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Abstract We define a novel kernel function for finite sequences of arbitrary length
which we call the path kernel. We evaluate this kernel in a classification scenario
using synthetic data sequences and show that our kernel can outperform state of the
art sequential similarity measures. Furthermore, we find that, in our experiments, a
clustering of data based on the path kernel results in much improved interpretability
of such clusters compared to alternative approaches such as dynamic time warping
or the global alignment kernel.
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1 Introduction

Machine learning methods have had an enormous impact on a large range of fields
such as computer vision, robotics and computational biology. These methods have
allowed researchers to exploit evidence from data to learn models in a principled
manner. One of the most important developments has been that of kernel methods
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[5] which embed the input data in a potentially high-dimensional vector space with
the intention of achieving improved robustness of classification and regression tech-
niques. The main benefit of kernel methods is that, rather than defining an explicit
feature space that has the desired properties, the embedding is characterised im-
plicitly through the choice of a kernel function which models the inner product in
an induced space. This creates a very natural paradigm for recovering the desired
characteristics of a representation. Kernel functions based on a stationary distances
(usually an Lp − norm) have been particularly successful in this context [3]. How-
ever, for many application domains, the data does not naturally lend itself to a finite
dimensional vectorial representation. Symbolic sequences and graphs, for example,
pose a problem for such kernels.

For non-vectorial data, the techniques used for learning and inference are gener-
ally much less developed. A desirable approach is hence to first place the data in a
vector space where the whole range of powerful machine learning algorithms can be
applied. Simple approaches such as the Bag-of-Words model, which creates a vec-
torial representation based on occurrence counts of specific representative “words”,
have had a big impact on computer vision [18]. These methods incorporate the fact
that a distance in the observed space of image features does not necessarily reflect a
similarity between the observed scenes. Another approach, where strings are trans-
formed into a vectorial representation before a kernel method is applied, has been
the development of string kernels [14, 17]. Such kernels open up a whole range of
powerful techniques for non-vectorial data and they have been been applied success-
fully to robotics [15], computer vision [13] and biology [12]. Other related works
are based on convolution kernels [11]. Using such kernels, a vectorial representation
that respects the structure of a graph can be recovered. Another approach to define an
inner product between sequences is to search for a space where similarity is reflected
by “how well” sequences align [6, 7, 19].

In this paper, we present a new kernel for representing sequences of symbols
which extends and further develops the concept of sequence alignment. Our kernel
is based on a ground space which encodes similarities between the symbols in a
sequence. We show that our kernel is a significant improvement compared to the
state of the art both in terms of computational complexity and in terms of its ability
to represent the data.

2 Kernels and Sequences

Before we proceed with describing previous work for creating kernel induced feature
spaces for sequences, we will clarify our notation and our notion of kernels. When
discussing kernels in the context ofmachine learning, we have to distinguish between
several uses of theword kernel. In this paper, a kernel denotes any symmetric function
k : X × X → R, where X is a non-empty set [10]. A positive semi-definite (psd)
kernel is a kernel k : X × X → R such that

∑n
i, j ci c j k(xi , x j ) � 0 for any

{x1, . . . , xn} ⊂ X , n ∈ N and c1, . . . cn ∈ R. If the previous inequality is strict
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when ci �= 0 for at least one i ∈ {1, . . . , n}, the kernel is called positive definite
(pd). Further specialisations, such as negative definite (nd) kernels, exist and are of
independent interest.

While there are strong theoretical results on the existence of embeddings corre-
sponding to psd kernels [2, p. 22], non-psd kernel functions can still be useful in
applications. Examples of kernels that are known to be neither pd nor psd but which
are still successfully used in classification include [9]. On another note, there are
also kernels which are conjectured to be psd, and which have been shown to be
psd in experiments, but for which there currently is no proof for the corresponding
positiveness [1].

In this work, we consider finite sequences of symbols belonging to an alphabet
set �, i.e. s = (s1, s2, . . . , s| s |) denotes such a sequence, with si ∈ �, and where
| s | ∈ N0 denotes the length of the sequence. We denote by sa:b, with 1 � a < b �
| s |, the subsequence sa:b = (sa, . . . , sb). When the indices a or b are omitted, they
implicitly refer to 1 or | s | respectively. The inverse of a sequence s is defined by
inv(s)i = s| s |−(i−1).

