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Abstract: If iω ∈ iR is an eigenvalue of a time-delay system for the delay τ0 then iω is also an
eigenvalue for the delays τk := τ0 + k 2π

ω , for any k ∈ Z. We investigate the sensitivity and other
properties of the root iω for the case that iω is a double eigenvalue for some τk. It turns out that
under natural conditions, the presence of a double imaginary root iω for some delay τ0 implies
that iω is a simple root for the other delays τk, k 6= 0. Moreover, we show how to characterize
the root locus around iω. The entire local root locus picture can be determined from the square
root splitting of the double root. We separate the general picture into two cases depending on
the sign of a single scalar constant; the imaginary part of the first coefficient in the square root
expansion of the double eigenvalue.
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1. INTRODUCTION

The setting of this paper is a time-delay system with a
single constant delay and constant coefficients,

ẋ(t) = A0x(t) +A1x(t− τ), A0, A1 ∈ Cn×n. (1)
This time-delay system has the characteristic equation,

f(s, τ) := det
(
−sI +A0 +A1e

−τs) . (2)
When analyzing the stability of (1), the delays τ for which
(2) has a purely imaginary root s = iω ∈ iR often play a
crucial role. In this work, these delays will be referred to
as critical delays. They are important, since the critical
delays and the sensitivity of the imaginary roots, i.e., the
derivative with respect to the delay, can be used to produce
a complete stability picture by keeping track of the number
of roots entering and leaving the right half-plane. This type
of reasoning is used in several works in the literature, e.g.,
Cooke and Grossman (1982), Rekasius (1980), Sipahi and
Olgac (2005), and many more.

It is widely known, and often exploited, that the presence
of an imaginary root at iω is periodic in the delay param-
eter with periodicity 2π

ω .

As a first result we will see that in general the same type
of periodicity property does not hold for the presence of a
double imaginary root. That is, if iω is a double root for
some delay τ0 then for τk = τ0 + 2πk

ω , k 6= 0, iω is not a
double root. This somewhat unexpected result motivates
our study of properties of double imaginary roots and
sequences of critical delays {τk} for which the time-delay
system has a double imaginary root for one of the delays.

Stability conditions based on reasoning with imaginary
roots are often some form of elimination of either the expo-
nential e−τs or the scalar s in the characteristic equation.

The resulting condition is typically expressed in terms of
roots of a polynomial (as in e.g., Thowsen (1981), Rekasius
(1980), Hertz et al. (1984), Sipahi and Olgac (2005)) or
in terms of the eigenvalues of a generalized eigenvalue
problem (as in e.g., Louisell (2001), Chen et al. (1995),
Fu et al. (2006), Jarlebring and Hochstenbach (2009)).
See also (Michiels and Niculescu, 2007, Section 4.3.2),
(Niculescu, 2001, Section 4.4) and (Jarlebring, 2008, Sec-
tion 3.2) for more references to delay-dependent stability
results expressed in terms of imaginary eigenvalues. These
standard results on imaginary eigenvalues do not reveal
properties of a repeated imaginary eigenvalues.

Some results of high-order analysis are given in Fu et al.
(2007) including results for multiple imaginary roots (Fu
et al., 2007, Theorem 4). The focus in this paper is
invariance properties of the imaginary root for the other
critical delays when there is a repeated imaginary root.
Invariance properties are not treated in Fu et al. (2007).

Finally, a higher order analysis is adapted for the direct
method in Sipahi and Olgac (2003), where several involved
cases are discussed. For instance, two sequences of critical
delays may have the same crossing frequency but for a
disjoint sets of critical delays such that the roots are still
simple, or for some delay there may be several (distinct)
imaginary roots, or the real part of the first derivative
may be zero (a similar example will be discussed in
Example 6.3).

Throughout this work we will implicitly assume that iω 6=
0 since otherwise, zero is a root for any delay, and the
periodicity of the critical delays is not defined.

The notation is standard. We denote partial derivatives
with subscript, e.g., fs is the partial derivative of f with



respect to s. Total derivatives of functions of one variable
are denoted by (·)′, e.g., the derivative of s(τ) is s′(τ). The
imaginary unit it denoted i, the real and imaginary parts
of a complex number z ∈ C is denoted by Re z and Im z
correspondingly.

