
Dynamic programming
– structure, difficulties and teaching

Emma Enström
Schools of {Computer Science and Communication, Education and Communication in Engineering Science}

Royal Institute of Technology
Lindstedtsvägen 3

SE-100 44 Stockholm
Email: emmaen@csc.kth.se

Abstract—In our third year Algorithms, Data structures and
Complexity course, students have considered dynamic program-
ming hard in comparison to the other topics. We would like
to know which difficulties the students encountered, where they
gained their knowledge, and which tasks they were most certain
that they could perform after the course. We identified subtasks
that could be taught separately, and adapted the lectures to
Pattern Oriented Instruction in order to help students cope with
the complexity of solving problems using dynamic programming.
Lectures were modified to support this strategy, and clicker
questions, visualisations and a lab assignment were prepared. We
constructed self-efficacy items on the course goals for dynamic
programming, and administered them before and after the
teaching and learning activities. Among the self-efficacy items,
determining the evaluation order and solving a problem with
dynamic programming with no hints had the lowest score after
the course. As for the activities, arguing correctness of a solution
was something many students claimed that they did not learn
anywhere. Students considered the lab exercise most useful, but
they also learned a lot from the other activities.

I. INTRODUCTION

The course in which the experiments of this paper took place
is a third year course in the 5-year Master of Computer Science
and Engineering program at KTH in Stockholm, dealing with
algorithms, data structures and complexity: ADC. Previous
experience indicates that dynamic programming (below ab-
breviated dynprog) is considered difficult among the students.
This work uses an action research approach.

A. Research questions

The questions that are addressed in this work are:
Q1 What is perceived as difficult with dynamic program-

ming?
Q2 Which abilities do students judge they have after the

course?
Q3 Which of our activities do they believe to have helped

them achieve those abilities?
We will not make an exhaustive examination of these ques-
tions, and the students are not interviewed on these topics.
Rather, we ask them how well they believe they can perform
tasks which we have defined, and where they have learned that.
If they do not know things listed in the course goals after the
course ends, we consider these subparts difficult. Items that

students are less confident they can manage are also counted
as difficult compared to the rest of the course contents.

B. Contribution

The contribution of this work is split into several areas. The
answer to What is difficult? is in itself interesting to teachers.
We also compare our guesses and assumptions with students’
answers. The self-efficacy instrument that we have used is not
final, nor tested for internal reliability and validity, but it is
still a partial result. The experience was also a small scale
experiment with Pattern Oriented Instruction.

II. BACKGROUND

A. The course

The part of ADC that is relevant to this paper is the first 18
lectures, 7 tutorials and 3 computer lab sessions on algorithm
construction methods, and especially lectures 9 and 10 and
tutorials 3 and 4 plus one computer lab exercise, all of which
deal with dynamic programming. Each lecture is 45 minutes,
and each lab or tutorial session is 2 x 45 min. The computer
lab exercise is compulsory, performed in pairs, automatically
checked for correctness and verbally presented to a teaching
assistant (TA) in lab. ADC uses continuous assessment. The
lab exercise, together with an individual, written home assign-
ment which the students afterwards present personally to one
teacher or TA, constitute the major part of the assessed student
work on the topic. There are also supplementary tasks for those
who are unhappy with their grades. The course is graded on
a scale from A to E, or F for fail, and there are course goals
and criteria connected with each grade. These are presented
in a matrix and a flow chart on the course home page, and
addressed on lectures and during peer review. Towards the end
of the course, there is a written exam for lower grade content
and an oral exam for those who aspire to higher grades. In the
end, how well your work meets the criteria decides your grade,
so what work you have fulfilled, and how well you performed,
matters – not just the percentage of work. The author has been
one of the TAs on this course.

B. Our guesses on what was difficult, or why

Previous years’ experiences suggest that the difficult parts of
dynamic programming are finding a recurrence relation based

on some structure of the desired solution, and tackling the
complexity of solving a problem completely from scratch,
without hints. Recursion, as a well known “difficult” task,
could possibly cause some trouble since it is part of the
problem solving strategy of dynprog. Another necessary skill,
needed for more complex problems, is coping with many di-
mensions – problems where a simple two-dimensional matrix
is not sufficient to hold every subproblem that matters to
the solution. Also, whenever “argue correctness” or “prove
correctness” is part of the instructions, students struggle, or
avoid the task entirely.

