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Abstract

Robotic manipulators today are mostly constrained to perform fixed,
repetitive tasks. Engineers design the robot’s workcell specifically tailored
to the task, minimizing all possible uncertainties such as the location of tools
and parts that the robot manipulates. However, autonomous robots must
be capable of manipulating novel objects with unknown physical properties
such as their inertial parameters, friction and shape. In this thesis we address
the problem of uncertainty connected to kinematic constraints and friction
forces in several robotic manipulation tasks. We design adaptive controllers
for opening one degree of freedom mechanisms, such as doors and drawers,
under the presence of uncertainty in the kinematic parameters of the system.
Furthermore, we formulate adaptive estimators for determining the location of
the contact point between a tool grasped by the robot and the environment in
manipulation tasks where the robot needs to exert forces with the tool on an-
other object, as in the case of screwing or drilling. We also propose a learning
framework based on Gaussian Process regression and dual arm manipulation
to estimate the static friction properties of objects. The second problem we
address in this thesis is related to the mechanical simplicity of most robotic
grippers available in the market. Their lower cost and higher robustness
compared to more mechanically advanced hands make them attractive for in-
dustrial and research robots. However, the simple mechanical design restricts
them from performing in-hand manipulation, i.e. repositioning of objects in
the robot’s hand, by using the fingers to push, slide and roll the object. Re-
searchers have proposed thus to use extrinsic dexterity instead, i.e. to exploit
resources and features of the environment, such as gravity or inertial forces,
that can help the robot to perform regrasps. Given that the robot must then
interact with the environment, the problem of uncertainty becomes highly
relevant. We propose controllers for performing pivoting, i.e. reorienting the
grasped object in the robot’s hand, using gravity and controlling the friction
exerted by the fingertips by varying the grasping force.
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Sammanfattning

De flesta robotarmar är idag begränsade till att göra repetitiva (upp-
gifter). Ingenjörer designar robotens arbetsmiljö för att passa uppgiften och
minska osäkerheter i robotens perception, t.ex. lokalisering av verktyg som
roboten manipulerar. Framtidens autonoma robotar måste kunna manipule-
ra nya föremål med okända fysiska egenskaper såsom tröghet, friktion och
form. Denna avhandling behandlar problemet med osäkerheter som uppstår
från kinematiska begränsningar och friktionskrafter i olika robotuppgifter.
Vi konstruerar adaptiva regulatorer för att öppna t.ex. dörrar och lådar, i
närvaro av osäkerhet kring systemets kinematiska parameter. Vi formulerar
också adaptiva filter för att beräkna kontaktpunkters plats mellan verktyg
som roboten använder och robotens omgivning, t.ex. när roboten skruvar el-
ler borrar. Vi föreslår ocksåen maskininlärningsmetod baserad påGaussiska
Processer och två-armsmanipulation för att beräkna objektens statiska frik-
tionsegenskaper. Det andra problem som vi behandlar är relaterat till de me-
kaniskt simpla robothänder som typiskt förekommer i industrin. Deras lägre
kostnader och högre robusthet gör dem, jämfört med mer mekaniskt avan-
cerade händer, mer attraktiva för industriella- och forskningsändamål. Deras
enkla mekaniska konstruktion begränsar dock deras förmåga att genomföra
in-hand manipulation, vilket betyder att roboten ompositionerar föremål i
robotens hand, genom att trycka föremålet med fingrarna och låta det glida
och rulla runt. Forskare har föreslagit extrinsic dexterity (extrinsisk fingerfär-
dighet) istället, d.v.s. att utnyttja resurer i robotens omgivning. Dessa kan
vara exempelvis gravitation och tröghetskrafter, vilka kan underlätta in-hand
manipulation. Roboten måste dåinteragera med sin omgiving, vilket gör osä-
kerhetsproblemet mycket relevant. Vi föreslår regulatorer för att låta roboten
svänga objekt, d.v.s. att omorientera föremål i handen genom utnyttjande av
gravitation och kontroll av fingrarnas friktionskrafter.
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Chapter 1

Introduction

(a) Grasping a cup.
Source: [19].

(b) Shuffling cards.
Source: [28].

(c) Juggling balls. Source:
[48].

Figure 1: Examples of manipulation tasks.

Manipulation is the process of physically interacting with objects using our
hands [35]. The most fundamental tasks that we perform on a daily basis, such
as drinking a cup of coffee or opening a door, require employing our hands to
manipulate different kinds of objects and tools. The ease and precision with which
we execute these manipulation tasks is the consequence of a long process which has
brought the human species to the forefront of the evolutionary chain. No other
animal species can rival humans’ manipulation capabilities, and this is not only
due to the more advanced mechanical design and dexterity of our hands and body,
but also due to e.g. the complex tactile sensing in our skin which allows us to
quickly detect when objects are slipping from our hands [27], our vision system
which easily detects and recognizes objects in our surroundings, and, above all, our
superior brain which swiftly processes all of these sensory signals to control with
great precision the required motion of our arms and hands to perform these tasks.
Figure 1 shows examples of manipulation tasks, which can be quite diverse in terms
of dynamics, ranging from “static” tasks such as grasping and holding a cup, to
more dynamic tasks such as shuffling a deck of cards or juggling.

3
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Despite billion dollar investments from the largest tech companies around the
world [9], and significant breakthroughs in the development of computer hardware
and sensing technologies in recent years, robotic manipulation is still far behind what
humans can accomplish and it remains largely an unsolved scientific problem. The
most trivial manipulation tasks for humans, such as grasping objects and opening
doors, are still active research topics even after decades of research efforts.

The only well established robotic manipulation systems are industrial manip-
ulators such as the ones shown in Figure 2 which operate in car manufacturing
assembly lines. These industrial manipulators can, however, cannot be classified
as intelligent robots since they execute repetitive tasks such as assembly of parts,
welding or painting with little to no tolerance for failure or error handling in the
task. If part of the manufacturing process fails, e.g. when there is a broken or
defective part or a misassembled piece, then the robot usually either lacks sensing
capabilities to detect it or intelligent built-in functionality to safely recover from
such errors. An experienced human operator must then intervene in the process,
and reset the robot to its default operating conditions so that the assembly line can
resume normal operation.

Figure 2: Kuka manipulators welding in a car manufacturing assembly line. Source:
[31].

In order to reduce the risk of these errors which stall the manufacturing pro-
cess, robotics engineers spend considerable effort in designing and tuning the robot
workcells so that all of the tools and parts that the manipulator uses are placed
at carefully selected locations that the robot knows beforehand with millimetric
accuracy. Furthermore, the grippers and tools that are mounted on these manipu-
lators are designed and calibrated specifically for the task that the robot performs,
which means that a tremendous engineering effort is required in order to readapt
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the system to even slight changes in the specifications of the task.
All of these engineering efforts essentially attempt to minimize as much as possi-

ble all sources of uncertainty in the system. If autonomous robots are to operate in
unstructured environments such as households, then they must be capable of cop-
ing with imperfect knowledge of the physical properties of objects they intend to
manipulate. These may be for instance inertial parameters, friction, stiffness, shape
and pose. We can illustrate the problem of uncertainty taking robotic grasping as
an example. If the robot underestimates an object’s friction coefficient, then it may
apply excessive grasping forces to prevent slippage that can potentially damage the
object. On the other hand, if the robot overestimates the friction coefficient, then
it may apply grasping forces which are insufficient to prevent slippage of the object.

Humans are naturally capable of coping with uncertainty when manipulating
objects: we seamlessly grasp and manipulate new objects that we have not encoun-
tered before even though we do not know a priori some of its physical properties,
such as the weight or friction. Our advanced sensing capabilities allow us to quickly
estimate these properties when manipulating the object, while our brain learns and
stores this knowledge so that it can be used as a prior next time we encounter the
object.

One interesting aspect about many parametric uncertainties in manipulation is
that they can only be measured once the object has actually been manipulated.
Examples include an object’s weight, which the robot can only measure once it
lifts the object, and friction, which the robot can only estimate if there is relative
motion between the hand of the robot and the object. The robot has three possible
possibilities to disambiguate these uncertainties:

• Assume a priori known physical parameters.

• Premanipulate the object prior to execution of the task in order to estimate
the parameters.

• Estimate online the parameters while executing the manipulation task.

These approaches are not necessarily mutually exclusive, as evidenced by the
way humans perform manipulation. Our cognitive system generates priors for ma-
nipulation which are collected from previous experiences of manipulating similar
objects. Premanipulation can serve as an initialization step for manipulation, such
as when we slightly shake a container to guess the volume of its contents and hence
roughly anticipate its weight. Online estimation can then be used to compensate
for any potential disturbances and/or refine the estimates provided by the priors
and premanipulation steps.

Although there has been formidable progress in robotic hardware capabilities in
the last decade, they still have significant limitations which hinder robotic manip-
ulation. For instance, 3D cameras have difficulties in detecting transparent objects
while most tactile sensors lack the robustness necessary to be used reliably in ma-
nipulation tasks.
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Robotic hands are no exception to this problem. Most commercially available
hands have relatively simple mechanical designs with limited dexterity, i.e. they
have few degrees of actuation. These kinds of robotic hands are significantly more
widespread both in industrial and research robots when compared to dexterous
hands with a large number of degrees of freedom. Figure 3 confirms this observation:
it shows a picture survey of the grippers available at the Computer Vision and Active
Perception Laboratory (CVAP) where this thesis was developed.

(a) Schunk parallel grip-
per.

(b) PR2 gripper. (c) Youbot gripper.

(d) NAO robot gripper. (e) Robotiq 3-finger grip-
per.

(f) Schunk Dexterous
Hand.

Figure 3: Robotic grippers available at the Computer Vision and Active Perception
Laboratory (CVAP), KTH Royal Institute of Technology.

The most striking similarity between the majority of these robotic hands is
their simple mechanical design: many of them have only two fingers and/or one
degree of actuation as is the case of the Schunk parallel gripper (Figure 3a), the
PR2’s gripper (Figure 3b), the Youbot’s gripper (Figure 3c) and the NAO robot’s
gripper (Figure 3d). Even more sophisticated hands such as the Robotiq 3-Finger
gripper shown in Figure 3e only have one degree of actuation per finger which can
be commanded to open/close but there is no encoder feedback which reports back
the position of the fingers. The most dexterous hand at CVAP is the Schunk hand
shown in Figure 3f with seven degrees of freedom, however this is still far below the
number of articulations of the human hand (27) and the bulkiness of the fingers
hinders the hand from performing precise manipulation of small objects.
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Figure 4: Example of in-hand manipulation by using the fingertips to push a
grasped pencil to a new position in the hand.

Robotic hands with just one or two degrees of freedom are far more popular than
highly articulated ones mainly due to their reduced cost and complexity as well as
their robustness. However, the mechanical simplicity of these hands can represent a
challenge when performing in-hand manipulation (also referred to in the literature
as regrasping) which consists of adjusting the relative position between a grasped
object and the hand as shown in Figure 4.

Figure 5: Example of in-hand manipulation by exploiting gravity and contact with
the environment.

Humans typically perform in-hand manipulation in order to regrasp an object
or tool in a position which is more comfortable or appropriate for performing a
given task. We can accomplish this by coordinating the motion of the fingers in
order to push, slide and/or roll the grasped object into a new grasp configuration
as shown in Figure 4. This is however not possible to replicate in robots with
simple hands such as the ones shown in Figure 3, due to their lack of dexterity.
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Therefore, manipulation research has recently directed its efforts instead to finding
novel ways to exploit resources available in the robot’s environment to facilitate in-
hand manipulation. Figure 5 illustrates another example of in-hand manipulation
of a pencil, but instead of relying on multiple fingers to push the pencil, the person
moves its arm and exploits gravity and the stable contact with the table in order
to first lift the pencil while allowing it to rotate, and then sliding the fingers down
into a position which allows the person to write with the pencil.

This kind of dexterity has been coined in the literature as extrinsic dexterity [13].
It represents a fundamental change in the traditional philosophy of improving in-
hand manipulation by endowing the robot’s hand with multiple fingers, by instead
keeping simple hardware and focusing on motion planning and control algorithms
that can make clever use of resources external to the robot, such as gravity, inertial
forces and external support objects.

1 Thesis Contributions

This thesis focuses on two problems related to robotic manipulation, the first being
the uncertainty over physical properties of the objects that the robot manipulates.
Many of these properties are unknown a priori to the robot, and they can only be
measured either online while performing the task or with some premanipulation
procedures prior to the execution of the task.

In our work we focus on kinematic and friction uncertainties in door opening,
tool-tip calibration and slippage prediction.

The second problem addressed in this thesis is how to perform in-hand manip-
ulation when the embodiment (hand) of the robot has limited dexterity. We follow
the idea of extrinsic dexterity, i.e. to take advantage of resources external to the
robot’s embodiment, such as gravity in our case.

The specific contributions of the thesis are detailed bellow and Table 1 contains
a summary as well as a publication timeline for the topics discussed in this thesis.

Door opening under kinematic uncertainties. We propose online adaptive
controllers for manipulating one degree of freedom mechanisms, i.e. doors and draw-
ers. We assume that the robot has already grasped the door’s handle and that there
is uncertainty regarding the kinematic parameters of the mechanism, such as the
direction of motion of the door. The proposed adaptive controllers estimate these
parameters while simultaneously moving the mechanism in the desired direction
and regulating the forces exerted by the robot. The approach can be used to open
different kinds of one degree of freedom mechanisms such as sliding and revolute
doors and drawers with velocity controlled manipulators equipped with force/torque
sensing.

Contact point estimation. We present an adaptive estimator based on force/torque
sensor measurements that determines the location of the contact point between the
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Topic Conferences and/or
journal publications Contributions

Door opening IROS1 2012 , ICRA2

2013, TRO3 2016

Implementation and
experimental evaluation.
Wrote the experimental
results section of the paper.

Contact point
estimation ICRA 2014

Implementation and
experimental evaluation.
Wrote the experimental
results section of the paper.

Slippage prediction Humanoids4 2013

Design, implementation and
experimental evaluation.
Wrote the majority of the
paper.

Pivoting using
extrinsic dexterity IROS 2015, ICRA 2016

Design, implementation and
experimental evaluation.
Wrote the majority of the
papers.

1 IEEE/RSJ International Conference on Intelligent Robots and Systems.
2 IEEE International Conference on Robotics and Automation.
3 IEEE Transactions on Robotics.
4 IEEE-RAS International Conference on Humanoid Robots

Table 1: Summary of contributions of the four topics discussed in this thesis work,
along with the conference and/or journal venues in which they have been published.

tip of a tool grasped by a robot and the surface of contact. Contrary to vision-based
approaches, this approach does not rely on a priori known visual models of the tool
nor is it affected by visual occlusions. The fundamental assumption in this work is
that the grasp is rigid, i.e. there is no relative motion between the grasped tool and
the robot’s hand. In the work we prove theoretically the stability and convergence
of the estimator given that the applied forces on the tool tip provide persistent
excitation and evaluate the approach experimentally.

Slippage prediction. We introduce a learning method based on Gaussian Pro-
cesses to estimate the maximum static friction force and torque that a grasp can
withstand before slippage of the grasped object occurs. We use a dual arm robot
equipped with force/torque sensors and collect training data by holding the object
in one hand while sliding or pushing with the other hand to observe the maximum
static friction for a set of grasp configurations. Our approach thus combines the ro-
bustness of learning methods [3] to modeling errors while providing physical bounds
on the stability of the grasp.



10 CHAPTER 1. INTRODUCTION

Pivoting using extrinsic dexterity. We propose sliding mode and adaptive
controllers for pivoting, a type of in-hand manipulation in which an object rotates
within the robot’s hand. We perform pivoting by allowing gravity to rotate the
object towards a desired goal position in the robot’s hand while regulation the
motion by adjusting the grasping force of a one degree of freedom parallel gripper.
Differently from most recent approaches to in-hand manipulation with extrinsic
dexterity which use open-loop motion planning approaches [11, 23, 42], we use closed
loop feedback control taking into consideration friction and inertial uncertainties.
We track the object’s orientation through a vision tracking system and use tactile
sensing to compensate for errors in the friction parameters.

2 Thesis Outline

The rest of the thesis is structured as follows:

2.1 Chapter 2: Uncertainty and Extrinsic Dexterity in Robotic
Manipulation

We discuss the two aforementioned problems pertaining to robotic manipulation
which are studied in this thesis: uncertainty about the physical properties of ma-
nipulated objects and the lack of (intrinsic) dexterity of robot hands. We motivate
the need for online feedback control and estimation as well as learning methods in
order to cope with parametric uncertainties inherent to many manipulation tasks.
Furthermore, we argue in favor of closed loop controllers that can exploit resources
in the robot’s environment, i.e. extrinsic dexterity, to perform a wide variety of
in-hand manipulation tasks even though the robot hand may be quite limited in
terms of dexterity.

2.2 Chapter 3: Summary of Papers

We summarize the conference and journal publications included in Part II of this
thesis and their contributions with respect to the state of the art.

2.3 Chapter 4: Conclusion

We conclude with a discussion on the results achieved by this work and the potential
work for continuing this in the future.

2.4 Part II: Included Papers

We include one journal and four conference publications in Part II of this thesis.
These publications are listed in this section along with their abstract and contri-
butions.
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Paper A: An Adaptive Control Approach for Opening Doors and Draw-
ers under Uncertainties

Yiannis Karayiannidis, Christian Smith, Francisco E. Viña B., Petter
Ögren, and Danica Kragic. In IEEE Transactions on Robotics, February
2016.

Abstract:
We study the problem of robot interaction with mechanisms that afford one de-
gree of freedom motion, e.g. doors and drawers. We propose a methodology for
simultaneous compliant interaction and estimation of constraints imposed by the
joint. Our method requires no prior knowledge of the mechanisms’ kinematics,
including the type of joint — prismatic or revolute. The method consists of a ve-
locity controller which relies on force/torque measurements and estimation of the
motion direction, the distance and the orientation of the rotational axis. It is suit-
able for velocity controlled manipulators with force/torque sensor capabilities at
the end-effector. Forces and torques are regulated within given constraints, while
the velocity controller ensures that the end-effector of the robot moves with a task-
related desired tangential velocity. We give proof that the estimates converge to
the true values under valid assumptions on the grasp, and error bounds for setups
with inaccuracies in control, measurements, or modelling. The method is evaluated
in different scenarios opening a representative set of door and drawer mechanisms
found in household environments.
Contribution by the author:
Implemented and evaluated experimentally the adaptive controllers proposed in
this paper. Wrote the experimental results section of this paper.

Paper B: Online Contact Point Estimation for Uncalibrated Tool Use

Yiannis Karayiannidis, Christian Smith, Francisco E. Viña B., and Danica
Kragic. In Proceedings of the 2014 IEEE International Conference on
Robotics and Automation (ICRA’14), Hong Kong, China, May 2014.

Abstract:
One of the big challenges for robots working outside of traditional industrial set-
tings is the ability to robustly and flexibly grasp and manipulate tools for various
tasks. When a tool is interacting with another object during task execution, sev-
eral problems arise: a tool can be partially or completely occluded from the robot’s
view, it can slip or shift in the robot’s hand - thus, the robot may lose the infor-
mation about the exact position of the tool in the hand. Thus, there is a need
for online calibration and/or recalibration of the tool. In this paper, we present a
model-free online tool-tip calibration method that uses force/torque measurements
and an adaptive estimation scheme to estimate the point of contact between a tool
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and the environment. An adaptive force control component guarantees that in-
teraction forces are limited even before the contact point estimate has converged.
We also show how to simultaneously estimate the location and normal direction of
the surface being touched by the tool-tip as the contact point is estimated. The
stability of the the overall scheme and the convergence of the estimated parameters
are theoretically proven and the performance is evaluated in experiments on a real
robot.
Contribution by the author:
Implemented and evaluated experimentally the adaptive contact point estimator
proposed in this paper. Wrote the experimental results section of the paper.

Paper C: Predicting Slippage and Learning Manipulation Affordances
through Gaussian Process Regression

Francisco E. Viña B., Yasemin Bekiroglu, Christian Smith, Yiannis
Karayiannidis and Danica Kragic. In Proceedings of the 2013 IEEE-RAS
International Conference on Humanoid Robots (Humanoids’13), Atlanta,
USA, October 2013.

Abstract:
Object grasping is commonly followed by some form of object manipulation – either
when using the grasped object as a tool or actively changing its position in the hand
through in-hand manipulation to afford further interaction. In this process, slippage
may occur due to inappropriate contact forces, various types of noise and/or due
to the unexpected interaction or collision with the environment.

In this paper, we study the problem of identifying continuous bounds on the
forces and torques that can be applied on a grasped object before slippage oc-
curs. We model the problem as kinesthetic rather than cutaneous learning given
that the measurements originate from a wrist mounted force-torque sensor. Given
the continuous output, this regression problem is solved using a Gaussian Process
approach.

We demonstrate a dual armed humanoid robot that can autonomously learn
force and torque bounds and use these to execute actions on objects such as sliding
and pushing. We show that the model can be used not only for the detection of
maximum allowable forces and torques but also for potentially identifying what
types of tasks, denoted as manipulation affordances, a specific grasp configuration
allows. The latter can then be used to either avoid specific motions or as a simple
step of achieving in-hand manipulation of objects through interaction with the
environment.
Contribution by the author:
Designed the learning framework of maximum static friction forces and torques
based on Gaussian Process regression. Implemented the dual arm premanipulation
procedures for collecting the required training data. Verified the learned GP model
experimentally. Wrote the majority of the paper.
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Paper D: In-hand Manipulation Using Gravity and Controlled Slip
Francisco E. Viña B., Yiannis Karayiannidis, Karl Pauwels, Christian
Smith and Danica Kragic. In Proceedings of the 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’15),
Hamburg, Germany, October 2015.

Abstract:
In this work we propose a sliding mode controller for in-hand manipulation that
repositions a tool in the robot’s hand by using gravity and controlling the slippage
of the tool. In our approach, the robot holds the tool with a pinch grasp and we
model the system as a link attached to the gripper via a passive revolute joint with
friction, i.e., the grasp only affords rotational motions of the tool around a given
axis of rotation. The robot controls the slippage by varying the opening between the
fingers in order to allow the tool to move to the desired angular position following a
reference trajectory. We show experimentally how the proposed controller achieves
convergence to the desired tool orientation under variations of the tool’s inertial
parameters.
Contribution by the author:
Designed and evaluated experimentally the proposed sliding mode controller for
pivoting with gravity and controlled slip. Wrote the majority of the paper.

Paper E: Adaptive Control for Pivoting with Visual and Tactile Feedback
Francisco E. Viña B., Yiannis Karayiannidis, Christian Smith and Danica
Kragic. In Proceedings of the 2016 IEEE International Conference on
Robotics and Automation (ICRA’16), Stockholm, Sweden, May 2016.

Abstract:
In this work we present an adaptive control approach for pivoting, which is an
in-hand manipulation maneuver that consists of rotating a grasped object to a
desired orientation relative to the robot’s hand. We perform pivoting by means
of gravity, allowing the object to rotate between the fingers of a one degree of
freedom gripper and controlling the gripping force to ensure that the object follows
a reference trajectory and arrives at the desired angular position. We use a visual
pose estimation system to track the pose of the object and force measurements
from tactile sensors to control the gripping force. The adaptive controller employs
an update law that accommodates for errors in the friction coefficient, which is
one of the most common sources of uncertainty in manipulation. Our experiments
confirm that the proposed adaptive controller successfully pivots a grasped object
in the presence of uncertainty in the object’s friction parameters.
Contribution by the author:
Designed and evaluated experimentally the adaptive controller for pivoting an ob-
ject under uncertainty in the friction coefficient. Wrote the majority of the paper.
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Chapter 2

Uncertainty and Extrinsic
Dexterity in Robotic Manipulation

1 Problem Statement

Robots operating in unstructured environments encounter novel objects in the en-
vironment whose physical properties are unknown. Furthermore, even if the robot
is manipulating a previously encountered object, its physical properties may change
according to how the robot manipulates it, e.g. applying a sufficiently high grasping
force can deform the shape of an object. Thus, an important research question is
how to formulate control or learning methods for robotic manipulation that can
cope with these physical uncertainties and still accomplish the objectives of the
manipulation task. Some examples of some of these physical properties (or param-
eters) and their impact on some manipulation tasks include:

• Inertial parameters, i.e. weight, center of mass and moments of inertia.
When throwing an object, the amount of throwing force that we need to
exert on the object depends on its inertial characteristics.

• Visual features, which are necessary in order to visually detect and track the
object as it is being manipulated. Humans excel at segmenting and recogniz-
ing objects in cluttered scenes as well as estimating their pose. Furthermore,
they can perform accurate visual control of the motion of the arm and hand
in order to grasp the objects. On the other hand, visual pose estimation and
tracking has been a long standing research question in the vision community,
and to a large extent remains an unsolved problem today. The most common
approach to simplify the problem is to use either fiducial markers or objects
with distinctive visual features such as color, shape or texture [40].

• Kinematic constraints, which restrict the motion of certain kinds of ob-
jects along specific directions. There is a wide spectrum of objects and tools

15
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both in household environments and industrial settings which are mechan-
ically designed with kinematic constraints, such as scissors, doors, drawers
and cranks as shown in Figure 1. Manipulating these mechanisms along the
constraint direction(s) generates undesired forces which need to be regulated
by the robot in order to avoid damaging the mechanism and/or robot itself.
Furthermore, in order to manipulate (open or close) the mechanism correctly
the robot either needs to know a priori which are the directions in which the
mechanism affords motion, or it must be able to estimate them online while
performing the task.

(a) A pair of scissors which affords rota-
tional motion around its hinge.

(b) A drawer which affords linear motion
along the indicated direction.

Figure 1: Examples of objects with different kinematic constraints. These objects
afford motion along one direction, hence they are commonly referred to as one
degree of freedom mechanisms.

• Friction, which emerges when two surfaces come into contact. It plays a key
role in robotic manipulation since some form of contact is required between the
robot’s embodiment (arms or hands) and manipulated objects. Wrongly esti-
mated friction coefficients can lead to either undesired slippage of the object
or excessive grasping forces that can damage te object. It can also generate
positioning errors when performing in-hand manipulation tasks where sliding
friction is relevant.