In this work, we assume that we are given a psd kernel function k� : � ×� → R

describing the similarity between elements of the alphabet � and will refer to k� as
the ground kernel. Given k� , we can now define the path matrix.

Definition 1 (Path Matrix)Given twofinite sequences s, t with elements in an alpha-
bet set� and a kernel k� : �×� → R, we define the path matrix G(s, t) ∈ R| s |×| t |
by [G(s, t)]i j = k�(si , t j ).

We denote δ00
def= (0, 0), δ10

def= (1, 0), δ01
def= (0, 1), δ11

def= (1, 1) and S
def=

{δ10, δ01, δ11}. S is called the set of admissible steps. A sequence of admissible steps
starting from (1, 1) defines the notion of a path:

Definition 2 (Path) A path over am × n path-matrix G is amap γ : {1, . . . , | γ |} →
N × N such that

γ(1) = (1, 1), (1)

γ(i + 1) = γ(i) + δi , for 1 � i < | γ | , with δi ∈ S, (2)

γ(| γ |) = (m, n). (3)

| γ | and δi denote the path’s length and i th step respectively. Furthermore, we adopt
the notation γ(i) = (γX (i), γY (i)). A path determines stretches, or alignments, on
the input sequences according to sγX = (sγX (1), . . . , sγX (| γ |)) and tγY = (tγY (1), . . . ,

tγY (| γ |)).

We denote the set of all paths on a m × n matrix as Γ (m, n). Its cardinality is equal
to the Delannoy number Del(m, n).
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2.1 Sequence Similarity Measures

A popular similarity measure between time-series is Dynamic TimeWarping (DTW)
[8, 16], which determines the distance between two sequences s and t as the minimal
score obtained by all paths, i.e.

dDTW(s, t) = min
γ ∈Γ

Ds,t (γ), (4)

where Ds,t represents the score of a path γ defined by

Ds,t (γ) =
| γ |∑

i=1

ϕ(sγX (i), tγY (i)), (5)

where ϕ is some given similarity measure. However, DTW lacks a geometrical
interpretation in the sense that it does not necessarily respect the triangle inequality
[7]. Furthermore, this similarity measure is not likely to be robust as it only uses
information from the minimal cost alignment.

Taking the above into consideration, Cuturi et al. suggest a kernel referred to as
the Global Alignment Kernel [7]. Instead of considering the minimum over all paths,
the Global Alignment Kernel combines all possible path scores. The kernel makes
use of an exponentiated soft-minimum of all scores, generating a more robust result
which reflects the contents of all possible paths:

kGA(s, t) =
∑

γ ∈Γ

e−Ds,t (γ). (6)

By taking the ground kernel to be k�(α,β) = e−ϕ(α,β), kGA can be described using
the path matrix as

kGA(s, t) =
∑

γ ∈Γ

| γ |∏

i=1

G(s, t)γ(i). (7)

The leading principle in this approach is hence a combination of kernels on the
level of symbols over all paths along G(s, t). Cuturi shows that incorporating all the
elements of G(s, t) into the final results can vastly improve classification compared
to using only the minimal cost path. Furthermore, kGA is proven to be psd under the
condition that both k� and k�

1+k�
are psd [7], giving foundation to its geometrical

interpretation.
However, Cuturi’s kernel makes use of products between ground kernel evalua-

tions along a path. This implies that the score for a complete path will be very small
if ϕ(si , t j ) is sufficiently large, which leads to the problem of diagonally dominant
kernel matrices [6, 8] from which the global alignment kernel suffers. The issue is
particularly troubling when occurring at positions near the top-left or bottom-right
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corners of the pathmatrix because it will affect many of the paths. Furthermore, paths
contribute with equal weight to the value of the kernel. To reduce this effect, it is
suggested in [7] to rescale the kernel values and use its logarithm instead. We argue
that paths which travel closest to the main diagonal of the path matrix should be con-
sidered as more important than others, since they minimise the distortion imposed
on the input sequences, i.e. sγX and tγY are then most similar to s and t . To rectify
this and to include a preference towards diagonal paths, a generalisation called the
Triangular Global Alignment Kernel was developed, which considers only a subset
of the paths [6]. This generalisation imposes a crude preference for paths which do
not drift far away from the main diagonal.

In this paper, we develop a different approach by introducing a weighting of the
paths in Γ based on the number of diagonal and off-diagonal steps taken. We manip-
ulate the weights to encode a preference towards consecutive diagonal steps while
at the same time accumulating information about all possible paths. Furthermore,
by replacing the accumulation of symbol kernel responses along the path using a
summation rather than a product, the kernel’s evaluation reflects more gracefully the
structure of the sequences and avoids abrupt changes in value.