C. Recursion and dynamic programming

The subject of recursion has attracted educational re-
searchers’ interest for a long time. In the 1980s Kahney and
Eisenstadt [1] contributed by studying students’ and other
programmers’ answers to problems involving recursion. Their
results are further described by Kahney in [2], and describe
a set of “mental models” of recursion that students had, out
of which one was capable of capturing the things instructors
want students to know about recursion, and some were not
only incomplete, but misleading. Around the same time, Ford
[3] concludes that iteration is really a special case of recur-
sion, and that recursion is a generalised control structure in
programs. Similar arguments are also used by others: recursion
is an example of the paradigm “Divide, Conquer and Glue”,
and when using iteration, the glue step is missing and students
get erroneous pre-images of the paradigm [4]. Scholtz et al.
[5] claim that the difficulties with recursion are connected
to understanding the passive flow, whereas other authors are
investigating misunderstandings that can occur around base
cases [6]. They also note that recursion is a difficult topic for
students. Many authors dwell on the topic of where in the first
course recursion should appear, or how recursion is related to
iteration, the computational model, or similar issues.

Ginat et al [7] suggest that less focus on the computational
model, and more focus on the abstract level and the algorithm
in theory can help students not to mistrust recursion as a
method or their own abilities on recursion. As an algorithm
construction method, dynprog follows that recommendation. It
does not deal with passive flow, and the algorithm construction
task indeed treats recursion as an abstract phenomenon.

Dynamic programming can be seen as an alternative method
for constructing algorithms where recursion can be used.
Sometimes, keeping a table of all hitherto calculated values
in a recursive algorithm speeds up calculations significantly,
for instance with simple sequences like the Fibonacci numbers.
This technique is called memoisation. Instead of doing mem-
oisation, there is also the option of changing the algorithm so
that calculations are made in “reversed” order - starting with
the base cases and building increasingly complex subproblem
solutions, which is referred to as dynamic programming. In
this case, the recursive calls are not needed. Hence, dynprog
is a technique that alters recursion into iteration. If students
are more comfortable with iteration, this should only help.
On the other hand, for someone who wants to think of

iterations, the concept of “finding an evaluation order” is not
all too clear. Also, it can be easily imagined that difficulties
in discerning base cases for a recurrence relation makes the
dynprog approach uncomfortable.

D. Pattern Oriented Instruction

Since coping with many aspects of a problem at the same
time might be difficult, and since teaching everything at
once might lead students to focus entirely on the algorithm
that is constructed, and less on the construction process, we
tried using Pattern Oriented Instruction(POI). POI is based
on cognitive psychology theories on construction and organ-
isation of knowledge in schemata. A schema is a connected
chunk of “information”, that has been constructed by repeated
experiences which share some common ingredients. When,
for instance, solving a complex problem, we are processing
several different types of information at the same time. This is
called cognitive load, and if the cognitive load gets too heavy,
our problem solving skills are heavily reduced. When having
seen the same type of problem many times before, we are able
to process many interconnected pieces of information as one
unit, a “chunk”, which reduces cognitive load. A pattern is
either distilled from several different experiences with certain
ingredients in common, or generalised from some specialised
example of a phenomenon. It can be employed in teaching
to enhance the learners’ ability to create new schemata. POI
deals with structuring the teaching and the content in a way
that facilitates the creation of schemata, which can later be
processed as chunks.

The identification, selection, progression and comparison of
problems and patterns are in focus. The students get to meet
with increasingly complex problems, encompassing different
patterns already familiar. The comparison of problem charac-
teristics is central, and patters are first introduced and later
revisited in a different setting. The effect of POI on students’
abilities in problem solving, abstraction and analogical rea-
soning in particular, are investigated by Muller and Haberman
[8], [9], [10] and the effect on problem decomposition and
solution construction abilities by Muller, Haberman and Ginat
in [11].

E. Clickers and response cards

The use of clickers (or Audience Response Systems, or
“voting” systems) for pedagogical or administrative purposes
is widespread in the world today [12]. Among the reasons
for using them is “anonymity”, but since the systems are
often built in a way that admits excessive data collection and
even scoring on an individual level, it is worth noting that
this anonymity is only towards peers, not towards the teacher.
In other words, if the student is afraid of speaking up and
answering questions on lectures because it could expose him
or her to the other students, the argument is valid. If students
don’t want to expose possible lacks of knowledge to teachers,
the system can actually be a greater threat, as temporary mis-
understandings might be recorded and later graded. However,
there are desirable benefits to clicker systems: they provide

means for student activity; everyone gets to think and answer
the questions, not just the fastest responder; the results of the
small polls allows the teacher to address misunderstandings
directly; and they provide formative feedback to the students.
They also incentivise the teacher to plan good questions that
are suitable for this type of exercise. The use of response
cards, predecessors of clickers of sorts, has been studied
academically since the 1960s, and have proven to have effect
on student grades and student participation [13]. We have
gradually included response cards in the course during the
two past years, and it has been much appreciated by the
students. We have employed cards of different colours which
are administered to the students in the beginning of lectures.
The votes are still made simultaneously, and the feeling of
being exposed seems not to be present among our students,
according to their evaluation responses.

