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Abstract— This paper addresses the problem of robot in-
teraction with objects attached to the environment through
joints such as doors or drawers. We propose a methodology
that requires no prior knowledge of the objects’ kinematics,
including the type of joint - either prismatic or revolute.
The method consists of a velocity controller which relies on
force/torque measurements and estimation of the motion direc-
tion, rotational axis and the distance from the center of rotation.
The method is suitable for any velocity controlled manipulator
with a force/torque sensor at the end-effector. The force/torque
control regulates the applied forces and torques within given
constraints, while the velocity controller ensures that the end-
effector moves with a task-related desired tangential velocity.
The paper also provides a proof that the estimates converge to
the actual values. The method is evaluated in different scenarios
typically met in a household environment.

I. INTRODUCTION

A robot operating in a domestic environment needs to
interact with different types of doors, drawers and cupboards:
objects having handles attached to them but also being
attached to the other parts of the environment through joints.
That is, the robot cannot perform a free manipulation on
these but needs to take into account the external joint
constraints. The variation in size, orientation and type of
joints makes it intractable to provide a robot with predefined
kinematic models of all doors it may encounter, and it is
difficult - at times impossible - to observe and estimate the
kinematic structure of a door or drawer before it is opened.
This means that the performance of the task of opening
different types of mechanisms can be significantly improved
if the need to have prior knowledge of the mechanism is
removed. In this paper, we propose a method for smooth,
online opening of doors, drawers, or cupboards, without any
need of prior knowledge of the mechanism.

Work on the door opening problem was formally initiated
in the ’90s with experimental work on door opening [1] and
theoretically grounded work [2] proposing velocity-based
estimation for the motion direction in door opening. Velocity-
based estimation has inspired some of the recent works in
opening domestic mechanisms such as doors and drawers [3],
[4]. Velocity-based estimation is inherently online and allows
the opening of a mechanism without explicit knowledge of
its kinematic model or the kinematic parameters, but the
proposed methods suffer from ill-defined normalization when
the velocity is small and estimation lags. Position-based
estimation techniques [5]–[8] with optimization algorithms
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working on end-effector position have also been used to
estimate the geometry of the mechanism, rather than the
motion direction. As estimation does not guarantee iden-
tification in each control step, those methods have been
coupled with controllers that give the system the proper
compliance to absorb inaccuracies of the planned trajectories.
On the other hand, off-line probabilistic methods that do not
consider interaction forces have been used for more advanced
estimation tasks: in [9], the kinematic characteristics of
complicated mechanisms with more DoFs are learned, while
in [10] state estimation is studied given a detailed model
of the door. Other literature on the door opening problem
exploits advanced hardware capabilities. In [11], [12], robot
compliant behavior has been used for a manipulation task
without estimating the direction of motion or the kinematics
of the mechanism in hand. In [13], slowly pulling and
pushing in a prior phase is used to estimate the kinematics of
the mechanism using measurements of the forces exerted on
the fingertips from tactile sensors, while in [14], the objective
is to exert an impulsive force on a swinging door.

In Table I, we summarize some defining characteristics of
the door opening methods found in the literature and compare
to the present paper. In the table, the term force control des-
ignates work that explicitly controls or limits the interaction
forces, online, real-time implies that the method can be used
to open a door — at human-like velocities — without any
prior learning step, moderate hardware requirements means
that the method can be used on a simple manipulator with
velocity control and a force/torque sensor, and revolute doors
and sliding doors describe what types of door kinematics
that can be handled by the method. Estimate of constraints
indicate methods that produce an estimate of the current
kinematic constraints of a mechanism, while estimate of
geometry indicate methods that produce an explicit estimate
of the geometry of the door mechanics themselves. Unknown
model indicates methods that will work properly even if the
model (type of mechanism, i.e. revolute or prismatic joint)
is not known á priori, and unknown parameters indicate
methods that will work if the parameters of the mechanism
(i.e. hinge position or motion axis of prismatic joint) are not
known á priori. Proven parameter identification indictates
whether proofs are provided for the convergence of estimates.

In previous work, we have proposed a control algorithm
that produces estimates of the center of rotation for a revolute
door, exploits the estimates in the proposed velocity reference
and which is proved to identify the constraint direction as
well as achieve velocity/force tracking for smooth door open-
ing [15], [16]. The control scheme assumes a revolute model



TABLE I : Comparison of related works and this paper.