3 The Path Kernel

In this section we will describe our proposed kernel which we will refer to as the
path kernel. Figure1 illustrates the contents of a path matrix in a simplified example,
showing the emergence of diagonal patterns when the two sequences are in good
correspondence.

Table1 shows the resulting alignments associated with the paths shown in Fig. 1.
We argue that the values, the length and the location of these diagonals positively
reflect the relation between the inputs and should thus be considered in the formu-

(a) (b) (c)

Fig. 1 Illustration of the concept of paths and the contents of G(s, t) for s = “ANNA” and
t = “BANANA”. On the left, we illustrate a small number of paths which traverse G. The path
kernel makes use of these, together with all the other paths, to collect data from the matrix and to
extract a final score. In the center, we display the contents of G(s, t), assuming k�(α,β) = δαβ , i.e.
Kroenecker’s delta function. On the right, we highlight the corresponding diagonals whose number,
length and position are related to the similarity between subsequences of s and t
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Table 1 Stretches associated to the paths in Fig. 1a with the underlined substrings denoting a
repeated symbol

Stretches

γ1 A N N A A A A A A γ2 A N N N N A

B B B B A N A N A B A N A N A

γ3 A N N N N A γ4 A A A A A A N N A

B A N A N A B A N A N A A A A

Note that, even though γ2 and γ3 produce the same stretches, they traverse the matrix differently
and should thus be considered separately

lation of a good kernel. High values imply a good match on the ground kernel level,
while their length encodes the extent of the match. On the other hand, the posi-
tion relative to the main diagonal reflects how much the input sequences had to be
“stretched” in order for the match to be encountered. We wish to have a feature space
where a smaller stretch implies a better correspondence between the sequences.

Let us now define a new kernel that incorporates different weightings depending
on the steps used to travel along a path.

Definition 3 (Path Kernel) For any sequences s, t , we define

kPATH(s, t)
def=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k�(s1, t1)

+ CHV kPATH(s2:, t)

+ CHV kPATH(s, t2:)
+ CD kPATH(s2:, t2:)

| s | � 1 | t | � 1,

0 otherwise,

(8)

where CHV and CD represent weights assigned to vertical or horizontal steps and
diagonal steps respectively. By enforcing the constraints CHV > 0 and CD > CHV,
we aim to increase the relative importance of paths with many diagonal steps.

The symmetry of the kernel is easily verifiable. On the other hand, the positive
semi-definiteness of the kernel is not immediately obvious from the definition.1

3.1 Efficient Computation

Kernel methods often require the computation of a kernel function on a large dataset,
where the number of kernel evaluations will grow quadratically with the number of
data-points. It is hence essential that the kernel evaluations themselves are efficiently
computable.

Not only can the path kernel be evaluated using a Dynamic Programming algo-
rithm which avoids the expensive recursion in (8) and which achieves a computa-

1 In an extension of this work, which is currently under review, we provide a proof of the positive
semi-definiteness of our kernel.
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(a) (b)

Fig. 2 On the left, a precomputed 15 × 15 weight matrix with CH V = 0.3 and CD = 0.34 is used
to select a 10 × 12 weight matrix which can then be used to evaluate kPATH(s, t) for input sizes
| s | = 10 and | t | = 12. On the right, the inversion invariant ω̃PATH corresponding to k̃PATH for the
same input sizes is displayed

tional complexity comparable with DTW and kGA, but it can also be computed very
efficiently using the following alternative formulation:

kPATH(s, t) =
∑

i j

G(s, t)i j ωPATHi j , (9)

[ωPATH]i j =
min (i, j)−1∑

d=0

Ci+ j−2−2d
HV Cd

D(d, i − 1 − d, j − 1 − d)!. (10)

The usefulness of (9) comes from the fact that the contents of the weight matrix
ωPATH do not really depend on s, t , and thus ωPATH can in fact be pre-computed up to
an adequate size2 (Fig. 2). After this, the evaluation of the kernel for input of sizes m
and n is achieved by simply selecting the sub-matrix ranging from (1, 1) to (m, n);
the remaining matrix element-wise multiplication can then be efficiently carried out.
By taking advantage of this, one can evaluate the kernel at speeds depending only on
the speed of the evaluation of G and the speed of a simple matrix multiplication (with
the initial overhead consisting of the pre-computation of ωPATH). The weight matrix
can also be computed through an efficient and very simple Dynamic Programming
algorithm similar to the one which can be used to evaluate the kernel itself.

