is optimal in terms of
growth rate of the convergence factor. We note that at least for this example, the dif-
ference between the found optimum and the growth rate corresponding to the left
eigenvector is small.
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Fig. 4.1 The convergence factor ρ((I− v∗cH A), in (4.2), as a function of the shift, when the shift is close
to the eigenvalue for the nonlinear eigenvalue problem (4.6).

5 Convergence basin as a function of the shift

We saw above that the formula for the convergence factor in Section 3 could be used
when the shift-eigenvalue distance is small. We will now illustrate the use of the
formula for the convergence factor not only locally. In this non-local analysis we can
also illustrate the different choices of wk.

We again consider the nonlinear eigenvalue problem (4.6). The convergence fac-
tor corresponding to the case where the iteration is started sufficiently close to λ∗ ≈
0.5i is shown in Figure 5.1 for two different choices of wk. The left subfigure (Fig-
ure 5.1a) shows the convergence factor for the choice proposed by Neumaier. The
convergence factor when wk is chosen as the left eigenvector is illustrated in the
right subfigure (Figure 5.1b). The region enclosed by the bold curve, i.e., a conver-
gence factor equal to one, corresponds to possible shifts where the iteration will con-
verge when started with a vector sufficiently close to the eigenvector corresponding
to λ∗ ≈ 0.5i.

The figure indicates that in this case, the acceptable choices of σ is larger if
wk is close to a left eigenvector, supporting Schreiber’s suggestion [19, page 82]
that an approximation of the left eigenvector is a good choice. Note however that
this example is not strictly conclusive, since there is a region of the complex plane
where the choice of Neumaier (Figure 5.1a) is acceptable but the convergence factor
corresponding to the left eigenvector is not.
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Fig. 5.1 Level contours of the convergence factor (given by (3.7)) as a function of shift σ .

6 Double eigenvalues

In order characterize the situation where λ∗ is a double eigenvalue we will use the
concepts and generalizations of Jordan chains and generalized eigenvectors for non-
linear eigenvalue problems used in [5, Section 1.4] and [7]. The classification can
be summarized as follows. A double eigenvalue can be either semisimple or non-
semisimple. The matrix M(λ∗) has a null space of dimension (exactly) two if and
only if the eigenvalue is semisimple. Correspondingly, M(λ∗) has a null space of
dimension (exactly) one if the double eigenvalue is non-semisimple. Moreover, a
double eigenvalue is non-semisimple if and only if there is a vector v∗,1 ∈ Cn called
a generalized eigenvector, associated with the eigenvector v∗, such that

M′(λ∗)v∗+M(λ∗)v∗,1 = 0. (6.1)

6.1 A double non-semisimple eigenvalue

Suppose λ∗ is a double non-semisimple eigenvalue, which is the generic situation for
double eigenvalues of nonlinear eigenvalue problems without any particular structure.
Note that this does not change the fixed point formulation (in Section 2). In particular,
since a non-semisimple double eigenvalue only has one eigenvector, we have from
Proposition 2.1 that the fixed point corresponding to a double eigenvalue is isolated.

Suppose w∗ is not a left eigenvector. We know from Remark 3.1 that the matrix A
always has an eigenvalue equal to one corresponding to eigenvector v∗. It is now easy
to verify that v∗,1 is also an eigenvector of A corresponding to the eigenvalue one,
i.e., one is a double eigenvalue of A. It follows from the definition of the generalized
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eigenvector (6.1) that,

Av∗,1 = v∗,1−M(σ)−1M(λ∗)v∗,1 +
M(σ)−1M′(λ∗)v∗wH

∗ M(λ∗)v∗,1
wH∗ M′(λ∗)v∗

= v∗,1. (6.2)

The iteration matrix (I− v∗cH)A has the same eigenvalues as A except for the eigen-
value corresponding to v∗ which is transformed to zero (see Remark 3.1). Loosely
speaking, we now have that one of the two eigenvalues of A at one is removed when
instead considering (I−v∗cH)A, and one eigenvalue remains. The eigenvector corre-
sponding to eigenvalue one is explicitly v̂ := v∗,1− (cHv∗,1)v∗. That is,