2. FIRST ORDER ANALYSIS

Suppose that for τ = τ0 the characteristic equation (2)
has a double root at iω. The following proposition states
iω is a simple root for all other delays in the sequence
T = {τ0 + 2πk

ω }k under the conditions that fτ (iω, τ0) 6= 0.
Since the roots are simple, we can compute the sensitivity,
which we give in a closed form. It turns out that the
sensitivity is purely imaginary telling us that the root path
close to the iω is vertical, and at one point, s(τ) = iω. It is
hence either just touching the imaginary axis or (in case of
a saddle point), approaching the imaginary axis vertically,
but still cross into the other complex half-plane.
Proposition 1. Let T = {τk}k∈Z := {τ0+k 2π

|ω|}k∈Z be a set
of delays for which iω ∈ iR is an eigenvalue. Let s(τ) be a
continuous eigenvalue path defined in a neighborhood of τk
for some k ∈ Z\{0}, i.e., s(τk) = iω. Suppose that for some
other delay τ0 ∈ T , iω is a double (not triple) eigenvalue
and fτ (iω, τ0) 6= 0. Then, iω is a simple eigenvalue for the
delay τk and

s′(τk) = −iω|ω|
2πk

. (3)

Proof. Without loss of generality we let τ0 be the delay
for which iω is a double (not triple) non-semisimple
eigenvalue and k 6= 0. We denote s0 := s(τ0) = iω. Since
s0 is a double root for τ = τ0, fs(s0; τ0) = 0. We first show
that s0 is a simple eigenvalue for delay τk by proving that
fs(s0; τk) 6= 0.

We note that f(s, τ) = p(s, e−sτ ) where p(s, z) is a
multivariate polynomial (and does not depend on τ). We
denote the partial derivatives by ps and pz. The reason for
this substitution is that p(s0, e−s0τk) is independent of k.
The same holds for the partial derivatives,

ps(s0, e−s0τk) = ps(s0, e−s0τ0)

pz(s0, e−s0τk) = pz(s0, e−s0τ0).
We can express the derivatives of f with p, ps, pz, by
partial differentiation,

fs(s, τ) = ps(s, e−sτ ) + pz(s, e−sτ )e−sτ (−τ),
fτ (s, τ) = pz(s, e−sτ )e−sτ (−s).

(4)

We express the first derivative of s(τ) by rearranging the
terms of the chain rule,

0 = fs(s(τ), τ)s′(τ) + fτ (s(τ), τ)
and

s′(τ) = − pz(s, e−sτ )e−sτ (−s)
ps(s, e−sτ ) + pz(s, e−sτ )e−sτ (−τ)

.

Since we will only evaluate f and p and the derivatives
for s = s0 and z = es0τk we simplify the notation by
ps(s0, e−s0τk) = ps, and pz correspondingly.

Now let s = s0 and τ = τk and recall that fs(s0, τ0) = 0,
i.e.,

ps = τ0zpz.

Hence

s′(τk) = − pzz(−s)
ps + pzz(−τ)

=

− pzz(−s)
τ0zpz + pzz(−τ)

=
s

τ0 − τk
= −iω|ω|

2πk
.

This completes the proof. 2

Remark 2. (Non-semisimple). The time-delay system (1)
can be represented as a linear time-invariant (LTI) infinite-
dimensional system. In some contexts, it is common to use
a classification of the multiplicity of the eigenvalues of the
LTI system to understand the local behavior of eigenvalue
paths. The interpretation in terms of classification is also
possible in this context using the definitions of multiplici-
ties of nonlinear eigenvalue problems.

A double eigenvalue can either be non-semisimple or
semisimple. For the time-delay system (1) these cases can
be distinguished by the rank of the null-space of the matrix
−sI + A0 + A1e

−τs. If the rank is one, the eigenvalue is
non-semisimple, and if the rank is two it is semisimple.
See, e.g. Hryniv and Lancaster (1999) for definitions in
the general setting.

