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Abstract— In this work we present an adaptive control
approach for pivoting, which is an in-hand manipulation
maneuver that consists of rotating a grasped object to a desired
orientation relative to the robot’s hand. We perform pivoting
by means of gravity, allowing the object to rotate between the
fingers of a one degree of freedom gripper and controlling the
gripping force to ensure that the object follows a reference
trajectory and arrives at the desired angular position. We
use a visual pose estimation system to track the pose of the
object and force measurements from tactile sensors to control
the gripping force. The adaptive controller employs an update
law that accommodates for errors in the friction coefficient,
which is one of the most common sources of uncertainty
in manipulation. Our experiments confirm that the proposed
adaptive controller successfully pivots a grasped object in the
presence of uncertainty in the object’s friction parameters.

I. INTRODUCTION

Humans are capable of in-hand manipulation, i.e., reposi-
tioning grasped objects in the hand, by sliding, rolling and/or
pushing the objects through precisely coordinated motions of
the fingers. This is possible among other reasons due to the
high mechanical complexity of the human hand and because
humans are able to simultaneously control the motion of
the fingers with great precision. Replicating this intrinsic
dexterity in robots is to some degree achievable by equipping
robots with hands that are composed of multiple fingers and
actuators. However, most robot platforms today have rather
simple grippers with few degrees of freedom given that they
are generally more robust, cost efficient, easy to control and
also because they simplify grasp planning and execution. At
first sight such grippers may not seem capable of performing
regrasps by only actuating the fingers, raising the question of
whether they are actually suitable for in-hand manipulation.

This apparent lack of dexterity can however be compen-
sated by the use of extrinsic dexterity, i.e., by leveraging
resources external to the robot such as external contacts,
gravity and inertial forces that can enable the robot to
perform meaningful manipulation tasks. Extrinsic dexterity
essentially enables roboticists to trade off complexity in
gripper hardware design and control with more clever and
active use of the robot’s environment through an effective
combination of control, interactive perception and motion
planning.

Numerous examples of how a robot can make effective
use of extrinsic dexterity for in-hand manipulation have
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been shown in the literature [1]–[4]. These can include
e.g. pushing the grasped object against an external pusher
to make the object slip in a controlled manner within the
gripper. Other examples include accelerating the manipulator
such that inertial forces drag the object to a specified location
within the gripper, and allowing the object to slip within the
robots hand due to the object’s weight.

Fig. 1 : Pivoting with gravity by controlling the gripping
force exerted by a two finger pinch grasp. The top row shows
how the robot opens and closes the gripper to control the
object’s rotational motion induced by gravity. The object
rotates around a fixed axis of rotation connecting the two
fingers as shown in the bottom row.

In this paper we address a specific regrasp action known as
pivoting, in which the objective is to rotate a grasped object
to a desired angular position relative to the robot’s hand.
We perform pivoting by using extrinsic dexterity as shown
in Fig. 1, allowing the gravitational torque generated on the
grasped object’s center of mass to rotate the object, while
using the gripping force of a 1 DOF parallel jaw gripper as
a braking mechanism to control the object’s trajectory.

One of the major challenges of pivoting as well as other
in-hand manipulation actions is how to account for imperfect
knowledge of the grasped object’s friction parameters. This
is a common situation given that a robot may for instance
grasp novel objects and tools relevant for a task. Furthermore,
it may be difficult in practice to accurately measure some of
the friction parameters given their dependence on e.g. contact
geometry and pressure distribution.

This motivates the main contribution of our work, which
is performing pivoting with a closed loop adaptive controller
that accounts for imprecise estimates of the torsional friction
parameters. The control scheme uses visual tracking of the
object and force measurements from tactile sensors at the
fingertips. Comparing to our previous work on closed loop
pivoting [5] we do not rely on assumptions such as saturation



of the control input and achieve enhanced tracking control
performance as a result of the following improvements:
• Improved torsional friction modeling using results from

previous studies on soft finger mechanics.
• Incorporation of tactile sensing for control of the grip-

ping force.
• Online adaptation of the torsional friction coefficient.