(I− v∗cH)Av̂ = (I− v∗cH)Av∗,1 = (I− v∗cH)v∗,1 = v̂, (6.3)

where we used that (I− v∗cH)Av∗ = 0. From the fact that the iteration matrix (I−
v∗cH)A always has an eigenvalue one we predict that for double non-semisimple
eigenvalues, the convergence will be slow or the iteration will not converge at all.
This is consistent with the application of residual inverse iteration in [17], where one
bifurcation curve, which corresponds to a double eigenvalue, can not be accurately
followed.

We here assumed that w∗ is not a left eigenvector. If this is the case, the iteration is
no longer well posed since the Rayleigh functional p(·) no longer uniformly defines
a unique solution. That is, the condition (2.2) is violated. Once vk is close to the
solution, the Rayleigh functional will have (at least) two solutions close to the exact
eigenvalues λ∗ and the iteration does not uniquely define a next eigenvalue iterate.

0 20 40 60 80 100
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10−4

10−3

10−2

Iteration k

E
rr

or

‖vk− v∗‖2

|λk−λ∗|

(a) The convergence is slow for the double
eigenvalue.

0 20 40 60 80 100

0.6

0.8

1
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α ·
,k

αλ ,k
αv,k

(b) The values αv,k and αλ ,k both ap-
proach 1.

Fig. 6.1 Illustration of the convergence for the Example 6.1 which has a double non-semisimple eigen-
value.
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Example 6.1 (Double non-semisimple eigenvalue) Consider as in [9],

M(λ ) =−λ I +A0 +A1e−λ ,

where

A0 =

 0 1 0
0 0 1
−a3 −a2 −a1

 , A1 =

 0 0 0
0 0 0
−b3 −b2 −b1

 ,

and

a1 =
2
5
(65π +32)

8+5π
≈ 3.98, a2 =

9π2(13+5π)
8+5π

≈ 108,

a3 =
324

5
π2(5π +4)

8+5π
≈ 531, b1 =

260π +128+225π2

10(8+5π)
≈ 13.6,

b2 =
45π2

8+5π
≈ 18.7 and b3 =

81π2(40π +32+25π2)

10(8+5π)
≈ 1363.

This nonlinear eigenvalue problem has a double non-semisimple eigenvalue for λ =
3πi.

We apply residual inverse iteration to this problem with the parameters c=(1,1,1)T ,
σ = 9.4i, w = M(σ)−Hc and v0 = v∗+(10−3,10−3,10−3)T . In the convergence dia-
gram in Figure 6.1a we see that the convergence stagnates although the shift as well as
the starting vector is very close to the exact solution. Figure 6.1b shows the estimate
of the convergence factor ck := ‖vk+1−v∗‖/‖vk−v∗‖. It is clear that αv,k approaches
one, as predicted by (6.3).

6.2 A double semisimple eigenvalue

Now suppose λ∗ is a double semisimple eigenvalue, i.e., the null space of M(λ∗) has
dimension two. The following lemma characterizes the fixed points of the iteration
map F and follows directly from Proposition 2.1.

Lemma 6.1 Let λ∗ be a double semisimple eigenvalue. Let {v1,v2} be a basis of the
null space of M(λ∗). Then, the set of fixed points of F corresponding to the eigenvalue
λ∗, is given by

V :=
{

v ∈ Cn \{0} : v ∈ span{v1,v2} , cHv = 1
}
.

Note that if either cHv1 6= 0 or cHv2 6= 0, then V is a one-dimensional linear space.
Hence, in the generic case, the fixed point is not isolated. The properties of the itera-
tion matrix are described in next theorem.