In this thesis we focus on parametric uncertainties related to kinematic con-
straints and friction properties of objects grasped by the robot. We study the
problem of compliant manipulation of different one degree of freedom mechanisms
such as revolute and sliding doors and drawers whose kinematic model and param-
eters are unknown a priori. Furthermore, we study manipulation tasks were the
robot exerts forces on a surface with a tool as shown in Figure 2. In these tasks
the motion of the tool is constrained by the surface of contact and the kinematic
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variable of interest is the location of the contact point between the tool-tip and the
surface. Estimating the location of this contact point is essential for many appli-
cations such as drilling or screwing, where the robot must carefully position the
tool-tip on a specific location of an object’s surface. In our work we also address
the research question of how a robot can autonomously learn the maximum friction
force and torque that a grasp can withstand before the grasped object slips in the
robot’s hand.

Figure 2: Robot manipulating a tool in contact with a surface.

In-hand manipulation is a fundamental skill required by robots that perform
tasks with tools. Many tools, for instance screwdrivers, hammers and drills, need
to be grasped in a specific location and orientation in order to afford the execution
of the task. However, when the robot initially grasps a tool errors in modeling,
grasp execution or at the manipulator control level may cause the resulting grasp
to differ from the robot’s initially planned grasp. It is then necessary to perform
a readjustment of the grasp configuration, which can be done by replacing the
tool on its original location (typically a table or some kind of fixture), releasing
it and attempting to regrasp it. A more efficient method is to perform in-hand
manipulation, i.e. to reposition the object without releasing it from the grasp.

The classic approach to in-hand manipulation is to use highly dexterous hands
with multiple fingers and joints to push, slide and/or roll the grasped object to a new
configuration [12, 15, 20, 38, 46]. However, simple robotic hands with few degrees
of freedom lack the dexterity to perform in-hand manipulation in this manner. An
alternative is to use extrinsic dexterity, i.e. to take advantage of resources external
to the robot such as [13]:

• Inertial forces. The robot can displace a grasped object by accelerating the
manipulator, causing the generated inertial forces on the object to drag it to
a new configuration [42].
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• External support objects. If there are fixed objects in the robot’s envi-
ronment, such as tables, the robot can use them as support for pushing the
grasped object into a new relative pose in the hand as shown in Figure 3.

Figure 3: In-hand manipulation by pushing.

• Gravity. The robot can momentarily release a grasped object, allowing
gravity to pull the object down while closing the grasp once the object reaches
the desired location.

From these examples it is evident that there is a broad range of regrasps that
can be achieved even with relatively simple robotic hands. These methods can
also be combined sequentially in case one of them is insufficient to achieve the
desired regrasp [13]. Extrinsic dexterity introduces new research questions regard-
ing perception, control and motion planning for in-hand manipulation, given the
uncertainties that take place when interacting with the environment.

In our work we study pivoting, which is an in-hand manipulation skill that
consists of rotating the manipulated object around a fixed axis. We consider uncer-
tainties in the inertial parameters of the grasped object and the torsional friction
coefficient. We formulate the problem from a control perspective, using gravity to
rotate the object towards the desired orientation while varying the grasping force of
a one degree of freedom parallel gripper in order to control the object’s trajectory.

2 Challenges

In this section we describe the scientific challenges related to kinematic and friction
uncertainties as well as extrinsic dexterity in manipulation and how they are cor-
related in certain manipulation tasks. We present previous works related to these
research topics and specify which of their shortcomings we address in this thesis
work.
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2.1 Kinematic uncertainties

When manipulating one degree of freedom mechanisms, the robot may not have
a priori knowledge of the kinematic model of the mechanism, i.e. it may not be
able to detect if it is a sliding mechanism, such as a sliding door or a drawer,
which affords translational motion in a specific direction or if the mechanism rotates
around a hinge, as in the case of a revolute door. Furthermore, the robot may be
uncertain about kinematic parameters of the mechanism such as the location of
the hinge, which determines the radius of the trajectory of revolute doors, and/or
the direction of motion in which the mechanism affords motion. It is necessary to
have appropriate estimates of these parameters as well as the correct model of the
mechanism, since any deviation from the mechanism’s nominal trajectory will give
rise to interaction forces that need to be regulated, otherwise they can damage the
robot and/or mechanism itself.

Velocity filtering solutions have been proposed in the literature to tackle the door
kinematics estimation problem. Lutscher et al. propose an admittance controller
whose velocity reference is provided by an averaging filter [32]. Ma et al. proposed
a velocity and impedance controller for manipulating revolute doors, where the
kinematics of the door were estimated based on the measured velocity of the end
effector [34]. Position-based estimation of door kinematics has also been considered
in several works. For instance, Peterson et al. use the manipulator’s end-effector
trajectory to estimate the location of the rotation axis and radius of the trajectory
of a revolute mechanism [41].

Some works employ probabilistic methods to learn and identify kinematically
constrained mechanisms. Sturm et al. use visual measurements to learn the kine-
matic parameters of doors [43]. Barragan et al. propose a Bayesian identification
method where the robot manipulates the mechanism in different directions and
classifies the kinematic model among a set of models such as revolute and sliding
mechanisms and latches [2]. However, these works do not consider regulation of
interaction forces between the robot and the mechanism.

The main limitation with these previous works is that they do not consider
simultaneous online kinematics estimation and force regulation. In Paper A we
present adaptive controllers which simultaneously estimate the kinematic param-
eters of the mechanism while manipulating it in a compliant manner such that it
regulates the interaction forces. The approach does not require prior information
of the kinematic model (revolute door or sliding door/drawer) nor parameters of
the door and the adaptive estimates are theoretically proven to achieve correct
identification.

Manipulation tasks such as drilling require accurate estimation of the location
of the contact point between the tip of a tool held by the robot and a surface of
contact. Operators of industrial manipulators typically calibrate the location of
the robot’s tool-tip manually through a procedure commonly referred to as TCP
(Tool Center Point) calibration. The operator carefully places the robot tool-tip
in contact with a fixture and reorients the tool in several configurations until the
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robot obtains enough measurements to estimate the location of the tool-tip. High
accuracy can be achieved through this method, but it requires time-consuming,
manual calibration from an experienced operator.

Some previous works focus on in-hand localization of objects grasped by the
robot. Kubus et al. estimate the pose of grasped objects by using previously
identified inertial parameters of the objects [30]. However, this method requires
unconstrained motion of the manipulator and object. Hebert et al. fuse vision,
force/torque and proprioception data to localize an object held by the robot [22].
This approach requires, however, an a priori known visual model of the object.

Contact point estimation can also be determined by visual tracking of the tool.
Krainin et al. propose a framework for building 3D models of objects grasped by
the robot, and then using the learned model to track the pose of the object in the
robot’s hand [29]. The main limitation of vision based approaches is that their
performance is sensitive to visual occlusions of the tool or object.

In Paper B we propose an adaptive estimator based on force/torque sensor
measurements for contact point estimation. The proposed method does not rely on
any model of the tool and is thus not affected by visual occlusions. Furthermore,
the adaptive estimator is theoretically proven to converge to the contact point if
the forces at the tool-tip provide persistent excitation.

2.2 Friction uncertainties
Friction phenomena arise when two surfaces come into contact. They are a natural
component of many grasping and manipulation tasks, for instance:

• Static friction forces are crucial to attain stable grasps on objects. If the
applied friction forces are below a certain threshold then the object may
begin to slip in the robot’s hand [5, 36].

• In-hand manipulation is commonly achieved through some form of sliding of
the grasped object in the robot’s hand [8, 12]. In this case the kinetic (sliding)
friction takes a prominent role as compared to stable grasping.

• Nonprehensile manipulation tasks, i.e. manipulation without form or force
closure grasps, are also affected by sliding friction phenomena. Examples of
this kind of manipulation include pushing objects in order to slide them on a
surface or sliding them in the robot’s hand [33].

• Friction forces may not only be present at the task level during manipulation,
but also internally in the manipulator itself. The motors of the joints that
compose robotic manipulators can exhibit significant static and dynamic fric-
tion effects, which need to be compensated appropriately in order to achieve
accurate control of the manipulator [14, 16, 39, 50].

Even though friction has been extensively studied by the grasping, manipulation
and control community, it remains a formidable challenge in manipulation mainly
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due to the fact that it is difficult for the robot to know a priori (before manipulating
or grasping the object) exactly what are the friction properties of the object. Para-
doxically, these properties can actually only be measured once the robot actually
manipulates the object, by e.g. pushing it against a table [45].

Another challenging aspect of friction is related to modeling. Several kinds of
friction models have been proposed in the literature, which range from classic static
models such as the Coulomb friction model to dynamic models such as the LuGre
friction model, which accounts for friction phenomena such as hysteresis and the
rate of change of applied forces [14]. Furthermore, experimental evidence has shown
that friction is affected by environmental factors such as humidity, temperature and
lubrication of the contacting surfaces.

Nonetheless, the most common approach taken by roboticists for developing
manipulation tasks is to assume a friction model which is suitable for the particular
task at hand in order to make the problem tractable. The chosen model should
be complex enough to model the most relevant dynamics of the system, yet simple
enough so that it is feasible to formulate controllers or motion planning algorithms
and so that the friction forces expected from the model are measurable by the
robot’s tactile and/or force sensors.

Given a choice of friction model, what remains unknown are the parameters
that define that model. Once again, there are three alternatives to cope with these
parametric uncertainties of the friction model

• Assume a priori known friction parameters.

• Premanipulate the object prior to the task in order to estimate its friction
properties, i.e. test the object before manipulating it. This can be achieved
by e.g. sliding the robot’s fingers over the object while it is standing on a
table.

• Estimate online the friction parameters while performing the manipulation
task.

In the case of grasp planning it is commonly assumed that the friction forces
follow a classic static Coulomb model [4]

ft ≤ µsfn (2.1)

where ft, fn are the tangential and normal forces respectively and µs is the static
friction coefficient. The Coulomb model states that slippage of the object occurs
when the tangential forces ft surpass a limit µsfn proportional to the normal forces
and the friction coefficient.

In grasping applications it is usually possible to measure normal forces via tactile
or force/torque sensors, therefore one of the main sources of uncertainty is the
friction coefficient µs. Some works on grasp planning assume the friction coefficient
to be known a priori by the robot [6, 17], while other works provide robustness to
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modeling errors by synthesizing grasps whose stability is less sensitive to changes
in the friction coefficient [21].

Research from neuroscience suggests that tactile sensing plays a crucial role even
in the most simple manipulation tasks such as picking and placing of objects [27].
The human hand is endowed with advanced tactile afferents that detect both low
and high frequency deformations of the skin which can be used for detecting slippage
and contact events. These in turn trigger appropriate motor responses for increasing
the grasping force to stabilize the grasp or for releasing an object once it has made
contact with a surface.

These observations have inspired the development of tactile sensors for the pur-
pose of robotic grasping, specially for slippage detection and control. Tremblay
et al. developed tactile sensors which provide measurements of the high frequency
vibrations generated on the sensor’s surface just before slippage occurs [47]. These
signals are then used to estimate the friction coefficient. Holweg et al. perform
frequency analysis of tactile signals to detect slippage [24]. Other approaches re-
ported in the literature complement tactile sensing with machine learning tech-
niques [3, 10, 26]. Machine learning is useful for robotic grasping in order to cope
with the high degree of modeling uncertainty of the friction phenomena involved.
Bekiroglu et al. also merge different sensory modalities such as vision and tactile
to classify grasps as stable or unstable before lifting the object [3]

The are a number of issues that make most tactile sensors today unsuitable
for robotics applications. On one hand it is not yet a mature technology and
lacks standardization. Furthermore, tactile sensors tend to be costly, fragile and
noisy, hence they are not as widely used in industrial and research robots as other
kinds of sensors. For this reason we propose in Paper C a framework for learning
the maximum static friction force and torque by means of dual arm manipulation
and force/torque sensors, which are in general more reliable and widespread than
tactile sensors. We design dual arm premanipulation procedures in which we grasp
an object in one hand and push it with the other hand of the robot in order to
observe the maximum static friction forces and torques for a set of parametrized
grasps. We then use these measurements to train a Gaussian Process, which in turn
can be used to predict the friction of new grasp configurations as well as provide
confidence bounds on those estimates.

With in-hand manipulation, it is no longer sufficient to consider solely static
friction effects as in grasping since it commonly requires some form of sliding of
the grasped object in the robot’s hand, therefore sliding friction forces start having
a larger influence in manipulation dynamics than their static counterparts. This
opens a new range of challenges given the variety of existing sliding friction models
and the difficulties involved in estimating their parameters in practice. Since sliding
friction is strongly connected to our work on pivoting with extrinsic dexterity, we
defer details of this discussion to the next section.
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2.3 Extrinsic dexterity

Dafle et al. originally proposed the concept of extrinsic dexterity, showing how even
simple robotic hands are capable of performing different kinds of regrasps (in-hand
manipulation) by exploiting gravity, inertial forces and external support objects
[13]. Furthermore, they showed that it is possible to structure these individual
in-hand manipulation skills in a graph so that by combining two or more of these
skills in sequence the robot can accomplish more sophisticated regrasps. This proof
of concept paper clearly illustrated that it is mechanically possible for a robot with
simple hands to perform in-hand manipulation, without taking into consideration
the problem of uncertainty in perception or control that emerge when interacting
with the environment which we have discussed in previous sections.

This has been a common trend among the most recent works on in-hand ma-
nipulation with extrinsic dexterity. Holladay et al. proposed a motion planning
framework for extrinsic pivoting, where the robot initially plans a grasping location
on an object in order to lift it and exert inertial forces on it so that it rotates to
a desired configuration [23]. The authors show that this approach is more efficient
than repeatedly repicking and replacing the object on a surface until achieving the
desired orientation since it reduces execution time and the required manipulator
motion. The proposed approach however assumes knowledge of the torsional fric-
tion between the robot’s fingertips and the manipulated object and the regrasp is
operated in an open loop fashion, hence it cannot compensate for modeling errors
or disturbances.

Dafle et al. study the problem of prehensile pushing, i.e. in-hand manipula-
tion by pushing objects in the robot’s hand against the environment [11]. In this
case in-hand manipulation is enabled by the motion of the manipulator and the
availability of fixed contacts (“external pushers”) in the environment. The authors
study the effects of different contact geometries – point, line and planar contacts –
on the motion of the object. The authors assume perfect knowledge of the friction
characteristics of the grasped object, its pose relative to the robot’s hand and the
location of the external pushers. Additionally, the proposed framework operates in
an open loop without feedback control.

On the other hand, Shi et al. propose a motion planning framework for sliding
objects in the robot’s hand by exerting inertial forces on the object generated by
the manipulator’s trajectory [42]. The approach takes into consideration potential
errors of the friction coefficient by repeatedly sliding the object until it reaches the
desired configuration. The proposed method is however executed in an open loop,
which leads in some cases to errors in the final pose of the manipulated object.

These examples highlight the importance of including feedback control for in-
hand manipulation in order to compensate for modeling errors and disturbances in
the system. Furthermore, there are two common sources of uncertainty that one
can identify in many of the previously mentioned works:

• Visual tracking of the manipulated object and/or external objects. Tracking



24
CHAPTER 2. UNCERTAINTY AND EXTRINSIC DEXTERITY IN ROBOTIC

MANIPULATION

is necessary in order to control the motion of the object and to detect when it
has reached the desired pose. In the case of prehensile pushing it is necessary
to estimate the location of potential contact surfaces where the robot can
push the object.

• Friction forces, primarily between the grasped object and the robot’s hand.
Almost all of the in-hand manipulation skills studied so far in the literature
rely on some form of sliding of the grasped object in the robot’s hand, therefore
the resulting motion of the object is heavily influenced by sliding friction
forces. However, these works often assume known friction coefficients

The problem of visual tracking is still an open research question in the vision
community, and the most common solution employed in manipulation tasks, includ-
ing our own works on pivoting (Papers D and E) is to use a vision tracking system
tuned specifically for the set of objects that the robot manipulates. This is often
accomplished by using objects with a priori known visual models with distinctive
features such as color, shape or texture.

Friction modeling and control, particularly sliding friction, has been extensively
studied by the control community. A number of dynamic models have been sug-
gested in the literature such as the Dahl model, the Bristle model [37] and the
LuGre model [14]. However, these studies on have been geared towards friction
compensation, as is typically the case in motors. The main assumption in these
works is that the friction forces can be modeled as additive disturbances which
need to be estimated and compensated by the controller. In the case of in-hand
manipulation, this is a valid assumption if the grasping force is kept fixed.

The previously mentioned works on extrinsic regrasps [11, 23, 42] have consid-
ered fixed pinch grasps, i.e. grasping with two fingertips, where the distance between
the fingers is kept constant, which, in turn, keeps the grasping force and friction at
the contact constant as well. However, this friction can be controlled by varying the
distance between the fingertips of the robot hand. This represents an additional
control input that the robot could exploit to better control the motion of the object
during in-hand manipulation. Controlling it appropriately can also help to reduce
the required effort of the manipulator, since the robot could decrease the friction at
the contact when it needs to slide the object and increase it again once the object
is close to its desired position in order to secure the grasp.

In our works on extrinsic pivoting (Papers D and E) we show how a a robot
can use gravity and friction control to reorient an object in the hand. We use
static models based on limit surfaces [18, 25, 51], which are the preferred choice
in the literature for in-hand manipulation problems. Furthermore, in Paper E we
design adaptive controllers to cope with the problem of uncertainty on the friction
coefficients of the limit surface model.
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Summary of Papers

A An Adaptive Control Approach for Opening Doors and
Drawers under Uncertainties

In this work we address the problem of manipulation of one degree of freedom
mechanisms, such as revolute doors, sliding doors and drawers as shown in Fig.
1. We assume that the kinematic parameters of the mechanism are not known
exactly beforehand by the robot, which is a common situation in practice given
robot calibration errors or estimation errors from the perception system. These
kinematics parameters include the motion axis which is the direction along which
the mechanism affords motion (axis xh in Fig. 1), the axis of rotation (axis yh in
Fig. 1a and 1c) and the radius from the door hinge to the handle which is useful for
classifying revolute and sliding mechanisms. A door opening controller should be
able to estimate these parameters online while manipulating the mechanism as well
as regulate the forces applied on the mechanism. Errors in the estimation of these
parameters will lead to deviations from the nominal trajectory of the mechanism
which in turn will generate undesired forces on the door/manipulator.

A number of solutions to the door opening problem have been proposed in
the literature, including velocity averaging solutions [32], position-based estima-
tion [1, 41] and probabilistic approaches [43, 44]. The main limitation with these
approaches is that they do not tackle all of the aforementioned problems, i.e. simul-
taneous estimation of kinematic constraints and control and force regulation while
being capable of manipulating different kinds of revolute or sliding mechanisms.
In our work we propose adaptive controllers that are able to manipulate the dif-
ferent mechanisms shown in Fig. 1 while simultaneously estimating the kinematic
constraints and regulating the forces and torques exerted by the manipulator. The
method requires a velocity controlled manipulator equipped with a force/torque
sensor. We evaluate the proposed method with different doors and drawers both in
simulation and experiments with a robot setup.
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(c) Sliding mechanisms in closets.
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(d) Mechanism in drawers.

Figure 1: Examples of rotating/sliding doors and drawers with revolute and pris-
matic joints.
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B Online Contact Point Estimation for Uncalibrated Tool
Use

Many robotic applications, such as drilling, require manipulating a tool and making
contact with the tool-tip on a surface as shown in Fig. 2. To perform this kind of
task it is essential to obtain accurate estimates of the contact point between the
tool-tip and the surface of contact.

Figure 2: Robot manipulating a tool in contact with a surface.

This problem can be tackled by tracking the tool with a vision system, however
the main limitation of vision based approaches is that they normally require an a
priori known visual model of the tool and that they have difficulties coping with
visual occlusions. A common approach, typically used in industrial settings, is to
assume prior knowledge of the tool’s geometry and perform an offline calibration
procedure to measure the location of the tool-tip.

In this paper we propose an adaptive estimator that uses force-torque sensor
measurements to determine the contact location between a tool grasped by the
robot and the surface of contact. Thus, the proposed method does not require an a
priori known model of the tool. Furthermore, our main assumption is that the tool
is held rigidly by the robot. We provide proof that the estimator converges to the
actual location of the contact point if certain persistent excitation criteria are ful-
filled. Additionally, the estimator operates online while the robot is performing the
manipulation task, and we show experimentally that it provides accurate estimates
of about 5 mm given for a 30 cm tool length.
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C Predicting Slippage and Learning Manipulation
Affordances through Gaussian Process Regression

In this work we study the problem of estimating the maximum friction force and
torque that an object grasped by the robot can withstand before the object slips.
Previous works approach this problem by assuming known geometry and friction
coefficient of the grasped objects, which is then used to define a Grasp Wrench
Space (GWS) as well as other grasp quality measures which provide an indication
of the stability of a grasp [7, 17]. However, the performance of these methods
is limited in practice by modeling errors of the object’s geometry and its friction
characteristics. Other approaches use learning methods to provide some robustness
to these modeling errors. Bekiroglu et. al. study the grasp stability assessment
problem, where the robot uses visual and tactile feedback to decide if a grasp is
stable or not before lifting a grasped object [3]. The proposed learning framework
requires human supervision for labeling stable and unstable grasps. The main
limitation of this approach is that it does not provide information about physical
bounds on the wrenches that the grasp can withstand, but rather a measure of
certainty of how stable the grasp is.

In our work we propose learning continuous bounds on the wrenches that can
be applied on an object grasped by a robot under different grasp configurations.
We thus formulate grasp stability as a regression problem and the robot collects
training data via dual arm manipulation actions as shown in Fig. 3. These actions
allow the robot to observe the maximum static friction force and torque which we
then use to train a Gaussian Process. Our approach thus leverages the robustness
of machine learning methods to modeling errors while yielding physical measures
of the stability of the grasp.

fy

τx
Figure 3: Dual arm manipulation actions for learning static friction. Top row:
sliding action for training on the maximum static linear friction fslip. Bottom row:
pushing action for training on the maximum static rotational friction τslip.
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D In-hand Manipulation Using Gravity and Controlled Slip

Most commercially available robotic grippers are relatively simple from a mechani-
cal point of view with few degrees of freedom. This is largely due to their lower cost
and higher robustness when compared to other more complex robotic grippers. In
order to compensate for this lack of dexterity from the hardware, researchers have
proposed to use extrinsic dexterity, i.e. to take advantage of resources external to
the robot in order to perform in-hand manipulation [13]. The robot can use e.g. a
table to push an object against it and reposition the object in the grasp or accel-
erate the manipulator so that the manipulated object slides in the grasp towards a
desired configuration. In our work we study the specific in-hand manipulation skill
of pivoting, which consists of rotating an object in the robot’s hand as shown in
Fig. 4. The object rotates due to the gravitational pull on its center of mass, while
the robot controls the trajectory of the object by modulating the gripper’s grasping
force. In our work we assume that the robot is equipped with a 1 DOF gripper,
that a visual model of the object is available so that its pose can be tracked via a
vision system, and that the object rotates around a known rotation axis.

Figure 4: Pivoting with gravity by controlling the gripping force exerted by a two
finger pinch grasp. The top row shows how the robot opens and closes the gripper
to control the object’s rotational motion induced by gravity. The object rotates
around a fixed axis of rotation connecting the two fingers as shown in the bottom
row.

This approach to pivoting has similarities with previous work on friction mod-
eling and control [14, 37]. However, the majority of these works model friction
as a control disturbance to the system, which is estimated and then compensated
through a feedforward term in the control signal. In our case, friction is actually a
control input to the system, hence we cannot directly apply these previous meth-
ods to our work. Other works on use of nonlinear control techniques for Antilock
Braking Systems (ABS) do use friction as a control input, but the control objective
is to maximize the friction between the road and the vehicle’s tires [49].

On the other hand, most recent approaches to in-hand manipulation with ex-
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trinsic dexterity use open-loop motion planning strategies [13, 23, 42]. These ap-
proaches are not always feasible in practice given the presence of uncertainty on
the physical properties of manipulated objects and the environment and since open
loop approaches cannot account for disturbances that may arise during execution
of the task. In contrast, we propose in our work a sliding mode feedback controller
for pivoting which can handle variations of the inertial parameters of the grasped
object. The controller uses as input the tracked pose of the object via a vision
system and controls the grasping force so that the object reaches the desired orien-
tation. Our experiments show that the proposed controller pivots a grasped object
successfully to the desired orientation, despite changes in its inertial parameters.
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E Adaptive Control for Pivoting with Visual and Tactile
Feedback

In this paper we revisit the in-hand manipulation problem with extrinsic dexterity.
We build on the same idea of the previous paper from Section 3.D of pivoting with
gravity and controlling the grasped object’s slippage via the grasping force. The
main addition in this work is to use adaptive control and tactile sensing in the
control loop as shown in Fig. 5.

Adaptive
Controller

Tactile
Sensing

Vision
Tracking

θ

ufn uv

fn

Gripper Force
Controller

Reference
Model

θm

Figure 5: Overview of our proposed adaptive control scheme for pivoting with visual and
tactile sensing.

The tactile sensing allows us to control more accurately the grasping force ex-
erted by the gripper on the object and the adaptive controller can adapt to errors
in the friction parameters of the object. Previous works on in-hand manipulation
often consider the friction coefficient known a priori [11, 23]. In our experiments we
illustrate how errors in the friction coefficients can have a negative impact on the
tracking performance of a feedback linearization pivoting controller, and how our
adaptive controller corrects these errors. Furthermore, we show that the adaptive
controller still pivots the object correctly when changing the friction properties of
the object.





Chapter 4

Conclusions

This thesis addressed two challenging problems in robotic manipulation, namely
kinematic and friction uncertainties of objects manipulated by the robot and how
to perform in-hand manipulation with low dexterity robotic hands using the concept
of intrinsic dexterity. We studied these problems in several manipulation scenarios
such as door opening, tool-tip calibration, slippage prediction and pivoting, and we
have shown how different learning and feedback control methods are suitable for
coping with uncertainties.

We developed an adaptive control scheme for manipulating one degree of free-
dom mechanisms. Our method is based on a kineto-static formulation and it is
capable of manipulating mechanisms with different types of joints, i.e. revolute or
sliding mechanisms, as well as with different grasping constraints of the door han-
dle, such as fixed grasps and passive grasps that afford rotational motion around
the door handle. Contrary to previous works, our adaptive control scheme simulta-
neously estimates the kinematic parameters of the mechanism while regulating the
forces exerted on it.