This allows us to successfully pivot the object given
errors in the initial estimate of this coefficient.

This paper is organized as follows: Section II contains the
related work, Section III contains the contact and dynamics
model of the system, in Section IV we formulate the adaptive
control law and Section V shows our experimental results.
Finally, we present our conclusions and planned future work
in Section VI.

II. RELATED WORK

In-hand manipulation, i.e., repositioning an object in a
robot’s hand, has been a long standing research topic in
robotics were several aspects of modeling, motion planning
and control have been addressed. Early studies by Tournas-
soud et. al. showed how regrasping can be accomplished by
repeatedly picking and placing an object on a surface from
different grasping positions [6]. This procedure can however
be time consuming and the number of possible regrasps is
limited by the number of stable poses in which the object can
be placed on the surface. Researchers thus quickly realized
the need for more advanced dexterous manipulation skills.
One proposed solution was to control the motion of the
fingers of a robot hand to achieve a desired repositioning of
a grasped object via e.g. rolling, sliding and finger gaiting
[7], [8].

On the other hand, other studies promoted the idea of
leveraging the robot’s environment to facilitate in-hand ma-
nipulation. Brock et. al. were among the first to propose the
idea of augmenting a robot’s dexterity through controlled
slip of a grasped object due to externally applied forces
[9]. Dafle et. al. defined the concept of extrinsic dexterity
and showed how a robot manipulator with a rather simple
gripper can still perform meaningful in-hand manipulation
by using a diverse set of primitive actions which take
advantage of resources external to the robot such as gravity
and contact with the environment [1]. This idea of leveraging
the robot’s environment has also been used e.g. in the context
of grasping [10].

These works have highlighted the importance of contact
and friction modeling as central components to dexterous
manipulation. Goyal developed the concept of limit surfaces
which describe both the bounds on the wrenches that can
be applied on a grasped object slippage occurs and the
sliding motion of the object once slippage takes place [11].
Howe et. al. further developed these ideas and proposed
computationally tractable approximations of limit surfaces
in the context of manipulation planning and control [12].

Friction modeling has also been studied for the design
of friction identification and compensation schemes in me-
chanical systems [13], [14]. However, the control techniques

developed in these studies cannot be directly applied to our
work since they consider friction as an additive disturbance,
while in our case friction represents a control input. In this
sense, our controller for pivoting holds some resemblance
to antilock braking systems (ABS) in vehicles, however, the
objective of these works is to maximize the traction force
between the tire and the road [15].

Tactile sensing has also played an instrumental role in
robotic manipulation, motivated in part by the essential
role that it plays in even the most basic pick-and-place
manipulation tasks carried out by humans [16]. Many studies
have addressed the problem of slippage detection through
tactile sensing, however, the main focus has been on grasp
control for slippage prevention rather than controlled slip
[17], [18]. Some works have also proposed online estimation
of friction parameters [18], but have focused on friction
forces rather than torsional friction as in our case.

Some more recent works have studied mechanical model-
ing and design as well as motion planning aspects of in-hand
manipulation with extrinsic dexterity. Dafle et. al. studied
the mechanics of prehensile pushing, analyzing the effect
of pushers with different contact geometries on the slippage
of a grasped object [2]. Dafle et. al. also designed fingertips
which allow a robot to easily transition between a fixed grasp
on an object and a pinch grasp in which the object can freely
rotate [19].

Shi et. al. proposed a motion planning framework that de-
termines the required manipulator accelerations that achieve
a desired sliding motion of an object relative to the robot’s
hand [4]. This work addresses a scenario similar to ours,
namely an object held by a two-finger pinch grasp, and has
the advantage of reconfiguring 3 degrees of freedom of the
object’s pose. Although the simulations in the study validate
the proposed approach, the experiments do not match the
expected performance which the authors attribute in part to
lack of feedback control and tactile sensing.