Theorem 6.2 Let λ∗,v1,v2 and V be defined as in Lemma 6.1 and assume that either
cHv1 6= 0 or cHv2 6= 0. Consider any fixed point v∗ ∈ V . Then, the corresponding
iteration matrix

(I− v∗cH)A, (6.4)
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with A defined by (3.2), always has an eigenvalue equal to one. If this eigenvalue is
simple then the corresponding eigenvector ṽ satisfies

(v∗+ ε ṽ) ∈V, ∀ε ∈ R. (6.5)

Proof Take ṽ ∈ span{v1,v2}\{0} such that

cH ṽ = 0. (6.6)

This is always possible because cHv1 6= 0 or cHv2 6= 0. We have

(I− v∗cH)Aṽ = (I− v∗cH)ṽ = ṽ.

Thus, matrix (6.4) has an eigenvalue equal to one and ṽ is a corresponding eigenvec-
tor. The assertion (6.5) follows from cHv∗ = 1 and (6.6).

We have hence shown that, similarly to the non-semisimple case, the iteration
matrix (I−v∗cH)A always has an eigenvalue at one. However, in contrast to the non-
semisimple case, the eigenvalue one of the iteration matrix for the semisimple case
does not affect the convergence rate of residual inverse iteration whenever it is simple.
This follows from (6.5): a perturbation of the fixed point v∗ in the direction of ṽ, for
which the linearized analysis is inconclusive about the recovery (eigenvalue one),
corresponds to a perturbation along the line of fixed points.

The conclusion of the above reasoning is that for double semisimple eigenvalues
one should study

σ((I− v∗cH)A)\{1} (6.7)

in order to establish the convergence factor. The convergence factor depends on the
fixed point, or equivalently, the eigenvector, under consideration. Because there is
a one-dimensional subspace of (normalized) eigenvectors V , the method will, when
converging, not necessarily converge to a specific eigenvector. In theory, the asymp-
totics of the iteration could also exhibit a drift along the subspace of eigenvectors V .
The latter has however not been observed in our numerical experiments.

Example 6.2 (A double semisimple eigenvalue) The nonlinear eigenvalue problem
corresponding to

M(λ ) :=

1−λ 2 0 λ
0 2(1−λ 2) 0

1−λ 0 λ 3 +2λ 2 +1

 ,

has a double semisimple eigenvalue for λ = 1. It is easy to verify that two correspond-
ing right eigenvectors are v = e1 and v = e2. We fix w = (1,1,2)T , c = (1,1,1)T and
start the iteration with v0 = (1,2,1)T .

We first observe in Figure 6.2a that the convergence is linear. The figure shows
the eigenvalue error |λk−λ∗|= |λk−1| and the difference |vk− vK |, where vk is the
eigenvector iterate and vK an eigenvector iterate approximating a converged eigen-
vector (K = 50). We use this type of construction since, any vector in span(e1,e2) is
an eigenvector, and it is not known a priori to which it converges (if any at all).
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Fig. 6.2 Visualization of the (linear) convergence for the semisimple eigenvalue in Example 6.2.

In a second run, we start the iteration with a different vector v0 = 1
2 (2,1,2)

T .
Note in Figure 6.2b that convergence factor changes with starting value. Although
Theorem 3.1 gives an asymptotic expression for the eigenvector error when vk is close
to an eigenvector v∗, the expression depends on v∗ which is not unique. Different
eigenvectors of the manifold V will yield different A and hence different convergence
factors.

7 Conclusions and outlook

An explicit formula for convergence factor, such as the one we have derived, can be
used in many different ways. In this paper we used it to illustrate the convergence
behavior when the shift is close to the eigenvalue and how the convergence factor
depends on the choice of wk. We also used it characterize the convergence for double
eigenvalues.