Publications [1] [2] [3] [4] [5] [6],
[7]

[8] [13] [9] [10] [11] [12] [14] [15],
[16]

our
approach

Force control X X X X X X X X X X X X X
Online, real-time X X X X X X X X X X X X
Moderate H/W Spec. X X X X X X X 1 X X 2 3 4 X X
Revolute Doors X X X X X X X X X X X X X X X
Sliding Doors X X X X X X X X X
Estimate of Constraints X X X X X X X X X
Estimate of Geometry X X X X X
Unknown Model X X X X X X X X
Unknown Parameters X X X X X X X X X X
Proven Parameter Identification X X
1 Multifingered hand with tactile sensors 2 Compliant joints (torque feedback at the joint level) – DLR lightweight robot II 3 Joint compliance by using clutches to engage/disengage motors 4 Use of the humanoid robot HRP-2

for the door, but the center of rotation is considered uncertain.
Furthermore, the estimator uses a projection operator to guar-
antee well-defined updated estimates. In contrast to previous
work, we now propose a control scheme that can deal with
both revolute-joint doors and sliding doors/drawers by con-
structively utilizing the fixed-grasp assumption. Furthermore,
the design of the estimator does not require a projector
operator; the estimator produces inherently well-defined es-
timates that converge to the actual values. Summarizing our
contribution as compared to existing literature, our method
can be applied to open both rotational and sliding doors,
without requiring ill-defined normalization. It is not based
on unusual hardware capabilities and can be implemented
in any velocity controlled manipulator with a forque/torque
sensor at the wrist. Finally, it can be proved theoretically to
achieve identification of the kinematic characteristics of the
mechanism simultaneously with force/velocity convergence
by explicitly considering adaptive estimates in the controller
design.

The remainder of this paper is organised as follows:
Section II describes the notation, system kinematics, and
problem formulation. The proposed solution and the corre-
sponding stability analysis are given in Section III followed
by the evaluation via simulations and an experiment in
Sections IV and V respectively. In Section VI the final
outcome of this work is briefly discussed.

II. SYSTEM AND PROBLEM DESCRIPTION

Generally, doors and drawers can be opened by grasping
the handle and moving it along its intended trajectory of
motion; a circular path for hinged mechanisms, or a linear
path for sliding doors and drawers. In this section we
formally define the problem of door/drawer opening where
the position of hinges, or direction of possible sliding motion
is not known á priori.

A. Notation and Preliminaries
We introduce the following notation:
• Bold small letters denote vectors while bold capitals

denote matrices. Underline · , hat ·̂ and tilde ·̃ denote
vectors of unit magnitude, estimates and errors between
control variables and their corresponding desired val-
ues/vectors respectively. ·> denotes the transpose of a
vector or a matrix.

• The generalized position of a frame {i} with respect to
a frame {j} is described by a position vector jpi ∈ Rm
and a rotation matrix jRi ∈ SO(m) where m = 2 or
3 for the planar and spatial case respectively. In case
{j} ≡ {B} where {B} is the robot world inertial frame
(located usually at the robots base) the left superscript
is omitted. Each column of jRi is denoted by jxi ≡
R>j xi,

jy
i
≡ R>j y

i
, jzi ≡ R>j zi where xi, y

i
,

zi denote the columns of the rotation matrix Ri that
describes the orientation of the frame {i} with respect
to the robot world inertial frame.

• The projection matrix on a unit three dimensional vector
a is denoted by P(a), and is defined as:

P(a) = aa>

while the projection matrix on a’s orthogonal comple-
ment space is denoted by P̄(a) and is defined as:

P̄(a) = I3 −P(a)

• I(b) denotes the element-wise integral of a vector
function of time b(t) ∈ Rn over the time variable t:

I(b) =

∫ t

0

b(τ)dτ

• We denote with S(b) the skew-symmetric matrix pro-
duced by b , [bx by bz]

> as follows:

S(b) =




0 −bz by
bz 0 −bx
−by bx 0




to perform a cross product operation with any three-
dimensional vector a ∈ R3 i.e. b × a = S(b)a. Note
that S(b)a = −S(a)b. Note also that ∀R ∈ SO(3)
the following similarity transformation holds: S(Rb) =
RS(b)R>.