F. Self-efficacy

In contrast with self esteem or confidence, self-efficacy is
described as an individual’s confidence in his or her own
ability to, at a given moment, perform actions in order to
achieve some desired outcome. The term was introduced by
Albert Bandura in the 1970s and is further developed by
him in [14]. The phrasing of the self-efficacy items should
be direct and not involve guesses about the future or some
sort of inherent capabilities of the subject to the study. Self-
efficacy beliefs are not static - on the contrary, they change
with the individual’s experience. It is self confidence of a
sort, but situated and very localised in time and subject area
contents. These characteristics have given self-efficacy a role
in education. The score of a self-efficacy test is known to be
an important predictor of success [15]. There are studies in
how self-efficacy correlates with performance [16], how self-
efficacy changes during studies[17], and how it correlates with
other factors around the individual [18].

We knew of no established instruments measuring self-
efficacy for theoretic computer science. In mathematics, self-
efficacy instruments have been developed [16], [15] and also
in programming [17], [18], which is another related area.

III. METHOD

A. Plan the new course activities

Previous years, other aspects of this course have been
reworked, and after that, students complained that dynamic
programming seemed unreasonably difficult compared to other
content. For this experiment, the short part of the course that
dealt with dynamic programming had to be planned with a
new perspective. Visualisations of dynamic programming, a
completely new lab exercise and clicker questions for the
lectures were prepared. TAs were instructed on the plans
and the goals of the new partitioning of the contents, and
new tutorial session material was prepared. The new lab
assignment was to modify and speed up a program that
calculated the edit distance between two words. The system
Kattis, described in [19] was used for automated online testing,
and theory questions which would prepare the students for

the optimisations needed were prepared. The visualisations
shown in the introductory lecture exemplified calculation of
the “degenerate” case of dynamic programming, the Fibonacci
numbers, recursively, with memoisation and with dynamic
programming.

For this “simplest” version of dynamic programming prob-
lems, number sequences, the order in which to calculate the
answers seems natural, and coincides with the order you would
calculate different subproblems when using memoisation -
save each value the first time you need it, but use the
recurrence as basis for your algorithm.

B. New structure the course content

We started by identifying what difficulties we could en-
counter, and what different dimensions we could allow to
vary and needed examples of. The task of solving a dynamic
programming problem can be thought of as built from three
different tasks: 1) Finding a structure for the solution, 2)
express a recurrence relation, and 3) defining and proving an
evaluation order with the properties that we will always have
solved “smaller” subproblems whenever we solve a “larger”
problem, and that the evaluation order renders the same result
as the recurrence relation would produce.

To help comparing and distinguishing various characteristics
of problems, we identified what could vary between different
dynprog problems: whether the history needed to be saved
during computations or not; whether the evaluation order was
intuitive or more intricate; whether new values depended on
the indices of the elements to be calculated, or on some input,
or both; whether the previous subproblems to be used for
each calculation were the most recently calculated subprob-
lems, or if some special method was needed to find relevant
subproblems (for instance, “jump”, skip cells, in a matrix of
previously calculated values); the number of dimensions for
the subproblems (do they fit in a sequence, matrix, higher
order); that there could be several different recurrence relations
for the same problem and that the same recurrence relation
could be the basis of several differently posed questions; the
“location” of the base cases, “the location” of the answer after
calculation; whether only a number, or the entire path to that
number was needed for the solution (constructive solution),
and different combinations and variations of these features.

These were only the dynamic programming specific vari-
ations. Another important variation is in the structure of a
problem, or rather, of its solutions. If subproblems do not
overlap, divide-and-conquer is generally a better method than
dynamic programming, and if they do overlap, dynprog might
be best. A greedy solution can sometimes be proven to be
the superior option. These algorithm construction methods are
also covered in the first part of the course, and assessed on
the same written home assignment.