Also closely related to our work is the open-loop pivoting
framework proposed by Holladay et. al. [3]. In this work
the robot first plans a pinch grasp on an object resting on a
surface and subsequently lifts it following a precomputed
motion plan. The object can only be rotated between a
discrete set of stable poses given that the pivoting is done
open loop without online tracking of the object’s pose and
without control of the gripping force.

In contrast to these recent works [3], [4] which employ
open-loop motion planning strategies we focus on using
adaptive feedback control with online vision tracking and
tactile sensing for controlling the gripping force.

III. MODELING

In this section we specify the friction and dynamics models
that describe the pivoting action. Let us denote with θ
the angular position of the object relative to the gripper
as shown in Fig. 2. The objective of pivoting is to rotate
a grasped object from an initial angular position θ0 to a
desired orientation θd. We control the rotational motion of
the object by varying the torsional friction τf generated by



the fingertips, which we control with the gripping force. We
assume that the gripper has one degree of freedom with
two soft hemispherical fingertips and that the object rotates
around a fixed axis of rotation connecting the fingertips.

Fig. 2 : Modeling of the pivoting task. The gravity vector is
denoted by g, θ is the relative orientation between the object
and the gripper and θ0, θd are the initial and desired angular
positions respectively.

We model the torsional friction interaction in pivoting
based on previous studies on mechanical modeling of soft
fingers. These models allow us to establish a relationship
between the torsional friction at the fingertips and their
applied gripping force, which we will then use in the control
design. Furthermore, we assume that the gripper is in a
fixed position, such that the motion of the object is solely
determined by the gravitational torque on its center and the
torsional friction.

A. Soft finger contact model

Robotic fingertip contact models have been traditionally
classified in three categories according to their friction prop-
erties as hard-finger contacts without friction, hard-finger
contacts with friction and soft finger contacts [20], [21].
The soft finger contact model assumes that the finger can
exert friction forces tangential to the contact surface as
well as torsional friction around the direction normal to the
contact surface. Furthermore, there is a nonlinear relationship
between the maximum force and torque that can be exerted
on an object held in a soft finger grasp until slippage of the
object occurs [11], [12], [17]. This boundary is known as a
limit surface and can be approximated by an ellipsoid [4]

f>Af = 1 (1)

where f = [fx, fy, τz] represents the friction wrench applied
at the contact with (fx, fy) being the tangential friction force
components and τz the torsional friction around the normal.
Assuming isotropic friction the matrix A ∈ R3x3 becomes
a diagonal matrix whose elements are the maximum friction
force and moment

A = diag(f−2t,max, f
−2
t,max, τ

−2
z,max) (2)

where the maximum tangential force ft,max can be modeled
as Coulomb friction

ft,max = µfn (3)

where µ is the friction coefficient and fn the force applied
in the normal direction of the contact. On the other hand, the
maximum torsional friction τz,max before a grasped object
rotates exhibits a more complex behavior that depends on the
geometry of the contact area and the pressure distribution.
We assume that the grasped object has a locally smooth
surface at the contact locations, such that the contact patches
are circular. The maximum torsional friction thus assumes a
Coulomb-like model [12], [22]

τz,max = aβµfn (4)

where a is the radius of the contact surface and the constant
β depends on the local pressure distribution. This parameter
may be for example β = 0.589 in the case of a hertzian
pressure distribution or β = 0.667 in the case of a uniform
distribution [12].

When the external wrenches applied on an object are
contained within the ellipsoid limit surface (i.e. f>extAfext ≤
1), the object remains static. Once the object starts sliding,
the limit surface model assumes that the friction wrenches
remain on the limit surface and that the sliding velocity is
perpendicular to the ellipsoid. In our case we assume that
the object is grasped sufficiently far from its center of mass
so that the gravitational torque is large compared to the
object’s weight. Hence, the translational motion of the object
is negligible with respect to its rotational motion and the
torsional sliding friction τf is approximately equal to the
maximum friction torque τz,max given by the limit surface

τf = aβµfn (5)

It is important to note that the limit surface model ignores
potential velocity-dependent sliding friction phenomena such
as the Stribeck effect and viscous friction. Despite this limi-
tation, similar to the approach taken in previous works [4] we
will assume in our controller design that the model described
by Eq. (5) captures the most representative components of
the torsional sliding friction during the pivoting task, namely
the dependence on the applied gripping force.