Furthermore, we proposed an adaptive estimator based on force/torque sensing
for estimating the location of the contact point between a tool grasped by the
robot and a surface of contact. Our approach does not require an a priori model
of the tool nor is it sensitive to visual occlusions in contrast to most vision based
approaches. Furthermore, the contact point can be estimated autonomously by
the robot, while in industrial robots it is commonly performed through a procedure
commonly referred to as TCP (Tool Center Point) calibration, where an experienced
operator places the robot in at least 4 different orientations with respect to a fixture
in the environment.

We have also shown that learning methods are suitable for estimating friction
parameters of objects grasped by the robot. We proposed a learning framework
with Gaussian Process regression together with dual arm manipulation where the
robot can autonomously learn the object’s maximum static friction force and torque.
The robot grasps the object with one hand and slides or pushes the object with
the other hand while monitoring the friction forces through a wrist-mounted force-
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torque sensor. The maximum force/torque bounds learned by the Gaussian Process
can then be used by the robot in order to avoid slippage of the object while ma-
nipulating it. On the other hand, it can also serve as an initial step for in-hand
manipulation, given that typically in-hand manipulation requires sliding of the ob-
ject in the robot’s hand. With our learned friction model the robot knows the
minimum required force and/or torque to break the equilibrium of a given grasp
configuration.

Finally, in our work on extrinsic pivoting we have highlighted the importance
of feedback control to achieve reliable pivoting in the presence of uncertainties in
the friction and inertial parameters. We perform pivoting by using a simple one
degree of freedom gripper, where we modulate the applied grasping force in order
to allow gravity to reorient the object to the desired configuration. Most recent
works have studied in-hand manipulation with extrinsic dexterity from a mechanical
and motion planning perspective, disregarding the essential problem of uncertainty,
which becomes a highly relevant problem for extrinsic regrasps given that the robot
must interact with the environment in order to achieve the manipulation objectives.
We designed a sliding mode controller for pivoting an object with uncertain inertial
parameters. We also showed how incorrect estimates of the friction coefficient
can significantly degrade control performance, and how adding tactile sensing and
adaptive control alleviates this issue. Our adaptive controller is also capable of
pivoting the object if the material at the surface of contact changes, i.e. if the
friction properties of the object change.

1 Future Work

There are a number of directions of research one can explore to follow up on the
results and observations formulated in this thesis work. We can expand our adap-
tive control framework for manipulation of one degree of freedom mechanisms to
mechanisms with a larger number of degrees of freedom. Two degree of freedom
mechanisms with combined sliding and revolute joints are common e.g. in manu-
facturing and assembly tasks where the robot has to slide a part of a device such
as a cell phone battery into the phone. Due to modeling, perception or control er-
rors there may be some uncertainty regarding the location of the grasped pieces in
the robot’s hands. This uncertainty can generate undesired forces that need to be
compensated at the control level. Furthermore, in order to formulate a controller
for this assembly task the robot requires knowledge of the contact point between
the pieces, which we can obtain through the adaptive estimators proposed in this
thesis.

Furthermore, we can complement our control formulation for pivoting with other
forms of in-hand manipulation where friction uncertainties are relevant, such as in
extrinsic pushing or by exerting inertial forces by accelerating the robot manipula-
tor. In the case of extrinsic pivoting by pushing the grasped object against another
fixed object in the environment, the generated kinematic constraints resemble our
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work on door opening. By combining these different methods we can achieve a
more diverse set of regrasps.

Another interesting venue of future work connected to extrinsic regrasps is re-
lated to grasp planning. Both our work and most recent works assume a given
grasp configuration before the robot performs in-hand manipulation. However, the
way that the robot grasps the object determines a set of kinematic constraints that
may or may not afford the execution of the desired regrasp. In the case of our
work on pivoting we assume that the robot initially grasps the object at one of its
edges so that the gravitational torque generated on the object’s center of mass is
sufficient to reorient it to the desired position. Furthermore, the initial grasp also
contains the axis of rotation along the direction of actuation of the fingertips. The
robot should thus be capable of autonomously planning grasp configurations that
afford the required regrasps.

Another interesting avenue of research would be an integration of the approaches
proposed here. We can for instance use our learning framework of static friction
forces as an initialization step for in-hand manipulation, where we refine the friction
estimates through adaptive control.
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Abstract

We study the problem of robot interaction with mechanisms that afford
one degree of freedom motion, e.g. doors and drawers. We propose a method-
ology for simultaneous compliant interaction and estimation of constraints
imposed by the joint. Our method requires no prior knowledge of the mech-
anisms’ kinematics, including the type of joint — prismatic or revolute. The
method consists of a velocity controller which relies on force/torque measure-
ments and estimation of the motion direction, the distance and the orientation
of the rotational axis. It is suitable for velocity controlled manipulators with
force/torque sensor capabilities at the end-effector. Forces and torques are
regulated within given constraints, while the velocity controller ensures that
the end-effector of the robot moves with a task-related desired tangential ve-
locity. We give proof that the estimates converge to the true values under
valid assumptions on the grasp, and error bounds for setups with inaccuracies
in control, measurements, or modelling. The method is evaluated in different
scenarios opening a representative set of door and drawer mechanisms found
in household environments.

1 Introduction

Robots operating in domestic environments need the ability to interact with doors,
drawers, and cupboards, all of which exhibit various kinematic constraints due
to the joints attaching them to the environment. The variation in size, orientation
and type of joints makes it intractable to provide a robot with predefined kinematic
models of all the mechanisms it may encounter. Prior knowledge of mechanisms
could conceptually be combined with observations from cameras, laser-range finders
or other distal sensors to infer a prior model of a mechanism. However, in domestic
and other human-centric environments, occlusions, poor lighting, and the presence
of previously un-encountered mechanism types make it very difficult to produce
reliable systems based on these approaches. One could also imagine a situation
where the constraints change dynamically during the manipulation, for example if
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the constraints are imposed on the mechanism by another agent — e.g. a human
doing collaborative work with robot — whose intended actions cannot be inferred
from prior observation alone [15]. Therefore, the performance, robustness, and
generality of constrained manipulation tasks can be significantly improved if the
need to have prior knowledge of the constraints is removed. In the general case,
the uncertainties in the manipulation of such constrained kinematic mechanisms,
e.g. doors and drawers, can be divided into two main categories:

Dynamic uncertainties which are related to the dynamic model of the door or
the drawer: door’s inertia, dynamics of the hinge mechanism etc.

Kinematic or Geometric uncertainties which are related to the kinematic model
of the door or the drawer: type of the joint that models the kinematic mech-
anism, which may be prismatic or revolute, size of the door, location and
orientation of the hinge, etc.

This categorization has been applied to several problems in robot control, like
motion control [6] and force/motion control [5]. From a control perspective, the
door opening problem can be regarded as a force/motion control problem in which
the robot workspace can be divided into motion and force controlled subspaces
according to the concept of hybrid force/motion control [30, 37]. In robot interac-
tion tasks, the identification of geometric or kinematic uncertainties is crucial for
defining a kinetostatically consistent Task Frame [4] to correspond to a real compli-
ant motion. Several different methods have been proposed for directly calculating
or estimating kinematic parameters, that can be twist-based or wrench-based, by
exploiting the concept of reciprocity under ideal conditions [8]. For manipulation
of kinematically constrained objects like doors and drawers, twist-based estimation
has been used (Section 2) since it is more robust when forces e.g. friction or ro-
tational spring forces arise along the motion directions. A common characteristic
shared by the majority of the works proposed in the literature is that the combined
dynamics of estimation, tracking, and force control are not considered. This can
been considered as a source of disturbance to the identification (which may result
in inaccurate and unsafe task execution), as have been pointed out in e.g. [3].

In this work, we consider a general robotic setup with a manipulator equipped
with a wrist force/torque sensor, and we propose an adaptive controller which can
be easily implemented for dealing with the kinematic uncertainties of doors and
drawers. The proposed control scheme which is inspired by the adaptive surface
slope learning [13] does not require accurate identification of the constraints at
each step of the door/drawer opening procedure as opposed to the majority of the
solutions to this problem (Section 2). It uses adaptive estimates of the motion
and constraint parameters that converge to the actual dynamically changing radial
direction during the procedure.

The paper is organised as follows: In Section 2 we make an overview of the
related work to the door opening problem. Section 3 provides description of the
kinematic model of the system and the problem formulation. The proposed solution



2. RELATED WORK AND OUR CONTRIBUTIONS A5

and the corresponding stability analysis are given in Section 4 followed by the
simulation examples in Section 5 and the experimental results in Section 6. In
Section 7 the final outcome of this work is briefly discussed.

2 Related Work and our Contributions

Pioneering work on the door opening problem is presented in [23] and [24]. Experi-
ments on door opening with an autonomous mobile manipulator assuming a known
door model were performed in [23], using the combined motion of the manipulator
and the mobile platform. In [24] a method estimating the constraints describing
the door motion kinematics is proposed, based on the observation that ideally the
motive force should be applied along the direction of the end-effector velocity. To
overcome the problems of chattering due to measurement noise and ill-definedness
of the normalization for slow end-effector motion, spatial filtering is proposed, but
this may cause lag and affect the system stability. The use of velocity measure-
ments to estimate the direction of motion has inspired the recent work of [21] using
a moving average filter in the velocity domain. An estimator is used to provide a
velocity reference for an admittance controller. Ill-defined normalizations and esti-
mation lags are not treated. Estimating constraints with velocity measurements is
also done in [22], applying velocity and impedance control along the tangent and
the radial axis of the door opening trajectory respectively.

Several position-based estimation techniques have also been proposed to esti-
mate geometric characteristics of the mechanism rather than the motion direction.
Since estimation does not guarantee identification in each control step, those meth-
ods have been coupled with controllers providing the system with the proper com-
pliance to absorb inaccuracies of the planned trajectories. In [26], the recorded
motion of the end-effector is used in a least-squares approximation to estimate the
center and the radius of the motion arc, and a compliant controller is used to can-
cel the effects of the high forces exerted due to inaccurate trajectory planning. A
similar approach is presented in [1]. An optimization algorithm using the position
of the end-effector was used in [11, 12]. The algorithm produces estimates of the
radius and the center of the door and, subsequently of the control directions. The
velocity reference is composed of a feedforward estimated tangential velocity and
radial force feedback while an equilibrium point control law enables a viscoelas-
tic behavior of the system around an equilibrium position. In [28, 29], an inverse
Jacobian velocity control law with feedback of the force error following the Task
Space Formalism [4] is considered. In order to obtain the natural decomposition of
the task, which is essential within this framework, the authors propose to combine
several sensor modalities so that robust estimation is established. In [29], the es-
timation is based on the end-effector trajectory, to align the task frame with the
tangent of the hand trajectory.

On the other hand, probabilistic methods that are off-line and do not consider
interaction force issues have been used for more advanced estimation tasks. In [36],
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a probabilistic framework for learning the kinematic model of articulated objects
(object’s parts connectivity, degrees of freedom, kinematic constraints) is proposed.
The learning procedure requires a set of motion observations of the doors. The
estimates are generated in an off-line manner and can feed force/position Cartesian
controllers [35]. Probabilistic methods — particle filters and extended Kalman
filters — for mobile manipulation have also been applied to simultaneously estimate
the position of the robot and the angle of the door using, however, an a priori defined
detailed model of the door [27].

Other work on door opening exploits advanced hardware capabilities. In [31], a
combination of tactile-sensor and force-torque sensor is used to control the position
and the orientation of the end-effector with respect to the handle. In [18], a specific
hardware configuration with clutches that disengage selected robot motors from
the corresponding actuating joints and hence enable passive rotation of these joints
is used. Since no force sensing is present, a magnetic end-effector was used which
cannot always provide the appropriate force for keeping the grasp of the handle
fixed. The DLR lightweight robot controlled via Cartesian impedance control based
on joint torque measurements is used for door opening in [25]. In [20], the authors
present experiments using a force/torque sensor on a custom lightweight robot to
define the desired trajectory for a door opening task. In [2], a method for door
opening that uses an impulsive force exerted by the robot to a swinging door is
proposed. A specific dynamic model for the door dynamics is used to calculate
the initial angular velocity which is required for a specific change of the door angle,
and implemented on the humanoid robot HRP-2. In [7], a multi-fingered hand with
tactile sensors grasping the handle is used, and the geometry of the door is estimated
by observing the positions of the fingertips while slightly and slowly pulling and
pushing the door in position control. In a subsequent step, the desired trajectory
is derived from the estimation procedure, and is used in a position controller.

Table 1 summarizes the literature on door opening and provides a comparison
to our work. In the table, the term force control designates work that explicitly
controls or limits the interaction forces, online, real-time implies that the method
can be used to open a door directly, at human-like velocities, without any prior
learning step, moderate hardware requirements means that the method can be used
on a simple manipulator with velocity control and a force/torque sensor, and rev-
olute doors and sliding doors describe what types of door kinematics that can be
handled by the method. Estimate of constraints indicates methods that produce
an estimate of the current kinematic constraints of a mechanism, while estimate of
geometry indicates methods that produce an explicit estimate of the geometry of
the door mechanics themselves. Unknown model indicates methods that will work
properly even if the model (type of mechanism, i.e. revolute or prismatic joint) is
not known a priori, and unknown parameters indicates methods that will work if the
parameters of the mechanism (i.e. hinge position or motion axis of prismatic joint)
are not known a priori. Finally, proven parameter identification states whether
proofs are provided for the convergence of estimates.

In previous work, we presented a control algorithm for estimating the center of
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Table 1: Comparison of related works and this paper.
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rotation for a revolute door, exploiting the torque or velocity inputs. We proved that
we can identify the constraint direction as well as achieve velocity/force tracking
for smooth door opening [14, 16]. The method assumes a revolute joint and free
rotation of the hand, but the center of rotation is considered uncertain, thus limiting
the approach to planar problems. The proposed update law uses a projection
operator to guarantee well-defined updated estimates; the use of a projection set
constrains the range of uncertainties that can be dealt with. In [17], we proposed
a control scheme treating both sliding doors/drawers and revolute-joint doors with
arbitrary hinge orientations, by assuming grasps to be fixed and will not rotate
around the handle. Furthermore, the design of the update law does not require a
projection operator since it produces inherently well-defined estimates that converge
to the actual values.

In the work presented here, we propose a unified controller for both revolute
and prismatic mechanisms, with formulations for both fixed and non-fixed grasps,
and present experimental results on a real robot that demonstrate its performance
on a range of different doors and drawers. The contribution of our work compared
to the existing literature is a method that simultaneausly treats all of the following:
— Our method can be applied to open both rotational and sliding doors, without
requiring ill-defined normalization.
— Our method is not based on unusual hardware capabilities and can be imple-
mented in any velocity controlled manipulator with the capability to measure or
estimate the forces and torques at the end effector.
— Our method is theoretically proven to achieve identification of the motion di-
rection simultaneously with force/velocity convergence, by explicitly considering
adaptive estimates in the controller design.

3 System and Problem Description

Generally, doors and drawers can be opened by grasping the handle and moving
it along its intended trajectory of motion: along a circular path for hinged mech-
anisms, or along a linear path for sliding doors and drawers. We now formally
define the problem of door/drawer opening under uncertainty, where the position
of hinges, or direction of possible sliding motion is not known a priori.

3.1 Notation and Preliminaries
We introduce the following notation:

• Bold small letters denote vectors and bold capital letters denote matrices.
Hat ·̂ and tilde ·̃ denote estimates and errors between control variables and
their corresponding desired values/vectors respectively. Notation ·> denotes
the transpose of a vector/matrix.

• The generalized position of a frame {i} with respect to a frame {j} is described
by a position vector jpi ∈ Rm and a rotation matrix jRi ∈ SO(m) where



3. SYSTEM AND PROBLEM DESCRIPTION A9

m = 2 or 3 for the planar and spatial case respectively. In case {j} ≡ {B}
where {B} is the robot world inertial frame (typically located at the base of
the robot) the left superscript is omitted. Each column of jRi is denoted by
jxi ≡ R>j xi, jyi ≡ R>j yi, jzi ≡ R>j zi where xi, yi, zi denote the columns of
the rotation matrix Ri that describes the orientation of the frame {i} with
respect to the robot world inertial frame.

• The projection matrix on the orthogonal complement space of a unit three
dimensional vector a is denoted by P(a) with P(a) = P>(a) is defined as
follows:

P(a) = I3 − aa>

• I(b) is an element-wise integral of a vector function of time b(t) ∈ Rn over
the time variable t, i.e:

I(b) =
∫ t

0
b(τ)dτ

3.2 Kinematic model of robot door/drawer opening
We consider a setting in which the end-effector has grasped the handle of a mecha-
nism with a revolute or prismatic joint. Let {e} and {h} be the end-effector and the
handle frame respectively. The two frames are attached on the same kinematically
known position e.g. a known point of the end-effector denoted by pe and repre-
sented by different rotation matrices. The orientation of the end-effector frame
is strictly connected to the robot kinematics while the orientation of the handle
frame is related to the kinematic constraints of the task. In case of a rotating door
(revolute joint) the kinematic constraints are defined by considering a frame {o}
attached at the unknown center of the circular trajectory of the end-effector while
opening the rotating door. The axis zo corresponds to the axis of the rotation while
xo, yo can be arbitrarily chosen (Fig. 1a).

We make the following assumptions:

Assumption 1 There is no relative translational motion of the end-effector with
respect to the handle, i.e. hṗe = 0.

Assumption 2 There is no relative translational and rotational motion of the end-
effector with respect to the handle, i.e. hṗe = 0 and hṘe = 0.

Assumption 2 is more restrictive since it implies a fixed grasp of the handle, while
Assumption 1 is more general and can accommodate grasps that can be modeled
as passive revolute joints. Obviously, Assumption 2 also implies Assumption 1, but
in this work the two assumptions will be treated separately, as they correspond to
two different grasp types.

In the following we state a convention in order to define the frame {h} in both
cases of revolute joints (hinged doors) and prismatic joints (sliding doors, drawers):
a) Revolute joints:
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• Axis zh is equivalent to zo, i.e. zo ≡ zh

• Axis yh is the unit vector along the line connecting the origins of {h} and
{o} with direction towards the hinge.

• Axis xh can be regarded as the allowed motion axis; it can be formed as
follows: xh = yh × zh

b) Prismatic joints: Vector xh denotes the allowed motion axis. Axes zh and yh
can be arbitrarily chosen in order to span the two-dimensional surface to which xh
is perpendicular.
Examples of Fig. 1 illustrate the definition of the {h} axes.

h
zh

x

h
yo

y

o
z

o
x

(a) Rotating mechanisms in regular doors
and cupboards.

h
zh

x
h
y

(b) Rotating mechanisms in ovens or wash-
ing machines.

h
z
h
x

h
y

(c) Sliding mechanisms in closets.

Text
h
z

h
x

h
y

(d) Mechanism in drawers.

Figure 1: Examples of rotating/sliding doors and drawers with revolute and pris-
matic joints.

For doors with a revolute joint, we can define the radial vector –which is parallel
to yh– as the relative position of the frames {o} and {e} (or {h}):

r , po − pe, (1)

and use it in the following equation to describe the first-order differential kinematics:

v = r × ωh (2)
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where v expresses the velocity of the end-effector ṗe or the handle velocity ṗh given
eṗh = 0.

Note that r = 1
κyh where κ denotes the curvature of the cyclic trajectory for

the door opening (the inverse of the distance between the end-effector frame and
the center of rotation). Thus, the inner product of (2) with xh yields:

ω = κv (3)

where v , x>h v denotes the end-effector/handle translational velocity magnitude
and ω , z>hωh the rotational velocity of the handle. Although we consider a
revolute joint at the hinge of the door, the constraint equation (3) can model cases
of sliding doors or drawers represented by prismatic joints. Large values of radius
correspond to practically zero curvature i.e. straight line trajectories for opening
the mechanism and zero rotational velocity for the handle. Given the mechanism is
rigid and Assumption 1 or 2, the remaining constraints regarding the translational
velocity are:

P(xh)v = 0 (4)

Constraint equation (4) implies that the end-effector/handle velocity can be pa-
rameterised as follows:

v = vxh (5)

Additionally Assumption 2 imposes extra constraints on the end-effector rotational
velocities:

ωe = ωh with P(zh)ωh = 0 (6)

3.3 Robot kinematic model
We consider the case of a n-DoF velocity-controlled manipulator satisfying the
following assumption:

Assumption 3 The kinematic structure and the number of DoF are sufficient for
generating a 6 DoF movement of the end-effector and hence implementing the ve-
locity for the task defined for a set of constraint’s estimates including the actual
constraint.

An anthropomorphic arm with spherical wrist with n = 6 DoFs can satisfy As-
sumption 3.

For a velocity-controlled manipulator a reference generalized velocity uref ,
[v>ref ω

>
ref]> ∈ R6 (vref ∈ R3 and ωref ∈ R3 denote the translational and rotational

part respectively) expressed at the inertial frame can be considered as a kinematic
controller which is mapped to the joint space in order to be applied at the joint
velocity level as follows:

q̇ = J+(q)uref (7)
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with q, q̇ ∈ Rn being the joint positions and velocities respectively and J(q)+ =
J(q)>

[
J(q)J(q)>

]−1 being the inverse or the pseudo-inverse of the manipulator
Jacobian J(q) ∈ R6×n relating the joint velocities q̇ to the end-effector velocities
[ṗ>e ω>e ]>. If we consider the typical Euler-Lagrange robot dynamic model, the
velocity error at the joint level drives the torque (current) controller uτ (t).

Assumption 4 The actuator has sufficient torque output, external force compen-
sation, and current control loop frequency to keep the error between commanded and
actual velocity negligible. Also, the inertial dynamics of the door mechanism are
sufficiently weak, such that the portion of measured forces arising from accelerating
the door mechanism are negligible.

Cases where Assumption 4 is not valid are treated in the robustness analysis of
Section 4.4.

3.4 Control Objective
The task of controlling the robot to manipulate a door or a drawer, can naturally be
described in the handle frame. The desired variables should be defined in the robot
inertial (or end-effector frame) to be executable by the robot. Let f ∈ R3 denote
the interaction force exerted at the end-effector, τ ∈ R3 the torque around the
origin of the end-effector frame and fd, τ d the corresponding desired vectors. Let
vd(t) be the desired velocity along the motion axis of frame {h}. Then the desired
velocity vd(t) is defined along xh, i.e. vd = vd(t)xh, and the force control objective
can be achieved by projecting the desired force on the orthogonal complement
space of xh (constrained directions) i.e. P(xh)fd; a small valued or zero vector fd
corresponds to small forces along the constraint directions. The control objective
can be formulated as:

Problem 1 Design a translational velocity control vref such that P(xh)f → P(xh)fd
and v → vd(t)xh, without knowing accurately the motion axis xh and the corre-
sponding constraint directions P(xh).

When Assumption 2 is valid, the desired rotational velocity can be defined using
vd(t) along the axis κ , κzh, i.e. ωd(t) = vd(t)κ. In this case the total interaction
torque denoted by τ ∈ R3 is controllable and thus an additional control objective
can be formulated as follows:

Problem 2 Design a rotational velocity control ωref to act in parallel to vref such
that τ → τ d and ω → κvd(t)zh without knowing the axis of rotation zh and the
variable κ. The rotation control objective is mainly set to achieve identification of
zh and κ.

We consider that the opening task is accomplished when the observed end-effector
trajectory — which coincides with the handle trajectory — has progressed far
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enough to enable the robot to perform a subsequent task, like picking up an object
in a drawer or passing through a door. Hence, some perception system observing
the progress of the opening of the mechanism is additionally required to provide
the robot with the command to halt the opening procedure.

4 Control Design

In this section, we propose a solution to Problems 1 and 2 stated in Section 3.4
above. When only Assumption 1 holds, the solution to Problem 1 is given by
Theorem 1, and when Assumption 2 holds, the solution to Problem 1 and 2 is given
by Theorem 1 and 2. Robustness analysis is performed to derive bounds for the
estimation error in case of disturbances. Proofs of the propositions and theorems
of this section are given in the Appendix. First, we propose a translational velocity
reference that can employ two different update laws corresponding to Assumptions
1 and 2 respectively.

4.1 Translational velocity reference with force feedback

Let x̂h(t) denote the online estimate of the motion direction xh. Dropping the
argument t from x̂h(t) and vd(t) for notation convenience, we let vref be given by:

vref = vdx̂h −P(x̂h)vf (8)

where vf is a PI force feedback input defined as follows:

vf = αf f̃ + βfI
[
P(x̂h)f̃

]
(9)

with f̃ = f−fd and αf , βf being positive control constants. Note that the first term
of the reference velocity is the desired velocity along the estimated motion direction
and it is not in general consistent with the allowable motion direction. However the
second term – which is a force controller – compensates for the inconsistency owing
to kinematic uncertainties and renders a reference velocity vref , x>h vref along the
actual motion direction by generating forces along the constrained directions (that
can be considered as Lagrange multipliers [9]).

Let θ(t) denote the angle formed between the actual vector xh which is a rotating
vector and its online estimate x̂h which is time-varying. Given that the estimate
x̂h is a unit vector, cos θ(t) can be defined as follows:

cos θ(t) , x>h x̂h = ex>h ex̂h (10)

The definition is independent of the frame in which xh and x̂h are expressed. In
general, an online estimate of the vector x̂h provided by an adaptive estimator is
not unit but in the following we are going to design an update law that produces
estimates of unit magnitude. The derivative of θ(t) depends on both estimation
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rate and door motion velocity:

d

dt
cos θ(t) = x>h

( ˙̂xh − vκ × x̂h
)

(11)

When the grasp imposes constraint on the rotation of the end-effector with respect
to the handle (Assumption 2), the derivative of θ(t) is independent of the door
motion velocity. The derivative of cos θ(t) can be calculated as follows:

d

dt
cos θ(t) = ex>h e ˙̂xh for eẋh = 0 (12)

In the following, we drop out the argument of t from θ(t) for notation convenience.
The velocity error ṽ , v − vref can be decomposed along x̂h and the corre-

sponding orthogonal complement space as follows:

ṽ = P(x̂h)(v + vf ) + (v cos θ − vd) x̂h (13)

In case of velocity controlled manipulators described by (7) we get ṽ = 0. Since
the right-hand side of (13) consists of two orthogonal terms, ṽ = 0 implies the
following closed-loop system equations:

P(x̂h)vf = −vP(x̂h)xh (14)
v = 1

cos θvd (15)

Taking the norm of each side of (14) and substituting (15) gives:

‖P(x̂h)vf‖ = |vd tan θ| (16)

From (14), (15) and (16) it is clear how the estimation error in the axis of motion
affect the force errors and the velocity of the end-effector. Note that the higher
the uncertainty in the motion axis θ is the higher the velocity v and the estimated
constraint forces P(x̂h)f can be. In the extreme case of |θ(t)| = π/2 which is
equivalent to trying to move the mechanism along a direction which is completely
mechanically constrained extremely high forces arise. Hence, the update law must
at least guarantee |θ(t)| 6= π/2, ∀t. Equations (14)-(16) describing the closed loop
system link the physical controlled variables like velocities and forces with the
uncertainty measure θ(t) and thus they are instrumental in the design of the update
laws for estimating the unknown parameters described in the following subsections.

