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Abstract—This work introduces GraphDLO, a graph-based
learning framework for predicting the future trajectories of
Deformable Linear Objects (DLOs) under both prehensile (grasp-
ing) and non-prehensile (pushing) interactions. A data set col-
lected over 300 hours of interactions among each of three
distinct rope objects is collected remotely using a cloud robotics
platform and automatically labeled with rope and gripper state
information from perception. A Graph Neural Network (GNN) is
trained on this dataset to take as input the current rope state and
a gripper trajectory to predict a trajectory of future rope states.
The GraphDLO-predicted trajectories exhibit close qualitative
agreement with ground truth trajectories across a prediction
horizon of up to ten steps, demonstrating its potential for accurate
long-horizon prediction in deformable object manipulation.

I. INTRODUCTION

Robots interact with increasingly diversified objects in the
real world. Manipulation robots–including humanoids, ma-
nipulation arms, manipulation drones, and other dexterous
devices–will soon be ubiquitous, and the types of objects with
which they interact must become better understood for the
automation to be worthwhile. One category of manipulable
objects present in nearly every human environment is De-
formable Linear Objects (DLOs). Future autonomous manip-
ulation systems may manipulate DLOs into desired shapes to
route cables [1], suture wounds [2], install wires [3], knit or
braid string [4], or tie knots [5], [6]. One open problem specific
to DLO shape control with dexterous robots is trajectory
prediction. This problem is difficult because the shape of the
entire object may change as the robot grasps and moves only
one part of it, where the magnitude of the change in shape
at points along the object typically depends on their distances
to the rigidly grasped point [7], [8]. To address this problem,
this work makes the following listed contributions:

1) A graph-based dynamics model that explicitly encodes
the grasped region of the deformable linear object
(DLO), enabling accurate prediction of future DLO
states given the current configuration and a planned
gripper trajectory.

2) A scalable framework for automatic labeling of planar
rope configurations during real-world robotic manipula-
tion, implemented on a cloud robotics platform to facil-
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Fig. 1. Predicting DLO Trajectories with GraphDLO. GraphDLO predicts
the future trajectory of a DLO, X̂

t+1:t+T+1
, given its current state Xt and

a sequence of actions at:T . Predicted states are visualized as filled circles,
where larger and brighter circles denote states closer in time, and smaller,
darker circles represent states further in the future. The color gradient of
DLO states is scaled from teal to gold based on the node order, indicating the
structure in the representation of the DLO. Gripper actions are visualized as
planar Cartesian axes at each step, with the red x-axis and the green y-axis
indicating the gripper orientation.

itate large-scale data collection for learning deformable
object dynamics.

3) A set of ablation studies highlight the trade-offs between
model performance and prediction horizon, providing
insights into the temporal limits of dynamics-based
forecasting for DLOs.

II. RELATED WORK

Graph-based representations enable local state information
sharing through connected edges, making them well-suited for
modeling the dynamics of non-rigid and granular objects [9]–
[12]. Prior work on learning object dynamics has primarily
focused on revealing properties such as inertial parameters
or friction through interaction [13], [14], or applying an-
alytical techniques like mass-spring systems and position-
based dynamics (PBD) to evolve object shape over time [15]–
[18]. In contrast, GraphDLO learns to directly predict rope
trajectories—tasks that traditionally relied on numerically in-
tegrating classical dynamics models, often with trade-offs
between accuracy and computational cost. Accurate prediction
of DLO trajectories supports a range of downstream applica-
tions, including shape control and planning [12], [19]–[22],
digital twin development [23], [24], and physics-informed
state estimation [11], [25]–[28]. Predicting DLO trajectories
also enables longer-horizon planning in environments with
obstacles or interaction constraints [29], [30].

Although recent works have demonstrated success in learn-
ing deformable dynamics, they predominantly rely on syn-
thetic datasets generated in physics-based simulators [16],
[31]–[33]. The models trained on synthetic data are deployed
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Fig. 2. Collecting Data at Scale with CloudGripper. Three grippers from the CloudGripper cloud robotics platform are used to collect interaction data
for three different DLOs. In each workcell, a base-mounted camera captures an occlusion-free bottom-up view of the DLO resting on a transparent plexiglass
plate. A 3D-printed enclosure surrounds the manipulation area to constrain the rope within the gripper’s workspace during interaction.
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Fig. 3. Estimating Large-Scale Data Statistics. (Top left) Each interaction
episode spans approximately 10 minutes and consists of up to 100 commanded
gripper waypoints. (Top right) During automated data collection, rope length
is estimated in each image as a proxy for rope labeling accuracy. The resulting
distribution of measured rope lengths across all episodes remains tightly
concentrated, indicating consistent and reliable labeling. (Bottom) Three ropes
of approximately equal length but varying thickness are used throughout data
collection and model training.

directly on data acquired in the real world for inference, and
it is still unclear how transferrable this approach is when
more complex environment effects such as non-prehensile
interaction with environment obstacles are introduced. Ad-
vances in cloud robotics provide a promising alternative
by enabling large-scale, real-world data collection through
distributed fleets of identical robots operating in synchro-
nized environments [34]. This capability is especially valuable
for gathering datasets involving rich contact dynamics or
complex deformable behaviors [35]–[38]. Additionally, re-
cent topology-grounded developments in DLO perception and
tracking enable automatic labeling of such data at scale [39],
[40].