We finally wish to point out that the use is not only limited to these concepts.
A number of important quantities and concepts associated with an iterative method
can be analyzed with the convergence factor. For instance, if the convergence factor
can be accurately and cheaply estimated, it can be used to accelerate the method or
even increase the convergence order by predicting the error of the iterate, similar to
the technique of extrapolation. Accurate stopping criteria can also be derived using
formulas for convergence factors. In this case, it could also be used to establish at
what points in the iteration the shift should be updated.
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A The proof of Lemma 4.1

Throughout this derivation we will need the following two formulas. Suppose E is a singular matrix with
a null space of dimension one, with left and right null vectors u and v and uH v 6= 0. Then,

adj(E) =−‖adj(E)‖2

uH v
vuH =: βvuH . (A.1)

We will also use the Jacobi formula for d
dσ det(M(σ)),(

d
dσ

det(M(σ))

)
σ=λ∗

= Tr(adj(M(λ∗))M′(λ∗)) = βTr(vuH M′(λ∗)) = βuH M′(λ∗)v. (A.2)

By using (A.1) and (A.2), the quantity we seek can now be expressed as

M(λ∗)M(σ)−1 = I +(M(λ∗)−M(σ))
adj(M(σ))

det(M(σ))
= I− (σ −λ∗)M′(λ∗)

adj(M(σ))

det(M(σ))
+O(σ −λ∗)2 =

I− M′(λ∗)vuH

uH M′(λ∗)v
+O(σ −λ∗)2, (A.3)

where in the last step we expanded det(M(σ))= det(M(λ∗))+(σ−λ∗)( d
dλ det(M(λ )))λ=λ∗+O(σ−λ∗)2

and applied (A.2). This proves the formula for B0 in the expansion (4.1).
We will derive the formula for B1 by first noting that

B1 =

(
d

dσ
M(λ∗)M(σ)−1

)
σ→λ∗

.

Hence,

d
dσ

M(λ∗)M(σ)−1 =−M(λ∗)M(σ)−1M′(σ)M(σ)−1 =

−(B0+(σ−λ∗)B1)(M′(λ∗)+(σ−λ∗)M′′(λ∗))
adj(M(λ∗))+(σ −λ∗)( d

dλ adj(M(λ )))λ=λ∗
(σ −λ∗)βuH M′(λ∗)v

+O(σ−λ∗),

where we inserted the (still unknown) expansion M(λ∗)M(σ)−1 = B0 +(σ −λ∗)B1 +O(σ −λ∗)2. Note
that B0M′(λ∗)adj(M(λ∗)) = 0. We now again use that adj(M(λ∗)) = βvuH to find that

B1 =
−B1M′(λ∗)βvuH −B0M′′(λ∗)βvuH −B0M′(λ∗) d

dλ∗ adj(M(λ∗))
βuH M′(λ∗)v

By solving for B1, we have that

B1 =

(
−B0M′(λ∗)( d

dλ adj(M(λ )))λ=λ∗
βuH M′(λ∗)v

− B0M′′(λ∗)vuH

uH M′(λ∗)v

)(
I +

M′(λ∗)vuH

uH M′(λ∗)v

)−1

. (A.4)

In the last step we will now compute the derivative of M(λ∗)adj(M(σ)) = M(λ∗)M(σ)−1 det(M(σ)) =
(B0 +(σ −λ∗)B1 +O(σ −λ∗)2)det(M(σ)). By applying the product rule, we find that,

M(λ∗)
(

d
dσ

adj(M(σ))

)
σ=λ∗

=B0(IβuH M′(λ∗)v−βM′(λ∗)vuH)= β (uH M′(λ∗)v)B2
0 = β (uH M′(λ∗)v)B0,

to which the potential solutions are parameterized by the variable x ∈ Cn, such that(
d

dσ
adj(M(σ))

)
σ=λ∗

= β (uH M′(λ∗)v)M(λ∗)+B0 + vxH . (A.5)

Now note that the derivative of the adjoint matrix only appears in combination with the product

B0M′(λ∗)
d

dλ∗
adj(M(λ∗))

in (A.4). In this combination, the free variable term vxH in (A.5) vanishes since B0M′(λ∗)v = 0. This fact
and insertion of (A.5) into (A.4) completes the proof.
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