4.1.1 Update Law for the Motion Direction given Assumption 1

We propose the following update law for x̂h1:

˙̂xh = −γvrefP(x̂h)vf − vrefx̂h × κ̂ (17)

1Details on the design of the update laws can be found in the Appendix.
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where γ is positive control gain for tuning the adaptation rate, κ̂ is the online esti-
mate of the scaled rotational axis κ that is produced by the following appropriately
designed update law:

˙̂κ = Γκx̂h × vref, (18)

with Γκ ∈ R3×3 being a positive definite gain matrix, and vref , x>h vref can be
calculated independently of the knowledge of the motion direction for x̂>h xh > 0 as
follows:

vref = sgn
(
x̂>h vref

)
‖vref‖ (19)

The use of the update laws (17), (18) are instrumental for the stability analysis
and the convergence of the estimated parameters. In the Appendix it is shown that
the use of Eq. (17), (18) enable the proof of the following Propositions:

Proposition 1 Update law (17) ensures that the norm of x̂h(t) is invariant, i.e.
given ‖x̂h(0)‖ = 1, ‖x̂h(t)‖ = 1, ∀t.

Proposition 2 Update laws (17), (18) driven by the reference velocity vref given
by (8) with a time-varying desired velocity yield to the following nonautonomous
(time-dependent) nonlinear system with states θ and κ̃ = κ̂ − κ which are well
defined in the domain D = {θ ∈ R, κ̃ ∈ R3 : |θ| < π

2 }:

θ̇ = −γv2
d(t) tan θ

cos θ −
vd(t)
cos θ κ̃

>n (20)

˙̃κ = vd(t) tan θΓκn (21)

with n being a unit vector perpendicular to the surface defined by xh and x̂h, which
imply that the estimation error angle θ stays in D and converges to zero for vd
satisfying the persistent excitation (PE) condition (see [10]), i.e.:∫ t+T0

t

v2
d(σ)dσ ≥ α0T0 (22)

∀t ≥ 0 and for some α0, T0 > 0.

4.1.2 Update Law for the Motion Direction given Assumption 2

Since the relative orientation of the handle frame and the end-effector is constant
we can propose a simpler update law by using as a regressor the end-effector frame
rotation matrix. We propose the following update law for x̂h1:

x̂h = Re
ex̂h (23)

e ˙̂xh = −γvdR>e P(x̂h)vf (24)
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where γ is a positive control gain for tuning the adaptation rate. Proposition
3, 4 describe how the update law (23), (24) produces well-defined estimates that
converge to the actual values. In the Appendix it is shown that the use of Eq. (24)
enable the proof of the following Propositions:

Proposition 3 Update law (24) ensures that the norm of ex̂h(t) is invariant, i.e.
starting with ‖ex̂h(0)‖ = 1, ‖ex̂h(t)‖ = 1, ∀t.

Proposition 4 Update laws (23), (24) driven by the reference velocity vref given
by (8) with a time-varying desired velocity yield to the following nonautonomous
(time-dependent) nonlinear system with state θ which is well defined in the domain
D′ = {θ ∈ R : |θ| < π

2 }:

θ̇ = −γv2
d(t) tan θ (25)

which implies that the estimation error angle θ stays in D and converges to zero
for vd satisfying the PE condition given by (22).

4.1.3 Summary and force convergence results

Propositions 2 and 4 imply that given the update laws and the controller the es-
timates are well defined 2 and converge to their actual values. Propositions can
be considered as intermediate steps for proving the stability of the overall system
including aditionally the internal state introduced by the force integral in the fol-
lowing Theorem for Assumptions 1 and 2 (see Appendix for proof).

Theorem 1 Consider a velocity controlled manipulator (7), grasping the handle
of a sliding/rotating door or a drawer. If the robot is driven by a velocity control
input vref (8) that uses a PI force feedback input vf (16) and:

1. the update law (17), (18) given that Assumption 1 is valid, or

2. the update law (23), (24) given that Assumption 2 is valid,

then Problem 1 will be solved, i.e., smooth opening of the moving mechanism and
identification of the estimated parameters will be achieved. Analytically, the follow-
ing convergence results are guaranteed: x̂h → xh, v → xhvd, and P(xh)f̃ → 0,
given that vd satisfies the PE condition given by (22).

4.2 Rotational velocity reference with torque feedback
In case of Assumption 1, the rotational velocity of the end-effector can be set in
order to optimize some performance index such as the manipulability index of the

2The estimates are unit vectors if the initial estimate is unit and |θ(t)| 6= π/2, ∀t, is true since
|θ(t)| < π/2 if |θ(0)| < π/2.
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arm while torque cannot be controlled. On the other hand, Assumption 2 implies
that rotational velocity of the end-effector is strictly connected to the the rotational
velocity of the mechanism and subsequently to the translational velocity of the end-
effector through the constraint (3). Hence the reference rotational velocity should
be appropriately designed using the desired translational velocity vd and exploiting
torque feedback in order to fulfill the constraints (3), (6):

ωref = vdκ̂− ωτ (26)

where κ̂ is the online estimate of κ and it is appropriately designed as follows:

˙̂κ = −vdΓκωτ (27)

with Γκ being a positive definite matrix of update gains, and ωτ is a PI torque
feedback input defined as follows:

ωτ = ατ τ̃ + βτI (τ̃ ) (28)

where τ̃ = τ − τ d.
The design of the update law (27) is instrumental for the proof of the following

theorem (see Appendix):

Theorem 2 Consider a velocity controlled manipulator (7) grasping the handle of
a sliding/rotating door or a drawer according to Assumption 2. If the robot is driven
by a velocity control input that consists of both vref (8) and ωref (26) that uses a
PI torque feedback input ωτ (28) as well as the update law (27) to estimate the
vector κ, then Problem 2 will be solved, i.e., the following convergence results –
additionally to those of Theorem 1 – are guaranteed: τ̃ → 0, I(τ̃ ) → 0, κ̂ → κ,
ωe → vdκ, for vd satisfying the PE condition given by (22).

4.3 Torque-controlled robot manipulators
In the aforementioned results we have considered an ideal velocity-controlled robot
manipulator which is connected with the environment through rigid constraints.
These assumptions allow the forces to be modeled as Lagrange multipliers related to
the the range of uncertainty as shown in (16), similarly to the Lagrange multipliers
used for modeling forces in the case of a torque-controlled manipulator that interacts
with a rigid environment [32]. In the case of a velocity-controlled manipulator the
underlying assumption is that the commanded velocity is achieved adequately fast
(Assumption 4), while in the case of a torque-controlled manipulator, the actuator
dynamics can be considered negligible.

The adaptive velocity controllers proposed in this paper can be readily modified
and applied to the outer loop of a dynamic controller suitable for a torque-controlled
manipulator as shown in our previous work [14] where the inner loop is formulated
by the superposition of an appropriately designed generalized reference force, a ve-
locity error feedback term and a term compensating for the robot dynamic model.
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The reference velocity (outer loop) used in the velocity error feedback term is sim-
ilar to the one proposed in this work but did not use the proportional force errors
terms of (8), in order to avoid differentiation of noisy force/torque measurements
while calculating the reference acceleration required in the implementation on a
torque controlled robot. In general the design of dynamic (torque) controllers of
robots may require a term that compensates for the dynamic model of the robot.
In case of dynamic uncertainties, adaptive controllers that employ update laws for
the dynamic parameters’ estimation have been proposed [33]. The PE condition
is complicated and the joint trajectories have to be properly chosen in order to
identify the dynamic parameters online. However dynamic parameter identifica-
tion is not crucial for guaranteeing the tracking error performance. In contrast to
dynamic uncertainties, here we consider uncertainties of the parameters involved
in the kinematic constraints. The identification of these parameters – that is pre-
requisite for achieving the control objectives – depends on the trajectory of the
end-effector rather than on the individual joints’ trajectories.

In the following section, instead of extending the analysis to the case of a torque-
controlled robot manipulator, we present a robustness analysis for the performance
of the system under disturbances δ(t) arising at the velocity level that may also
represent errors arising in the inner control loop.

4.4 Robustness Analysis
In this section, we present a robustness analysis for the performance of the system
under disturbances δ(t) arising at the velocity level, i.e. v = vref + δ(t). These
disturbances can incorporate delays at the velocity tracking control loop that would
be vanishing for the case of a desired constant velocity, as well as disturbances
arising due to modeling errors e.g. compliance and deformations at the grasp or at
the joint of the mechanism.

The closed loop system equations (14), (15) are now affected by the disturbances
as follows:

P(x̂h)vf = P(x̂h) [−vxh + δ(t)] (29)

v = 1
cos θ

[
vd + x̂>h δ(t)

]
(30)

In the following propositions we examine the robustness of the update law (23),
(24) in case of disturbances. The proofs of the propositions can be found in the
Appendix.

Proposition 5 The update laws (23), (24) driven by the reference velocity vref
given by (8) with a time-varying desired velocity in case of disturbances (i.e. eq.
(29), (30) hold) yield to the following nonautonomous (time-dependent) nonlinear
system with state θ which is well defined in the domain D′ = {θ ∈ R : |θ| < π

2 }:

θ̇ = −γv2
d(t) tan θ − γvd(t)

sgn(θ)
cos θ n′>δ(t) (31)
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where n′ is a constrained direction (i.e. n′>xh = 0) lying on the common plane of
x̂h and xh.

Proposition 6 The system (31) is uniformly ultimately bounded with respect to
the following region:

Ω = {θ ∈ D′ : |θ| < arcsinλ(t)} (32)

where λ(t) = |n′>δ(t)|
|vd| for vd 6= 0.

Variable λ(t) denotes the range of the region of angles θ in which the estimation
error converges and is well-defined for |n′>δ(t)| < |vd|. Notice that λ(t) can be
alternatively written as λ(t) = cosϕ(t)`(t) where `(t) is defined as the ratio of the
magnitude of the velocity error disturbance and the commanded desired velocity i.e.
` , ‖δ(t)‖

|vd| and ϕ(t) denotes the angle formed between n′ and δ(t). In the extreme
case of a velocity disturbance being aligned with the constrained direction3, a well-
defined λ(t) requires that the ratio `(t) is smaller than one. If |ϕ(t)| is smaller than
90 deg, the ratio `(t) is allowed to take values bigger than one. If the disturbance
is aligned with the motion direction (i.e. λ(t) = 0) convergence of the estimation
error to zero is guaranteed irrespective of the magnitude of the disturbance. Notice
also that in the case of a vanishing disturbance (λ(t) → 0), the region Ω shrinks
to zero, thus guaranteeing identification of the uncertain motion axis. In the case
of persistent disturbances the identification error is comparable to the error arising
from estimation based on inaccurate velocity measurements.

If Assumption 1 holds we can achieve a similar result by modifying the update
law using a σ-modification [10]. Errors in rotational velocity can be treated in a
similar fashion.

4.5 Discussion
The proposed control scheme produces estimates of the unconstrained motion di-
rection and axis of rotation (in the case of a rotational door) using the update
laws (17), (18) (Assumption 1) or (24), (27) (Assumption 2) respectively. In case
of Assumption 1, the motion direction estimate converges to the actual direction
but there is no proof that the scaled rotation vector converges to the actual one;
note however that the rotation vector estimate is not used in the velocity reference
(8) and thus its convergence do not affect stability and performance. In this case
torques are not controlled and the redundant degrees of freedom can be used to
enhance manipulability. In case of Assumption 2, both estimated vectors converge
to the actual values and the estimates are used within velocity references (8) and
(26). The velocity references enforce the robot to move with a desired velocity

3Note that large velocity errors in the constraint directions would be highly unlikely, as the
the constraint directions are defined as the directions in which the mechanism has significantly
higher stiffness, and high velocities in these directions are effectively blocked.
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while controlling both forces and/or torques along the constrained directions to
small values guaranteeing compliant behavior.

By defining the handle frame according to the task constraints and involving
the curvature instead of the radius and the center of rotation, the proposed method
is applicable to both revolute and prismatic mechanisms. Coupling the estimation
with the controller following the adaptive control framework (see e.g. [10]) makes
the method inherently on-line, enabling proofs of the convergence of estimated
parameters to true values and convergence of force/torque errors.

Note that no projection operators have been used in the update laws design
reducing the amount of the required prior knowledge. The main condition for
guaranteed performance is that the initial estimate is not perpendicular to the true
value i.e. θ(0) ∈

(
−π2 ,

π
2
)
. A typical example where this condition is not satisfied

could be when opening a drawer with an initial estimate corresponding to a sliding
door (c.f. Fig. 2, cases (iv) and (v)). This issue can be overcome by using a
moderate deviation in the initial estimate (see Section 5). The proposed method
alone can not handle the case where the initial estimate is in the opposite direction
of the true value, as this would generate a closing motion. This can be handled by
an external monitoring system that stops the motion and retries with a different
initial estimate if measured forces are too high, similar to a human who first pushes
a door, and when it does not open, tries to pull it instead.

In the case of a fixed grasp we can produce explicit estimates of the physical
location of the hinge of a revolute door, as reliable estimates of both radial direction
and radial distance are available. If we make the assumption that a large enough
radial distance (we arbitrarily choose 10 m) implies a prismatic mechanism, Algo-
rithm 1, that can be used at any time instant continuously or in a discrete manner,
will identify the hinge position. Given the center of rotation and the estimate of

Algorithm 1 Reasoning of the type of joint/Calculation of the rotation center
while Not Done do

if ‖κ̂‖ > 0.1 then
Rotational door
Calculate the estimated radius ρ̂ := ‖κ̂‖−1

Calculate the estimated radial direction:
ŷh := ρ̂κ̂ × x̂h

Calculate the center of rotation p̂o := pe + ρ̂ŷh.
else

Sliding door or drawer
end if

end while

the curvature, we can estimate local variables with respect to the initial position
of the end-effector such as the angular state of the door or the translation of the
drawer and use them in order to provide internally – and not with an external
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perception system – a halt command.

5 Scenarios and Evaluation

To illustrate and demonstrate the generality of the approach, we evaluate the per-
formance for five different mechanisms in simulation, and three mechanisms in
experiments on a physical robot. The simulations consider five different scenarios
covering five common cases found in domestic environments, see Fig. 2. All cases
are treated with the same initial estimates and controller gains. Cases (a) and (b)
are typical revolute doors with vertical axis, with the hinge to the left or to the
right, respectively. Case (c) models a revolute door with axis of rotation parallel
to the floor, such as is common for ovens. The radius of these door are all set to 50
cm. Case (d) models a sliding door, and case (e) a typical drawer. The common
initial estimate used in all cases is that of a prismatic joint, assuming κ̂(0) = 0.
The initial estimate of the unconstrained direction of motion is 30 deg offset from
the normal direction to the plane of the door or drawer. The initial estimates are
shown as red/gray arrows, and the true direction is shown as black arrows in Fig. 2.
The angular values given are the initial errors of the estimates. The controller gains
are chosen as follows: αf = ατ = 0.05, βf = βτ = 0.005, γ = γκ = 2000. The
desired motion velocity is 5 cm/s, given as vd = 5(1− e−10t) cm/s to avoid sharp
initial transients.

Fig. 3, 4(upper) show the response of the motion axis estimation errors for
update laws (17), (18) (Assumption 1 - passive revolute joint) and (24), (27) (As-
sumption 2 - fixed grasp) respectively – convergence to the actual axis is achieved
even for larger initial errors. Note that for fixed grasps the settling time is shorter
and there is less overshoot as compared to the performance for the revolute grasp,
even though the same gains were used. In Fig. 3(upper) the sharp corner in the
plot of the absolute value of the angle estimation error at 0.5 s corresponds to an
overshoot. Fig. 3, 4(lower) depict the estimation error for the most important el-
ement of κ. In the case of a fixed grasp (Fig. 4), this corresponds to the inverse
signed distance κ between the end-effector and the hinge and the estimate κ̂ is not
modified when κ̂(0) coincides with κ and it converges to its actual value in all cases.
In case of the passive revolute joint (Fig. 3), the convergence to actual value is also
achieved, even though it is not proven theoretically, but the convergence time is
twice the corresponding time for fixed grasps and a high overshoot is observed.
Furthermore, some of the elements of κ are initially modified even when the origi-
nal estimate coincides with the actual parameter, and converge with the rest of the
system.

If Assumption 2 holds, it has been theoretically proven that combining estimates
of the modulated rotation axis with the motion axis we can calculate the center
of rotation of the rotational doors in real time using Algorithm 1; simulation
gives errors of approximately 1.4 cm after 1.5 s, which is equivalent of opening the
door 7.5 cm. Given the threshold of ‖κ̂‖ > 0.1, the revolute doors are identified as
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20 

deg

(a) Revolute door, left hinge, κ = 2.

40 

deg

(b) Revolute door, right hinge, κ = 2.

32 deg

(c) Revolute door, bottom hinge, κ = 2.

60 

deg

(d) Prismatic door, κ = 0.

30 

deg

(e) Prismatic drawer, κ = 0.

Figure 2: Five different simulation cases using the same initial estimate: the angle
indicates the initial error.

such after 0.2 s. The estimation error responses (Fig. 3) shows that Algorithm 1
can be used even when only Assumption 1 holds, but the identification procedure
is slower (error of 3.4 cm after 4 s). Fig. 5b shows the responses of the Euclidian
norms of force and torque errors (ef = ‖P(xh)f̃ ‖ and eτ = ‖τ̃ ‖ respectively) in
the case of fixed grasps. Errors converge to zero following the convergence rate of
modulated rotation axis and motion axis. The same is true for the force errors in
the case of a passive revolute joint grasp, as shown in Fig. 5a.

6 Experiments

To evaluate the performance of the proposed method under unmodelled system and
sensor noise, the performance of the door opening controllers were also tested on
a real robot setup. Our setup consists of a 7-DoF manipulator whose joints are
velocity controlled. New velocity setpoints are given at 130 Hz, and maintained
by internal PID current controllers running at 2 kHz. The manipulator includes a
wrist mounted ATI Mini45 6-axis force-torque sensor sampled at 650 Hz, which we
use for the force feedback and estimation part of our controllers. Additionally, it
is equipped with a two finger parallel gripper which allows us to grasp the doors.
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Figure 3: Estimation responses for the estimator (17), (18) (Assumption 1): (upper)
estimation error response in the orientation of motion axis; (lower) estimation error
response for the inverse distance between hinge and end-effector.

0 0.5 1 1.5

−2

−1

0

1

2

κ̃
(m

−
1
)

time (s)

 

 

0 0.5 1 1.5
0

20

40

60

|θ
|(

d
eg

)

 

 
case (i) case (ii) case (iii) case (iv) case (v)

Figure 4: Estimation responses in case of the estimator (24), (27) (Assumption 2) :
(upper) estimation error response in the orientation of motion axis; (lower) response
of the estimation error of the inverse distance between hinge and end-effector.

The robot is approximately human-sized, and has a mass of approximately 150 kg.
See [34] for a detailed description of the system.

As in the simulations, we used the door opening controllers to open and identify
the kinematic parameters of doors of three different types of kinematics: a revolute
door, a sliding door and a drawer, as shown in Fig. 6. Each of the experiments
were initialized with a 30 deg error in the axis of motion on the motion plane.
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(b) Assumption 2 : (upper) norm of the
projected force error, (lower) norm of the
torque error.

Figure 5: Force and torque responses

For the three kinds of doors we performed experiments using fixed grasps on the
doors (Assumption 2). Two of the doors — the revolute door and the drawer
— were of the type typically used for kitchen cupboards, and were light-weight
and fitted with significantly less rigid handles. For these, the performance of the
controller evaluated both when grasping the rigid fronts of the doors directly and
when grasping the less rigid handles. This allowed a test of the robustness of the
system to deviations from the assumptions of rigid links in the kinematic chain. The
third door was a sliding door of much larger mass, with a very rigid heavy-duty
handle.

In the experiments, we set vd to be constant for the whole trial, and thus the
velocity is limited by the parts of the task where the manipulator is close to a
singularity, or cannot move fast for some other reason, such as being limited by
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(a) Revolute door with
passive handle.

(b) Sliding door. (c) Drawer with passive
handle.

Figure 6: Doors used for experimental evaluation of our controller

mass and/or friction of the heavy sliding door. Faster performance can be achived
by letting vd vary over the door opening tasks.

We also constructed alternative cylindrical handles for the revolute door and
the drawer which allowed unconstrained rotation of the robot’s gripper around the
axis of the handle as shown in Fig. 6a. With these handles the generated grasps
can be considered as passive revolute joints, and thus we can test our controllers
following Assumption 1 of section 3.2. The ground truth of the axis of motion of
the revolute door was obtained by manually moving the end effector to a series
of points while grasping the handle, fitting a circle to the resulting trajectory and
calculating the tangent of the circle at each point.

Fig. 7 shows the estimation error of the motion axis while opening a revolute
door with a fixed grasp and the estimation error of the curvature κ̃, while Fig. 8
shows the corresponding norm of the projected force error and the norm of the
torque error.

The results of the revolute door experiment while grasping the door directly is
shown with a red dashed line. Here we see convergence to small estimation errors;
less than 0.8 deg for the motion axis estimate, and 0.033m−1 for the curvature.
In comparison, the performance when grasping the less rigid handle of the door is
shown in solid blue lines in the figures. Even though the controller managed to
successfully open the door and regulate the forces and torques, it incurred a 7 deg
steady state error in the estimation of the motion axis and a 0.16 m−1 error in the
estimation of the inverse radius of curvature κ. In Fig. 8, we can see that the less
rigid handle acts as a damper and lets the force controller converge faster.

These observations illustrate how the discrepancy between assumed and actual
rigidity of the grasp on the handle and the rigidity of the handle itself with respect
to the door affect the performance of our control scheme, as discussed in Section 4.4.

For the sliding door with a fixed grasp, the controller was able to operate the
mechanism and we obtained the motion axis estimation error shown in Fig. 9 and
force-torque response shown in Fig. 10. This door, including the handle, was much
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Figure 7: Estimation errors for a revolute door with fixed grasp, (upper): motion
axis estimation error, (lower): inverse radius of curvature estimation error. Red
dashed line show the estimation errors while grasping the door directly in a rigid
manner, while the blue solid line shows the performance when grasping the less
rigid handle.

more rigid than the others, thus the estimation of the motion axis shows convergence
with a steady state error of less than 0.2 deg.

Fig. 11 and Fig. 12 show the performance of our controller for a drawer using
fixed grasps. We observe that, similar to the revolute door case, the motion axis
estimation error increases significantly from a 1.2 deg steady state error to a 6 deg
error when applying a less rigid grasp, i.e. on the handle. This result illustrates
that even when slightly relaxing the rigid grasp assumption, the robot can still
control the doors, but the estimate is affected in terms of transient response and
steady state errors.

Fig. 13 - 16 show the performance of our controller for a revolute door and
a drawer each with passive revolute handles. Both mechanisms show a similar
response in the estimation of the motion axis, with steady state errors of 0.9 deg
and 0.4 deg respectively for the revolute door and the drawer. With this type
of passive handle the controller does not exert torques on the handle and thus
we obtain convergence of the motion axis estimate with low steady state errors
comparable to those obtained when considering fixed grasps, as long as the rigidity
assumption is fulfilled in the latter case.

In summary, we observe that our adaptive control scheme performs well as long
as the doors are non-deformable and depending on how strongly the rigid grasp
assumption is fulfilled in the case of fixed grasps on the doors. For typical between-
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Figure 8: Force and torque responses for the revolute door experiment with fixed
grasp, upper figure: norm of the projected force error, lower figure: norm of the
torque error.
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Figure 9: Sliding door with fixed grasp: motion axis estimation error.

room doors, the rigidity assumption is fulfilled, while the handles on some cupboard
doors and drawers may have too low rigidity for the sensors and actuators on the
robot used, causing small errors in the estimates.

7 Conclusions

We propose a unified method for manipulating different types of revolute and pris-
matic mechanisms. The method is model-free and can be used to identify the type
and geometrical characteristics of one-joint mechanisms. By coupling estimation
and action the method is inherently online and can be used in real-time applica-
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Figure 10: Force and torque responses for a sliding door with fixed grasp, upper
figure: norm of the projected force error, lower figure: norm of the torque error.
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Figure 11: Motion axis estimation error for a drawer applying two types of grasps.
The red dashed line shows the performance when grasping the drawer directly, and
the solid blue line shows the estimation error while grasping the less rigid handle
of the drawer.

tions. The method consists of a generalized velocity controller using estimates of
the motion direction, the axis of rotation and update laws for the estimated vectors.
The design of the overall scheme guarantees compliant behavior and convergence
of the estimated vectors to their actual values.

Proof of Proposition 1: By projecting (17) along x̂h yields d
dt

( 1
2‖x̂h‖

2) =
−γvref [P(x̂h)x̂h]> vf + vref(x̂h× x̂h)>κ̂ = 0, since P(x̂h)x̂h = 0 and x̂h× x̂h = 0.
�
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Figure 12: Force and torque responses for a drawer with fixed grasp, upper figure:
norm of the projected force error, lower figure: norm of the torque error.
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Figure 13: Motion axis estimation error for a revolute door with passive revolute
handle.