B. Kinematic model of robot door/drawer opening

We consider a setting of a robot manipulator in which its
end-effector has achieved a fixed grasp of the handle of a
mechanism kinematically modeled as revolute or prismatic
joint e.g. a door or a drawer in a domestic environment.
The term fixed grasp describes that there is neither relative
translational or rotational motion between the handle and the
end-effector.



Let {e} and {h} be end-effector and handle frame respec-
tively. The fixed grasp assumption can then formalized as:

eṗh = 0, eṘh = 0 (1)

The two frames are attached on a kinematically known
position e.g. a known point of the end-effector denoted by pe.
However, the end-effector and handle frames are described
by different rotation matrices since they are strictly connected
to the robot kinematics and the door/drawer kinematics
respectively. In case of a rotating door (revolute joint) we also
consider a frame {o} attached at the center of the circular
trajectory of the end-effector while opening the rotating door.
The axis zo corresponds to the axis of the rotation while
xo, y

o
can be arbitrarily chosen. We state a convention to

define the frame {h} for revolute joints (hinged doors) and
prismatic joints (sliding doors, drawers):

Revolute joints:
• Axis zh is equivalent to zo, i.e. zo ≡ zh
• Axis y

h
is the unit vector which is perpendic-

ular to both zh and zo with direction towards
the hinge.

• Axis xh can be regarded as the allowed motion
axis; it can be formed as follows: xh = y

h
×

zh = S(y
h
)zh.

Prismatic joints:
Vector xh denotes the allowed motion axis. Axes
zh and y

h
can be arbitrarily chosen to span the two-

dimensional surface to which xh is perpendicular.
Examples of Fig. 1 illustrate the definition of the {h} axes.
Note that the {h} axes definition is based on door/drawer
kinematics that are uncertain in an unknown environment
where the robot can identify and grasp handles of doors and
drawers but doesn’t know the kinematics of their mechanism.

(i) Rotating door
typically used
in domestic
environment
between rooms
or for cupboards

(ii) Rotating door typi-
cally used in ovens
or washing ma-
chines

(iii) Sliding door
mostly used
for closets

Text

(iv) Drawer

Fig. 1 : Illustrative examples of different types of rotating/sliding
doors and drawers that can be modeled as revolute and
prismatic joints

In case of a door kinematically modeled as a revolute joint,
we can define the radial vector –which is parallel to y

h
– as

the relative position of the frames {o} and {e}:
r , po − pe (2)

By expressing r with respect to the end effector frame and
differentiating the resultant equation we get:

Ṙe
er + Re

eṙ = ṗo − ṗe (3)

Notice that eṙ = eṘh
hr + eRh

hṙ = 0 since eṘh = 0
and hṙ = 0 are implied by the fixed grasp assumption. By
substituting eṙ = ṗo = 0 as well as ṘeR

>
e = S(ωe) with

ωe being the rotational velocity of the end-effector, we get:

ṗe = S(r)ωe (4)

which describes the first-order differential kinematics of the
door opening in case of a revolute hinge. By multiplying both
sides of (4) with R>e and using the similarity transformation
for the skew-symmetric matrix S(r) we can express the
constraint in the end-effect frame as follows:

v = S(er)ω (5)

with v = R>e ṗe and ω = R>e ωe are the translational and
rotational end-effector velocities expressed in the local frame
of the end-effector. By denoting with ` the distance between
the end-effector frame and the center of rotation, the radial
vector er can be written as follows:

er = `R>e y
h

= `ey
h

(6)

The inner product of (5) with exh and using (6) gives us:
ex>h v = `ez>hω (7)

The remaining constraints, that stem from the fixed grasp
assumption and are imposed to the end-effector translational
and rotational velocities, are the following:

P̄(exh)v = 0 P̄(ezh)ω = 0 (8)

which can be reformulated as:
ey>
h

v = 0 ez>h v = 0 (9)
ex>hω = 0 ey>

h
ω = 0 (10)

For sliding doors or drawers, the fixed grasp assumption
implies that ωe = ωh = 0, and the constraint (7) related to
the rotational motion of the end-effector can be replaced by:

ez>hω = 0 (11)

The remaining constraints [(8) or (9),(10)] remain valid for
the prismatic case as well.

