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Abstract: In this work we analyze stability properties of retarded linear time
invariant multi-dimensional, multi-delay, time delay systems with respect to
perturbations in the delay parameters. We analyze two methods which allow the
computation of the critical delays, i.e., the points in delay-space which causes
the system to have a purely imaginary eigenvalue. The critical delays are potential
stability boundaries as the boundaries of the stability region is necessarily a subset
of the critical delays.
The two methods originates from a Lyapunov-type condition, which is completely
self-contained in this work. The first method corresponds to the case of commen-
surate delays, for which the the Lyapunov-type condition reduces to a polynomial
eigenvalue problem for which the first companion form is exactly the eigenvalue
problem occurring in Chen et al. (1995). The second method is the result of
a simple substitution which allows the computation of the critical delays of an
incommensurate system by solving a quadratic eigenvalue problem. For the scalar
multi-delay case we find a closed expression for the critical curves using this
method. We confirm the methods by comparing it to previous work and published
examples. Copyright (C) 2006 IFAC
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1. INTRODUCTION

In this work we consider linear multi-dimensional
retarded time delay systems of incommensurate
and commensurate type. The boundary of the
stability region of the TDS in the delay-parameter
space is of particular interest. We address the
problem of computing this boundary.

The analysis of the stability region in delay space
and delay-dependent stability conditions has, for
special cases, received a lot of attention the last
decades, for instance the treatment of two de-
lay scalar equation (see Hale and Huang (1993)
and references therein). A geometric intepretation

of the two-delay problem is considered in Gu
and Niculescu (2005). The multi-dimensional one-
delay case is treated in Louisell (2001). In Chen
et al. (1995) the stability region for the commen-
surate case, i.e., the case where the delays are
integer multiples of each other, is computed. It is
extended in Niculescu et al. (2005) by providing a
way to determine the stability switching direction.
The large amount of literature about conservative
bounds of the stability region, often using linear
matrix inequalities, is well described in Niculescu
(2001) and Gu et al. (2003) which also contain
more thorough descriptions of methods to analyze
stability. For more special cases, see the survey ar-



ticle Sipahi and Olgac (2005a). The only existing
method finding the boundaries of the stability re-
gion for multi-dimensional, incommensurate case
is presented in a series of recent papers by Sipahi
and Olgac Sipahi and Olgac (2005b), Sipahi and
Olgac (2003) and Olgac and Sipahi (2002),

In this work we focus on finding the conditions on
the delays such that the system is critical, i.e. has
an imaginary eigenvalue. It is clear from continu-
ity that this generates the potential boundaries
of the stability region in delay space. For many
applications the main stable region contains the
origin, i.e. the corresponding delay-free system,
and is hence easy to identify. We note, however,
that if there are more than one stable region, such
as the case with stabilizing delays, it is not enough
to know the critical delays to do a complete stabil-
ity assessment. For those cases there is a need for
a more systematic identification approach, for in-
stance exploiting some root invariance properties
(see Sipahi and Olgac (2005b)).

Here, similar to Sipahi and Olgac (2005b), we
treat the general time-delay system for the multi-
dimensional multi-delay case. But the approach
here is completely different. In Sipahi and Olgac
(2005b) the critical delays (called kernel and off-
spring curves) are found by making a Rekasius
substitution. In the method presented here we
define a Lyapunov type matrix operator which,
under simple conditions, share roots with the
characteristic equation. Moreover, the operator
turns out to have a particularly simple structure
on the boundary of the stability region, which
makes it possible to vectorize it and rewrite it into
a polynomial eigenvalue problem. This allows us
to apply the rich theories on eigenvalue problems,
and in particular computationally efficient itera-
tive methods for eigenvalue problems.

The introduction of the Lyapunov-operator and
the corresponding theorems are justified by the
fact that when the system is commensurate,
the vectorized version of the operator turns into
the eigenvalue problem occurring in Chen et al.
(1995).