In Proposition 1 we assumed that fτ (s, τ0) 6= 0. We
will now see that this implies that the eigenvalue is non-
semisimple. If the eigenvalue is semisimple, then the rank
of the null-space is two. If the rank of the null-space is
two, then the dual nonlinear eigenvalue problem, where s
is considered a (fixed) parameter and τ = τ0 the eigenvalue
parameter, has a double eigenvalue in τ . Hence fτ (s, τ0) =
0. By contradiction, it follows that fτ (s, τ0) 6= 0 implies
that the eigenvalue is non-semisimple.

3. SECOND ORDER ANALYSIS

We ultimately wish to establish if roots enter or leave
the right half-plane. The real part of the sensitivity (3)
is zero, and does not give information about the directions
the roots are crossing. To establish the crossing direction
we need the real part of the second derivative. In the
following proposition we see that the real part of the
second derivative is generically non-zero which implies that
the roots only touch and do not cross the imaginary axis.
Proposition 3. Under the same conditions as in Proposi-
tion 1,

s′′(τk) = 2i
ω3

(2πk)2
+ i

ω5|ω|
(2πk)3

fss(iω, τ0)
fτ (iω, τ0)

(5)

Proof. From the chain-rule we find that second derivative
of s is

s′′(τk) =
2fsτ (s0, τk)(s′)2 + fττ (s0, τk)s′ + fss(s0, τk)(s′)3

fτ (s0, τk)
.

In order to show (5) we separate the expression into
s′′ = T1 + T2 + T3

where,

T1 =
2fsτ (s′)2 + fττs

′

fτ (s0, τ0)
,

T2 =
(fss(s0, τk)− fss(s0, τ0))(s′)3

fτ (s0, τ0)
and

T3 =
fss(s0, τ0)(s′)3

fτ (s0, τ0)
.



If we again let f(s, τ) = p(s, e−sτ ) and z = e−sτ we can
express higher partial derivatives of f in terms of higher
derivatives of p by differentiating (4) implicitly. We find
that

fττ (s0; τk) = pzzs
2z2 + pzs

2z

fτs(s0; τk) = (pzs + pzzz(−τk))z(−s) + pzzτks− pzz
fss(s0; τk) = pss + pszz(−τk)+

(pzs + pzzz(−τk))z(−τk) + pzzτ
2
k .

(6)

If we insert these equations into T1, T2 and use that
s′ = s/(τ0 − τk) we can simplify T1 and T2 into

T1 =
2fsτ (s′)2 + fττs

′

fτ
=

2(−pszs− pz + (pzzzs+ pzs)τk)s+ (pzzs2z + pzs
2)(τ0 − τk)

−(τ0 − τk)2pz

=
2(−pszs− pz)s+ (pzzs2z + pzs

2)(τ0 + τk)
−(τ0 − τk)2pz

and

T2 =
(fss(s, τk)− fss(s, τ0))(s′)3

fτ
=

−(−2psz + (pzzz + pz)(τ0 + τk))s2

−(τ0 − τk)2pz
.

Hence,

T1 + T2 =
2s

(τ0 − τk)2
=

2iω3

(2πk)2
.

We complete the proof by noting that

T3 =
iω5|ω|
(2πk)3

fss(s0, τ0)
fτ (s0, τ0)

. 2

Finally we combine Proposition 1 and Proposition 3 into
a formula for the first three coefficients of the Taylor
expansion.
Theorem 4. Under the same conditions as in Proposi-
tion 1, the Taylor expansion of s around iω for τ = τk
is

s(τ) = iω − iω|ω|
2πk

(τ − τk)+

1
2

(
2i

ω3

(2πk)2
+ i

ω5|ω|
(2πk)3

fss(iω, τ0)
fτ (iω, τ0)

)
(τ−τk)2+O((τ−τk)3).