Proof of Proposition 2: By projecting the update law (17) along xh and subse-
quently substituting (11), (14), κ̂ = κ + κ̃ and v = vref (7) we get:

− sin θθ̇ = γv2
refx>hP(x̂h)xh − vrefx>h (x̂h × κ̃)

Taking into account (15), x>hP(x̂h)xh = sin2 θ and x>h (x̂h × κ̃) = −κ̃>(x̂h × xh)
yields

− sin θθ̇ = γv2
d tan2 θ + vd

cos θ κ̃
>(x̂h × xh) (33)

As both xh and x̂h are unit (see Proposition 1) we can write the cross product (x̂h×
xh) as sin θn(t) with n(t) being a unit vector perpendicular to the plane defined
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Figure 14: Revolute door experiment with passive revolute handle. Force response:
norm of the projected force error.
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Figure 15: Motion axis estimation error for a drawer with passive revolute handle.
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Figure 16: Drawer experiment with passive revolute handle. Force response: norm
of the projected force error.

by xh and x̂h. Hence the non-trivial solution of (33) is given by the differential
equation (20). Given ˙̂κ = ˙̃κ, v = vref = xhv = xhvref and (x̂h × xh) = sin θn(t)
we can easily transform (18) to (21).

In order to examine the stability of the nonlinear nonautonomous system we
consider the following positive definite function in the domain D

W (θ, κ̃) = U(θ) + 1
2 κ̃
>Γ−1

κ κ̃, U(θ) = 1− cos θ (34)
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DifferentiatingW (θ, κ̃) with respect to time along the system trajectories (20), (21)
we get:

Ẇ = −γv2
d tan2 θ (35)

Since W (θ, κ̃) is locally positive definite and Ẇ ≤ 0 which implies W (θ, κ̃) ≤
W (θ(0), κ̃(0)) we get that κ̃ is bounded and U(θ) ≤ W (θ(0), κ̃(0)). The latter
implies that:

cos θ ≥ cos θ(0)− 1
2 κ̃(0)>Γ−1

κ κ̃(0) (36)

which practically means that starting with θ(0) ∈
(
−π2 ,

π
2
)
, θ(t) ∈

(
−π2 ,

π
2
)
, ∀t if

Γκ is chosen such that:

cos θ(0)− 1
2 κ̃(0)>Γ−1

κ κ̃(0) > 0 (37)

Since θ(0) and κ̃(0) are unknown, appropriately large value for Γκ can guarantee
that the aforementioned condition is satisfied. Consequently, (14) and (15) implies
that P(x̂h)vf and v are bounded. Furthermore, the boundedness of P(x̂h)vf
implies that the update law rate ˙̂xh is bounded and subsequently θ̇ is bounded.
Thus Ẅ is bounded and according to Barbalat’s Lemma Ẇ → 0. If vd satisfies the
PE condition then Ẇ → 0 implies θ → 0.

�

Proof of Proposition 3: Projecting (24) along ex̂h yields d
dt

( 1
2‖
ex̂h(t)‖2) =

−γvd [P(x̂h)Re
ex̂h]> vf = 0 (since P(x̂h)x̂h = 0). Note that x̂h has also invariant

magnitude since it is derived by expressing ex̂h at the robot inertia frame by using
the rotation matrix Re. �

Proof of Proposition 4:
By projecting the update law (24) along xh and subsequently substituting (12),

(14), (15) we get:

− sin θθ̇ = γ
v2
d

cos θx>hP(x̂h)xh (38)

Taking into account x>hP(x̂h)xh = sin2 θ we can readily see that the non-trivial so-
lution of (38) is given by the differential equation (25). Differentiating the following
positive definite Lyapunov function in the domain D′:

U(θ) = − log(cos θ) (39)

we get:

U̇ = −γv2
d tan2 θ (40)
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Note that (40) implies U(θ) ≤ U(θ(0)), which implies that starting with θ(0) ∈(
−π2 ,

π
2
)
, U(θ) remains bounded ∀t. Since function U(θ) is a logarithmic barrier

function, its boundedness implies that θ(t) ∈
(
−π2 ,

π
2
)
, ∀t. Consequently (14), (15)

and (24) implies that P(x̂h)vf , v and the update law rate ˙̂xh are bounded. Eq.
(40) implies also the exponential convergence of the angle error to zero (details can
be found in [17]) given that vd satisfies the PE condition. �

Proof of Theorem 1: We extend the positive function W (θ, κ̃) (proof of Propo-
sition 2, Eq. (34)) or the function U(θ) (proof of Proposition 4, Eq. (39)) by
adding a quadratic term of I

[
P(x̂h)f̃

]
and we consider the following Lyapunov-

like function:
V = αfβfI2 [P(x̂h)f̃

]
+ 1
γ
W (θ, κ̃) (41)

By differentiating (41), completing the squares α2
f

∥∥P(x̂h)f̃
∥∥2, β2

f

∥∥I [P(x̂h)f̃
]∥∥2,

substituting (16) and (35) (or (40) in case of U given by (39) is used in (41)) we
get:

V̇ = −α2
f

∥∥P(x̂h)f̃
∥∥2 − β2

f

∥∥I [P(x̂h)f̃
]∥∥2

Hence, V (t) ≤ V (0), ∀ t which additionally to the boundedness results of Propo-
sition 2 or Proposition 4 implies that I[P(x̂h)f̃ ] is bounded. The boundedness of
P(x̂h)vf and I[P(x̂h)f̃ ], implies that P(x̂h)f̃ is bounded. Differentiating (14), (15)
and using the boundedness of I[P(x̂h)f̃ ], P(x̂h)vf and ˙̂xh, it can be easily shown
that d

dt [P(x̂h)vf ] is bounded. Hence, the second derivative of V is bounded allow-
ing the use of Barbalat’s Lemma in order to prove that V̇ → 0 and consequently
I
[
P(x̂h)f̃

]
, P(x̂h)f̃ → 0. Note that the aforementioned convergence results are

referred to the estimated motion space defined by x̂h. Taking into account Propo-
sition 2 or 4 that implies the convergence of θ to zero or x̂h → xh for vd satisfying
the PE condition, we get I

[
P(xh)f̃

]
, P(xh)f̃ → 0 �

Proof of Theorem 2: First, we will reform ωref by adding/subtracting the term
κ(v − vd), using (15) and substituting κ̂ = κ + κ̃ as follows:

ωref = κv + κ̃vd − ωτ + vd
( cos θ−1

cos θ
)
κ (42)

For design purposes we consider the following positive definite function:

V = ατβτ‖I (τ̃ ) ‖2 + 1
2 κ̃
>Γ−1

κ κ̃ + ξ

γ
U(θ) (43)

with U(θ) being defined in (39) and ξ being a positive constant. By differentiating
(43) with respect to time and substituting ˙̃κ = ˙̂κ, ω = ωref given by (42), (40) and
the rotational constraints (3), (6) we get:

V̇ =− α2
τ‖τ̃ ‖2 − β2

τ‖I(τ̃ )‖2 + vd
( cos θ−1

cos θ
)
ω>τ κ (44)

− ξv2
d tan2 θ + κ̃>

(
Γ−1
κ

˙̃κ + vdωτ
)
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In order to cancel the last term of the right side part of (44) we set ˙̃κ = −vdΓκωτ
which corresponds to the update law (27). By using (27) and the inequality:

ω>τ κ

(
cos θ − 1

cos θ

)
vd ≤

‖ωτ‖2

4 + ‖κ‖2v2
d

( cos θ−1
cos θ

)2 (45)

we can upper-bound V̇ (44) as follows:

V̇ ≤− α2
τ‖τ̃ ‖2 − β2

τ‖I(τ̃ )‖2 + ‖ωτ‖
2

4 (46)

− ξv2
d tan2 θ + ‖κ‖2v2

d

( cos θ−1
cos θ

)2

Expanding ‖ωτ‖2 – using (28)– and setting ξ > ‖κ‖2, we get:

V̇ ≤− α2
τ

2 ‖τ̃ ‖
2 − β2

τ

2 ‖I(τ̃ )‖2 − 2‖κ‖2v2
d

( 1−cos θ
cos θ

)
(47)

Since cos θ ≤ 1 and θ(t) ∈
(
−π2 ,

π
2
)
provided that θ(0) ∈

(
−π2 ,

π
2
)
(Proposi-

tion 4), the derivative of function V can be upper-bounded as follows:

V̇ ≤ −α
2
τ

2 ‖τ̃ ‖
2 − β2

τ

2 ‖I(τ̃ )‖2

Hence, V (t) ≤ V (0), ∀ t which implies that I(τ̃ ) and κ̃ are bounded. Hence, by
taking into account the constraints (3), (6) for the closed loop system ω = ωref (42),
it is clear that τ̃ is bounded and hence ˙̂κ is bounded. Using the aforementioned
boundedness results as well as those implied by Proposition 4 and Theorem 1, it can
be easily proved by differentiating V̇ that V̈ is bounded. Hence, applying Barbalat’s
Lemma we get that τ̃ → 0, I(τ̃ ) → 0. Using the aforementioned convergence re-
sults as well as θ → 0, it can be shown that κ̂ → κ provided that vd satisfies the
PE condition and hence ωe → vdκ. �

Proof of Proposition 5: By projecting the update law (24) along xh and subse-
quently substituting (12), (29), (30) and x>hP(x̂h)xh = sin2 θ we get:

− sin θθ̇ = γ
v2
d

cos θ sin2 θ + γvd

(
x̂h

cos θ − xh
)>

δ(t)

Note that vector x̂h
cos θ − xh is perpendicular to xh since

( x̂h
cos θ − xh

)> xh = 0 while
its magnitude is equal to | tan θ|. By defining a unit vector n′(t) parallel to x̂h

cos θ−xh
we can easily get:

− sin θθ̇ = γ
v2
d

cos θx>hP(x̂h)xh + γvd| tan θ|δ(t) (48)

The nontrivial solution of (48) is given by (31). �



A34
PAPER A. AN ADAPTIVE CONTROL APPROACH FOR OPENING DOORS

AND DRAWERS UNDER UNCERTAINTIES

Proof of Proposition 6: Differentiating (39) with respect to time and substituting
(31), we get that U̇(θ) is upper-bounded as follows:

U̇(θ) ≤ −γv2
d

| tan θ|
cos θ (| sin θ| − λ(t)) (49)

From (49) and Theorem 4.18 of [19] regarding uniform ultimate boundedness we
can find that the region in which the estimation error converges is given by (32). �
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Online Contact Point Estimation for Uncalibrated Tool Use

Yiannis Karayiannidis, Christian Smith, Francisco E. Viña B., and Danica Kragic

Abstract

One of the big challenges for robots working outside of traditional indus-
trial settings is the ability to robustly and flexibly grasp and manipulate tools
for various tasks. When a tool is interacting with another object during task
execution, several problems arise: a tool can be partially or completely oc-
cluded from the robot’s view, it can slip or shift in the robot’s hand - thus,
the robot may lose the information about the exact position of the tool in the
hand. Thus, there is a need for online calibration and/or recalibration of the
tool. In this paper, we present a model-free online tool-tip calibration method
that uses force/torque measurements and an adaptive estimation scheme to
estimate the point of contact between a tool and the environment. An adap-
tive force control component guarantees that interaction forces are limited
even before the contact point estimate has converged. We also show how
to simultaneously estimate the location and normal direction of the surface
being touched by the tool-tip as the contact point is estimated. The stability
of the the overall scheme and the convergence of the estimated parameters
are theoretically proven and the performance is evaluated in experiments on
a real robot.

1 Introduction

The ability to robustly grasp and manipulate tools intended for human use and
employ these for various tasks (as in Fig. 1) remains one of the big challenges
for robots working outside of traditional industrial settings. The application areas
range from flexible industrial robots working with tools intended for human use to
domestic service robots that perform household chores [11]. In order to provide
the input for the control loop guiding the execution of a task, the knowledge of the
position of the tool-tip is necessary.

In contrast to classical industrial or other robots with fixed and a priori known
tools, it is not realistic to assume that service robots have precise beforehand cal-
ibrations of the positions of the tool-tips. Even if they did, the tool may slip and
move relative to the gripper while it is being used. Therefore, there is a need for
online calibration and/or recalibration of the position of the tip of the tool the robot
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Figure 1: Robot manipulating a tool intended for human use.

is using. Current approaches mostly rely on vision-based methods for calibrating
the pose and are therefore not applicable in scenarios where the tools or relevant
parts of it are occluded.

In this paper, we present an online tool-tip calibration method that uses force/torque
measurements and an adaptive estimation scheme to find the point of contact be-
tween a tool and the environment. This estimation can be carried out in real-time
while the robot is using the tool to perform some arbitrary task, and does not
require any predefined model of the shape, size or initial position of the tool being
used.

An adaptive force control component guarantees that interaction forces are lim-
ited even before the contact point estimate has converged. We also show how
to simultaneously estimate the location and normal direction of the surface being
touched by the tool-tip as the contact point is estimated.

The paper has the following structure: Section 2 reviews the state of the art in
related work, Section 3 formalizes the problem in terms of statics and kinematics,
Section 4 describes the proposed approach and motivates it theoretically, giving
stability and convergence proofs, while Section 5 describes the experimental im-
plementation of the method on a real robot and the experimental results. Finally,
conclusions are presented in Section 6.

2 Related Work

The problem of resolving uncertainties in the end-effector or the tool positioning
is well-studied and has been a relevant topic in robotics since the advent of the
first manipulators. Early work focused on solving the problem of calibrating the
position of the manipulators and end-effectors themselves [20], and this has been
extended to also include objects grasped by the robot [4].
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Some works treat the problem without explicitly modelling the position of a
tool or its point of interaction with the environment, but focus rather on robust
performance of a well-defined task under positioning uncertainties. Examples of
this includes work by Bruyninckx et al. that estimates the alignment error between
the peg and the hole for an insertion task [3], work by Hovland and McCarragher
that uses a neural network approach to estimate the contact states between two
work pieces [7], and work by Koeppe and Hirzinger that learns the appropriate
interaction forces for a peg-in-hole task [13].

Some work treats tool-tip position estimation as a calibration problem that can
be performed offline prior to using the tool. Yang et al. use an iterative least
squares approach to calibrate the relationship between tool-tip position and joint
angles, using measurements from a known external reference [23]. Cheah et al. use
adaptive control for tracking a kinematically uncertain manipulator chain, including
a tool grasped by the end-effector, but only estimate the kinematics — the position
of the end-effector and the tool are measured externally [4].

Others use a particle filter approach to fit a model to the object pose by collect-
ing measurements from touching the object before grasping it [5, 18]. Hebert et al.
use a fusion approach with vision, force/torque measurements and proprioception to
estimate the position of an object with a known model, held in the end-effector [6].
Păiş et al. learn relations between a held object and an external tool it interacts
with using gaussian mixture models [19].

Atkeson et al. have proposed a method for estimating inertial parameters of
a grasped object based on force/torque measurements [1], and Kubus et al. have
used sensor fusion combining measurements of acceleration, velocities, position,
forces, and torques to estimate inertial parameters and principal moments of inertia
of a grasped object, fitting parameters to estimate object pose [15]. Both these
approaches require free motion in a prespecified trajectory, and can not be applied
to estimate the contact point of a tool online as it is being used.

Muto and Shimokura have shown a method for estimating contact points given
a known tool fixed in the end-effector, using force measurements [17]. Lei et al.
propose a method that learns model parameters to estimate the position and ex-
ternal force load on a specific non-rigid grinding tool, using proprioception and
force/torque measurements [16].

The literature on vision-based object pose estimation and tracking is far too vast
to summarize here, but some examples of tool pose estimation based on computer
vision methods include work by Kemp and Edsinger who use visual gradients to
detect tool-tip positions [12], Krainin et al. who simultaneously build an object
model and track it in the robot hand [14], and Beetz et al., who use repeated visual
template matching to find the location of a spatula in the robot hand [2].

In our previous work, we have shown how an adaptive estimator, integrating
proprioception and force/torque measurements can be used to estimate the loca-
tion of hinges on doors, or the direction of unconstrained motion for drawers that
the robot is opening [10], and to estimate slopes on surfaces the robot is in con-
tact with [9]. We have also shown how to learn manipulation affordances and
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slippage behaviors of held objects by using combined measurements of wrist-based
force/torque measurements and grasp forces [22].

In the present paper, we build on these ideas and propose an adaptive controller
that estimates the point of contact of the tool with the environment, along with
estimating the contact surface normal. This enables the robot to execute a task
with the held tool while performing the estimation. The proposed controller limits
the interaction forces, to avoid damage to the tool or workpiece while estimates are
converging. The proposed method uses force/torque measurements from a wrist-
mounted sensor, it is inherently online and fast enough to react to changes, and
can thus track the contact point even if it moves relative to the robot hand while
executing the task.

3 Kineto-Statics Formulation

Before describing the proposed method for estimating the contact point and the
surface normal, we define notation and formalize the relevant first-order differential
kinematics and the statics. We assume a system that consists of a robot which
performs a task with its tool on a surface; the task requires motion control of the
tool contact point and control of the contact forces of the tool on a surface.

3.1 Notation
First, we introduce the following notation and definitions that will be used through-
out this paper:

Bold small letters denote vectors and bold capital letters denote matrices. Iν ,
Oν ∈ Rν×ν denote an identity and a square matrix of zeros respectively while
0ν ∈ Rν denotes a column vector of zeros. Hat ·̂ and tilde ·̃ denote estimates and
the errors between control variables and their corresponding desired values/vectors
respectively. Ra denotes a rotation matrix that describes the orientation of a frame
with respect to the global frame. A left superscript (e.g. ab) denotes the frame
(e.g. {a}) in which a three-dimensional vector (e.g. b ∈ R3) is expressed, e.g.
ab = R>a b, and it is omitted in case of the global frame. The projection matrix on
the orthogonal complement space of a unit three dimensional vector a is denoted
by P(a) , I3−aa>. S(b) denotes the skew-symmetric matrix produced by b ∈ R3

to perform a cross product operation with any three-dimensional vector a ∈ R3 i.e.
b × a = S(b)a.

3.2 First Order Differential Kinematics
Consider a robot end-effector equipped with a force/torque sensor on its wrist that
is grasping a tool which is in contact with a surface, as shown in Fig. 2. We denote
with {e} a frame attached at a kinematically known position of the end-effector
(e.g. center of force/torque sensor) denoted by pe. We assume that the contact
between the tool and the surface is modeled as a contact point that can slide along
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the surface when the end-effector is moving. At the contact point position pc, we
attach a frame {c} with orientation described by Rc = [nc oc ac], with nc being a
unit vector which is normal to the surface while oc, ac being vectors that span the
flat surface and can be arbitrarily chosen. Let r be the relative position of {e} and
{c} defined as follows:

r = pc − pe (1)

Note that er , R>e r is constant if we assume that the end-effector is rigidly grasping
the tool. Assuming additionally that only sliding motion is performed i.e. ṗc = ṗe
then r is constant too and the velocity of the end-effector frame is constrained as
follows:

n>c ṗe = 0 (2)

Note that the assumption of pure sliding motion that simplifies the estimation of
the surface slope is not necessary for the main objective of this work which is the
contact point estimation. Differentiating (1) implies that the contact point velocity
is related to the end-effector velocity as follows:

ṗc = Jt
[

ṗe
ωe

]
, with Jt ,

[
I3 −S(r)

]
∈ R3×6 (3)

being the tool Jacobian matrix and ωe being the end-effector rotational velocity
i.e. S(ωe) = ṘeR>e . By commanding zero rotational velocity and assuming only
sliding motion, we can omit the tool Jacobian when mapping the contact point
velocities to the joint space. This means that the first order inverse kinematics are
given by:

q̇ = J+
[

u
03

]
(4)

where u is a commanded end-effector or contact point velocity control law and J+

is the right pseudo-inverse of the end-effector Jacobian with J+ , J>(JJ>)−1.

3.3 Statics
While the end-effector presses with the tool on the surface, the normal force arising
(with magnitude denoted by fn) can – in case of rigid contact – be regarded as
a Lagrange multiplier of the controlled system associated to the constraint (2).
While the contact point is moving along the surface following the motion of the
end-effector, tangential forces f t arise owing to dynamic friction components that
depend on the sliding velocity of the contact point. The total contact force applied
at the contact point is mapped to the end-effector as a wrench consisting of a force
vector f c and a torque vector τ c:

f c = ncfn + f t, (5)
τ c = r × f c. (6)
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Figure 2: A robot end-effector equipped with a force/torque sensor on its wrist that
is grasping a tool which is in contact with the surface. Frames are illustrated with
red lines. Forces are depicted with orange. Absolute position vectors with respect
to the base frame {B} are depicted with black lines. Relative positions with respect
to the end-effector (sensor) frame are depicted with green lines.

The total force fm and torque τm measured by the force/torque sensor (as-
suming noise-free measurements, and no acceleration of the end-effector) is given
by:

fm = f c + fg, (7)
τm = r × f c + rg × fg, (8)

where fg is the gravity force acting at the center of mass of the object and rg is
the position of the center of mass with regard to pe. Note that if fg and rg are
known, gravity compensation can be performed by subtracting them from (7) and
(8) to obtain f c and τ c, and thus we can use (5) and (6) to identify r as proposed
in Section 4.1. This gravity compensation can be achieved either by assuming
an object with known mass and position with respect to the end-effector, or by
considering identification of the gravity effects fg and rg in a prior free-motion
phase where the only force acting on the object is inertial, and f c = 03. In the
latter case, proper rotation of the object by the end-effector can generate signals
that can be used in the algorithm in Section 4.1 to identify rg to allow compensation
for the gravity during the main contact phase. In case of a lightweight tool, such
that fg � f c, we can assume that the effects of gravity are within the limits of
the measurement errors, and do not need to be compensated for.
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4 Methodology

In this section we propose the adaptive laws for estimating the contact point and
the surface orientation as well as the force/motion control which is based on these
estimates. The overall control scheme effectiveness is theoretically justified and the
formal proofs of the results are given in the Appendix.

4.1 Contact Point Estimation
First we design the adaptive law for estimating er assuming that er is piecewise
constant or slowly varying compared to the rate of the estimation. An example
of an estimation rate that can be achieved is demonstrated in Section 5. The
estimates can also be used to estimate r , Re

er in the global frame. The proposed
adaptive law utilizes measurements of forces and torques expressed in the end-
effector frame, which is assumed to coincide with the force/torque sensor frame, as
this can trivially be achieved through known transformations. The law is given by
the following equations:

e ˙̂r = −Γr [Lr(t)er̂ − cr(t)] (9)
with

L̇r = −βrLr − S(ef )S(ef ) with Lr(0) = O3 (10)
ċr = −βrcr + S(ef )eτ with cr(0) = 03 (11)

where Γr is a positive definite matrix affecting the speed of convergence, βr is
a positive design constant acting as forgetting factor and ef , eτ are either the
measured force and torque after gravity compensation used to estimate er during
the contact phase, or the measured force and torque owing to gravity used to
estimate the center of mass erg in the free-motion phase.

Proposition 7 The adaptive estimation law (9)-(11) guarantees that:

(i) the torque estimation error, the estimate er̂ and its derivative are bounded i.e.
eτ − eτ̂ , er̂, e ˙̂r ∈ L∞,

(ii) the torque estimation error and and the estimation rate e ˙̂r are square inte-
grable, i.e. eτ − eτ̂ , e ˙̂r ∈ L2,

(iii) limt→∞
eτ̂ = eτ and limt→∞ ‖ ˙̂r‖ = 0, and

(iv) if S(ef ) is persistently excited (PE) er̂ converges exponentially to er. By
choosing Γr = γrI, with γr being positive constant, the speed of convergence
can be arbitrarily increased by increasing γr.

The proposed estimator (9)-(11) is an integral adaptive control law since its design
is based on the minimization of an integral cost function of the error between the
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actual and the estimated torque [8]; the proof of the Proposition 7 is following the
proof of the integral adaptive control for identifying the parameters in a multi-
ple inputs-single output parametric model and is based on the use of a quadratic
Lyapunov function V (er̃) = 1

2
er̃>Γ−1

r
er̃.

As is demonstrated in Section 5, convergence to the actual parameters can be
achieved by varying the direction of fe in order to span some surface in the Cartesian
space, which is an identification condition arising from the problem formulation.

The contact point estimate p̂c can be calculated using proprioception and the
estimate er produced by exploiting force/torque measurements:

p̂c = pe + Re
er̂ (12)

Note that it is also possible to use the contact point estimation together with an
accurate model of the grasped tool to determine which of a possible set of points is
in contact. In this case, we can additionally infer the orientation of the tool given
that the grasping point is obtained through tactile sensing.

The adaptive law can also be used to identify the center of mass in case of free-
space motion. The parameters are identified exponentially fast given that ef = R>e f
is PE. Note that f = fg is constant and thus the identification is excited by the
rotational motion of the object.

4.2 Surface Normal Estimation
In order to estimate the surface normal direction we design the following adaptive
law:

˙̂nc = −γnP̄(n̂c)Ln(t)n̂c (13)
L̇n = −βnLn + 1

1+‖ṗe‖2 ṗeṗ>e with Ln(0) = O3 (14)

where γn is a positive constant for tuning the speed of convergence and βn is a
positive forgetting factor.

Proposition 8 The adaptive law (13)-(14) guarantees that:

(i) the norm of the estimate n̂c(t) is invariant i.e. given that ‖n̂c(0)‖ = 1,
‖n̂c(t)‖ = 1,∀t > 0,

(ii) if ϑ(0) ∈ (−π2 ,
π
2 ) then ϑ(t) ∈ (−π2 ,

π
2 ),∀t > 0 where ϑ is the angle formed

between nc and n̂c,

(iii) limt→∞ ‖ ˙̂nc‖ = 0, and

(iv) if ṗe is persistently excited (PE) ϑ converges to zero exponentially which im-
plies that n̂c converges exponentially to nc with a rate that can be tuned by
γn.
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The proposed estimator (13)-(14) is an integral adaptive control – in contrast to
those used in our previous work [10], [9]– with normalized input but here is modified
in order to produce unit and well-defined estimates of the normal direction as the
problem in hand requires. The proof of Proposition 8 can be found in the Appendix,
and is based on defining the Lyapunov function in the domain of the estimation
error angle ϑ formed between nc and n̂c.

Measurements of the contact force f c alone cannot in general be used together
with (5) to identify the surface normal if the contribution from the tangential
force f t due to friction is unknown. However, we can use the force measurements
in order to initialize the proposed estimator when contact is detected i.e. n̂c(0) =
f (0)/‖f (0)‖. Given that the gravity is compensated in f (0), the initial angle error
will be within the cone of friction which implies that |ϑ(0)| < π/2 and consequently
that the estimator is properly initialized. If there is no rotational motion of the
end-effector, the sliding velocity of the tool-tip on the surface is equal to the end-
effector velocity, and thus the latter can be directly used to estimate the surface
normal direction, independent of the accuracy of the contact point estimate.