We put the method into context by comparing
it to the method of Chen et al. (1995) and the
method of Louisell (2001). We also see that the
method is consistent with the theory for the one
delay scalar case, for which the (known) explicit
expression is found. As a byproduct we also find
an explicit parameterization of the boundary of
the stability region for the scalar case. We note
that an approach, similar to the one here, is taken
in Ergenc et al. (2006).

This paper is organized as follows. Section 2 de-
fines the problem and some the concepts charac-
teristic eigenproblem and critical curves. Section

3 contains the definition of the Lyapunov type
operator as well as the main theorems allowing
parameterization of the boundary of the stability
region. In Section 4 we apply the method to some
examples. We stress that the main contribution of
this work is the method presented in Section 3.2
and Section 3.3.

2. DEFINITIONS

The retarded linear m-delay TDS is described by

Σ =











ẋ(t) =

m
∑

k=0

Akx(t − hk), t > 0

x(t) = ϕ(t), t ∈ [−hm, 0]

with h0 = 0 < h1 < . . . < hm, x : [−hm,∞) 7→ R
n

and Ak ∈ Rn×n. We will sometimes denote the
system Σ with Σ(h1, . . . , hm) in order to stress
the dependence on the delays.

Definition 1. The characteristic eigenvalue prob-
lem of Σ is

M(s)v :=

(

−sIn +

m
∑

k=0

Ake−hks

)

v = 0, ||v|| = 1,

(1)
where v ∈ Cn is called eigenvector and s ∈ C an
eigenvalue. The set of all eigenvalues σ(Σ) is called
the spectrum.

This is equivalent to the more common eigenvalue
definition det(M(s)) = 0. We select this definition
because we can then save a lot (computationally)
in (8) by exploiting the eigenvector structure.

Similar to the delay-free case, a system is expo-
nentially stable if and only if all eigenvalues lie in
the open left complex half-plane, i.e. σ(Σ) ⊂ C−.
An essential difference is that, unlike the (delay-
free) dynamical systems, the spectrum contains
a countably infinite number of eigenvalues. For-
tunately, it can be proven (see for instance Hale
(1977)) that there are only a finite number of
eigenvalues in C+.

From continuity it is clear that the TDS at the
boundary of any stability region in the delay-
parameter space h1, h2, . . . , hm, has at least one
purely imaginary eigenvalue. This justifies the
following definitions, inspired by the use of the
word critical in for instance Plischke (2005) and
Gu and Niculescu (2000).

Definition 2.

(1) Σ is called critical 1 if and only if σ(Σ)∩ iR 6= ∅.
(2) The set of all points in delay-parameter space

(h1, h2, . . . , hm) for which Σ(h1, . . . , hm) is

1 In the context of nonlinear differential equations a crit-
ical system is normally called non-hyperbolic (at a fixed
point).



critical are called the critical curves (m = 2)
and critical surfaces (m > 2). 2

The stability region in the delay-parameter space
is bounded by critical surfaces. The rest of this
paper will, for that reason, deal with the compu-
tation of critical surfaces.

3. RESULTS

First we introduce an operator of Lyapunov-type.

Definition 3. Let

L(X, s) := [M(s)] X + X [M(s)∗] =

=

m
∑

k=0

(

AkXe−hks + XAT
k e−hks̄

)

− 2XRe s,

where ∗ denotes complex conjugate transpose.

Note that for the critical case Re s = 0, the linear
term disappears and the L operator reduces to a
sum of exponential functions.

The following lemma characterizes eigenpairs us-
ing the Lyapunov operator.

Theorem 4. Given s ∈ C and v ∈ Cn, v∗v = 1 the
following are equivalent.

M(s)v = 0 (2)

L(vv∗, s) = 0 ∧ v∗M(s)v = 0 (3)

Proof: The forward implication is trivial from
definitions, i.e., (1) and (3). The backward im-
plication is clear from the following equalities.