C. Prototypes and patterns in dynamic programming

For the lectures, we decided to separate two phases of con-
structing a dynamic programming algorithm: 1) Recognising
the structure of the problem and create a recurrence relation

and 2) Finding and proving an evaluation order for a given
recurrence relation. This was done to direct more attention to
the evaluation order and correctness arguments. At the same
time, we wanted to refer to prototype problems. Some of these
had already been used in the course, and others were intro-
duced as a complement to these. The prototype problems we
chose were: Fibonacci (sequences), 2-dimensional recurrences
without input (2-dimensional sequences), 2-dimensional re-
currences with input, (values decided from input), Longest
increasing subsequence (index and input dependent, need to
save full history) Matrix chain multiplication (base cases on
the diagonal, construction of the solution), Swamp walk (dif-
ferent questions, same “solution”), Coins (different recursions
for the same problem, focus on proving correctness), Longest
common substring (argue correctness of recurrence relation
and algorithm, construct the solution, compare to 2D-with
input that rendered the same recurrence relation) and Floyd-
Warshall’s algorithm for finding all shortest paths in a graph
(more than two dimensions used). We do not argue that these
problems are the best possible set of prototype problems, but
they contained examples of the variations we wanted to show
and most of them had appeared in one form or another on the
lectures previous years, only not as explicit representatives of
some technique(s) each.

D. Surveys

Several different surveys and questionnaires were admin-
istered throughout the course. Their content and goals are
described in this section.

1) Self-efficacy surveys: We would like to know whether
students find any of the different tasks we believe are involved
in dynprog especially hard, and whether students improve their
self-efficacy during the course. Based on the ADC goals, the
guidelines by Bandura in [20], and supported by the spirit
of knowledge taxonomies such as Bloom’s taxonomy [21],
we have constructed a 10 item self-efficacy scale on dynamic
programming, together with an 8 item scale on complexity
that is further described in [22]. The students are asked to
grade their self efficacy on the course’s dynamic programming
contents on a scale between 0 and 100. This was done
on lectures, before and after the section of the course that
was part of the experiment. 110 and 79 students responded,
respectively, and 68 responded to both. This survey was not
anonymous, but the students were promised that it would
not count towards grading, and that no one would read the
material until after the course was finished. This is naturally a
limitation in the usability of the responses for that year, as the
material could reveal important information to teachers, and
also possibly introducing errors in the form of more “polished”
or “adjusted” answers from students. On the other hand, we
wanted to both be able to see individual trends between the
two occasions, and retain the option to later compare self-
efficacy beliefs with results (both their predictive value from
the first occasion, since it is known that self-efficacy affects
motivation and possibly performance, but also the possible
correlations between results and self-efficacy beliefs after the

teaching and learning activities.)
2) Home assignment cover page: Together with the home-

work assignment, the students got a cover page to attach to
their homework, with two types of questions. One half was
a participation statement, and contained questions on what
sessions or activities the student had attended in the dynamic
programming part of the course, and the other half was a
“Where was what learned” part, and contained a matrix where
students could mark where they had learned to master different
aspects of dynamic programming: on their own, on lectures,
on tutorials, from visualisations, from the peer assessed theory
questions before the lab assignment, from the lab assignment,
or if they still did not master it.

3) Course surveys: At the peer reviewed, pseudonymous
theory exam, a final survey on the course was distributed in
two versions, one with pre-defined answer options, and one
with free-text questions. The students were randomly assigned
one of these, and the one with pre-defined answer options is
the one we present here. There was also, as always at our
school, an online course, where some questions were about
related issues. This survey is completely anonymous, done on
the students’ own time, and has higher non-response rate.

E. Student results and comparisons

The written homework assignment is graded A-E, so the
grades might have improved if the teaching was much im-
proved. There is also another, similar homework assignment
on complexity, which can be used for comparison. The grade
on the assignment, however, is based on the performance on
three algorithm construction tasks, out of which one had a
good dynamic programming approach. Yet another task was
possible to solve with dynprog, but as this was far less efficient
than another method, and this task was meant to assess the
students’ ability to choose the best methods for new problems,
the use of dynamic programming here did not improve the
grade (unless the student proved here but not on the previous
task that he or she could use dynamic programming.)

IV. RESULTS

A. The self-efficacy instrument

One of the instructions from Bandura was that the items on a
self-efficacy scale should be of increasing complexity, or level
of challenge. If by this we mean that ideally, the items should
be ordered so that the answer values was a non-increasing
sequence, this was not achieved. As the relative scores for the
different items was what we wanted to investigate, the order is
not of crucial importance to us. Some items could be rephrased
to make them easier to understand for someone unfamiliar with
dynprog. The items were (translated from Swedish):

1) I could understand dynamic programming algorithms as
presented to me by teachers or in books.