While many robot learning approaches for deformables have
focused on non-prehensile pushing interactions [10], [34],
[41], [42], key challenges remain unaddressed. One such gap is
preserving topological consistency, which is essential for many
DLOs that are visually or functionally asymmetric along their
length. Representing a DLO as an unordered set of points can
lead to ambiguities where point order inverts between time
steps despite the object itself remaining unchanged, particu-
larly under rotation. Furthermore, non-prehensile manipulation
does not capture rotational dynamics within a grasp. This work
directly addresses these limitations by incorporating grasp-
aware modeling, ordered graph structures, and real-world
physical interactions into deformable object prediction.

III. THE GRAPHDLO METHOD

The GraphDLO model predicts a trajectory of future states
of a DLO based on its current state, the grasp location, and the
planned gripper trajectory as shown in Figure 1. In contrast
to prior approaches that use on past object states and gripper
motions to forecast the next state, GraphDLO relies on the
Markov assumption and models the future states as dependent
solely on the current state [10], [42]. This simplifies the input
representation and reduces the dimensionality of the model.

A. Graph Model

For a planar DLO represented as a graph of N nodes and
N−1 edges in two dimension, the GraphDLO algorithm learns
to predict the 2D trajectories of nodes as

X̂
t+1:t+T+1

= f(Xt,gt,at:t+T ), (1)

where X̂
t+1:T+1

⊂ [0, 1]T×N×2 is the predicted trajectory,
Xt ⊂ [0, 1]N×2 is the estimated DLO state, gt ⊂ {0, 1}N
encodes which node is grasped such that

∑
i g

t
i = 1, and

at = {xt
g, y

t
g, θ

t
g} ⊂ [0, 1]1×3 is the gripper state. All model

inputs and outputs are normalized to prevent features with
larger scales from dominating in backpropagation to improve
convergence speed and stability. The superscript t : t + T
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Fig. 4. Automating DLO Prehensile Interactions. The data generation process with CloudGripper automates prehensile manipulation of a rope across
hundreds of interaction episodes. Dataset collection for a single episode proceeds as follows: the configuration of the DLO is first estimated in image space
as an ordered sequence of pixel coordinates, captured from a base-mounted camera that provides an unobstructed bottom-up view [39], [40]. These pixel
coordinates are mapped to the gripper frame using extrinsic calibration from pixels in the image space of the base camera to positions in the workspace of
the gripper. A planar grasp is planned by uniformly sampling a point along the rope and computing a grasp pose based on the local geometry around the
selected point. Once the rope is grasped, the robot executes a sequence of randomized planar translations and rotations, enabling the generation of diverse
rope configurations under realistic manipulation. After each executed gripper waypoint, the system records the estimated DLO state in both image and gripper
space, the base camera image, and the position of the gripper in both image and gripper frames.

indicates a temporally consecutive sequence indexed at start
time t and with horizon T , so

X̂
t+1:t+T+1

=
[
X̂

t+1
, . . . , X̂

t+T+1
]⊺

at:t+T =
[
at, . . . ,at+T

]⊺ . (2)

This work uses K-hop message passing to model interactions
in the graph. First, the degree matrix D is computed from the
adjacency matrix A and N (i), the set of neighbors for node
i, where each diagonal element Dii represents the number of
neighbors for node i, computed as

Dii =
∑

j∈N (i)

Aij . (3)

The adjacency matrix A can cause large variations in node
features after aggregation, and nodes with many connections
(high Dii) can dominate. To stabilize aggregation, symmetric
normalization is applied to the adjacency matrix as

Ã = D− 1
2AD− 1

2 (4)

where D− 1
2 is the inverse square root of the degree matrix

and is computed as

D
− 1

2
ii =

1√
Dii

, (5)

where if Dii = 0, D− 1
2

ii is set to 0 to avoid division by zero.
If an edge exists between node i and node j, its weight is
scaled by D

− 1
2

ii D
− 1

2
jj to distribute information evenly across

all nodes. After computing Ã, the node states are updated for
k = 1, . . . ,K as

xk+1
i =

∑
j∈N (i)

Ãijx
k
j . (6)

After message passing, the feature vector Ft =
[Xt,gt,at:t+T ] is passed through a neural network with
hidden layers h1 ⊂ [0, 1]T,N×2+3×T with structure

h1 = ReLU(W1F
t + b1)

h2 = ReLU(W2h1 + b2)

X̂
t+1:t+T+1

= W3h2 + b3

. (7)