We call a kernel satisfying k(s, t) = k(inv(s), inv(t)) inversion invariant. If a
kernel k does not naturally have this property, it can be enforced by replacing k with

k̃(s, t) = 1

2
[ k(s, t) + k(inv(s), inv(t))]. (11)

2 For any specific dataset, that would be the length of the longest sequence.
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The path kernel is not originally inversion invariant, but invariance can be enforced
without the need for a double computation of the kernel for each evaluation. This is
done by modifying the selected sub-matrix of ωPATH as follows: for any two inputs
with lengths m and n, we replace the weight matrix ωPATH by

[ω̃PATH]i j = 1

2

[
ωPATHi j + ωPATHm−i+1,n− j+1

]
, (12)

and then proceed using this weight matrix.

3.2 Ground Kernel Choice

The path kernel is based on a ground kernel which, apart from being a psd kernel
function, is not constrained in any other way. However, we show in this paragraph
that an arbitrarily k� may lead to undesirable results.

Assume an alphabet and a ground kernel such that α,β ∈ �, k�(α,α) = 1,
k�(β,β) = 1 and k�(α,β) = −1. Given the input sequences s = (α,β, . . . ,α,β)

and t = (β,α, . . . ,β,α), one may be inclined to say that s and t are very similar
because each can be obtained from the other by cyclically shifting the symbols
by one position. However, the contents of G(s, t) show a collection of ones and
negative ones organised in a chessboard-like disposition. This obviously leads to
heavy fluctuations during the computation of kPATH(s, t) and to potentially very small
values. Furthermore, the issue is present even in the computation of kPATH(s, s) and
kPATH(t, t) which is not desirable under any circumstance. This problem is however
easily rectifiable by considering only ground kernels that yield non-negative results
on elements of �.

4 Experiments

In this section, we present the results of experiments performed with the proposed
kernel. In particular, we perform two separate quantitative experiments that, in
addition to our qualitative results, shed some light on the behaviour of the proposed
method in comparison to previous work. We will compare our approach to kGA as
well as the non-psd kernel obtained by using the negative exponential of the DTW
distance,

kDTW(s, t) = e−dDTW(s,t). (13)

In thefirst experiment,wegenerate eight different classes of uni-variate sequences.
Each class consists of a periodic waveform namely ±sine, ±cosine, ±sawtooth
and ±square. From these, we generate noisy versions by performing three different
operations:
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1. The length of the sequence is generated by sampling from a normal distribution
N (100,σ2

l ), rounding the result and rejecting non-positive lengths.
2. We obtain an input sequence as | s | equidistant numbers spanning 2 periods of

the wave; we then add to each element an input noise which follows a normal
distribution N (0,σ2

i ).
3. We feed the noisy input sequence to the generating waveform and get an output

sequence, to which we add output noise which follows a normal distribution
N (0,σ2

o).

Figure3 shows the sequences for the parameter setting σ{l,i,o} = 5. This corresponds
to the setting which we will use to present our main results.

The path kernel has two different sets of parameters: the ground kernel and the
weights associated with steps in the path matrix. In our experiments, we use a simple
zero mean Gaussian kernel with standard deviation 0.1 as ground kernel. The step
weights CHV and CD are set to 0.3 and 0.34 respectively. We use the same setting
throughout the experiments. The behaviour of the kernel will change with the value
of these parameters. A complete analysis of this is however beyond the scope of this
paper. Here, we focus on the general characteristics of our kernel which summarises
all possible paths using step weights satisfying CHV < CD—implying a preference
for diagonal paths.

In order to get an understanding of the geometric configuration of the data that
our kernel matrices corresponds to, we project the data onto the two first principal
directions as determined by each of these kernels. The result can be seen in Fig. 4.
It is important to note that, as the DTW kernel has negative eigenvalues, it does not
imply a geometrically valid configuration of datapoints in a feature space.

From Fig. 4, we get a qualitative understanding of how the induced feature spaces
looks like. However, a representation is simply the means to an end and to be able
to make a valuable assessment of its useability, we need to use it to achieve a task.
We do so through two different experimental setups: The first is meant to test the
discriminative capabilities of the representation; the second evaluates how well the
representation is suited for generalisation.