C. Robot kinematic model

For velocity controlled manipulators, the robot joint ve-
locity is controlled directly by the reference velocity uref. In
particular, the reference velocity uref , [v>ref ω

>
ref]
> ∈ R6

(vref ∈ R3 and ωref ∈ R3 denote the translational and
rotational parts) expressed at the end-effector frame can be
considered as a kinematic controller which is mapped to the
joint space to be applied at the joint velocity level as:

q̇ = J+(q)Γ(q)uref (12)



• q, q̇ ∈ Rn is the joint positions and velocities.
• J(q)+ = J(q)>

[
J(q)J(q)>

]−1
is the pseudo-inverse

of the manipulator Jacobian J(q) ∈ R6×n which relates
joint velocities to the end-effector velocities

• Γ(q) = diagblock[Re,Re] is a transformation for map-
ping the velocity from end-effector frame to the global
inertial frame.

If we consider the typical Euler-Lagrange robot dynamic
model, the velocity error at the joint level drive the torque
(current) controller uτ (t). If we assume a high frequency
current control loop with external forces’ compensators and
weak inertial dynamics, then the kinematic model is valid.
This assumption is also supported by the experimental results
(Section V).

D. Stability of a simple non-autonomous system using a
logarithmic barrier function

In this section we will state and prove a lemma to be used
in the proof of the main result of the paper.

Lemma 1: Consider the state domain D ,
(
−π2 , π2

)
and

the non-autonomous system (dependent on time variable
and state θ) defined in D and described by the following
differential equation:

θ̇ = −γc(t) tan θ (13)

with γ and c(t) being a strictly positive constant and a non-
negative function of t respectively.

If c(t) satisfies the persistent excitation condition i.e.∫ t+T0

t
c(τ)dτ ≥ α0T0 for some α0 and T0, then θ(t)

converges to zero exponentially, and

θ(t) = arcsin
[
e−γ

∫ t
0
c(τ)dτθ(0)

]
, (14)

Note that a non-negative sinusoidal or step-function satisfies
the aforementioned condition.

Proof: Consider the function U(θ) : D → R+, given
by:

U(θ) = − ln(cos θ) (15)

Differentiating U(θ) with respect to time and substituting
(13) we get:

U̇(θ, t) = −γc(t) tan2 θ (16)

Since c(t) ≥ 0, U̇(θ, t) ≤ 0 which in turn implies U(θ) ≤
U(θ(0)) and θ(t) ∈ D, ∀t for θ(0) ∈ D, we can express the
system using the variable σ = sin θ as follows: σ̇ = −γc(t)σ
and subsequently calculate the analytic solution which is
given by: θ(t) = arcsin

[
e−γ

∫ t
0
c(τ)dτθ(0)

]
which implies

the convergence stated above.

E. Control Objective

Our target is to control the motion of the robot to ma-
nipulate and open an external mechanism, such as a door or
drawer, irrespective of its kinematic structure. In applications
for dynamic unstructured — e.g. domestic — environments,
it is difficult to design á priori the desired velocity satisfying
the constraints imposed by the mechanism. This is due to the
difficulties of identifying the kinematic characteristics of the

mechanism. The execution of a trajectory incompatible with
system constraints gives rise to high interaction forces which
may be harmful to both the manipulated mechanism and the
robot, and does not lead to a successful task accomplishment.

The task can be naturally described in the handle frame,
but the desired variables should be defined at the end-effector
frame to be executable by the robot. Let fd, τ d and vd(t) be
the desired force, torque and velocity expressed at the end-
effector frame respectively. Let vd(t) be the desired velocity
along the motion axis of frame {h}. Then the desired velocity
at the end-effector frame is defined along exh, i.e. vd =
exhvd(t), and the force control objective can be achieved by
projecting the desired force on the orthogonal complement
space of exh (constrained directions) i.e. P̄(exh)fd; a small
valued or zero vector fd corresponds to small forces along
the constraint directions. On the other hand, the desired
rotational velocity can be defined using vd(t) along the axis
d , dezh , i.e. ωd(t) = dvd(t), with:

d ,

{
1/`, for rotational mechanisms
0, for sliding mechanisms (17)

Note that prismatic kinematics can be approximated by
rotational kinematics using large values of ` .