2) I could decide whether an algorithm is based on the
algorithm construction method dynamic programming.

3) I could construct an algorithm that calculates a recur-
rence relation, using dynamic programming.

item 1 2 3 4 5 6 7 8 9 10
pretest average 76 49 70 88 34 49 71 69 47 36
posttest average 90 84 87 95 68 78 88 80 67 65
threshold = 25
less certain 0 0 4 3 3 8 2 6 5 3
no change 45 21 35 52 22 21 40 42 34 21
more certain 23 47 29 13 43 39 26 20 29 44
threshold = 50
less certain 0 0 1 1 2 1 0 2 3 0
no change 64 46 60 62 39 40 61 58 50 47
more certain 4 22 7 5 27 27 7 8 15 21

TABLE I
NUMBER OF STUDENTS INCREASING THEIR SELF-EFFICACY VALUES FOR

ITEMS 1–10. (N=68)

4) I could explain to an average peer why dynamic pro-
gramming is better than a recursive procedure when
implementing an algorithm to compute the Fibonacci
numbers.

5) I could choose a suitable evaluation order for dynamic
programming for a recursive relation that depends on
separate input (and not only on indices).

6) I could explain why dynamic programming with my
evaluation order solves the same problem as does the
recursion.

7) I could implement a dynamic programming algorithm
that is presented as pseudo code, in some programming
language.

8) I could determine from the problem statement whether a
problem should be recursively solved , without it being
stated anywhere, if I got some time to investigate it.

9) I could construct a dynamic programming algorithm that
solves a problem presented to me in natural language,
without recursion.

10) I could construct the solution to a problem if I have
a dynamic programming algorithm that determines that
the solution exists.

Along with the instructions, the values 0, 25, 50, 75 and 100
were interpreted in words, and the students had the instruction
to mark 0 where they had never heard of some concept before.
The students were also introduced to the scale and to using it
by some simple examples, which had nothing to do with the
course: “I could lift X”, where X was allowed values like “a
pen”, “my laptop”, “this chair” and “the lecturer”.

The results of the self-efficacy surveys can be seen in
Table I. Only responses from students who handed in both
surveys are included. For some of the items, the students had
high confidence in knowing them already at the beginning of
the first lecture on the topic, especially item 4. We decided to
just look for increases or decreases of at least 25, which had
distinctly different interpretations according to the instructions.
For comparison, we also present results where students had
changed their answers with 50 or more. Items 1, 3, 7 and 8 also
had rather high average values at the first lecture. Naturally,
only a few students could increase their confidence a lot on
these items. For all but the first two items, it also occurred that

some students (at most 8) decreased their confidence in their
ability, for all of these except from 7 and 10, also when the
threshold was 50. The decrease in confidence could suggest
that student actually became less skilled in tampering with
certain tasks after the teaching and learning activities. This,
though, would be quite an achievement of negative sorts for
the teaching, and seems unlikely. Another interpretation is that
students became aware of details or whole dimensions they had
previously not seen, and hence became less certain that they
could cope with some tasks. For instance for item 6, which is
a milder version of proving correctness, some students might
not have seen the need to prove this, and underestimated the
difficulty of the task. On the online course survey, some of
the comments about the course and the homeworks reveal
that proving correctness is still considered difficult. Also, after
having tried some of the tasks in the survey for real, some
might have more realistic estimates of their abilities.

For items 2, 5, 6 and 10, more than half of the responding
students increased their confidence, and about 30 percent
increased it by at least 30 %. It seems that what students
perceived that they learned, was to recognise a dynamic
programming approach, to modify a recursive approach to a
dynamic programming approach by the means of determining
an evaluation order, and to explain why this still solved the
same problem as the recursive algorithm, and also to modify
dynamic programming algorithms to save more history and
answer with more detailed answers. This, the tenth item, might
have been a distinction that students had not considered before,
and not really thought of.

The items 5, 9 and 10 had the lowest average scores at both
occasions, but the similarly low scores on item 2 and 6 at the
first survey had increased more the second survey. Still, as
mentioned before, item 6 has special characteristics and could
be investigated more. According to these surveys, out of the
investigated items, the students perceive it most difficult to find
a suitable evaluation order, construct a dynprog algorithm from
scratch, and modifying an algorithm that answers “42” to one
that answers “the best value 42 is obtained by making these
decisions”, and also to argue correctness, although on this item
many students improved their (self estimated) abilities.