In order to test the discriminability of the feature space generated by the path
kernel, we perform a classification experiment using the same data as explained
above, and where the task is to predict the generating class of a waveform. We
feed the kernel matrix into an SVM classifier [4], use a 2-fold cross-validation, and
report the average over 50 runs. Due to the negative eigenvalues, the classification
fails for the DTW kernel. For this reason, we only present results for the remaining
two kernels. In Fig. 5a, the results for the classification with increasing noise levels
are shown. For moderate noise-levels (up to σ{l,i,o} = 5), the global alignment and
the path kernel are comparable in performance, while—at a higher noise level—the
performance of the global alignment kernel rapidly deteriorates and at σ{l,i,o} = 9
its performance is about chance, while the path kernel still achieves a classification
rate of over 80%.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3 The figure above shows the eight different waveforms used for the classification for a noise
level corresponding to σ{l,i,o} = 5. The golden curve depicts the base waveformwithout noise while
the blue and red curves show the shortest and the longest noisy example respectively. The black
curves display the remaining examples in the database
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 The above figure displays the two dimensional principal subspace for the DTWKernel (top),
Global Alignment Kernel (middle) and the Path Kernel (bottom). The left column represents data
with generation noise σ{l,i,o} = 2, while, in the right column, the noise is increased to σ{l,i,o} = 5,
corresponding to the waveforms in Fig. 3. The different waveforms are displayed as follows: sine
and-sine as a magenta circle and a green square, cosine and-cosine as a pink pentagon and a yellow
star, sawtooth and-sawtooth as a light-blue hexagon and an orange diamond and square and-square
as a blue and a red triangle respectively
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The classification experiment shows that the path kernel significantly outper-
formed the global alignment kernel when noise in the sequence became significant.
Looking at the feature space, depicted in Fig. 4, we see that the path kernel encodes
a feature space having more clearly defined clusters corresponding to the different
waveforms. Additionally, the clusters also have a simpler structure. This signifies
that the path kernel should be better suited for generalisation purposes, where it is
beneficial to have a large continuous region of support which gracefully describes
the variations in the data—rather than working in a space that barely separates the
classes.

We now generate a new dataset consisting of 100 noisy sine-waves (σ{l,i,o} = 5)
shifted in phase between 0 and π. The data is split uniformly into two halves and the
first is used for training and the second for testing. We want to evaluate how well the
kernel is capable of generalising over the training data. To that end we regress from
the proportion of the training data to the test data and evaluate how the prediction error
changes by altering this proportion. The prediction is performed using simple least-
square regression over the kernel induced feature space. Figure5b shows the results
using different sizes of the training data; The path kernel performs significantly better
compared to the global alignment kernel and the results improve with the size of the
training dataset. Interestingly, the global alignment kernel produces very different
results dependent on the size of the training dataset indicating that it is severely
over-fitting the data.

(a) (b)

Fig. 5 The left figure displays the classification rate for predicting the waveform type using an
SVM classifier in the feature space defined by the Global Alignment Kernel (blue) and the Path
Kernel (green). The x-axis depicts the noise level parametrized by σ{l,i,o}. The right figure depicts
the RMS error when predicting the phase shift from a noisy sine waveform by a regression over
the feature space induced by the kernels. The red bars correspond to the Global Alignment Kernel
and the green bars to the Path Kernel. The y-axis shows the error in percentage of phase, while the
x-axis indicates the size of the training dataset. The test set has a constant size of 50
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5 Conclusions

In this paper, we have presented a novel kernel for encoding sequences. Our kernel
reflects and encodes all possible alignments between two sequences by associating
a cost to each. This cost encodes a preference towards specific paths. The kernel is
applicable to any kind of symbolic or numerical data as it requires only the existence
of a kernel between symbols. We have presented both qualitative and quantitative
experiments exemplifying the benefits of the path kernel compared to competing
methods. We show that the proposed method significantly improves results both
with respect to discrimination and generalisation especially in noisy scenarios. The
computational cost associated with the kernel is considerably lower than competing
methods, making it applicable to data-sets that could previously not be investigated
using kernels.

In this paper, we have chosen a very simple dataset in order to evaluate our
kernel. Given our encouraging results, we are currently working on applying our
kernel to more challenging real-world datasets. Additionally, we are investigating
the possibility of optimizing the kernel parameters to further improve classification
results.
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