4.3 Force/motion Control

The control objective is to follow a velocity trajectory vd(t) and to press upon
the surface with a desired force fd. In this way, we can perform a meaningful
task and simultaneously generate signals ef and ṗe. In particular, the motion
along the surface not only generates ṗe that span the orthogonal complement of
the normal direction required in (13) but gives rise to tangential forces owing to
dynamical friction that can be added to the normal interaction forces, see (5), in
order to generate an appropriate signal ef to excite (9) by spanning a surface in
the Cartesian space.

The velocity control design is based on decomposing the motion and force control
directions according to hybrid force/motion control methodology by using however
the estimates n̂c – like the kinematic loop of [9]. The proposed kinematic controller
is given by the following equation:

u = P̄(n̂c)vd − n̂cvf (15)

where vf is a PI control loop of the estimated force error ˜̂
fn = f̂n − fd. Note that

the estimated f̂n can be calculated based on force measurements and the online
estimates n̂c. In particular:

vf = αI

∫ t

0
(f̂n − fd)dτ + αP (f̂n − fd), f̂n = n̂>c f (16)

with αI and αP are positive control gains.
The velocity trajectory vd(t) can be either defined a priori in a feedforward fash-

ion or designed appropriately by using feedback of control errors such as end-effector
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or contact point position errors. A simple way to define vd(t) is the following:

vd(t) = ṗd − α(p − pd) (17)

where α is positive control gain and p can be either the end-effector position or
the contact point estimate depending on the definition of the desired position pd.
Note that pd can be defined as follows:

1. directly and a priori in the robot workspace e.g. by using vision and mapping
a desired trajectory from the image space to robot space. In this case the
feedback control is designed using the contact point position which is however
based on estimates obtained by (9) i.e. p := p̂c.

2. locally at the surface as ξd ∈ R2 and then mapped online to the robot
workspace through a transformation (pe(0), R̂c). Details on the motivation
behind this selection and the construction of R̂c can be found in [9]. In this
case the design of vd(t) is based on pe instead of p̂c. This can be explained by
the following observation: the objective of drawing a circle with center around
the initial contact point is equivalent of drawing a virtual circle around the
end-effector’s initial position.

In more complicated scenarios where both sliding and rolling motion of the tool
take place the estimated contact point position must be used in vd(t) even when
the target is defined based on local coordinates.

Analysis of the closed loop when u (15)–(17) is applied (briefly sketched in the
Appendix) yields to the following theorem:

Theorem 3 The control law (15)–(17) applied as a translational velocity controller
to a robot firmly grasping a tool which is in contact with a flat surface, together with
the adaptive laws (9) and (13) used for estimating the contact parameters such as
contact point position and surface orientation ensure the boundedness of the contact
force and the velocity along the unconstrained directions as well as the convergence
of the force/motion errors to zero and the identification of the uncertain parameters
given that u and ef are persistently excited.

5 Experiments

Our adaptive control framework for tool and surface calibration was evaluated with
a robot setup consisting of a 7-DOF velocity controlled manipulator controlled at
130 Hz. The manipulator also includes a wrist mounted ATI Mini45 6-axis force-
torque sensor used for the force feedback control and the contact point estimator.

For more details on the experimental setup, see e.g. [21]. The end-effector
velocities used for the estimation of the surface normal were calculated using joint
velocities filtered through joint position measurements.
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Figure 3: Experimental setup used for evaluating our adaptive control scheme for
contact point and surface normal estimation.

To perform our experiments we attached a tool rigidly to the robot’s gripper as
shown in Fig. 4. Attaching the tool rigidly to the end-effector allowed us to have
a consistent ground truth with which to compare the controller’s estimation of the
contact point. Furthermore, we tested the controller over a flat table which was
previously calibrated to obtain the ground truth of the surface normal. A circular
trajectory of 4 cm radius and 5 second period was commanded to the manipulator
during the experiment.
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Figure 4: Normal force error |f̃n|.

Fig. 4 shows the normal force error |f̃n| = |fn − fd| which indicates that the
adaptive controller manages to regulate the normal contact force.

Fig. 5 and 6 show the estimation errors of the contact point and the surface
normal respectively. The contact point converges with an error of approximately 5
mm, which, given the 30.8 cm distance from the force-torque sensor to the tool-tip
is within the error margins of the setup. Moreover, the surface normal estimate
converges with an approximately 1.5 degree error with respect to the ground truth
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Figure 5: Contact point estimation error.
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Figure 6: Surface normal estimation error.

normal.
For a set of contact forces that share the same direction and only vary in mag-

nitude, the contact point estimate p̂c will converge to a point on a line passing
through the actual contact point pc, parallel to the force direction. As the direc-
tion of contact forces vary, p̂c will converge to the intersection point of a set of such
lines, which will be pc. In the experimental convergence of p̂c, as seen in Fig. 5,
we see an initial convergence to a point on such a line after approx 0.1 s, and then,
as the direction of the contact force starts to change as the tool-tip slides on the
surface, we see convergence to the intersection point, or pc. For the setup in the
experiment we see that we have good convergence for forces that spread over ap-
proximately 14 degrees with respect to the surface normal. For faster convergence
with the same setup, we would need contact forces spanning that angle variation
in shorter time.

6 Conclusions

In this paper, we have proposed a method for simultaneous online estimation of
the point of contact of a tool held by a robot, and the normal of the surface it
is interacting with. The method is based on adaptive estimation and a hybrid
force/motion controller, and uses force and torque measurements from a wrist-
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mounted sensor.
The fast convergence of the contact point estimate makes it suitable for real

time tracking of the endpoint of a tool that may slip and move in the robot’s hand
as it is being used for a task execution. The method also guarantees stable control
of contact forces even before the estimates converge. For non-contact motion, the
method can be used to estimate the center of mass of the end-effector and/or a
grasped object. This enables tool use with unmodelled and/or uncalibrated tools.

The strength of the method lies in the fact that it uses force and torque measure-
ments and it is therefore complimentary to vision based approaches where occluded
or bad lighting conditions make affect the estimation. An interesting future exten-
sion is to combine the proposed method with other methods for object tracking.
One possibility is to combine it with model based vision methods or tactile sensors
to use the tracked contact point to improve pose tracking of an object.

7 Appendix

Proof of Proposition 2: (i) Note that d
dt

(
‖n̂c‖2) = −γn[P̄(n̂c)n̂c]>Ln(t)n̂c = 0;

thus the norm of the estimate is invariant and consequently bounded. (ii) Note
that (14) and the constraint (2) implies:

d

dt
(Lnnc) = −βnLnnc

which in turn, for Ln(0) = O3, implies that nc belongs in the nullspace of Ln. Note
also that Ln is positive semidefinite. Consider the following Lyapunov function:

V (θ) = − ln(cosϑ), V : (−π2 ,
π
2 )→ R (18)

Its time derivative along the systems trajectories (13)-(14) is given by:

V̇ (θ, t) = −γnñ>c Ln(t)ñc (19)

From (18) and (19) we conclude that V (θ) is bounded which implies ϑ(t) ∈ (−π2 ,
π
2 ),∀t >

0 for ϑ(0) ∈ (−π2 ,
π
2 ). (iii) Clearly (i) and (ii) imply that n̂c ∈ L∞. Further-

more, since 1
1+‖ṗe‖2 ṗeṗ>e is bounded by construction, (14) implies that Ln and

L̇n are bounded too. By integrating both sides of (19) in t ∈ [0,∞) and taking
into account that V (∞) is bounded from (ii), we get that L1/2

n ñc ∈ L2. The
update law (13) implies: (a) ‖ ˙̂nc‖ ≤ γn‖(L>n )1/2‖‖L1/2

n ñc‖ which implies that
˙̂nc ∈ L∞

⋂
L2 as well as (b) ¨̂nc given the boundedness of ˙̂nc and L̇n. Clearly

(a) and (b) yield limt→∞ ‖ ˙̂nc‖ = 0. (iv) The PE condition is satisfied given that
there exists α0, T0 such that

∫ t+T0
t

ṗeṗ>e dτ ≥ α0I3. Using the integral expression
of Ln =

∫ t
0 exp(−βn(t − τ)) 1

1+‖ṗe‖2 ṗeṗ>e dτ implied by (14), it can be found that
Ln(t) ≥ λ exp(−βnT0)I3 given that the PE condition is satisfied. Then we con-
sider a quadratic Lyapunov function U = 1

2‖ñc‖
2 which in our case depends only
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on the estimation error angle i.e. U = 1 − cosϑ. It can be easily proved that
U̇ ≤ −2λγn exp(−βnT0)U

U(t) ≤ exp
(
−2λγne−βnT0t

)
U(T0) (20)

Note also that 4
π2 ‖ϑ‖2 ≤ U(θ) ≤ 1

2‖ϑ‖
2 and thus (21) implies that the angle between

the actual and the estimated vector n̂c, converges exponential to zero as follows:

|ϑ(t)| ≤ π
√

2
4 exp

(
−λγne−βnT0t

)
|ϑ(T0)| (21)

Proof of Theorem 1: Let us consider the case of a bounded input vd. This
assumption is valid even when vd is defined using feedback given that pd, ṗd are
bounded and by considering a bounded robot workspace. Saturation on the position
error can be used in order to construct a bounded vd. Substituting the control
law in to the system first order differential kinematics (4) we get: ṗe = u. By
projecting the aforementioned equation along the surface normal we get: vf =

1
cosϑn>c P̄(n̂c)vd. Since n̂c is bounded and ϑ 6= π/2 from (i) and (ii) of Proposition
8, vf is bounded. The boundedness of vf implies ṗe is bounded and additionally
that

∫ t
0 (f̂n− fd)dτ , f̂n are bounded. Hence ef is bounded and thus the update law

for er̂ (9)-(11) is well-defined. The boundedness of pe can be proved by using the
boundedness of the estimates er̂, n̂c and their derivatives e ˙̂r, ˙̂nc. Ultimate bounds
can also be found by exploiting limt→∞

e ˙̂r = 03, limt→∞ ˙̂nc = 03 (Proposition 7
and 8); analytic derivations are omitted. Given that ef , ṗe (or vd) satisfy the
PE condition the estimation error converges to zero exponentially fast and thus vf
converges exponential fast to zero which implies

∫ t
0 (f̂n − fd)dτ → 0 and fn → fd.

Furthermore, ṗe → P̄(nc)vd with implies that P̄(nc)(p − pd)→ 03.
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Predicting Slippage and Learning Manipulation Affordances
through Gaussian Process Regression
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Yiannis Karayiannidis and Danica Kragic

Abstract

Object grasping is commonly followed by some form of object manipula-
tion – either when using the grasped object as a tool or actively changing its
position in the hand through in-hand manipulation to afford further interac-
tion. In this process, slippage may occur due to inappropriate contact forces,
various types of noise and/or due to the unexpected interaction or collision
with the environment.

In this paper, we study the problem of identifying continuous bounds on
the forces and torques that can be applied on a grasped object before slippage
occurs. We model the problem as kinesthetic rather than cutaneous learning
given that the measurements originate from a wrist mounted force-torque
sensor. Given the continuous output, this regression problem is solved using
a Gaussian Process approach.

We demonstrate a dual armed humanoid robot that can autonomously
learn force and torque bounds and use these to execute actions on objects
such as sliding and pushing. We show that the model can be used not only
for the detection of maximum allowable forces and torques but also for poten-
tially identifying what types of tasks, denoted as manipulation affordances,
a specific grasp configuration allows. The latter can then be used to either
avoid specific motions or as a simple step of achieving in-hand manipulation
of objects through interaction with the environment.

1 Introduction

Interaction with and manipulation of objects are essential abilities of robots oper-
ating in realistic environments. As humans, robots may need to grasp objects for
simple tasks such as moving them from one position to another. More complex
tasks, such as using objects as tools, requires a more advanced ability of manipu-
lating an object in the hand so to achieve a suitable grasp configuration. In this
process of achieving and loosing contacts with the object in the hand, events such
as slippage commonly occur. The knowledge of contacts and slippage provides
important information about the status of the task one is executing.
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Figure 1: A dual arm robot setup for estimating maximal allowable forces and torques
for a grasp.

For both humans and robots, sense of touch is paramount for safe and flexible
interaction with objects and the environment. As reviewed in [8], components of
tactile perception in humans depend on the sensory inputs within muscles, tendons
and joints (kinesthetic) and stimulus mediated by receptors in the skin (cutaneous).
Most of the research in robotic tactile sensing addressed the problem of finger-
object interactions and grasp stability assessment. If the contact locations as well
as the friction coefficients of the contacting surfaces are known, the problem can
be formulated in terms of the Grasp Wrench Space (GWS) [4, 10]. However, it is
difficult to construct the GWS in practice since it requires the exact values of those
parameters.

Besides planning stable grasps, the robot should also acquire knowledge of the
maximum forces and torques that can be applied on the object before slippage
occurs. Various methods have been proposed for detecting slippage [8, 12, 13,
17]. Apart from addressing the problem at the signal processing level in terms of
cutaneous tactile sensing, general machine learning methods have proven adequate
for analysis in cases where noise and imperfect models are inherent to the problem,
[2, 9].

Our work follows the direction of using kinesthetic sensing for slip detection in
combination with machine learning techniques. Autonomous learning and a phys-
ical model of the friction forces are used to estimate the maximum static friction
forces and torques on objects the robot is interacting with. We approach the prob-
lem through Gaussian Process regression, resulting in a model that can predict
forces and torques that a grasp can tolerate before the held object starts slipping.
As such, the model can also be used to identify the affordances of a specific grasp
such as, for example, what type of in-hand rotation can be applied to an object
while still keeping the object in the hand.

The learned bounds can be used as constraints at the control level to avoid
certain motions and thus prevent slippage of the grasped object while executing
the task. In addition, the approach also identifies in which directions the object
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might translate or rotate in the hand and thus be exploited in tool use and in-hand
manipulation to actively change the pose of the object in the hand – either through
specific motion or interaction with the environment. This is also commonly done
by humans, for example prior to putting a key in a keyhole we may change its
orientation between the fingers by pushing the key toward a surface.

Thus, differently from commonly addressed grasp affordances [11], we facilitate
the system to identify manipulation affordances. Our method uses force-torque and
proprioceptive feedback different from commonly used tactile or skin sensors which
in practice can be fragile and easily damaged. However, when possible, the cuta-
neous and kinesthetic methods can be integrated resulting in a more biologically
inspired approach [8]. Our approach also takes advantage of the dual arm capabil-
ities of humanoid robots since the training actions can be executed autonomously
through dual arm manipulation procedures. Fig. 1 shows our dual-arm robot as an
example of a platform that can be used to implement the method we propose in
this paper.

The paper is organized as follows: Section 2 presents the related work, Section 3
our learning framework, including the friction model and the use of Gaussian Pro-
cess regression while in Section 4 we proceed to describe how our system learns
manipulation affordances from doing regression on the static friction. Finally, we
provide our experimental results in Section 5 as well as the conclusions, discussion
on the results and future directions in Section 6.

2 Related Work

Early works studying the physics of robotic grasping and contact between rigid
bodies are reviewed in [4]. The review addressed the basic closure properties of
grasps, force and form closure, which describe the equilibrium conditions of an
object grasped by a robotic hand by assuming frictional and frictionless point con-
tacts respectively. Given that friction forces play a central role in robotic grasping,
some of the works reported in the literature have focused on studying their prop-
erties [5, 17]. These studies cover not only the translational Coulomb friction, but
also the rotational friction. Moreover, by combining different sensor modalities
(tactile and force-torque) it is shown in [17] that it is possible to detect and control
both translational and rotational slippage.

Besides modeling the physics of grasping and the friction forces, quantifying the
quality of grasps in terms of the capability to counteract external disturbances has
been one of the main research questions in the grasping community. In order to
plan stable grasps with robotic hands, many grasp planners have been proposed in
the literature which optimize these quality measures [6, 7, 10]. These planners are
constructed in terms of approximations of wrench spaces or heuristic algorithms
that consider a subset of a wrench space.

The main drawback of these methods is that these require precise 3D models of
the object as well as prior knowledge of the friction coefficient and the location of
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the contact points of the robot’s hand. To cope with this problem, [20] proposes
a set of manipulation actions to estimate properties such as weight, stiffness and
friction in order to set appropriate grasping forces.

In order to overcome the uncertainties and problems with modeling errors in
grasping, learning approaches have also been proposed. Example works of [1, 2, 9]
consider learning of grasp stability and grasp affordances. Our previous work on
grasp stability assessment performs learning mainly through tactile (cutaneous),
proprioceptive and visual feedback in order to predict the stability of the grasp
prior to lifting and manipulating the object [1, 2]. In [9] the proposed system
learns grasp affordances which are defined as hand-object relative poses that lead
to successful grasps on a particular object. These affordance densities are learned
through exploration and visual features. The main strength of these learning ap-
proaches originates from the fact that these do not require prior knowledge of phys-
ical contact parameters as the system is trained using supervised learning without
explicitly modeling the physics of grasping.

  

Kinesthetic
Sensing

Cutaneous/Tactile
Sensing

Kinesthetic
Perception

Cutaneous/Tactile
Perception

Haptic
Sensing

Haptic 
Perception

Distributed 
force/pressure

Sensing

Temperature
Sensing

Force/Torque
Sensing

... Joint Angle
Sensing...

Figure 2: Cutaneous and kinesthetic components of haptic sensing and perception [8, 21].
Highlighted in bold are the kinesthetic components which we consider in our approach.

Our work makes use of the physics models of friction described in the seminal
work of [5, 17]. However, instead of employing geometrical, analytical or signal pro-
cessing based approaches [6, 7, 10, 13, 17] we follow a kinesthetic learning approach
for predicting slippage. In this sense, our work follows more closely approaches in
which the robot first interacts with objects and assesses their contact and friction
properties prior to executing tasks [20]. Our method also follows the motivation
behind learning based approaches in order to deal with the issue of modeling errors
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and uncertainties in grasping [1, 2, 9].
Within the broader scope of haptic sensing, which consists of both cutaneous

and kinesthetic sensing as shown in Fig. 2, our approach falls under the subcategory
of kinesthetic sensing and perception while most of the related work discussed so
far including our own work on grasp stability assessment cover mostly the domain
of cutaneous/tactile sensing [1, 2, 12, 13].

3 Physics and Learning Model

The main objective of our system is learning the maximum static friction forces and
torques for various grasp configurations through force-torque sensing. In this section
we present the modeling aspects of our framework, beginning with a description of
the friction model used and the selection of input features for training. We finalize
the section with a brief overview of Gaussian Process regression and explain how
we apply it within our work.

3.1 Friction Model
According to the Coulomb friction model, when an external force is applied parallel
to the surface of contact between two bodies, there is a reaction friction force ff
which relates to the normal force fn according to the following inequality

ff ≤ µsfn (1)

where µs is the static coefficient of friction. This equation holds until the external
force exceeds the maximum static friction force. The object then starts slippping
when Eq. (1) becomes an equality. From this point, a dynamic friction force with
a lower friction coefficient starts acting on the object as depicted in Fig. 3. The
peak of this curve corresponds to the maximum static friction force fslip given by

fslip = µsfn (2)

The static torsional friction typically displays a nonlinear behavior given by

τslip = βsf
4/3
n (3)

where βs depends on geometric and elasticity factors of the contact [17]. However,
slippage still occurs at the point in which the friction torque reaches its maximum
value, which we denote as τslip.

In order to achieve a more general physical model for prediction, we take into
consideration the effect of both rotational and translational friction forces as dis-
cussed in [14, 17]. When an object is subject to both rotational and translational
shears, the translational and rotational friction components become correlated as
shown in Fig. 4. The curve ft = h(τn), where ft is the component of the force tan-
gent to the contacting surfaces and τn the component of the torque in the normal
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Figure 3: Translational friction force exerted on an object held in a robot hand. The
peak of the signal, fslip denotes the maximum static friction force at which the object
begins to slip.

direction, represents the boundary at which the object starts slipping due to the
loads exerted on the object. If the tangential force ft applied on the object is above
the curve for a given applied torque τn, then the object will slip and the grasp is
thus unstable.
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Figure 4: Slippage boundaries: ft = h(τn) represents the boundary for slippage of objects
under combined translational and rotational shear while ft = hlin(τn) represents a linear
approximation of h as proposed in [17].

A number of mathematical approximations have been formulated in the liter-
ature to describe this slippage boundary. We will use the linear approximation
described in [17] that defines a conservative bound on the magnitude of the forces
and torques that cause slippage on an object. This linear bound is denoted by
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ft(τn) = hlin(τn) in Fig. 4 and can be expressed using the following equation:

ft
µs

+ τn
βs

= fn (4)

3.2 Learning Framework

Our goal is to learn the mapping between a set of input features (X) and the re-
sulting maximum friction forces and torques (Y ), which is a regression problem due
to the continuous outputs. While there are several types of regression techniques
that could be used within our framework, we have chosen Gaussian Process (GP)
regression which can capture the nonlinearity in the data and provide estimates for
uncertainty in the predictions.

3.2.1 Gaussian Processes

Given a dataset D = {xi, yi}ni=1 with n observations where xi ∈ <N and yi ∈ <
is a scalar output, regression analysis aims at learning a model for the relationship
y = f(x) + ε which is composed of a latent function of the input and a noise
component ε. As a result of this learning, given a new input x∗, the aim is to
obtain the predictive distribution for y∗.

A GP [18] defines a distribution over functions and is parametrized by a mean
and a covariance function as

GP ∼ (m(x), k(x,x′)) (5)

The mean function is assumed to be zero. The covariance function expresses
how similar two outputs, f(xi) and f(xj) are given the inputs xi and xj . Our
covariance function is based on the squared exponential, which is given by

k(xi,xj) = σ2
f exp[− (xi − xj)2

2l2 ] + σ2
nδ(xi,xj). (6)

The hyperparameters of the covariance function, (σf , σn, l), are optimized based on
D, where σf denotes the signal variance, σn is for the noise variance and l is the
length-scale which determines how relevant an input is, i.e., if l has a large value
the covariance will be independent of that input.

We are interested in the conditional probability p(y∗|D,x∗) as we want to find
how likely is a certain prediction for y∗, given the data and the new input. Based
on a trained GP model, the estimate for y∗ is given by the mean value at the test
point with the confidence being the variance. The interested reader can refer to the
literature [18] for additional details on Gaussian Processes.
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3.2.2 Feature Selection

As an input to the regressor, we need a set of informative features X, that can
reliably represent the behavior of the maximum static friction forces and torques.
In our case, we have selected the x component of the hand H pose with respect to
the object O as shown in Fig. 5

X =
[
OxH

]
(7)

We have selected this feature for illustration purposes, yet more features can
easily be incorporated into the system, such as for example the joint angles of the
fingers and their grasping force which can modify the friction forces present in a
grasp. If more features are incorporated into the system, a preprocessing stage with
dimensionality reduction would be necessary [19].

Figure 5: Grasp preshape used for training on the maximum static friction forces and
torques, with the corresponding reference frames of the hand and the object used for
training.

The outputs Y of the regression system are the maximum static friction force
and torque

Y =
[
fslip
τslip

]
(8)

which can be measured through force-torque sensors by interacting with the object.
We isolate the components of Y and train two GPs, one for the translational friction
fslip and one for the rotational friction τslip. In our case, we learn friction forces
fslip in the yH − zH plane and friction torques τslip around the xH axis of the tip
of the hand reference frame as shown in Fig. 5, given that these are the directions
in which the object can move within the hand. Forces and torques around the
remaining axes are trivial to learn since they will be constrained by the operational
safety limits of the hand, given the geometry of the grasp.
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4 Towards Learning Manipulation Affordances

Once the robot has interacted with an object and learned the maximum friction
forces Y = [fslip, τslip]T for a range of grasp configurations, it can use this infor-
mation to infer what type of motions the object can withstand given the current
grasp. The details of the training data generation for learning are provided in the
next section.

For a given wrench w∗ measured by the robot while executing a task, the robot
can detect how close the object is to slipping according to the model discussed in
Section 3.1. In order for the object to remain fixed in the robot’s hand the measured
force should lie below the torque dependent slippage boundary h(τ)

f∗t < h(τ∗n) (9)

where f∗t and τ∗n are the tangential force and normal torque components of the
wrench measured by the robot.

In the training stage we isolate the translational and rotational components of
the friction and thus we can approximate h(τn) linearly with hlin(τn) by joining the
end points (ft, τn) = (fslip, 0) and (ft, τn) = (0, τslip). In the case of a linear ap-
proximation the following condition ensures a stable grasp in terms of zero relative
motion between the object and the hand HvO = 0:

f∗t < hlin(τ∗n)

f∗t < −
fslip
τslip

τ∗n + fslip

(10)

Thus, our approach makes it possible to identify stable grasps through identifi-
cation of forces and torques that can be applied on an object before slippage occurs.
In a broader sense, the methodology also identifies directions of motion constraints
– that is, in which directions the object is more likely to translate or rotate.

Figure 6: Example scenario of a pouring task with rotational slippage.

In the case of the grasp studied in this work, see Fig. 5, the model would inform
that the object can translate in the yH − zH plane and rotate around the xH
axis. Moreover, if a large torque is detected around the xH axis with relatively
low forces in the yH − zH plane then we can expect the object to rotate around
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Figure 7: Sliding action for training on the maximum static linear friction fslip and
its corresponding force and torque profiles.

the fingertips rather than translate once the force-torque measurements reach the
slippage boundary of Eq. (4).

This knowledge is necessary for manipulation tasks where a predicted slippage
of the object may be facilitated to complete a task. An example scenario is shown
in Fig. 6, in which the robot exploits the rotational slippage to pour the contents of
the cereal box into the bowl by letting the box rest against an edge of the bowl and
allowing it to rotate slightly in the hand while the manipulator moves upwards.

5 Experimental evaluation

Our experimental setup consists of a dual arm robot as shown in Fig. 1. Each ma-
nipulator has 7 DOF and these are equipped with ATI Mini45 6-DOF force/torque
sensors mounted at the wrists and they are sampled at a 650 Hz frequency. We
start by describing the training data collection process.

τx
Figure 8: Pushing action for training on the maximum static rotational friction
τslip.
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τx

Figure 9: Rotational motion for training on the maximum static rotational friction
τslip.