B. Course survey at exam

The results from the previous section also include what
students believe they know after the part of the course that
dealt with dynprog. The responses from the students who
got the closed form questions at the final exam survey are
presented in Table II. Students were in general very positive
to the “clicker questions”, but also towards the visualisations
and the computer lab assignment, a little more positive in
general speculation than in their particular case on whether
these activities contributed to learning dynamic programming.
Particularly beneficial, according to the responses, is working
with the computer lab assignment. No one complained about
the lack of privacy of the clicker votes, neither at the exam
survey nor on the anonymous online survey.

1. Was the pedagogical purpose of the activity clear?
yes questionable no

clicker questions 90% 6% 1%
visualisations 81% 10% 1%
computer lab 79% 14% 1%

2. Did you find the activity meaningful?
yes yes not not

very some- parti- at
what cularly all

clicker questions 59% 36% 3% 0%
visualizations 40% 40% 10% 1%
computer lab 54% 40% 3% 0%

3. Did you learn dynamic programming by working with the activity?
yes no

clicker questions 66% 17%
visualizations 51% 24%
computer lab 87% 9%

4. Do you think that activities like this one can make it easier to learn dynamic
programming?

yes no
clicker questions 76% 9%
visualizations 73% 6%
computer lab 90% 4%

5. Did the activity add something to the course?
yes no

clicker questions 94% 1%
visualizations 71% 6%
computer lab 96% 1%
self-efficacy surveys 17% 39 %

TABLE II
ACTIVITY SURVEY RESULTS. (DON’T KNOW OR BLANK OMITTED.)

C. Home assignment cover page

A more detailed view on what students on an earlier
occasion believed that they learned, and where, is presented in
Table III. These are the percentages of students (148 in total)
who handed in the homework assignment. On the cover page
they had to complete this matrix and some questions on what
activities students had attended. They were allowed to mark
several options, for instance, they could have learned to tell
if an algorithm was based on dynamic programming both on
lectures and at home.

Judged from this, all of the activities contributed to learning,
but construction of recurrence relations for simple problems is
not considered as hard, or at least, not considered to require
the teachers’ attention. Just as in the self-efficacy surveys,
modifying an algorithm to output the construction of the
solution rather than only an optimal value, is still difficult
to some of the students, here 15 %. A quarter of the group
found it difficult to argue correctness at this point. Since the
question was not posed identically on the self-efficacy survey,
the answers are not totally comparable. The fourth row in
Table III shows that only 4 percent judged that they still could
not find an evaluation order. This suggests that students who
are not too certain that they could perform this task, still do
not respond with “I still haven’t learned this”, or that they later
re-evaluated their ability to choose an evaluation order.

Concerning the homework results, and any impact our
methods might have had, in Table IV, the mean grades (where

Where did you learn to. . .
1. . . . tell if an algorithm is based on dynprog?
2. . . . tell if a problem can be tackled by dynprog?
3. . . . construct a recurrence relation for a simple problem?
4. . . . choose an evaluation order given the recursion?
5. . . . construct a solution given a dynprog algorithm that finds the optimal
value?
6. . . . motivate the correctness of a dynprog-based solution to a problem?

al
re

ad
y

kn
ew

or
le

ar
ne

d
by

m
ys

el
f

le
ct

ur
es

tu
to

ri
al

se
ss

io
ns

la
b

th
eo

ry
as

si
gn

m
en

ts

la
b

ho
m

ew
or

k
1

st
ill

ha
ve

n’
t

le
ar

ne
d

th
is

1. 18% 57% 30% 39% 42% 19% 0%
2. 16% 50% 30% 34% 37% 24% 1%
3. 72% 24% 19% 9% 6% 16% 1%
4. 26% 49% 29% 26% 25% 22% 4%
5. 11% 37% 23% 15% 32% 22% 15%
6. 6% 43% 17% 11% 15% 29% 24%

TABLE III
WHERE DIFFERENT TASKS WERE PERCEIVED TO HAVE BEEN LEARNED.

(N=148)

Activities mean grade
attended hw1 hw2

>4 1.9 2.4
<2 and ≤ 4 1.2 1.5

≤ 2 0.68 0.84

TABLE IV
COMPARISON OF STUDENT PERFORMANCES AT HOMEWORK 1 AND 2

(HW1 AND HW2) GROUPED BY THE NUMBER OF ACTIVITIES ATTENDED.