If we denote the total interaction force and torque ex-
pressed at the end-effector frame with f ∈ R3 and τ ∈ R3

respectively the control objective can be formulated as:
Problem 1 (Door/Drawer Opening Problem): Design

a velocity control uref such that P̄(exh)f → P̄(exh)fd,
τ → τ d, v → exhvd(t), ω → dezhvd(t), without knowing
accurately the motion axis exh, the corresponding constraint
directions P̄(exh), or the axis of rotation ezh and the
variable d. From a high level perspective, we consider
that the opening task is accomplished when the observed
end-effector trajectory (equivalent with the handle trajectory)
has progressed far enough to enable the robot to perform a
subsequent task, like passing through a door. Hence, some
perception system observing the progress of the opening of
the mechanism is additionally required to provide the robot
with the command to halt the opening procedure.

III. CONTROL DESIGN

In this section, we will propose a solution to Problem 1
from Section II-E. The proposed controller is analytically
proved to achieve the control objectives.

A. Translational velocity reference with torque feedback

Let ex̂h(t) denote the online estimate of motion direction
exh. Dropping the argument t from ex̂h(t)and vd(t) for no-
tation convenience we introduce a reference velocity vector
vref for controlling the end-effector translational velocity:

vref = ex̂hvd − P̄(ex̂h)vf (18)

where vf is a PI force feedback input defined as follows:

vf = αf f̃ + βfI
[
P̄(ex̂h)f̃

]
(19)

with f̃ = f − fd and αf , βf being positive control constants.



Let θ(t) denotes the angle formed between the actual
vector exh and its online estimate ex̂h which is time-varying.
Given that the estimate ex̂h is a unit vector, cos θ(t) can be
defined as follows:

cos θ(t) = ex>h
ex̂h (20)

In general, an online estimate of the vector ex̂h provided by
an adaptive estimator is not unit but in the following we are
going to design an update law that produces estimates of unit
magnitude. In the following, we drop out the argument of t
from θ(t) for notation convenience.

The velocity error ṽ , v−vref can be decomposed along
ex̂h and the corresponding orthogonal complement space as:

ṽ = P̄(ex̂h)(v + vf ) + ex̂h (v cos θ(t)− vd) (21)

where v denotes the magnitude of the velocity. In case of ve-
locity controlled manipulators, it is assumed that ṽ = 0 (12)
which implies the following closed-loop system equations:

P̄(ex̂h)vf = −P̄(ex̂h)exhv (22)
v = 1

cos θ(t)vd (23)

We design the update law for ex̂h as follows:

˙ex̂h = −γvdP̄(ex̂h)vf (24)

The use of the update law (24) is instrumental for the stability
analysis and the convergence proof. Furthermore, update law
(24) has two basic properties:

Property 1: The update law (24) ensures that the norm
of ex̂h(t) is invariant, i.e. starting with ‖ex̂h(0)‖ = 1,
‖ex̂h(t)‖ = 1, ∀t.

Proof: By projecting (24) along ex̂h yields
d
dt

(
‖ex̂h(t)‖2

)
= −2γvd

[
P̄(ex̂h)ex̂h

]>
vf = 0 (since

P̄(ex̂h)ex̂h = 0).
Property 2: For the closed loop system (22) and (23), the

update law (24) yields the scalar differential equation (13)
with respect to angle θ defined in (20) with c(t) := v2d ≥ 0,
i.e., the estimate converges to the true vector.

Proof: The second property is proven by projecting
both sides of (24) along exh: Substituting (20) in the left
side of the projected (24) yields:

ex>h
˙ex̂h = d

dt (cos θ) = − sin θθ̇ (25)

Substituting (22), (23) and ex>h P̄(ex̂h)exh = sin2 θ in the
right side of the projected (24) yields:

−γvdex>h P̄(ex̂h)vf =
γv2d
cos θ

ex>h P̄(ex̂h)exh = γv2d sin θ tan θ
(26)

By combining (25) and (26) we get:

sin θ(θ̇ + γv2d tan θ) = 0 (27)

Eq. (27) has a trivial solution θ(t) = 0 and the solution
and the solution given by Lemma 1 in equation (13) with
c(t) = v2d which includes the trivial one.

Using the aforementioned properties of the update law
(24), we can prove the following Theorem:

Theorem 1: Consider a velocity controlled manipulator,
with first order differential kinematics described by (12),
which has achieved a fixed grasp with the handle of a
sliding/rotating door or a drawer.

If the robot is driven by a velocity control input vref (18)
that uses a PI force feedback input vf (19) as well as the
update law (24) to estimate the local motion axis exh, then
a subset of Problem 1 will be solved, i.e., smooth opening
of the moving mechanism will be achieved. Analytically, the
following convergence results are guaranteed: ex̂h → exh,
v → exhvd, P̄(exh)f̃ → 0, given that vd is appropriately
chosen.