Proof. This is the result of inserting the first and second
derivative given in Proposition 1 and Proposition 3 into
the Taylor expansion of s arount s(τk) = iω. 2

The real part as a function of the imaginary part is a also
a quadratic function and we can give a formula for the first
coefficient.
Corollary 5. Under the same conditions as in Proposi-
tion 1, let a = Re s and b = Im s. The real part as a
function of the imaginary part is

a(b) = −ω|ω|
4πk

(
Im

fss(iω, τ0)
fτ (iω, τ0)

)
(b− ω)2 +O((b− ω)3).

Proof. From Theorem 4 we know that

a = Re s(τ) =−1
2
ω5|ω|

(2πk)3

(
Im

fss(s0, τ0)
fτ (s0, τ0)

)
(τ − τk)2 +

O(τ − τk)3 (7)

b = Im s(τ) = ω − ω|ω|
2πk

(τ − τk) +O(τ − τk)2. (8)

We eliminate τ−τk in (7) and (8) by solving the equations
for a and find that

a = −1
2
ω|ω|

(2πk)

(
Im

fss(s0, τ0)
fτ (s0, τ0)

)
(b− ω)2 +O((b− ω)3),

which completes the proof. 2

Remark 6. If Im (fss(s0, τ0)/fτ (s0, τ0)) = 0 we have a
degenerate case. In this case, a second order analysis can
not reveal if roots enter or leave the right half-plane. An
analysis using higher order derivatives would be necessary
to determine this.

4. THE DOUBLE EIGENVALUE

In the previous sections we saw that if k 6= 0 then iω is
a simple eigenvalue and we found formulas for the first
terms in the Taylor expansion. When k = 0, we have
a square root splitting for the double eigenvalue, in the
sense that the derivative of the root path at τ0, i.e., s′(τ0),
is undefined, but the function s(τ) can be expanded in a
Puiseux series around τ0 where the first term is a square
root. The following result gives a formula for the first
coefficient in this expansion, and is a specialization of (Fu
et al., 2007, Theorem 4). To make the paper self-contained
we present a brief proof.
Theorem 7. Under the same conditions as in Proposi-
tion 1, let s(τ) be a path for which s(τ0) = iω is the
double eigenvalue. Then,

s(τ) = iω ±
(
−2

fτ (iω, τ0)
fss(iω, τ0)

(τ − τ0)
)1/2

+ o(
√
τ − τ0).

Proof. The proof consists of two parts. We first show that
the first term in the expansion of s(τ) is

√
τ − τ0, and then

find the first coefficient of this expansion.

The condition fτ (s0, τ) 6= 0 allows us to apply (Hryniv
and Lancaster, 1999, Theorem 4.2) which implies that
the expansion possesses the property completely regular
splitting (CRS). If we have CRS for a double (not triple)
non-semisimple root, the expansion is

s(τ) = s0 + c1(τ − τ0)1/2 + o(
√
|τ − τ0|),

where (·)1/2 denotes both complex branches of the square
root. It remains to determine c1.

The two-variable Taylor expansion for f(s, τ) is
f(s, τ) = f(s0, τ0) + ∆sfs + ∆τfτ+

+
1
2
(
fss∆s2 + 2fsτ∆s∆τ + fττ∆τ2

)
+O(∆s,∆τ)3.

(9)

Let ∆s = s−s0 = c1(τ−τ0)1/2+o(
√

∆τ) and ∆τ = τ−τ0,
then

0 = ∆τfτ+

+
1
2

(
fssc

2
1∆τ + 2fsτ c1∆τ3/2 + fττ∆τ2

)
+O(∆s,∆τ)3 =

∆τfτ +
1
2
fssc

2
1∆τ + o(∆τ). (10)



Since f(s0 + ∆s, τ0 + ∆τ) = 0 must hold for all ∆τ > 0,

c21 = −2fτ
fss

.

The proof is completed. 2

5. COMBINATION OF RESULTS

Note that expressions for the coefficients of the expansions
in the square root splitting (Theorem 7) and for the Taylor
expansion of the simple eigenvalues (Corollary 5 and The-
orem 4) both contain the expression fss(iω, τ0)/fτ (iω, τ0).
Hence, the local root behaviour of all τk ∈ T can be deter-
mined by the function f (and the derivatives) at τ = τ0.
This allows us to categorize the local behaviour of the
roots into two separate cases. Without loss of generality
we assume that ω > 0 for this categorization.