A counts as 5, and linearly down to 0 for F) for homework 1
and 2 are shown for the groups of first time students who
had attended different number of activities, where the lab
assignment was counted as 1.5 if submitted early. Homework
2 was on complexity. The grades are usually similar on both
homeworks, but this year many students handed in a less
efficient solution (based on dynamic programming) for one of
the problems, and hence did not get the highest grade for this.
The most ambitious students might have read too much into
our questions on dynprog. These results are mostly telling that
active students get higher grades, and show no special benefit
for dynprog problems.

V. DISCUSSION

A. Student activity and lots of evaluation intervention

To have non-anonymous surveys is often not recommended,
but the concept of self-assessment in teaching is not usually
associated with anonymity. Self-assessment can be used as
a means of facilitating learning. There is a possibility that
one of the learning activities we provided this year was the
frequent surveying and self-assessing. Some students indicated
this, so this perspective was included in the exam survey. Most
students, however, considered it an alien thought that their
completing a lot of surveys had contributed to them learning
dynprog. Even so, this type of questions can make students

reflect on their own abilities, and either help (a minority of
them) to learn, or reduce administrative work load on the
teachers. For instance exam wrappers (to be completed upon
recovery of their graded assignment) are suggested to be used
for such reasons by some institutions1.

We plan to continue distributing these surveys, to be able to
monitor possible effects by altered teaching methods, and for
the possible pedagogical gains. Although the criteria for each
grade are specified in the course information, the questions
on what students felt certain that they could do and the
abilities we wanted to know if and when they had learned also
contribute to communicating the teachers’ aims to students. If
given a list of abilities, students can see the message that these
are distinct abilities that the teachers value.

VI. CONCLUSION AND FUTURE WORK

The contribution of this paper was to show which abilities
(out of a limited sample) students find more difficult to learn
or to master, what they feel confident that they know, and
where they learned the things that they know. For Q3, we can
conclude that a variety of activities was good. Both mandatory
activities, like the homework and the lab assignment, and
optional ones like lectures, tutorial sessions and visualisations
were considered helpful for learning. Regarding Q2, most
students are confident that they can recognise dynprog, explain
what it is, construct simple recurrence relations and implement
dynprog algorithms. They are less certain that they can find a
good evaluation order for a recurrence relation, solve a prob-
lem from scratch or motivate correctness, which constitute our
answers to Q1. Compared to what the teachers expected, this is
both similar and different. The correctness part was expected,
but fewer students than expected experienced difficulties with
finding a recurrence relation. Further, other, or more detailed
questions can be asked to find out more about this.

Next time this course is given, the prototypes will be refined
and more emphasised. Correctness and writing pseudocode
(i.e., describing ones algorithm on an appropriate level of
detail) will be the next topics to get special attention.

REFERENCES

[1] H. Kahney and M. Eisenstadt, “Programmers’ mental models of their
programming tasks: The interaction of real-world knowledge and pro-
gramming knowledge,” in Proceedings of the Fourth Annual Conference
of the Cognitive Science Society, vol. 4, 1982, pp. 143–145.

[2] H. Kahney, “What do novice programmers know about recursion,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’83. New York, NY, USA: ACM, 1983, pp. 235–239.
[Online]. Available: http://doi.acm.org/10.1145/800045.801618

[3] G. Ford, “A framework for teaching recursion,” SIGCSE Bull.,
vol. 14, no. 2, pp. 32–39, Jun. 1982. [Online]. Available:
http://doi.acm.org/10.1145/989314.989320

[4] F. Turbak, C. Royden, J. Stephan, and J. Herbst, “Teaching recursion
before loops in cs1,” 1999.

[5] T. L. Scholtz and I. Sanders, “Mental models of recursion: investigating
students’ understanding of recursion,” in Proceedings of the fifteenth
annual conference on Innovation and technology in computer science
education, ser. ITiCSE ’10. New York, NY, USA: ACM, 2010, pp. 103–
107. [Online]. Available: http://doi.acm.org/10.1145/1822090.1822120

1http://www.duq.edu/about/centers-and-institutes/center-for-teaching-
excellence/teaching-and-learning/exam-wrappers

[6] B. Haberman and H. Averbuch, “The case of base cases: why are
they so difficult to recognize? student difficulties with recursion,”
in Proceedings of the 7th annual conference on Innovation and
technology in computer science education, ser. ITiCSE ’02. New
York, NY, USA: ACM, 2002, pp. 84–88. [Online]. Available:
http://doi.acm.org/10.1145/544414.544441