5.1 Training Data Collection
For collecting training data autonomously with the robot we use three dual arm
manipulation procedures: one sliding action for measuring the maximum static
linear friction fslip and the other two are a rotational motion and pushing action
for measuring the rotational friction τslip.

Fig. 7 shows an illustration of the sliding action along with the forces and torques
measured during the execution. In this case the robot holds the object firmly with
the parallel gripper shown on the right while the hand on the left, which is the one
we train for, slides up in the yH direction of the hand. The y-component of the
force signal fy measured in the force-torque sensor of the arm is then similar to the
one shown in Fig. 3, and fslip is obtained from the peak of the signal.

For obtaining training data for the maximum static friction torque τslip, we used
the pushing action shown in Fig. 8. This action is performed by grasping the object
with the hand we train for, while the parallel gripper shown on the right pushes
the object on a corner so that the object rotates around the xH axis of the tip of
the robotic hand. We selected this action given that we expect collisions with the
environment to be a source of rotational slippage when the robot performs tasks
with the object.

For verification purposes we also trained a separate GP for τslip by applying a
different type of training action as shown in Fig. 9. This training action consists of
performing a rotational motion with the grasping hand while the object is kept on
a fixed grasp with the parallel gripper shown on the right. Even though in this case
we also train for τslip as with the pushing action, we can expect different outcomes
from the learning given that each training action represents a different kind of
interaction with the environment. The pushing action gives τslip for tasks in which
the object is grasped by the robot’s hand and it collides with the environment while
being grasped by the robot hand, whereas the rotational motion models a task in
which the object is fixed with respect to the environment and the robot’s hand
rotates around the object.

5.2 Experimental results
We collected 14 training examples for the friction force and 10 training examples
for the torque by varying the relative pose between the robot hand and the manipu-
lated object along one dimension as described in Section 5.1. To learn the Gaussian
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Processes and obtain the hyperparameters we used Rasmussen and Nickisch’s Gaus-
sian Process Regression and Classification Toolbox [18]. The hyperparameters were
calculated by maximizing a Gaussian likelihood function.

Fig. 10 shows the resulting learned Gaussian Process for fslip. This plot shows
the mean function of the learned GP (solid blue line) which follows the training
points, along with the two standard deviation confidence bounds (dashed red lines)
enveloping it. Given this result, we take the lower confidence bound as stability
boundary for fslip given that the Gaussian Process predicts that 95% of the points
of the process will lie above this boundary.
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Figure 10: Learned GP of fslip with two-standard deviation confidence bounds. The solid
blue line is the mean function of the GP while the dashed red lines are the confidence
bounds. The green square markers correspond to the training data, while the yellow
triangular markers correspond to the test set.

For testing and validating the learned GP, we manually pushed the object while
it was being grasped by the robot in different configurations compared to the ones
used for training. Fig. 10 confirms that the sliding action performed on the object
is valid for training fslip as most of the test points lie above the lower confidence
bound of the Gaussian Process.

Fig. 11 shows the learned Gaussian Process for τslip when using the pushing
action. Once again, we manually pushed the object while it was grasped by the
robot in order to collect the test points shown in the figure. These test points show
that the pushing action and the learned Gaussian Process succeeded in capturing
the behavior of τslip with respect to the object to hand relative pose.

Fig. 12 shows the result of learning τslip by using the rotational motion, while
we collected test points by manually pushing the object as in the previous case. The
clear offset between the learned GP and the test points shows that the training and
testing actions are not anymore physically consistent. In the case of the rotational
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Figure 11: Learned GP of τslip trained by using the pushing action shown in Fig. 8.
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Figure 12: Learned GP of τslip with two-standard deviation confidence bounds trained
with the rotational motion shown in Fig. 9.

training motion, the interaction between the active robot hand and the object
involves both forces and torques, while pushing actions, performed either by the
robot hand or manually by ourselves for testing, exert only forces on the object.
This result can thus be used to inform the system that the action is not proceeding
according to the model and provide the basis for replanning. This is something we
plan to adress in the subsequent work.

6 Conclusions and Future Work

In this work we have presented a learning framework for prediction of slippage of
grasps through kinesthetic perception which provides a basis for learning manipula-
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tion affordances. Our method uses Gaussian Process regression and the training is
performed by isolating the translational and rotational components of the friction.
The novelty of the approach lies on using a machine learning approach together
with a physical model of the friction to determine continuous bounds on the forces
and torques that a grasped object can withstand before slipping for a set of differ-
ent object-hand relative poses. The experimental results show that our system is
able to generate reliable predictions which agree with tests performed by manually
pushing the object in the hand of the robot for previously unencountered grasp
configurations.

Future directions of work include expanding our sensor modalities from kines-
thetic perception to cover a wider spectrum of haptic perception (see Fig. 2) by use
of tactile sensing. We also aim to incorporate into our system the estimation of the
axis of rotation of the object in the hand of the robot as it can improve the results
shown here. We have assumed a constant axis of rotation around the fingertips of
the hand that might not correspond precisely with the actual axis around which
the object rotates when it is manipulated. In order to cope with this issue, we aim
to use adaptive control techniques previously used for estimating the kinematic
constraints of hinged doors [15] and treat the object as a virtual hinge. We are also
interested in coupling this work with probabilistic grasp assessment techniques and
object categorization as demonstrated in our previous work in [3, 16].
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Abstract

In this work we propose a sliding mode controller for in-hand manipulation
that repositions a tool in the robot’s hand by using gravity and controlling
the slippage of the tool. In our approach, the robot holds the tool with a
pinch grasp and we model the system as a link attached to the gripper via
a passive revolute joint with friction, i.e., the grasp only affords rotational
motions of the tool around a given axis of rotation. The robot controls the
slippage by varying the opening between the fingers in order to allow the tool
to move to the desired angular position following a reference trajectory. We
show experimentally how the proposed controller achieves convergence to the
desired tool orientation under variations of the tool’s inertial parameters.

1 Introduction

Many tasks robots are expected to do require complex interactions with objects.
Although significant contributions have been achieved in the area of grasping, in-
hand manipulation remains one of the open challenges [1]. In tasks that require tool
use, the robot is expected to pick-up a tool and also choose a grasp that is suitable
for the task. For example, a task such as hammering requires the robot to apply
large forces with the tool in a given direction. Thus, the robot must ensure that
it applies enough grasping force in a right direction and that the tool is correctly
positioned in the hand to avoid undesired displacements while executing the task.
However, even if the robot plans the grasp correctly, once it picks the tool up from
a table or a shelf the resulting grasp configuration may be different to the planned
one due to imprecise sensing, motion planning and control. Moreover, the grasp
configuration can change as the robot performs the task due to externally applied
forces such as unplanned collisions with the environment.

Thus, the robot must be capable of evaluating the state of the grasp, that is,
its suitability for the task. The evaluation can result in the confirmation that the
grasp configuration is still acceptable for performing the task or that an adjustment
of the grasping force or repositioning of the tool is needed. Repositioning the tool
in the hand can be done by regrasping: placing the tool on a fixed surface and
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picking it up again from a different position [17]. On the other hand, if the robot’s
hand is dexterous and/or individual fingers have multiple degrees of freedom, the
robot can coordinate their motion in such a way that the tool moves to the desired
position. This is known as in-hand manipulation using the intrinsic dexterity of
the robot’s hand. If, however, the hand has a rather simple kinematic structure,
it is perhaps more feasible to employ extrinsic dexterity, i.e. use resources that are
external to the robot hand’s embodiment [4]. The robot may for instance push the
tool against an external object or it may loosen the grip so that the tool falls to a
desired position due to gravity.

Figure 1: In-hand manipulation control using extrinsic dexterity by means of gravity
and controlled slip. The top row depicts a side view of the gripper with the fixed axis of
rotation marked with a red circle. The bottom row depicts a top view of the gripper as
the robot opens and closes the fingers to allow the tool to fall to the desired configuration
due to the gravitational pull.

The main contribution of our work is the design of a sliding mode control law
for in-hand manipulation which uses an extrinsic resource, gravity, for reorienting a
tool in the robot’s hand by regulating the friction exerted by the grasp. We assume
that the robot has already performed a pinch grasp on the tool, such that the
motion of the object is constrained to one rotational degree of freedom as shown in
Fig. 1. We thus consider that the tool is attached to the robot hand via a passive
revolute joint with friction. Furthermore, the controller regulates this friction by
controlling the opening between the fingers of the hand. We show experimentally
how the proposed control law achieves convergence to the desired angular trajectory
of the tool with robustness to variations in the inertial parameters of the system.

One of the main differences between our work and the previous works on friction
control comes from the fact that they focused mainly on friction compensation for
servo motors or translation of objects on a surface. When working with robotic in-
hand manipulation a number of challenges arise that we can enumerate as follows

1. The friction control literature mainly deals with friction compensation. The
general approach in those studies is to estimate the friction parameters and
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use them in an additive compensation term in the control signal while in
our case we actively regulate the friction through the grasping force and use
gravity as actuation for the system.

2. The friction parameters of servo motors can be identified and used for com-
pensating friction in the controller. Normally these parameters are considered
fixed in the control law. In contrast, a robot may use different kinds of tools
depending on the task, and each of these tools could potentially exhibit dif-
ferent friction characteristics.

3. In-hand manipulation is subject to loss of controllability since the manipu-
lated tool can fall out of the robot’s hand if not enough friction is applied at
the contact.

This paper is organized as follows: Section 2 contains the related work, Section
3 derives the dynamic model of the system, Section 4 describes our proposed sliding
mode controller and Section 5 shows our experimental results. Finally, we present
our conclusions and planned future work in Section 6.

2 Related Work

Early works on regrasping focused on pick-and-place operations where the robot
would release an object on a surface and pick it up from a different position. For
instance, Tournassoud et al. identified sets of stable grasps and placements of
polyhedral objects on a table and combined these in a discrete sequence of pick and
place actions taking into account kinematic constraints of the manipulator [17].

Works in the intrinsic dexterity-based in-hand manipulation literature have
studied planning and control aspects when coordinating multiple degrees of freedom
of multifingered hands to move the manipulated object along a specified trajectory.
Cole et al. designed a control scheme which coordinates sliding motions of two
planar fingers over an object assuming Coulomb sliding friction at the contacts [3].
Han et al. proposed an in-hand manipulation framework that combines rolling and
finger gaiting [6]. Hertkorn et al. formulated a planning framework which also
takes into consideration kinematic and dynamic constraints of the task [7]. Oka-
mura et al. formulated a survey of different dexterous manipulation techniques that
have been proposed in the literature, as well as a summary of the main kinematic,
contact and dynamic models used in those techniques [10].

On the other hand, the work of Brock provides one of the earliest analysis of
controlled slip and how it can be useful for dexterous extrinsic manipulation [2].
The author studied how to determine the possible directions of motion of a grasped
object and the effect of grasping forces and externally applied forces on the motion
of the object. This knowledge is then used by the robot to reposition a grasped
object by controlling the slippage when it comes in contact with other objects in
the environment.
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Dafle et al. presented a strong case for the benefits of extrinsic dexterity for
in-hand manipulation [4]. Even though the robot used in the study is equipped
with a rather simple gripper, the authors demonstrated that it is still physically
possible to reposition the object in the hand of the robot by taking advantage of
resources external to the robot’s hand such as gravity, use of external objects for
support and inertial forces due to the manipulator’s acceleration. The authors
show this by implementing a discrete set of preprogrammed manipulation actions
and combining them via a graph. In contrast with [4], our work focuses on one
specific manipulation scenario but instead of using discrete preprogrammed actions
we design a continuous closed loop control law to move the tool to the target
position.

Senoo et al. used high speed manipulators and vision systems to manipulate
objects within the robot’s hand [14, 15]. The authors demonstrated that the high
speed feedback and control allow them to perform fine in-hand manipulation using
both intrinsic and extrinsic dexterity. In [15] the authors also proposed in-hand
manipulation via a passive joint. However, these approaches are custom tailored
for specialized high-speed hardware while in our case we use standard commercially
available hardware.

Kappler et al. developed a high level representation framework of pregrasping
manipulation actions that enable a robot to slide objects on a tabletop to positions
which are suitable for generating more robust grasps [8].

Given that our in-hand manipulation control scheme relies on slippage con-
trol it is worth mentioning some of the previous works on friction modeling and
control. This topic has been extensively studied in the control community given
the widespread presence of friction in different kinds of mechanical systems. Ols-
son et al. provide a detailed survey of friction models and friction compensation
schemes [11]. De Wit et al. proposed the LuGre friction model and designed fric-
tion compensation control schemes for this model [5]. Xie proposed an adaptive
controller with sliding mode observer to estimate the friction parameters of a servo
motor and perform position control with an unknown load [19].

Friction control is also a topic of interest in the design of Antilock Braking
Systems (ABS) in vehicles. Ünsal et. al. designed a sliding mode control law for
the braking torque applied on a vehicle’s wheel [18]. The main difference with our
work is that the control objective consists in maximizing the tractive force exerted
by the road on the wheels by regulating the wheel slip with respect to the road.

The contribution of our work is the design of a closed loop sliding mode control
law which uses gravity and controlled slip. We track the position of the tool using
a vision tracking system and control the slip by varying the opening between the
gripper’s fingers. We show experimentally that the proposed control law converges
to the desired orientation of the tool despite changes in its inertial parameters.
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3 Modeling

In our in-hand manipulation controller we assume a 1 DOF parallel gripper with
soft fingertips that performs a pinch grasp on a tool as shown in Fig. 1. We assume
that the pinch grasp affords only rotational motions around a fixed axis of rotation,
which we assume is known a priori. The position of the tool with respect to the
robot’s hand can thus be described by the angle θ(t) with respect to the horizontal
axis.

The control objective is to change the angular position of the tool to a desired set
point θd(tf ) following a specified trajectory θd(t). We assume that the manipulator
is static and we only actuate the opening d between the fingers of the parallel
gripper to control the grasping force applied on the tool, and hence the magnitude
of the friction torque. We assume that the state of the tool x(t) = [θ(t), θ̇(t)]> can
be observed through sensor measurements.

Furthermore, we operate the gripper in such a way that the tool only rotates and
does not fall out of the robot’s hand. As one increases the opening d between the
fingers the object will first experience rotational slippage and then a combination of
rotational and translational slippage until it falls out of the robot’s hand as depicted
in Fig. 2.

No slippage Rotational slippage Translational +

d

dmin dmax

rotational slippage

Figure 2: Slippage of an object grasped via a pinch grasp according to the separation d
between the fingers of the parallel gripper. The object is assumed to be initially at rest.

We assume that the bounds [dmin, dmax] are given beforehand, where dmin is a
lower bound designed to avoid damages to the tool and/or gripper and to ensure
that the friction torque is large enough to stop the object at the desired position
θd(tf ), and dmax is set small enough to allow some safety margin and avoid transla-
tional motions of the tool but large enough to ensure that the gravitational torque
can overcome the stiction torque.

3.1 Sliding friction model

Our proposed control scheme uses the sliding friction torque at the contact between
the tool and the gripper to control the rotational motion of the tool.

We model the friction torque τf at the axis of rotation as Coulomb and viscous
friction [11]

τf (fn, θ̇) = −µ sgn(θ̇)fn − σθ̇ (1)
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where µ is the Coulomb sliding friction coefficient, fn the normal force applied
by the fingers of the gripper, θ̇ the angular velocity of the tool, sgn(·) is the sign
function and σ the viscous friction coefficient. From Eq. (1) we obtain a relation
between the applied normal force and the resulting friction torque.

3.2 Deformation model
In principle the robot can control the friction torque described in Eq. (1) if mea-
surements of the normal force fn are available e.g. via tactile sensors.

However, we assume that such hardware capabilities are not available in our
system and we control the normal force instead via the separation of the gripper
fingers assuming a linear deformation model

fn(x) = k(x− x0) (2)

where k is the stiffness of the fingers, x0 is the position of zero deformation at
which the fingers initiate contact with the tool and x is the position of the fingers.
Replacing x = −d and −kx0 = f0, the deformation model (2) can be rewritten as
a function of the finger separation d

fn(d) = f0 − kd (3)

3.3 Dynamic model
Since we assume that the tool moves along one rotational degree of freedom, it
suffices to analyze the rotational dynamics of the system which is given by

Iθ̈ = τg + τf (4)

where I is the tool’s moment of inertia with respect to the rotation axis, θ̈ the tool’s
angular acceleration, τg the torque generated by the gravitational pull on the tool’s
center of mass and τf the torsional friction generated at the contact between the
tool and the gripper.

Substituting the friction and deformation models (1) and (3) into (9) and adding
the expression for the gravity induced torque we obtain the following dynamic model

Iθ̈ = −mgl cos θ − µ sgn(θ̇)(f0 − kd)− σθ̇ (5)

where m is the tool’s mass, l the distance from the axis of rotation to the tool’s
center of mass and g the gravity.

4 Sliding mode control design

To design a sliding mode control law we rewrite the dynamic model described by
Eq. (5) as
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θ̈ = h(θ, θ̇) + b(θ̇)ud (6)

where we denote ud the gripper position control signal, i.e., the separation between
the fingers of the gripper commanded by the controller. h(θ, θ̇), b(θ̇) are given by

h(θ, θ̇) = −mgl cos(θ)
I

− σθ̇

I
− µf0 sgn(θ̇)

I
(7a)

b(θ̇) = µ sgn(θ̇)k
I

(7b)

The robot can determine the value of sgn(θ̇) given the initial orientation of the
tool with respect to gravity so that Eq. (7a) and (7b) become continuous functions
of the state x(t) = [θ(t), θ̇(t)]>.

It is important to note the modeling uncertainties in Eq. (6). Even though the
mass and center of mass can be estimated online by the robot just before running the
controller by using a force-torque sensor, this estimate is subject to measurement
errors arising from e.g. sensor noise. The moment of inertia and the friction and
deformation model parameters are in general more difficult to estimate and require
some form of pre-manipulation of the tool. Furthermore, in our formulation we
have used a simplified friction model which ignores phenomena such as stiction, the
Stribeck effect, hysteresis and stick-slip motion [5]. These observations make sliding
mode control a natural choice since it is a robust control law when confronted with
modeling imprecisions [16].

For the control law we define the first order sliding surface s(t)

s(t) = ˙̃θ(t) + λθ̃(t) (8)

where θ̃(t) = θ(t) − θd(t) and ˙̃θ(t) = θ̇(t) − θ̇d(t) are the angle and angular ve-
locity errors respectively with respect to a desired state trajectory and the control
bandwidth λ is a positive constant. We design the reference trajectory xd(t) =
[θd(t), θ̇d(t)]> as the output of a second order critically damped system with unit
DC gain with a trapezoidal angular velocity profile as input.

We can then formulate a sliding mode control law for the gripper position as
follows [16]

ud(t) = b̂−1
(
ûd(t)− kssat

(
s(t)
φ

))
(9)

where b̂ is an estimate of b in Eq. (7b) given the best available knowledge of
the parameters, ks is a positive switching control gain, φ is a constant parameter
describing the boundary layer of the control signal whose purpose is to smooth the
switching behavior of the control signal generated by the saturation function sat(·).
This function is defined as
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sat(z) =
{
z if |z| ≤ 1
sgn(z) otherwise

(10)

The nominal control signal ûd(t) is designed such that the dynamics of the sliding
surface becomes ṡ = 0 assuming perfect knowledge of the system parameters. This
yields

ûd = −ĥ+ θ̈d − λ ˙̃θ (11)

where we have dropped the time argument (t) for notational convenience. In this
expression ĥ is an approximation of h given approximate estimates of the inertial,
friction and deformation parameters in Eq. (7a).

In order to implement the position based control law (9) in our system we couple
an additional proportional velocity control law for the fingers

uv = −kvd̃ (12)

where d̃ = d − ud is the gripper position error, kv a positive proportional control
gain and uv is the velocity that we command to the fingers of the gripper.

5 Experimental evaluation

We implemented the sliding controller proposed in Section 4 on the 2-finger parallel
gripper shown in Fig. 3. The gripper is equipped with semispherical rubber finger-
tips which allows us to execute pinch grasps on the tool and control the grasping
force due to the deformation of the rubber.

Figure 3: Parallel gripper with soft semispherical fingertips used in the experiments.

We used the model-based visual tracking system Simtrack together with a stan-
dard 30fps RGB-D camera to estimate the angular position θ(t) of the tool [13]. We
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then fed this signal to a Kalman filter to obtain estimates of the angular velocity
θ̇(t).

At each iteration of the control loop we calculated the maximum gripper velocity
so that the gripper position would remain within the bounds [dmin, dmax] defined
in Section 3 until the next control iteration. We then saturated the gripper velocity
uv(t) from the controller if it exceeded this maximum velocity.

Experiment I[kg ∗ cm2] m [g]
1 10.64 52.83
2 14.27 68.50
3 17.90 84.17

Table 1: Inertial parameters (moment of inertia and mass) of the tool used in the
experiments.

I[kg ∗ cm2] 30
m [g] 100
l [cm] 12
µ 0.05
σ 0.2

f0 [N] 175.0
k [N/m] 3871.0

λ 2.0
φ 0.05
ks 600.0
kv 4.0

Table 2: Sliding mode controller parameters and gains.

We executed three experiments where we varied the inertial characteristics of
the tool as shown in Table 1 with the controller parameters shown in Table 2. We
determined the parameters by trial and error and we kept them fixed throughout
the experiments. Fig. 4 illustrates an example run of our sliding mode controller.

Fig. 5 shows the experimental results of our proposed controller. In the first
experiment the robot grasped a 52.83g tool and controlled the gripper position to
allow the object to fall to the zero degree position following the reference trajectory
θd(t). Despite the modeling uncertainties, the sliding controller managed to move
the tool to the desired angular position as shown in Fig. 5a with a steady state
error of approximately 0.5 degrees. However, we also see that the controller had
difficulty in achieving tracking convergence around t = 2.2s and t = 5s. This is
due to unmodeled friction phenomena such as the Stribeck effect, which makes the
friction coefficient increase as the rotational velocity decreases. The tool abruptly
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Figure 4: Side view of an example run of the sliding mode controller with our
experimental setup.
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Figure 5: Experimental results of the proposed sliding mode controller. Each row
corresponds to each of the experiments 1-3 from Table 1. The left column shows the
angular position θ(t) of the tool and reference angular position trajectory θd(t) for
each experiment while the right column shows the corresponding position control
signal ud(t) and gripper position d(t).

stopped and continued to move once the separation between the fingers was in-
creased enough.

Fig. 5b shows the switching control signal ud(t) in the first experiment. The
figure also shows the resulting separation of the fingers d(t) measured from the
gripper encoders after feeding the position control signal to the gripper velocity
controller of Eq. (12). This figure highlights some of the difficulties when using
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friction as a control input for in-hand manipulation. First, even though we used soft
fingertips which can deform and vary the friction torque, we see that the gripper
can only operate in a limited range (dmax − dmin = 5.5mm). Secondly, comparing
with Fig. 5a we notice that e.g. between t = 2.2s and t = 5s the tool can abruptly
transition between zero velocity and a large angular velocity with small motions of
the fingers of approximately 1mm.

For the second experiment we attached a 15.67g mass to the tool at a 15 cm
distance from the axis of rotation, which represents a 30% increase in the mass
and roughly a 34% increase in the moment of inertia. Fig. 5c shows the angular
position of the tool for this second experiment while Fig. 5d shows the respective
control signal.

Once again, the controller converged to the desired position, albeit with a larger
steady state error of 1 degree. Furthermore, one can notice the larger control effort
when compared to the previous experiment.

We then performed the third experiment by attaching two 15.67g masses to the
tool 15cm away from the axis of rotation. This raised the mass by 60% and the
moment of inertia by roughly 68% (see Table 1). The results of the experiment are
shown in Fig. 5e and Fig. 5f.

As shown in Fig. 5f we reduced the maximum finger separation dmax by 0.5mm
with respect to the previous experiments in order to avoid loosing grip of the tool.
We observe that this relatively small change in dmax has a critical impact on the
controller performance and that the steady state error is 0.5 degrees. Furthermore,
the control signal converged to a larger finger separation d than the previous ex-
periment since by lowering dmax the gripper induced higher friction torque on the
tool, resulting in lower angular accelerations.

6 Conclusions and Future Work

We have proposed a sliding mode controller for in-hand manipulation with extrinsic
dexterity which uses gravity and slippage control to reorient a tool in the robot’s
hand. In the derivation of the control law we assume a pinch grasp so that the tool
can be modeled as a link attached to the gripper through a passive revolute joint
with friction and a fixed axis of rotation. We performed experiments by tracking the
position of the tool using a model based vision tracking system and controlling the
separation of the fingers of a parallel gripper. The proposed control law converges
to the desired angular position despite changes in the inertial characteristics of the
tool and uncertainties in the friction and deformation models.

As future work we plan to use more accurate dynamic friction models such as
the LuGre-like model mentioned in [12] in order to analyze more rigorously the
friction characteristics of the problem and propose more robust control schemes
that could potentially improve the tracking performance. Even though we showed
in our experiments the robustness of the control law to changes in the inertial
parameters of the tool, we have yet to design a control law that can accommodate
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more appropriately for variations in the friction characteristics of the tool.
We also plan to incorporate tactile sensing to measure and control directly the

grasping forces. Furthermore, one of the limitations of our controller is the limited
control frequency due to the vision tracking system. One possibility to improve the
controller performance is to incorporate optical sensors at the fingertips to obtain
more local and faster estimates of the pose of the tool [9].

This work can also be extended by replacing gravity with inertial forces gen-
erated by accelerating the manipulator. Additionally, we will generalize the ideas
presented in this work to apply closed loop control in other in-hand manipulation
scenarios by e.g. using external support objects and dual-arm manipulation.
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Abstract

In this work we present an adaptive control approach for pivoting, which is
an in-hand manipulation maneuver that consists of rotating a grasped object
to a desired orientation relative to the robot’s hand. We perform pivoting by
means of gravity, allowing the object to rotate between the fingers of a one
degree of freedom gripper and controlling the gripping force to ensure that
the object follows a reference trajectory and arrives at the desired angular
position. We use a visual pose estimation system to track the pose of the
object and force measurements from tactile sensors to control the gripping
force. The adaptive controller employs an update law that accommodates for
errors in the friction coefficient, which is one of the most common sources
of uncertainty in manipulation. Our experiments confirm that the proposed
adaptive controller successfully pivots a grasped object in the presence of
uncertainty in the object’s friction parameters.