Proof: Consider the following Lyapunov-like function:

V = αfβf‖I
[
P̄(ex̂h)f̃

]
‖2 + 1

γU(θ) (28)

with U(θ) being defined in (15). By differentiating

(28), adding and subtracting α2
f

∥∥∥P̄(ex̂h)f̃
∥∥∥
2

,

β2
f

∥∥∥P̄(ex̂h)I
[
P̄(ex̂h)f̃

]∥∥∥
2

and subsequently substituting
(22), (23) we get:

V̇ =− α2
f

∥∥∥P̄(ex̂h)f̃
∥∥∥
2

− β2
f

∥∥∥P̄(ex̂h)I
[
P̄(ex̂h)f̃

]∥∥∥
2

− vd
cos θ

v>f P̄(ex̂h)exh −
1

γ cos θ
˙ex̂h
>exh (29)

To cancel out the terms of the second line in (29) we
substitute the update law (24).

Consequently, the derivative of function V (28) along the
system trajectories (22), (23) and (24) is given by:

V̇ = −α2
f

∥∥∥P̄(ex̂h)f̃
∥∥∥
2

− β2
f

∥∥∥P̄(ex̂h)I
[
P̄(ex̂h)f̃

]∥∥∥
2

Hence, V (t) ≤ V (0), ∀ t which implies that I(P̄(ex̂h)f̃ ) is
bounded and that θ(t) ∈ D provided that θ(0) ∈ D (For de-
tails see Section II-D). Consequently, (22), (23) implpy that
P̄(ex̂h)vf and v are bounded. Furthermore, the boundedness
P̄(ex̂h)vf implies that the update law rate ˙ex̂h is bounded.
Differentiating (22), (23) and using the boundedness of
I[P̄(ex̂h)f̃ ], P̄(ex̂h)vf and ˙ex̂h, it can be easily shown
that d

dt

[
P̄(ex̂h)vf

]
is bounded. Hence, the second derivative

of V is bounded allowing the use of Barbalat’s Lemma to
prove that V̇ → 0 and consequently P̄(ex̂h)I

[
P̄(ex̂h)f̃

]
,

P̄(ex̂h)f̃ → 0. Note that the aforementioned convergence
results are referred to the estimated motion space defined
by ex̂h. By using the Property 2 of the update law, (24)
yields (13) and subsequently (14) that implies the exponential
convergence of θ to zero or ex̂h → exh for vd satisfying the
persistent excitation condition.

B. Rotational velocity reference with torque feedback

Since the translational velocity is strictly connected to the
rotational velocity, the reference rotational velocity will be
defined using the desired translational velocity vd as follows:

ωref = d̂vd − ωτ (30)



where d̂ is the online estimate of d and it is appropriately
designed as follows:

˙̂
d = −γdvdωτ (31)

and ωτ is a PI torque feedback input defined as follows:

ωτ = ατ τ̃ + βτI (τ̃ ) (32)

The design of the update law (31) is instrumental for the
proof of the following theorem:

Theorem 2: Consider a velocity controlled manipulator,
with first order differential kinematics described by (12),
which has achieved a fixed grasp with the handle of a
sliding/rotating door or a drawer. If the robot is driven by a
velocity control input that consists of both vref (18) and ωref
(30) that uses a PI torque feedback input ωτ (32) as well as
the update law (31) to estimate the vector d, then Problem 1
will be entirely solved, i.e., the following convergence results
–additionally to those of Theorem 1– are guaranteed: τ̃ → 0,
I(τ̃ )→ 0, ω → dvd, for an appropriately chosen vd.

Proof: First, we will reform ωref by adding/subtracting
the term d(v − vd) and using (23) as follows:

ωref = dv + d̃vd − ωτ + d
(
cos θ−1
cos θ

)
vd (33)

with d̃ = d̂ − d. For design purposes we consider the
following positive definite function:

W = ατβτ‖I (τ̃ ) ‖2 +
1

2γd
‖d̃‖2 + ξU(θ) (34)

with U(θ) being defined in (15) and ξ being a positive
constant. By differentiating (34) with respect to time and
substituting ω = ωref given by (33), (16) (for c(t) = v2d),
the rotational constraints (8), (10), and (7) or (11) we get:

Ẇ =− α2
τ‖τ̃ ‖2 − β2

τ‖I(τ̃ )‖2 − ω>τ d
(
cos θ−1
cos θ

)
vd (35)

− ξγv2d tan2 θ + d̃

(
1

γd

˙̃
d + vdωτ

)
(36)

To cancel the last term of the right side part of (35) we set
˙̃
d = −γdvdωτ which corresponds to the update law (31).
By using (31) and the inequality:

ω>τ d

(
cos θ − 1

cos θ

)
vd ≤

‖ωτ‖2
4

+ ‖d‖2v2d
(
cos θ−1
cos θ

)2
(37)

we can upper-bound Ẇ (35) as follows:

Ẇ ≤− α2
τ‖τ̃ ‖2 − β2

τ‖I(τ̃ )‖2 +
‖ωτ‖2

4
(38)

− ξγv2d tan2 θ + ‖d‖2v2d
(
cos θ−1
cos θ

)2
(39)

By expanding ‖ωτ‖2, using (32), setting ξ > ‖d‖2/γ and
after some trigonometric calculations we get:

Ẇ ≤− α2
τ

4 ‖τ̃ ‖2 −
β2
τ

4 ‖I(τ̃ )‖2 − ‖d‖2v2d
(
1−cos θ
cos θ2

)
(40)

Since cos θ ≤ 1 and θ(t) ∈ D provided that θ(0) ∈ D
(Theorem 1), the derivative of function W (34) can be upper-
bounded as follows:

Ẇ ≤ −α
2
τ

4 ‖τ̃ ‖2 −
β2
τ

4 ‖I(τ̃ )‖2

Hence, W (t) ≤ W (0), ∀ t which implies that I(τ̃ ) and
d̃ are bounded. Consequently, by using (33) and taking
into account the constraints (8), (10), and (7) or (11), τ̃ is
bounded and hence ˙̂

d is bounded. Using the aforementioned
boundedness results as well as those implied by Theorem
1, it can be easily proved by differentiating Ẇ that Ẅ is
bounded. Hence, applying Barbalat’s Lemma we get that
τ̃ → 0, I(τ̃ ) → 0. Using the aforementioned convergence
results as well as θ → 0, it can be shown that d̂ → d
provided that vd satisfies the persistent excitation condition
and hence ω → dvd.

C. Summary and Discussion

The proposed controller produces local estimates of the
unconstrained motion direction and rotation axis (in case of
rotational door) using the update laws (24) and (31). The
estimates are used within velocity references (18), (30) that
enforce the robot to move with a desired velocity while
controlling forces/torques along the constrained directions,
guaranteeing compliant behavior. The main condition for
guaranteed performance is that the initial estimate of the
motion axis is not perpendicular to the true value i.e. θ(0) ∈
D. An example where this condition is not satisfied could
be when opening a drawer with an initial estimate that it is a
sliding door (c.f. Fig. 2, cases 4 and 5). This can be overcome
by using a moderate deviation in the initial estimate (see
Section IV). The proposed method alone can not handle the
case where the initial estimate is in the opposite direction of
the true value, as this would generate a closing motion. This
can be handled by an external system that stops the motion
and retries with a different initial estimate if measured forces
are too high, similar to a human who first pushes a door, and
when it doesn’t open, tries to pull it instead.

By defining the controller in the end-effector frame and
estimating the motion directions locally, the proposed method
is applicable to both revolute and prismatic doors/drawers.
Coupling the estimator with the controller makes the method
inherently on-line, and enables proofs of convergence of both
estimates and force/torque errors. It is trivial to extend the
method to produce explicit estimates of the physical location
of the hinge of a revolute door, as estimates of both radial
direction and radial distance are available. If we make the
assumption that a large enough radial distance (we arbitrarily
choose 10 m) implies a prismatic mechanism, the following
steps will identify the hinge position: Step 1): Assume a
rotational mechanism if ‖d̂‖ > 0.1. For ‖d̂‖ < 0.1 we
assume a sliding door or a drawer and do not proceed
further. Step 2): Calculate the estimated radial direction,
coinciding with handle frame axis eŷ

h
, by the outer product

of ex̂h, d̂‖d̂‖−1. Step 3): Center of rotation p̂o is then:
p̂o = pe + Re

eŷ
h
‖d̂‖−1.