1) If Im fss(iω, τ0)/fτ (iω, τ0) > 0, then for critical
delays τk ∈ T greater than τ0 (positive k) the root
path touches the imaginary axis from above and in
the left half-plane. For delays τk ∈ T less than τ0
(negative k) the imaginary axis is touched from the
left and upward.

0

Im
 s

Re s
 

 

 

(a) k > 0

0

Im
 s

Re s
 

 

 

(b) k = 0

0

Im
 s

Re s
 

 

 

(c) k < 0

2) Analogously, if Im fss(iω, τ0)/fτ (iω, τ0) < 0, the root
path for critical delays τk ∈ T less than τ0 touch the
imaginary axis in the left half-plane and for delays
greater than τ0 touch the imaginary axis from above
and in the right half-plane.

0

Im
 s

Re s
 

 

 

(d) k < 0

0

Im
 s

Re s
 

 

 

(e) k = 0

0

Im
 s

Re s
 

 

 

(f) k > 0

6. ILLUSTRATIVE EXAMPLES

We illustrate the two cases with two examples.
Example 6.1. (Case 1: Parabolas left). Let

A0 =
(

0 1
−9π2 2

)
and A1 =

(
0 0
0 2

)
.

In order to classify the root locus we need the partial
derivatives of f ,

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
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9.4

9.6

9.8

Re s

Im
 s

 

 
k=−1
k=0
k>0
expansions

Fig. 1. The root locus for Example 6.1 close to the
imaginary eigenvalue s = 3πi. This corresponds to
case 1.

f(s, τ) = s2 − 2s− 2se−τs + 9π2,

fs(s, τ) = 2s− 2− 2e−τs + 2sτe−τs,

fτ (s, τ) = 2s2e−τs,

fss(s, τ) = 2 + 4τe−τs − 2sτ2e−τs.

Hence, s = iω = 3πi is a double (not triple) root
for τ = τ0 since f(3πi, 1) = 0 and fs(3πi, 1) = 0 but
fss(3πi, 1) = −2 + 6πi 6= 0. Moreover, fτ (3πi, 1) = 18π2.
Note that

Im
fss(3πi, 1)
fτ (3πi, 1)

= Im
−2 + 6πi

18π2
=

1
3π

> 0.

Case 1 in the behavior described in Section 5 can be
observed in Figure 1. We see that for k = −1, i.e.,
τ = 1/3 (which is the only negative k for which the
delay is positive) the root path is in the right half plane
whereas for k > 0 all root paths lie in the left half-plane.
The truncated expansions from Theorem 4 and Theorem 7
are also visualized in Figure 1. In Figure 1 we have also
plotted the truncated Taylor and Puiseux expansion for
the roots touching the imaginary axis by using Corollary 5
and Theorem 7.

In Figure 2 we see that the parabola corresponding to the
critical delay to the left of the double eigenvalue is from
above, i.e., the path lies in the right half-plane. Conversely,

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

τ

R
e 

s

Fig. 2. The real part vs τ for Example 6.1. The touching
points to the right of the τ0 = 1 are from below. This
corresponds to case 1.
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Fig. 3. The root locus for Example 6.2 close to the
imaginary eigenvalue s = 3πi. This corresponds to
case 2.

all the critical delays (touching points) to the right of the
double eigenvalue are touching Re s = 0 from below, which
means that they lie in the left half-plane.
Example 6.2. (Case 2: Parabolas right). In order to illus-
trate the case where the root locus has an infinite number
of parabolas touching the imaginary axis in the right half-
plane, we consider the following example. Let

A0 =

( 0 1 0
0 0 1
−a3 −a2 −a1

)
, A1 =

( 0 0 0
0 0 0
−b3 −b2 −b1

)
,

where

a1 =
2
5

(65π + 32)
8 + 5π

≈ 3.98,

a2 =
9π2(13 + 5π)

8 + 5π
≈ 108,

a3 =
324
5
π2(5π + 4)

8 + 5π
≈ 531,

b1 =
260π + 128 + 225π2

10(8 + 5π)
≈ 13.6,

b2 =
45π2

10(8 + 5π)
≈ 18.7 and

b3 =
81π2(40π + 32 + 25π2)

10(8 + 5π)
≈ 1363.