1 Introduction

Humans are capable of in-hand manipulation, i.e., repositioning grasped objects in
the hand, by sliding, rolling and/or pushing the objects through precisely coordi-
nated motions of the fingers. This is possible among other reasons due to the high
mechanical complexity of the human hand and because humans are able to simul-
taneously control the motion of the fingers with great precision. Replicating this
intrinsic dexterity in robots is to some degree achievable by equipping robots with
hands that are composed of multiple fingers and actuators. However, most robot
platforms today have rather simple grippers with few degrees of freedom given that
they are generally more robust, cost efficient, easy to control and also because they
simplify grasp planning and execution. At first sight such grippers may not seem
capable of performing regrasps by only actuating the fingers, raising the question
of whether they are actually suitable for in-hand manipulation.

This apparent lack of dexterity can however be compensated by the use of ex-
trinsic dexterity, i.e., by leveraging resources external to the robot such as external
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Figure 1: Pivoting with gravity by controlling the gripping force exerted by a two
finger pinch grasp. The top row shows how the robot opens and closes the gripper
to control the object’s rotational motion induced by gravity. The object rotates
around a fixed axis of rotation connecting the two fingers as shown in the bottom
row.

contacts, gravity and inertial forces that can enable the robot to perform meaningful
manipulation tasks. Extrinsic dexterity essentially enables roboticists to trade off
complexity in gripper hardware design and control with more clever and active use
of the robot’s environment through an effective combination of control, interactive
perception and motion planning.

Numerous examples of how a robot can make effective use of extrinsic dexterity
for in-hand manipulation have been shown in the literature [3, 5, 10, 18]. These
can include e.g. pushing the grasped object against an external pusher to make
the object slip in a controlled manner within the gripper. Other examples include
accelerating the manipulator such that inertial forces drag the object to a specified
location within the gripper, and allowing the object to slip within the robots hand
due to the object’s weight.

In this paper we address a specific regrasp action known as pivoting, in which
the objective is to rotate a grasped object to a desired angular position relative to
the robot’s hand. We perform pivoting by using extrinsic dexterity as shown in
Fig. 1, allowing the gravitational torque generated on the grasped object’s center
of mass to rotate the object, while using the gripping force of a 1 DOF parallel jaw
gripper as a braking mechanism to control the object’s trajectory.

One of the major challenges of pivoting as well as other in-hand manipulation
actions is how to account for imperfect knowledge of the grasped object’s friction
parameters. This is a common situation given that a robot may for instance grasp
novel objects and tools relevant for a task. Furthermore, it may be difficult in prac-
tice to accurately measure some of the friction parameters given their dependence
on e.g. contact geometry and pressure distribution.

This motivates the main contribution of our work, which is performing pivoting
with a closed loop adaptive controller that accounts for imprecise estimates of the



2. RELATED WORK E5

torsional friction parameters. The control scheme uses visual tracking of the object
and force measurements from tactile sensors at the fingertips. Comparing to our
previous work on closed loop pivoting [24] we do not rely on assumptions such as
saturation of the control input and achieve enhanced tracking control performance
as a result of the following improvements:

• Improved torsional friction modeling using results from previous studies on
soft finger mechanics.

• Incorporation of tactile sensing for control of the gripping force.

• Online adaptation of the torsional friction coefficient. This allows us to suc-
cessfully pivot the object given errors in the initial estimate of this coefficient.

This paper is organized as follows: Section 2 contains the related work, Section
3 contains the contact and dynamics model of the system, in Section 4 we formulate
the adaptive control law and Section 5 shows our experimental results. Finally, we
present our conclusions and planned future work in Section 6.

2 Related Work

In-hand manipulation, i.e., repositioning an object in a robot’s hand, has been a
long standing research topic in robotics where several aspects of modeling, motion
planning and control have been addressed. Early studies by Tournassoud et. al.
showed how regrasping can be accomplished by repeatedly picking and placing
an object on a surface from different grasping positions [20]. This procedure can
however be time consuming and the number of possible regrasps is limited by the
number of stable poses in which the object can be placed on the surface. Researchers
thus quickly realized the need for more advanced dexterous manipulation skills.
One proposed solution was to control the motion of the fingers of a robot hand
to achieve a desired repositioning of a grasped object via e.g. rolling, sliding and
finger gaiting [9, 22].

On the other hand, other studies promoted the idea of leveraging the robot’s
environment to facilitate in-hand manipulation. Brock et. al. were among the
first to propose the idea of augmenting a robot’s dexterity through controlled slip
of a grasped object due to externally applied forces [2]. Dafle et. al. defined the
concept of extrinsic dexterity and showed how a robot manipulator with a rather
simple gripper can still perform meaningful in-hand manipulation by using a diverse
set of primitive actions which take advantage of resources external to the robot such
as gravity and contact with the environment [5]. This idea of leveraging the robot’s
environment has also been used e.g. in the context of grasping [7].

These works have highlighted the importance of contact and friction modeling
as central components to dexterous manipulation. Goyal developed the concept
of limit surfaces which describe both the bounds on the wrenches that can be
applied on a grasped object slippage occurs and the sliding motion of the object
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once slippage takes place [8]. Howe et. al. further developed these ideas and
proposed computationally tractable approximations of limit surfaces in the context
of manipulation planning and control [11].

Friction modeling has also been studied for the design of friction identification
and compensation schemes in mechanical systems [6, 15]. However, the control
techniques developed in these studies cannot be directly applied to our work since
they consider friction as an additive disturbance, while in our case friction represents
a control input. In this sense, our controller for pivoting holds some resemblance to
antilock braking systems (ABS) in vehicles, however, the objective of these works
is to maximize the traction force between the tire and the road [23].

Tactile sensing has also played an instrumental role in robotic manipulation,
motivated in part by the essential role that it plays in even the most basic pick-and-
place manipulation tasks carried out by humans [12]. Many studies have addressed
the problem of slippage detection through tactile sensing, however, the main focus
has been on grasp control for slippage prevention rather than controlled slip [14, 21].
Some works have also proposed online estimation of friction parameters [21], but
have focused on friction forces rather than torsional friction as in our case.

Some more recent works have studied mechanical modeling and design as well
as motion planning aspects of in-hand manipulation with extrinsic dexterity. Dafle
et. al. studied the mechanics of prehensile pushing, analyzing the effect of pushers
with different contact geometries on the slippage of a grasped object [3]. Dafle et.
al. also designed fingertips which allow a robot to easily transition between a fixed
grasp on an object and a pinch grasp in which the object can freely rotate [4].

Shi et. al. proposed a motion planning framework that determines the required
manipulator accelerations that achieve a desired sliding motion of an object relative
to the robot’s hand [18]. This work addresses a scenario similar to ours, namely
an object held by a two-finger pinch grasp, and has the advantage of reconfiguring
3 degrees of freedom of the object’s pose. Although the simulations in the study
validate the proposed approach, the experiments do not match the expected per-
formance which the authors attribute in part to lack of feedback control and tactile
sensing.

Also closely related to our work is the open-loop pivoting framework proposed
by Holladay et. al. [10]. In this work the robot first plans a pinch grasp on an object
resting on a surface and subsequently lifts it following a precomputed motion plan.
The object can only be rotated between a discrete set of stable poses given that the
pivoting is done open loop without online tracking of the object’s pose and without
control of the gripping force.

In contrast to these recent works [10, 18] which employ open-loop motion plan-
ning strategies we focus on using adaptive feedback control with online vision track-
ing and tactile sensing for controlling the gripping force.
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3 Modeling

In this section we specify the friction and dynamics models that describe the piv-
oting action. Let us denote with θ the angular position of the object relative to
the gripper as shown in Fig. 2. The objective of pivoting is to rotate a grasped
object from an initial angular position θ0 to a desired orientation θd. We control
the rotational motion of the object by varying the torsional friction τf generated
by the fingertips, which we control with the gripping force. We assume that the
gripper has one degree of freedom with two soft hemispherical fingertips and that
the object rotates around a fixed axis of rotation connecting the fingertips.

Figure 2: Modeling of the pivoting task. The gravity vector is denoted by g, θ is
the relative orientation between the object and the gripper and θ0, θd are the initial
and desired angular positions respectively.

We model the torsional friction interaction in pivoting based on previous stud-
ies on mechanical modeling of soft fingers. These models allow us to establish a
relationship between the torsional friction at the fingertips and their applied grip-
ping force, which we will then use in the control design. Furthermore, we assume
that the gripper is in a fixed position, such that the motion of the object is solely
determined by the gravitational torque on its center and the torsional friction.

3.1 Soft finger contact model

Robotic fingertip contact models have been traditionally classified in three cate-
gories according to their friction properties as hard-finger contacts without friction,
hard-finger contacts with friction and soft finger contacts [1, 17]. The soft finger
contact model assumes that the finger can exert friction forces tangential to the
contact surface as well as torsional friction around the direction normal to the con-
tact surface. Furthermore, there is a nonlinear relationship between the maximum
force and torque that can be exerted on an object held in a soft finger grasp until
slippage of the object occurs [8, 11, 14]. This boundary is known as a limit surface
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and can be approximated by an ellipsoid [18]

f>Af = 1 (1)

where f = [fx, fy, τz] represents the friction wrench applied at the contact with
(fx, fy) being the tangential friction force components and τz the torsional friction
around the normal. Assuming isotropic friction the matrix A ∈ R3x3 becomes a
diagonal matrix whose elements are the maximum friction force and moment

A = diag(f−2
t,max, f

−2
t,max, τ

−2
z,max) (2)

where the maximum tangential force ft,max can be modeled as Coulomb friction

ft,max = µfn (3)

where µ is the friction coefficient and fn the force applied in the normal direction
of the contact. On the other hand, the maximum torsional friction τz,max before
a grasped object rotates exhibits a more complex behavior that depends on the
geometry of the contact area and the pressure distribution. We assume that the
grasped object has a locally smooth surface at the contact locations, such that
the contact patches are circular. The maximum torsional friction thus assumes a
Coulomb-like model [11, 25]

τz,max = aβµfn (4)

where a is the radius of the contact surface and the constant β depends on the local
pressure distribution. This parameter may be for example β = 0.589 in the case of a
hertzian pressure distribution or β = 0.667 in the case of a uniform distribution [11].

When the external wrenches applied on an object are contained within the
ellipsoid limit surface (i.e. f>extAfext ≤ 1), the object remains static. Once the
object starts sliding, the limit surface model assumes that the friction wrenches
remain on the limit surface and that the sliding velocity is perpendicular to the
ellipsoid. In our case we assume that the object is grasped sufficiently far from its
center of mass so that the gravitational torque is large compared to the object’s
weight. Hence, the translational motion of the object is negligible with respect to
its rotational motion and the torsional sliding friction τf is approximately equal to
τz,max from Eq. (4)

τf = aβµfn (5)

It is important to note that the limit surface model ignores potential velocity-
dependent sliding friction phenomena such as the Stribeck effect and viscous fric-
tion. Despite this limitation, similar to the approach taken in previous works [18]
we will assume in our controller design that the model described by Eq. (5) cap-
tures the most representative components of the torsional sliding friction during
the pivoting task, namely the dependence on the applied gripping force.
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In order to complete our model we also require a deformation model that re-
lates the normal force fn and contact radius a. Xydas et. al. have shown that
hemispherical fingertips follow a power-law deformation model [25]

a = cfγn (6)

where c is a constant and the exponent γ has a value between 0 and 1/3 depending
on the fingertip material. Substituting (6) in (5) we obtain the following torsional
friction model

τf = µtorsf
1+γ
n (7)

where we denote µtors = cβµ as the torsional friction coefficient.

3.2 Pivoting dynamics
Given our assumption that the gripper is in a static position, the rotational dy-
namics of the object during slippage is determined by the gravitational torque and
the torsional friction of the fingers. The rotational dynamics of the object around
the z axis shown in Fig. 2 is given by

Iθ̈ = τg + τf1 + τf2 (8)

where I is the moment of inertia of the object around the axis of rotation at the
fingertips, θ̈ the angular acceleration of the object, τg the gravitational torque
exerted on the object’s center of mass and τfi with i ∈ [1, 2] the torsional friction
generated at the contacts between the grasped object and each of the fingertips.

We assume that the grasp is symmetric such that the normal forces fni exerted
by each finger on the object are equal and that both fingertips have the same
deformation and friction parameters such that τf1 = τf2 . If gravity is aligned with
the y axis as shown in Fig. 2, i.e. g = gy, and by using the torsional friction model
(7) we then obtain the following nonlinear rotational dynamics

Iθ̈ = −mglcm cos θ + 2µtorsf1+γ
n (9)

where m is the object’s mass, g gravity and lcm the distance between the axis of
rotation and the object’s center of mass.

4 Control Design

Our control design is guided by the following observations and assumptions

1. The inertial parameters (I,m, lcm) of the object are known but we allow some
uncertainty in the torsional friction coefficient µtors. The inertial parameters
can be obtained by using e.g. wrist-mounted force-torque sensors prior to
the pivoting task [13]. The torsional friction coefficient µtors is however more
difficult to measure in practice given its dependence on contact geometry and
pressure distribution. This justifies the use of an adaptive controller with
adaptation on µtors.
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2. The visual model of the object is known and the angular position θ of the
object is tracked by a vision system.

3. The normal forces fn exerted by the fingers are measured via tactile sensors.

4. The gripper is oriented such that the gravitational torque can rotate object
towards the desired reference, i.e. sgn(τg) = sgn(θd − θ0).

5. The exponent γ from the soft finger deformation model (6) is known. This
parameter depends on the fingertip material and can be estimated offline by
using either (6) or (7).

6. The angular position θ of the object must not overshoot past the reference
angle θd since we perform passive pivoting. The manipulator would otherwise
have to rotate the gripper to perform passive pivoting again, or we would need
to generate angular momentum on the object by accelerating the manipulator.

7. The object is initially at rest and in a secure grasp.

Adaptive
Controller

Tactile
Sensing

Vision
Tracking

θ

ufn uv

fn

Gripper Force
Controller

Reference
Model

θm

Figure 3: Overview of our proposed control scheme for pivoting.

Following assumptions 2) and 3) we decompose our controller in two subcon-
trollers as shown in the diagram in Fig. 3. First, an adaptive controller takes as
input the angular position θ measured by the vision system and the desired angular
position θm given by the reference model and computes a reference normal force
ufn to control the trajectory of the object. This reference force ufn is then used
together with tactile measurements of the normal force fn by a PI controller to
adjust the velocity of the fingers, minimizing the error between the measured and
reference normal force.
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4.1 Adaptive controller
We choose model reference adaptive control given that we aim to perform the
pivoting task given errors in the torsional friction coefficient µtors, which represents
a parametric uncertainty in the nonlinear model (9).

Adaptive control performs tracking control by driving the system’s state x(t) =
[θ(t), θ̇(t)]> along a state trajectory xm(t) = [θm(t), θ̇m(t)]> defined by a reference
model. This reference model is designed by the user and describes the ideal response
that the system should follow, satisfying the control requirements and constraints
of the task. In our case the angular position response should not overshoot, thus,
we design the reference model as a critically damped second order system with unit
DC gain with the following transfer function

Hm(p) = θm
θin

= λ2
0

(p+ λ0)2 (10)

where the reference input θin follows a trapezoidal velocity profile.
To formulate our controller, we rewrite the model from Eq. (8) considering the

normal force as a control input ufn
hθ̈ + bτg = u1+γ

fn
(11)

where h = 0.5Iµ−1
tors and b = 0.5µ−1

tors. We then define the following tracking control
error s

s = ˙̃θ + λθ̃ (12)

where θ̃ = θ − θm and ˙̃θ = θ̇ − θ̇m are the angular position and velocity errors
respectively and λ is a constant.

We can then formulate the following standard adaptive control law [19]

u1+γ
fn

= ĥθ̈r − kss+ b̂τg (13)

The control law is composed of a velocity error and feedforward acceleration
term ĥθ̈r, a tracking error term kss, and a nonlinear gravity compensation term
b̂τg. The reference angular acceleration θ̈r is given by θ̈r = θ̈m−λ ˙̃θ, ks is a positive
tracking control gain and ĥ, b̂ are adaptive estimates of h and b given by

˙̂
h = −αhsθ̈r (14a)
˙̂
b = −αbsτg (14b)

where αh, αb are positive adaptation gains. It is important to note that the online
estimates (14a), (14b) are not guaranteed to converge to the correct values unless
persistent excitation conditions are met. We do not consider this a major limita-
tion since the scope of our work is to perform the pivoting task and not accurate
estimation of the friction parameters. The control scheme does however guaran-
tee convergence of the tracking error s which implies that the object pivots to the
desired orientation.
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4.2 Gripper force controller
We regulate the normal force fn by opening and closing the fingers with a PI
controller

uv = kpf̃n + ki

∫ t

0
f̃ndt (15)

where uv is the velocity set point commanded to the gripper, kp, ki are the controller
gains and f̃n = fn − ufn is the error between the measured normal force fn and
the normal force set point ufn from the adaptive control law of Eq. (13). The
controller is tuned such that fn → ufn .

5 Experimental Evaluation

We evaluated our proposed adaptive controller on a robot platform equipped with
a 1 DOF 2-finger parallel gripper with Optoforce1 tactile sensors and an RGBD
camera as shown in Fig. 4. We track the object’s pose throughout the experiments
using Simtrack, a model-based vision tracking system that generates realtime pose
estimates at 30 Hz [16]. The control loop operates also at 30 Hz.

(a) (b)

Figure 4: Robot platform with parallel gripper and Optoforce tactile sensors at the
fingertips used in our experimental evaluation.

The Optoforce tactile sensors provide 3-axis force measurements at 100 Hz, and
we chose them for these experiments given their low cost, robustness and suitability
for force control. The sensors operate based on an optical principle providing high
resolution force measurements of 0.03N with noise levels of approximately 0.01N,
which are not commonly available from other types of tactile sensors.

In our experiments we grasp an object whose inertial and frictional parameters
are given in Table 1. Furthermore, Table 2 shows the controller gains and parame-
ters used in the adaptive control law (13) and the PI gripper force controller (15).
We kept the control gains fixed throughout the experiments.

1www.optoforce.com
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I[kg ∗ cm2] 10.64
m [g] 48.5

lcm [cm] 12.22
µ 0.47

µtors 0.643x10−3

Table 1: Inertial and frictional parameters of the grasped object.

ks 23.0
λ 10.0
γ 0.1849
kp 5.0x10−4

ki 2.0x10−5

Table 2: Controller gains and parameters used throughout the experiments.

We obtained the torsional friction coefficient µtors and the power-law exponent
γ using Eq. (5) through measurements of the torsional friction τf provided by
the force/torque sensor in our manipulator’s wrist and tactile measurements of the
normal force fn. However, the hardware limitations of our system made it difficult
to accurately estimate these parameters: the torsional friction measurements from
the force/torque sensor had a low signal to noise ratio and were also affected by
gravity compensation errors, which generated significant errors in the estimated
µtors. We tuned this parameter by running the controller with different values of
the friction coefficient as will be explained further on.

To obtain the control gains we first tuned the gripper force controller gains
(kp, ki) following standard practice for PI controller tuning. We then tuned the
tracking control gain ks by first deactivating the estimators, i.e. setting αh = αb = 0
in Eq. (14) and using the ground truth values of the object’s inertial and friction
parameters in the controller. An excessive tracking gain ks caused the object to
stop repeatedly along the trajectory given that it would enter the stiction regime.
On the other hand, a low ks tended to generate large overshoots in the angular
position θ of the object with respect to the reference trajectory. We chose λ =
10.0 for the tracking control error (12) in order to give a higher relative weight to
position tracking errors rather than velocity tracking errors given the higher quality
of pose estimates provided by our vision tracker with respect to the angular velocity
estimates. We designed the reference trajectory slow enough to avoid motion blur
that would deteriorate the vision tracker’s performance, yet fast enough to avoid
stiction effects.

We evaluated our controller both under errors in the initial estimate of the
torsional friction coefficient µtors and when modifying the frictional properties of
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the material in contact with the fingertips. We thus performed the following set of
experiments:

• Effect of initial estimate of µtors without adaptation. We deactivate
the adaptive estimators from Eq. (14), essentially transforming our controller
in a feedback linearizing controller. We then show the controller’s behav-
ior assuming different values of the torsional friction coefficient µtors in the
control law (13).

• Effect of initial estimate of µtors with adaptation. We repeat the pre-
vious set of experiments and show how adaptation is critical to accomplish
the pivoting task despite errors in the initial estimate of µtors.

• Change of object frictional properties. We further examine the adap-
tive controller’s performance by using the same test object as in the previous
experiments but changing the material at the point of contact with the fin-
gertips, modifying thus the friction coefficient. We show that although there
is an evident reduction in tracking control performance, the object still pivots
to the desired position.

5.1 Effect of initial estimate of µtors without adaptation
In this set of experiments we deactivated the estimators by setting αh = αb = 0.0
in the adaptation law (14) and executed the controller with 3 different values of the
torsional friction coefficient µtors in the control law (13). The reference trajectory
θm(t) from the reference model and the angular position θ(t) of the object relative
to the gripper for each case are shown in Fig. 5.

As mentioned previously, this experiment allowed us to adjust the approximate
torsional friction coefficient we obtained using the wrist-mounted force-torque sen-
sor. In our experimental trials the controller achieved the best tracking perfor-
mance with µtors = 0.643x10−3. Furthermore, the object stopped prematurely be-
fore reaching the goal angular position when the coefficient was below this optimal
value, for example with µtors = 0.3x10−3 as shown in Fig. 5. This happens because
a lower µtors magnifies the nonlinear gravity compensation term bτg in the control
law (13), causing the controller to exert excessive gripping force. Analogously, an
overestimated torsional friction coefficient, such as µtors = 1.0x10−3, reduces the
gravity compensation term and causes the object to slip past the desired angular
position. This experiment clearly illustrates how errors in µtors affect the control
performance and justifies the use of adaptive control in our approach.

Fig. 6 shows the normal force input ufn of the adaptive controller, as well as
the normal force measured by the tactile sensor fn when µtors = 0.643x10−3. The
figure shows that there is a force control error, which can be explained in part
by the tracking errors in the gripper’s internal velocity controller as evidenced in
Fig. 7 which shows differences between the commanded gripper velocity uv and the
gripper’s velocity v measured by encoder feedback. This occurs in practice because
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Figure 5: Reference angular position θm and angular position θ of the object under
different values of µtors in the control law without adaptation.
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Figure 6: Gripping force control input ufn and measured normal force fn with
µtors = 0.643x10−3.
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the internal controller’s tracking performance degrades at low velocities. We could
reduce part of the force control errors by using a more aggressive PI force controller,
but in practice this caused the object to enter the stiction regime and lag behind
the reference trajectory.

5.2 Effect of initial estimate of µtors with adaptation

We tuned the adaptation gains from (14a) and (14b) to αh = 1.5 and αb = 7.5x103

respectively and repeated the previous set of experiments to analyze the controller’s
performance when using the proposed update laws. Fig. 8 shows the object’s
angular position with different initial estimates of µtors, while keeping the controller
and adaptation gains fixed.
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µ̂tors(0) = 0.643x10−3
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Figure 8: Reference angular position θm and angular position θ of the object under
different initial estimates of µtors when using the adaptive estimators.

We observe that the adaptive controller achieves the best performance when
starting with the correct torsional friction coefficient estimate µ̂tors(0) = 0.643x10−3.
Furthermore, in contrast to the previous set of experiments, the controller man-
ages to converge to the desired angular position θd with both an underestimated
(µ̂tors(0) = 0.3x10−3) and an overestimated (µ̂tors(0) = 1.0x10−3) coefficient. In
all cases the steady state error was less than 1 degree.

Fig. 9 and 10 show the control inputs to the system when µ̂tors(0) = 0.3x10−3.
Once again, there are force control errors. As previously mentioned, the adaptive
estimates are not guaranteed to converge to the true values, and Fig. 11 confirms
this. This figure shows the torsional friction coefficient estimate µ̂tors = 0.5b̂−1

which does not reach the ground truth value.
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Figure 9: Gripping force control input ufn and measured normal force fn when
using adaptation and µ̂tors(0) = 0.3x10−3.
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Figure 10: Gripper velocity set point uv and gripper velocity v when using adap-
tation and µ̂tors(0) = 0.3x10−3.
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Figure 11: Adaptive estimate of the torsional friction coefficient µ̂tors = 0.5b̂−1.
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5.3 Change of object frictional properties

In this last set of experiments we substituted the manipulated object’s material
(µ = 0.47) with a lower friction material µ = 0.37 and a material with higher
friction coefficient µ = 1.08. Once again, we kept the controller and adaptation
gains fixed. The experimental results are shown in Fig. 12 and Fig. 13. Although
the adaptive controller shows inferior tracking performance when compared to the
previous experiments, it still converges to the desired object orientation within
acceptable steady state errors of 1.64 and 0.5 degrees respectively.
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Figure 12: Angular position θ of the object when using a new material with µ =
0.37.
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Figure 13: Angular position θ of the object when using a new material with µ =
1.08.

6 Conclusions and Future Work

We have presented an adaptive control approach for pivoting with extrinsic dexter-
ity by means of gravity and controlled slip. Given that wrongly estimated friction
coefficients are a common source of error for in-hand manipulation, we designed
an adaptive controller that accounts for errors in the torsional friction coefficient.
In our controller we use visual tracking of the object’s angular position and force
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measurements from high resolution and low noise tactile sensors. Our experimen-
tal results show how an incorrect torsional friction coefficient can have a negative
impact in the performance of a feedback linearizing controller for pivoting, yet the
proposed adaptation law compensates for this parametric error and manages to
pivot the object successfully. Our approach complements recent works on in-hand
manipulation with extrinsic dexterity since we make use of closed loop feedback
control and tactile sensing.

One of the limitations of our work is that we perform passive pivoting by keeping
the gripper static, which limits the range of possible regrasps unless we first rotate
the gripper to reconfigure its alignment with gravity. We can extend the approach
by accelerating the manipulator, reformulating the proposed adaptive controller to
cope with disturbances generated by the inertial forces. We can also extend our
approach to include prehensile pushing against external contacts, which opens the
possibility to generate also translational displacements of the grasped object in the
robot’s hand.
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