In order to complete our model we also require a deforma-
tion model that relates the normal force fn and contact radius
a. Xydas et. al. have shown that hemispherical fingertips
follow a power-law deformation model [22]

a = cfγn (6)

where c is a constant and the exponent γ has a value between
0 and 1/3 depending on the fingertip material. Substituting
(6) in (5) we obtain the following torsional friction model

τf = µtorsf
1+γ
n (7)

where we denote µtors = cβµ as the torsional friction
coefficient.

B. Pivoting dynamics

Given our assumption that the gripper is in a static posi-
tion, the rotational dynamics of the object during slippage
is determined by the gravitational torque and the torsional



friction of the fingers. The rotational dynamics of the object
around the z axis shown in Fig. 2 is given by

Iθ̈ = τg + τf1 + τf2 (8)

where I is the moment of inertia of the object around the
axis of rotation at the fingertips, θ̈ the angular acceleration of
the object, τg the gravitational torque exerted on the object’s
center of mass and τfi with i ∈ [1, 2] the torsional friction
generated at the contacts between the grasped object and
each of the fingertips.

We assume that the grasp is symmetric such that the
normal forces fni exerted by each finger on the object are
equal and that both fingertips have the same deformation and
friction parameters such that τf1 = τf2 . If gravity is aligned
with the y axis as shown in Fig. 2, i.e. g = gy, and by using
the torsional friction model (7) we then obtain the following
nonlinear rotational dynamics

Iθ̈ = −mglcm cos θ + 2µtorsf
1+γ
n (9)

where m is the object’s mass, g gravity and lcm the distance
between the axis of rotation and the object’s center of mass.

IV. CONTROL DESIGN

Our control design is guided by the following observations
and assumptions

1) The inertial parameters (I,m, lcm) of the object are
known but we allow some uncertainty in the torsional
friction coefficient µtors. The inertial parameters can
be obtained by using e.g. wrist-mounted force-torque
sensors prior to the pivoting task [23]. The torsional
friction coefficient µtors is however more difficult to
measure in practice given its dependence on contact
geometry and pressure distribution. This justifies the
use of an adaptive controller with adaptation on µtors.

2) The visual model of the object is known and the
angular position θ of the object is tracked by a vision
system.

3) The normal forces fn exerted by the fingers are mea-
sured via tactile sensors.

4) The gripper is oriented such that the gravitational
torque can rotate object towards the desired reference,
i.e. sgn(τg) = sgn(θd − θ0).

5) The exponent γ from the soft finger deformation model
(6) is known. This parameter depends on the fingertip
material and can be estimated offline by using either
(6) or (7).

6) The angular position θ of the object must not overshoot
past the reference angle θd since we perform passive
pivoting. The manipulator would otherwise have to
rotate the gripper to perform passive pivoting again,
or we would need to generate angular momentum on
the object by accelerating the manipulator.

7) The object is initially at rest and in a secure grasp.
Following assumptions 2) and 3) we decompose our

controller in two subcontrollers as shown in the diagram
in Fig. 3. First, an adaptive controller takes as input the
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Fig. 3 : Overview of our proposed control scheme for pivoting.

angular position θ measured by the vision system and the
desired angular position θm given by the reference model
and computes a reference normal force ufn to control the
trajectory of the object. This reference force ufn is then
used together with tactile measurements of the normal force
fn by a PI controller to adjust the velocity of the fingers,
minimizing the error between the measured and reference
normal force.

A. Adaptive controller

We choose model reference adaptive control given that we
aim to perform the pivoting task given errors in the torsional
friction coefficient µtors, which represents a parametric
uncertainty in the nonlinear model (9).