This example is constructed (with software for symbolic
manipulations) such that fs(3πi, 1) = 0 and

Im fss(3πi, 1)/fτ (3πi, 1) ≈ −0.0667 < 0.
In Figure 3 we observe the expected behavior that for
positive k, the imaginary axis is touched from the right.
This is what we expect from case 2 in Section 5. The other
properties of case 2 are also easily verified in Figure 3.
Example 6.3. (A converse example). We have seen in the
theory and examples above that the generic situation
is that a double imaginary root implies that the root
locus close to the other critical delays are curves touching
but not crossing the imaginary axis. With this example
we show that the converse is not true. That is, this

−6 −5 −4 −3 −2 −1 0 1
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Fig. 4. The root locus close to s = i for the Example 6.3.

example 1 from (Thowsen, 1981, Example 2) and (Hertz
et al., 1984, Example 5) shows that touching (but not
crossing) the imaginary axis does not in general imply that
we have a double root for some other critical delay.

Suppose

A0 =
(

0 1
−1 −1

)
, A1 =

(
0 0
0 −1

)
. (11)

If τ = π then s0 = i is an eigenvalue. The partial
derivatives of f are

fs(i, τk) = (2 + π + 2πk)i, fτ (i, τk) = −1.
Note that s = i is a simple root for all critical delays, since
fs(i, τk) 6= 0 for all k. The sensitivity (which is also given
in Hertz et al. (1984)) is

s′(τk) = −fτ (i, τk)
fs(i, τk)

=
−i

(2 + π + 2πk)
.

This shows that the derivative is purely imaginary for all
critical delays. It can also be shown that the real part of
the second derivative is non-zero, such that the root locus
is a parabola touching the imaginary axis (see Figure 4),
similar to the main phenomena of this paper (a double root
for some critical delay). In this example, there is however
no double root. Hence, even if a root path is touching the
imaginary axis, it is not necessary that another critical
delay has a double imaginary root.

We also note that a similar phenomenon (touching not
crossing) can be observed for an example in (Sipahi and
Olgac, 2003, Equation 19).

7. CONCLUSIONS

For simple imaginary roots, the root tendency, i.e., the
sign of the derivative of the root path sign(Re s′(τ)), is
independent of k for τk ∈ T = {τ0 + 2πk

ω }k. That is,
the root tendency is invariant in the sense that the root
tendency for some delay τk ∈ T determines the root
tendency for all τ ∈ T .

We have considered the case where the time-delay system
has a double imaginary root for τ0 ∈ T , and shown that the
1 We have corrected the typographical error in the matrix formula-
tion in (Hertz et al., 1984, Equation 51) where the term −x2(t) is
missing in the second equation.



multiplicity is not the same for all τ ∈ T . The multiplicity
is not invariant with respect to k. However, a consequence
of the results in this paper is that an invariance property
similar to the case of simple roots still holds: The crossing
behavior of all τ ∈ T are completely determined from the
crossing directions at τ = τ0.

More precisely, we have found a formula for the first
coefficients in the Taylor expansion of s(τ) around τ =
τk ∈ T , k 6= 0, in terms of the first coefficient of the
Puiseux series around τ = τ0. This has made it possible
to classify the local behavior of all τ ∈ T only depending
on the sign of Im fss(iω, τ0)/fτ (iω, τ0).

As a final remark we comment on the generality of this
work. The setting has been time-delay systems with a
single delay (1). The results do however hold for much
more general systems. The only property of the character-
istic equation (2) needed for the proofs and discussions is
that the characteristic equation is a (sufficiently smooth)
multivariate function in s and z = e−sτ , i.e., f(s, τ) =
p(s, e−sτ ). The characteristic equation of neutral systems
and systems with multiple commensurate delays also have
this property. Hence, the results are valid for these system,
and also systems with multiple delays if perturbation in
only one of the delays is considered.
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