M(s)v = M(s)vv∗v =

= (L(vv∗, s)vv∗ − vv∗M(s)∗vv∗) v = 0

2

We now characterize the difference of this the-
orem and the one-delay matrix pencil approach
in Louisell (2001). An important property of the
operator L is that, for the critical case, it contains
only exponential terms and no linear terms. This
is different from for instance the equation consid-
ered in Louisell (2001) and (Plischke, 2005, Chap-
ter 6) where the exponential terms are eliminated
to form an expression containing only polynomial
terms. In the context of the operators here, and
in slightly different form, Theorem 3.1 in Louisell

2 The critical curves (surfaces) are called offspring curves
and kernel curves in Sipahi and Olgac (2005b) and Hopf
bifurcation curves (surfaces) in Hale (1991).

(2001) (assuming the system is retarded, i.e., B =
0) is

Theorem 5. Given s ∈ C, v ∈ Cn, v 6= 0 and
M(s)v = 0 then
(

M(s) − e−shmAm

)

vv∗
(

M(s)∗ − e−s̄hmAT
m

)

− e−2hmRe sAmvv∗AT
m = 0

(4)

Proof: This can be verified by expanding the first
product. The expansion yields terms which all but
one contain M(s)v. 2

For the one delay critical case, i.e., m = 1, s ∈ iR,
the exponential terms cancel and (4) reduces to

(sI − A0)vv∗(sI + AT
0 ) + A1vv∗AT

1 = 0.

In Louisell (2001) this is vectorized to form a
quadratic eigenvalue problem and solved with
the companion form (see Section 3.2). We note
however that, unlike the method presented here,
this type of reduction is, in the current form, only
applicable for one delay systems.

We now return to Theorem 4 and provide two
ways to apply the theorem. In Section 3.1 we
consider the commensurate case, which (as stated
earlier) is closely related to the method in Chen
et al. (1995). In Section 3.2 we consider the
general (incommensurate) problem and make a
substitution which turns the Lyapunov-condition
into a quadratic eigenproblem.

3.1 Commensurate delays

Theorem 6. Let h ∈ R+ and

h̄ = (h1, . . . , hm) = (hn1, hn2, . . . , hnk),

be a point in delay-parameter space, with nk ∈
N+, n0 = 0 and let m′ = maxnk. The point h̄

lies on the critical surface if and only if, for some
ϕ ∈ R, v ∈ Cn and ω ∈ R, v∗v = 1, ζ = eiϕ,

m
∑

k=0

(

Akvv∗ζm′−nk + vv∗AT
k ζm′+nk

)

= 0, (5)

iω = v∗

(

m
∑

k=0

Akζ−nk

)

v

and
hk = nk

ϕ

ω
, k = 1 . . .m.

Proof: This follows from Theorem 4 if we let
ζ = eihω, and multiply (3) with ζm′

. 2

We now note that the vectorized version of (5)
is a polynomial eigenvalue problem of degree 2m′.



Polynomial eigenvalue problems can be solved by
a transformation to a linear eigenvalue problem,
the most common transformation being the com-
panion form. The companion form and generaliza-
tions thereof are analyzed in Mackey et al. (2005).

We also note the following: The commensurate
case, i.e., hk = hk, is included in Theorem 6.
In this case, the first companion form of the
vectorised version of (5) is exactly the eigen-
value problem occurring in Chen et al. (1995) and
Niculescu et al. (2005). However, in that context it
is not clear that the eigenvector of the polynomial
eigenvalue problem u is the vectorization of an
Hermitian rank one matrix, i.e. u = vec vv∗,
which should be used when constructing an ef-
ficient method for large dimensional problems.