Adaptive control performs tracking control by driving the
system’s state x(t) = [θ(t), θ̇(t)]> along a state trajectory
xm(t) = [θm(t), θ̇m(t)]> defined by a reference model. This
reference model is designed by the user and describes the
ideal response that the system should follow, satisfying the
control requirements and constraints of the task. In our case
the angular position response should not overshoot, thus, we
design the reference model as a critically damped second
order system with unit DC gain with the following transfer
function

Hm(p) =
θm
θin

=
λ20

(p+ λ0)2
(10)

where the reference input θin follows a trapezoidal veloc-
ity profile.

To formulate our controller, we rewrite the model from
Eq. (8) considering the normal force as a control input ufn

hθ̈ + bτg = u1+γfn
(11)

where h = 0.5Iµ−1tors and b = 0.5µ−1tors. We then define the
following tracking control error s

s =
˙̃
θ + λθ̃ (12)

where θ̃ = θ − θm and ˙̃
θ = θ̇ − θ̇m are the angular position

and velocity errors respectively and λ is a constant.
We can then formulate the following standard adaptive

control law [24]

u1+γfn
= ĥθ̈r − kss+ b̂τg (13)



The control law is composed of a velocity error and
feedforward acceleration term ĥθ̈r, a tracking error term kss,
and a nonlinear gravity compensation term b̂τg . The reference
angular acceleration θ̈r is given by θ̈r = θ̈m − λ ˙̃θ, ks is a
positive tracking control gain and ĥ, b̂ are adaptive estimates
of h and b given by

˙̂
h = −αhsθ̈r (14a)

˙̂
b = −αbsτg (14b)

where αh, αb are positive adaptation gains. It is important to
note that the online estimates (14a), (14b) are not guaranteed
to converge to the correct values unless persistent excitation
conditions are met. We do not consider this a major limitation
since the scope of our work is to perform the pivoting task
and not accurate estimation of the friction parameters. The
control scheme does however guarantee convergence of the
tracking error s which implies that the object pivots to the
desired orientation.

B. Gripper force controller

We regulate the normal force fn by opening and closing
the fingers with a PI controller

uv = kpf̃n + ki

∫ t

0

f̃ndt (15)

where uv is the velocity set point commanded to the gripper,
kp, ki are the controller gains and f̃n = fn−ufn is the error
between the measured normal force fn and the normal force
set point ufn from the adaptive control law of Eq. (13). The
controller is tuned such that fn → ufn .

V. EXPERIMENTAL EVALUATION

We evaluated our proposed adaptive controller on a robot
platform equipped with a 1 DOF 2-finger parallel gripper
with Optoforce1 tactile sensors and an RGBD camera as
shown in Fig. 4. We track the object’s pose throughout the
experiments using Simtrack, a model-based vision tracking
system that generates realtime pose estimates at 30 Hz [25].
The control loop operates also at 30 Hz.

(i) (ii)

Fig. 4 : Robot platform with parallel gripper and Optoforce
tactile sensors at the fingertips used in our experimental
evaluation.

1www.optoforce.com

The Optoforce tactile sensors provide 3-axis force mea-
surements at 100 Hz, and we chose them for these ex-
periments given their low cost, robustness and suitability
for force control. The sensors operate based on an optical
principle providing high resolution force measurements of
0.03N with noise levels of approximately 0.01N, which are
not commonly available from other types of tactile sensors.

In our experiments we grasp an object whose inertial
and frictional parameters are given in Table I. Furthermore,
Table II shows the controller gains and parameters used
in the adaptive control law (13) and the PI gripper force
controller (15). We kept the control gains fixed throughout
the experiments.

I[kg ∗ cm2] 10.64
m [g] 48.5
lcm [cm] 12.22

µ 0.47
µtors 0.643x10−3

TABLE I : Inertial and frictional parameters of the grasped
object.

ks 23.0
λ 10.0
γ 0.1849
kp 5.0x10−4

ki 2.0x10−5

TABLE II : Controller gains and parameters used throughout
the experiments.