Note that the proposed control scheme can be directly
implemented on any velocity-controlled robotic manipula-
tor with a force/torque sensor in the end-effector frame.
Implementation on a torque controlled robot may require
the reference acceleration, i.e. time derivative of reference



velocity. Then, force/torque feedback terms vf , ωτ should
only consist of the integral of the force error (projected on the
constrained direction) and the torque, so that differentiation
of noisy force/torque measurements is avoided. A dynamic
controller can be developed from the velocity controller
following the steps described in our previous work [15].

IV. SCENARIOS AND EVALUATION

To demonstrate the generality of the approach, we consider
five different scenarios, common in domestic environments,
see Fig. 2. All cases are treated with the same initial
estimates and controller gains. Cases (i) and (ii) are typical
revolute doors with vertical axis, with the hinge to the left or
to the right, respectively. Case (iii) models a revolute door
with axis of rotation parallel to the floor, such as is common
for ovens. The radius of these doors are all 50 cm. Case (iv)
models a sliding door, and case (v) a drawer. The common
initial estimate used is that of a prismatic joint, assuming
d̂(0) = 0. The initial estimate of the unconstrained direction
of motion is 30◦ offset from the normal direction to the plane
of the door or drawer. The initial estimates are shown as
red arrows, and the true direction is shown as black arrows
in Fig. 2. The angular values are the initial errors of the
estimates. The controller gains are chosen as follows: αf =
αT = 0.05, βF = βT = 0.005, γ = γd = 2000. The desired
motion velocity is 5 cm/s, given as vd = 5(1− e−10t) cm/s
to avoid sharp initial transients.

20 

deg

(i) Revolute door, .
left hinge, d = 2.

40 

deg

(ii) Revolute door, .
left hinge, d = 2.

32 deg

(iii) Revolute door, bottom
hinge, d = 2.

60 

deg

(iv) Prismatic door, d = 0.

30 

deg

(v) Prismatic drawer, .
d = 0.

Fig. 2 : The five different simulation cases. The angular measure-
ment indicates the initial error. Note that all scenarios are
initialized with the same estimate.

In Fig. 3 - upper plot, the response of the motion axis
estimation errors are shown; convergence to the actual axis
is achieved even for big initial errors. Figure 3 - lower plot
depicts the estimate of the inverse signed distance d between
the end-effector and the hinge; note that estimate d̂ is not
modified when the estimate coincides with the actual parame-
ter and it converges to its actual value in all cases. Combining
estimates of the modulated rotation axis with the motion axis
we can calculate the center of rotation of the rotational doors
in real time; simulation gives errors approximately 1.4 cm
after 1.5 sec, or opening the door 7.5 cm. Given the threshold
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Fig. 3 : Upper figure: estimation error in the orientation of motion
axis, lower figure: estimates of the inverse distance be-
tween hinge and end-effector. True values are 2 for cases
(i) and (iii), -2 for case (ii), and 0 for cases (iv) and (v).
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Fig. 4 : Force and torque responses, upper figure: norm of the
projected force error, lower figure: norm of the torque
error

of ‖d̂‖ > 0.1, the revolute doors are identified as such
after 0.2 s. Fig. 4 shows the Euclidian norms of force and
torque errors (ef = ‖P̄(exh)f̃ ‖ and eτ = ‖τ̃ ‖ respectively).
Errors converge to zero following the convergence rate of
modulated rotation axis and motion axis.

V. EXPERIMENTS

To further demonstrate the viability of the approach, we
implemented the controller on a real velocity controlled robot
platform (see [15], [16] for technical details of the robot), and
let it open a cupboard door. See Figure 5 for an illustration
of the setup. As in simulation, the initial estimate of the
unconstrained direction of motion is 30◦ off of the true value.
Estimate convergence is shown in Figure 6, and force and
torque errors are shown in Figure 7. With the real robot, the
arm was close to a singular configuration at t = 4 s, which
gave a small temporary error in the estimate of d̂, but no
significant instabilities.

VI. CONCLUSIONS

We propose a unified method for manipulating different
types of revolute and prismatic mechanisms. The method



is model-free and it can be used to identify the type and
the geometrical characteristics of one-joint mechanisms. By
coupling estimation and action the method is inherently
online and can be used in real-time applications. The method
consists of a generalized velocity controller using estimates
of the local motion direction, the axis of rotation and update
laws for the estimated vectors. The design of the overall
scheme guarantees compliant behavior and convergence of
the estimated vectors to their actual values.
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