3.2 A quadratic eigenproblem approach

Theorem 7. Let h̄ = (h1, . . . , hm) be a point in
delay-parameter space. h̄ lies on the critical sur-
face if and only if there are some ϕk ∈ [−π, π], k =
1, . . . , m − 1, z ∈ C on the unit circle, ω ∈ R,
v∗v = 1 such that (z, v) is a solution of the
equation

z2vv∗AT
m + z

(

m−1
∑

k=0

Akvv∗e−iϕk + vv∗AT
k eiϕk

)

+ Amvv∗ = 0 (6)

ω = −iv∗

(

Amz−1 +

m−1
∑

k=0

Ake−iϕk

)

v,

and hmω = Arg z + 2pmπ, hkω = ϕk + 2pkπ,
k = 1, . . . , m − 1 for some pk ∈ Z, k = 1 . . .m.

Proof: This follows from Theorem 4 by choosing
z = eihω and multiplying (3) with z. 2

From this theorem we can parameterize the criti-
cal surface using the m − 1 free parameters ϕk ∈
[−π, π], k = 1, . . . , m − 1. Similar to the previ-
ous section (6) can be vectorized to a quadratic
eigenvalue problem

(

z2Am ⊗ I + z

m−1
∑

k=0

Lk(ϕk) + I ⊗ Am

)

u = 0,

(7)

where where u = vec vv∗ and Lk(ϕk) = I ⊗
Ake−iϕk +Ak⊗Ieiϕk . Again, quadratic eigenvalue
problem can be solved by a transformation to a
generalized eigenvalue problem using the compan-
ion form. For a survey on quadratic eigenvalue
problems see Tisseur and Meerbergen (2001). For
completeness we state the first companion form:

All solutions of equation (6) can be found by solv-
ing the following equivalent eigenvalue problem






0 I

I ⊗ Am

m−1
∑

k=0

Lk(ϕk)







(

u

zu

)

= z

(

I 0
0 −Am ⊗ I

)(

u

zu

)

.

(8)
The dimension of this eigenproblem is 2n2 × 2n2

which can be very large even for problems of
moderate size. By exploiting the structure the of
the matrices one can reduce the computational
cost considerably (see Jarlebring (2006)).

For the one-dimensional case, the quadratic eigen-
value problem reduces to the problem of finding
roots of a quadratic equation. The theorem can
then be simplified to

Corollary 8. Let h̄ = (h1, . . . , hm) be a point
in delay-parameter space for the one-dimensional
TDS with Ak = ak. h̄ lies on the critical surface
if and only if there are some ϕk ∈ [−π, π], k =
1, . . . , m − 1, and

hm =

atan
( ω+

∑

m−1

k=1
ak sin ϕk

a0+
∑

m−1

k=1
ak cos ϕk

)

+ 2pmπ

ω

hk =
ϕk + 2pkπ

ω
, k = 1, . . . , m − 1,

ω = ±

√

√

√

√a2
m −

(

a0 +

m−1
∑

k=1

ak cosϕk

)2

−
m−1
∑

k=1

ak sin ϕk

for some pk ∈ Z, k = 1 . . .m.

Here, atan
(

a
b

)

= Arg (b + ai), i.e., the four quad-
rant inverse tangent.

For the single delay, scalar case (principal branch),
the corollary reduces to the following expression
for the stability margin

h =
atan(

√
b2−a2

a
)√

b2 − a2
=

acos(−a
b
)√

b2 − a2
.

This is exactly the expression in Niculescu (2001)
section 3.4.1.

3.3 Method to generate critical surfaces

One interpretation of Theorem 6 is that it gener-
ates the critical delays for a commensurate time-
delay system, exactly the way it is computed in
Chen et al. (1995).

We now focus on how we can use Theorem 7
to generate the critical surfaces, which contains
potential boundaries of the stability region in
delay space.

Theorem 7 is an equivalence theorem between
ϕ1, . . . , ϕm−1 and h1, . . . , hm. Hence, we can see it



as a parametrization of the critical surface. With
this in mind, we state in pseudo-code the code
to generate the critical curves for the two-delay
system.