We obtained the torsional friction coefficient µtors and the
power-law exponent γ using Eq. (5) through measurements
of the torsional friction τf provided by the force/torque
sensor in our manipulator’s wrist and tactile measurements
of the normal force fn. However, the hardware limitations
of our system made it difficult to accurately estimate these
parameters: the torsional friction measurements from the
force/torque sensor had a low signal to noise ratio and
were also affected by gravity compensation errors, which
generated significant errors in the estimated µtors. We tuned
this parameter by running the controller with different values
of the friction coefficient as will be explained further on.

To obtain the control gains we first tuned the gripper force
controller gains (kp, ki) following standard practice for PI
controller tuning. We then tuned the tracking control gain ks
by first deactivating the estimators, i.e. setting αh = αb = 0
in Eq. (14) and using the ground truth values of the object’s
inertial and friction parameters in the controller. An excessive
tracking gain ks caused the object to stop repeatedly along
the trajectory given that it would enter the stiction regime. On
the other hand, a low ks tended to generate large overshoots
in the angular position θ of the object with respect to the
reference trajectory. We chose λ = 10.0 for the tracking
control error (12) in order to give a higher relative weight to



position tracking errors rather than velocity tracking errors
given the higher quality of pose estimates provided by our
vision tracker with respect to the angular velocity estimates.
We designed the reference trajectory slow enough to avoid
motion blur that would deteriorate the vision tracker’s per-
formance, yet fast enough to avoid stiction effects.

We evaluated our controller both under errors in the initial
estimate of the torsional friction coefficient µtors and when
modifying the frictional properties of the material in contact
with the fingertips. We thus performed the following set of
experiments:
• Effect of initial estimate of µtors without adaptation.

We deactivate the adaptive estimators from Eq. (14),
essentially transforming our controller in a feedback
linearizing controller. We then show the controller’s
behavior assuming different values of the torsional
friction coefficient µtors in the control law (13).

• Effect of initial estimate of µtors with adaptation.
We repeat the previous set of experiments and show
how adaptation is critical to accomplish the pivoting
task despite errors in the initial estimate of µtors.

• Change of object frictional properties. We further
examine the adaptive controller’s performance by using
the same test object as in the previous experiments
but changing the material at the point of contact with
the fingertips, modifying thus the friction coefficient.
We show that although there is an evident reduction in
tracking control performance, the object still pivots to
the desired position.

A. Effect of initial estimate of µtors without adaptation

In this set of experiments we deactivated the estimators
by setting αh = αb = 0.0 in the adaptation law (14)
and executed the controller with 3 different values of the
torsional friction coefficient µtors in the control law (13).
The reference trajectory θm(t) from the reference model and
the angular position θ(t) of the object relative to the gripper
for each case are shown in Fig. 5.

As mentioned previously, this experiment allowed us to
adjust the approximate torsional friction coefficient we ob-
tained using the wrist-mounted force-torque sensor. In our
experimental trials the controller achieved the best tracking
performance with µtors = 0.643x10−3. Furthermore, the
object stopped prematurely before reaching the goal angular
position when the coefficient was below this optimal value,
for example with µtors = 0.3x10−3 as shown in Fig. 5.
This happens because a lower µtors magnifies the nonlinear
gravity compensation term bτg in the control law (13),
causing the controller to exert excessive gripping force.
Analogously, an overestimated torsional friction coefficient,
such as µtors = 1.0x10−3, reduces the gravity compensation
term and causes the object to slip past the desired angular
position. This experiment clearly illustrates how errors in
µtors affect the control performance and justifies the use of
adaptive control in our approach.

Fig. 6 shows the normal force input ufn of the adaptive
controller, as well as the normal force measured by the
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Fig. 5 : Reference angular position θm and angular position
θ of the object under different values of µtors in the control
law without adaptation.

tactile sensor fn when µtors = 0.643x10−3. The figure
shows that there is a force control error, which can be
explained in part by the tracking errors in the gripper’s in-
ternal velocity controller as evidenced in Fig. 7 which shows
differences between the commanded gripper velocity uv and
the gripper’s velocity v measured by encoder feedback. This
occurs in practice because the internal controller’s tracking
performance degrades at low velocities. We could reduce part
of the force control errors by using a more aggressive PI
force controller, but in practice this caused the object to enter
the stiction regime and lag behind the reference trajectory.