[7] D. Ginat and E. Shifroni, “Teaching recursion in a procedural
environment–how much should we emphasize the computing
model?” in The proceedings of the thirtieth SIGCSE technical
symposium on Computer science education, ser. SIGCSE ’99. New
York, NY, USA: ACM, 1999, pp. 127–131. [Online]. Available:
http://doi.acm.org/10.1145/299649.299718

[8] O. Muller, “Pattern oriented instruction and the enhancement of
analogical reasoning,” in Proceedings of the first international
workshop on Computing education research, ser. ICER ’05. New
York, NY, USA: ACM, 2005, pp. 57–67. [Online]. Available:
http://doi.acm.org/10.1145/1089786.1089792

[9] O. Muller and B. Haberman, “Supporting abstraction processes in
problem solving through pattern-oriented instruction,” Computer Science
Education, vol. 18, no. 3, pp. 187–212, 2008. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/08993400802332548

[10] B. Haberman and O. Muller, “Teaching abstraction to novices: Pattern-
based and adt-based problem-solving processes,” in Frontiers in Educa-
tion Conference, 2008. FIE 2008. 38th Annual, 2008, pp. F1C–7–F1C–
12.

[11] O. Muller, D. Ginat, and B. Haberman, “Pattern-oriented instruction
and its influence on problem decomposition and solution construction,”
SIGCSE Bull., vol. 39, no. 3, pp. 151–155, Jun. 2007. [Online].
Available: http://doi.acm.org/10.1145/1269900.1268830

[12] J. E. Caldwell, “Clickers in the large classroom: current research and
best-practice tips,” CBE Life Sci Educ, vol. 6, no. 1, pp. 9–20, 2007.

[13] J. J. Randolph, “Meta-analysis of the research on response cards:
Effects on test achievement, quiz achievement, participation, and off-
task behavior,” Journal of Positive Behavior Interventions, vol. 9, no. 2,
pp. 113–128, April 2007.

[14] A. Bandura, Social foundations of thought and action: A social cognitive
theory., ser. Prentice-Hall series in social learning theory. Englewood
Cliffs, New Jersey: Prentice-Hall, 1986.

[15] F. Pajares and M. D. Miller, “Role of Self-Efficacy
and Self-Concept Beliefs in Mathematical Problem Solving:
A Path Analysis.” Journal of Educational Psychology,
vol. 86, no. 2, pp. 193–203, 1994. [Online]. Available:
http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ490260

[16] P. Iannone and M. Inglis, “Self efficacy and mathematical proof: are
undergraduate students good at assessing their own proof production
ability?” in Proceedings of the 13th Conference on Research in
Undergraduate Mathematics Education. Conference proceedings, 2010,
february 2010. [Online]. Available: https://ueaeprints.uea.ac.uk/16104/

[17] V. Ramalingan and S. Wiedenbeck, “Development and validation of
scores on a computer programming self-efficacy scale and group
analyses of novice programmer self-efficacy.” Journal of Educational
Computing Research, vol. 19, no. 4, pp. 367–381, 1998.

[18] P. Askar and D. Davenport, “An investigation of factors related to self-
efficacy for java parogramming among engineering students,” Turkish
Online Journal of Educational Technology, vol. 8, pp. 26–32, 2009.

[19] E. Enström, G. Kreitz, F. Niemelä, P. Söderman, and V. Kann, “Five
years with kattis - using an automated assessment system in teaching,” in
Proceedings of the41st ASEE/IEEE Frontiers in Education Conference,
Rapid City, SD, ser. Frontiers in Education, IEEE, Ed. IEEE, ISBN:
978-1-61284-467-1, 2011.

[20] A. Bandura, Self-Efficacy Beliefs of Adolescents, ser. Adolescence and
Education. Information Age Publishing, 2006, ch. 14: Guide for
constructing self-efficacy scales, pp. 307–337.

[21] B. S. Bloom, M. D. Engelhart, E. J. Furst, W. H. Hill, and D. R.
Kratwohl, Taxonomy of educational objectives Handbook 1: cognitive
domain. London: Longman Group Ltd., 1956.

[22] P. Crescenzi, E. Enström, and V. Kann, “From theory to practice: Np-
completeness for every cs student,” in ITiCSE ’13: Proceedings of the
eighteenth annual conference on Innovation and technology in computer
science education. New York, NY, USA: ACM, 2013.