1. FOR ϕ = −π : ∆ : π

2. Find eigenpairs (zk, uk) of (8)
3. FOR k = 1 : length(z)
4. IF zk is on unit circle
5. Compute vk such that uk = vec vkv∗

k

6. Compute ωk = −iv∗
k

(

A2z−1

k
+ A0 + A1e−iϕ

)

vk

7. Accept critical points (h1, h2)

h1 =
ϕ + 2pπ

ωk

, p = −pmax, . . . , pmax

h2 =
Arg zk + 2qπ

ωk

, q = −pmax, . . . , pmax

8. END
9. END

10. END

In step 1, ∆ is the stepsize of the parameter ϕ.
In step 7, pmax is the number of branches which
should be included in the computation. Step 7 is
not computationally demanding. We can therefore
select pmax so large that the computation contains
all relevant branches. The generalization to more
than two delays is straighforward. It involves a
nesting of the outer iteration (step 1) with for-
loops of the new free variables ϕk and computing
the other delays in step 7 similar to h1.

4. EXAMPLES

Example (n = 1, m = 2)
Consider the the 1-dimensional two delay system,

ẋ(t) = a0x(t) + a1x(t − h1) + a2x(t − h2),

studied in for instance Nussbaum (1978), Hale
and Huang (1993) and Gu and Niculescu (2005).
The application of Corollary 8 this system yields
critical curves with the following parameterization

hp,q(ϕ) =











ϕ + 2qπ
√

a2
2 − (a0 + a1 cosϕ)2 − a1 sin ϕ

atan
(

√
a2

2
−(a0+a1 cos ϕ)2

a0+a1 cos ϕ

)

+ 2pπ
√

a2
2 − (a0 + a1 cosϕ)2 − a1 sin ϕ











where ϕ ∈ [−π, π], a2
2 − (a0 + a1 cosϕ)2 > 0,

p, q ∈ Z. Fig. 1 shows the critical curves for
a0 = 0.5, a1 = −0.9 and a2 = −1.5.
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Fig. 1. Critical curves for Example 1
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Fig. 2. Critical curves for Example 2

Example (n=4, m=3)
In Chen and Latchman (1995) the following TDS
is considered

ẋ(t) = Ax(t)+B1x(t−h1)+B2x(t−h2)−B3x(t−h3)

with

A =









0 1 0 0
0 0 1 0
0 0 0 1
−2 −3 −5 −2









, B1 =
1

200









−10 1 50 0
1 1 0 0
0 0 0 0

−200 0 −100 0









,

B2 =
1

2000









10 5 0 0
0 0 100 0
0 0 0 1

−2000 −1000 −1000 0









,

B3 =
1

400









15 0 30 50
0 20 20 0
20 20 0 0
0 −1000 0 −400









.

For visualization purposes we consider h1 = h2.
The critical curves of the two-delay system are
plotted in Fig. 2, where the only stable region
is easily identified as the (unbounded) region
containing the origin.
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Fig. 3. Critical curves for Example 3

Example (n = 3, m = 2 from Sipahi and Olgac
(2005b))

Consider the 3-dimensional system

ẋ(t) = A0x(t) + A1x(t − h1) + A2x(t − h2)



where

A0 =





−1 13.5 −1
−3 −1 −2
−2 −1 −4



 , A1 =





−5.9 0 0
2 0 0
2 0 0



 ,

A2 =





0 7.1 −70.3
0 −1 5
0 0 6



 ,

The critical curves are shown in Fig. 3. Here, the
region containing the origin is stable and easily
identified. There is however a second stable region
(around h1 = 0.4, h2 = 0.3) which is not trivially
identifiable (see Sipahi and Olgac (2005b)).

5. CONCLUSIONS

We have studied the conditions on the delay pa-
rameters of retarded time delay systems such that
the system is critical. This was done by intro-
ducing a condition on a Lyapunov type operator.
The condition is transformed into conditions on
the delay parameters using polynomial eigenvalue
problems, which is solved using the companion
form. The Lyapunov type condition is shown to re-
duce to existing methods for several special cases.

For the scalar time delay system we find a closed
expression for the critical curves. In the examples
section we apply the method to several previously
published examples.
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