0 1 2 3 4 5 6 7

Time [s]
20

25

30

35

40

f n
[N

]

fn
ufn

Fig. 6 : Gripping force control input ufn and measured
normal force fn with µtors = 0.643x10−3.

0 1 2 3 4 5 6 7

Time [s]
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

v
[m

m
/s

] uv

v

Fig. 7 : Gripper velocity set point uv and gripper velocity v
with µtors = 0.643x10−3.



B. Effect of initial estimate of µtors with adaptation

We tuned the adaptation gains from (14a) and (14b) to
αh = 1.5 and αb = 7.5x103 respectively and repeated the
previous set of experiments to analyze the controller’s per-
formance when using the proposed update laws. Fig. 8 shows
the object’s angular position with different initial estimates
of µtors, while keeping the controller and adaptation gains
fixed.
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Fig. 8 : Reference angular position θm and angular position
θ of the object under different initial estimates of µtors when
using the adaptive estimators.

We observe that the adaptive controller achieves the best
performance when starting with the correct torsional friction
coefficient estimate µ̂tors(0) = 0.643x10−3. Furthermore, in
contrast to the previous set of experiments, the controller
manages to converge to the desired angular position θd
with both an underestimated (µ̂tors(0) = 0.3x10−3) and an
overestimated (µ̂tors(0) = 1.0x10−3) coefficient. In all cases
the steady state error was less than 1 degree.

Fig. 9 and 10 show the control inputs to the system when
µ̂tors(0) = 0.3x10−3. Once again, there are force control
errors. As previously mentioned, the adaptive estimates are
not guaranteed to converge to the true values, and Fig.
11 confirms this. This figure shows the torsional friction
coefficient estimate µ̂tors = 0.5b̂−1 which does not reach
the ground truth value.

C. Change of object frictional properties

In this last set of experiments we substituted the manip-
ulated object’s material (µ = 0.47) with a lower friction
material µ = 0.37 and a material with higher friction
coefficient µ = 1.08. Once again, we kept the controller and
adaptation gains fixed. The experimental results are shown
in Fig. 12 and Fig. 13. Although the adaptive controller
shows inferior tracking performance when compared to the
previous experiments, it still converges to the desired object
orientation within acceptable steady state errors of 1.64 and
0.5 degrees respectively.
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Fig. 9 : Gripping force control input ufn and measured
normal force fn when using adaptation and µ̂tors(0) =
0.3x10−3.
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Fig. 10 : Gripper velocity set point uv and gripper velocity
v when using adaptation and µ̂tors(0) = 0.3x10−3.
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Fig. 12 : Angular position θ of the object when using a new
material with µ = 0.37.
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VI. CONCLUSIONS AND FUTURE WORK

We have presented an adaptive control approach for piv-
oting with extrinsic dexterity by means of gravity and con-
trolled slip. Given that wrongly estimated friction coefficients
are a common source of error for in-hand manipulation, we
designed an adaptive controller that accounts for errors in
the torsional friction coefficient. In our controller we use
visual tracking of the object’s angular position and force
measurements from high resolution and low noise tactile
sensors. Our experimental results show how an incorrect
torsional friction coefficient can have a negative impact in
the performance of a feedback linearizing controller for
pivoting, yet the proposed adaptation law compensates for
this parametric error and manages to pivot the object suc-
cessfully. Our approach complements recent works on in-
hand manipulation with extrinsic dexterity since we make
use of closed loop feedback control and tactile sensing.

One of the limitations of our work is that we perform
passive pivoting by keeping the gripper static, which limits
the range of possible regrasps unless we first rotate the
gripper to reconfigure its alignment with gravity. We can
extend the approach by accelerating the manipulator, re-
formulating the proposed adaptive controller to cope with
disturbances generated by the inertial forces. We can also
extend our approach to include prehensile pushing against
external contacts, which also opens the possibility to generate
translational motions of the grasped object.
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