B. Loss Function

The loss function is selected to balance the desire for the
model to learn DLO states that are low in distance to the
target states as well as shapes that are similar in geometry to
the target shapes. This is achieved by combining the Mean-
Squared Error (MSE) with the contrastive Cosine Embedding
(CE) loss functions. The MSE loss is

LMSE(X̂
t
,Xt) =

1

N

N∑
i=1

(
x̂t
i,x

t
i

)2
. (8)

The CE loss is given for margin λ by

LCE(X̂
t
,Xt, lt) =

{
1− SC(X̂

t
,Xt) | lt = 1

max(0, SC(X̂
t
,Xt)− λ) | lt = −1

(9)
where the label, lt ∈ lt ⊂ {−1, 1}N , encourages the predicted
and target vectors to be as similar as possible for l = 1 and
penalizes the proximity of the prediction and target for l = −1,
and the cosine similarity, SC is

SC(X̂
t
,Xt) := cos(Θt) =

X̂
t
·Xt

∥X̂
t
∥∥Xt∥

. (10)

The final loss function is

L = αLMSE + (1− α)LCE , (11)

for hyperparameter α weighting each loss component.

IV. DATA COLLECTION

Over 300 hours of prehensile and non-prehensile inter-
actions between a gripper and each of three cotton ropes
were collected using the CloudGripper cloud robotics platform
shown in Figure 2. While all the ropes share similar lengths,
they differ in thickness and stiffness as shown in Figure 3.
To break object symmetry, one tip of each rope was marked
with red tape. The data collection process was automated to
minimize human supervision. Initial object and tip masks were
obtained using color and contour segmentation with object-
specific thresholding, followed by refinement with the the



Fig. 5. Visualizing GraphDLO Predictions. Each panel shows an initial rope configuration (opaque rope) at t. The GraphDLO-predicted trajectory for
t+ 1 : t+ T + 1 is overlaid as dots, and the ground truth state at t+ 1+ 5 and t+ 1+ 10 (for T = 10) is overlaid as semi-transparent. These predictions
predictions demonstrate GraphDLO’s ability to closely align with real-world trajectories for three different ropes.

Segment Anything Model (SAM) 2 predictor in instances
where the length of the skeletonized mask fell outside an
object-specific threshold length [43]. Given a binary object
segmentation mask Mt ∈ {0, 1}H×W , a deformable one-
dimensional object routing algorithm was used to skeletonize
the mask, extract connected chains from the skeleton, and
sample N evenly-distributed nodes. Each node is represented
as xt

i ∈ Xt ⊂ [0, 1]
N×2 in Cartesian coordinates and

(vti , u
t
i) ∈ It (vti , u

t
i) ⊂ {0, . . . ,H − 1} × {0, . . . ,W − 1}N

in pixel space along the skeleton [39], [40]. The length of
the rope serves as a proxy for segmentation quality and was
used to constrain rope state labels during data collection. The
distributions of rope lengths in pixel coordinates for the three
objects are shown in Figure 3.

To enable pixel-to-position transformations, planar hand-
eye calibration was performed using a red calibration cube
translated through a dense grid of gripper positions. Each
Cartesian gripper location was mapped to the corresponding
pixel centroid of the cube, forming lookup tables for bidi-
rectional interpolation between pixel and world coordinates.
This calibration is limited to planar mappings, so all rope
configurations were constrained to lie in the same plane.
During interaction, the gripper grasp point is selected by
sampling a node index ig ∼ U(0, N − 1), where the pixel
coordinate of the grasp node is

(
uig , vig

)
. The grasp orienta-

tion is computed as θg = mod(θig , π), where θig is the local
rope orientation at node ig , ensuring valid orientations for the
CloudGripper hardware. The gripper executes the grasp by
rotating to θig and moving to

(
xig , yig

)
= M−1

(
uig , vig

)
before closing. It then follows a sequence of randomly sampled
waypoints, interpolating each transition into 10 intermediate
poses. At each waypoint, rope and gripper states (in both
pixel and Cartesian space) along with synchronized images
and timestamps are recorded. The full data generation process
for one episode is summarized in Figure 4.

V. DEMONSTRATION AND LIMITATIONS

The performance of the GraphDLO algorithm is demon-
strated on trajectory predictions for the thin, standard, and
thick ropes. As shown in the qualitative results shared in
Figure 5, GraphDLO accurately predicts the rope trajectories
sampled from the validation data.

However, the model occasionally exhibits uncertainty in
predicting DLO shapes, particularly near where the rope
contacts the fixed enclosure. This may stem from the fact that
the enclosure is not explicitly represented in the training data
or modeled within GraphDLO. Future work could explore in-
corporating the enclosure as part of the action or environmental
state to assess its effect on training efficiency and prediction
accuracy. Additionally, the validity of the Markov assumption
warrants further investigation for objects that accumulate in-
ternal energy—such as stiff deformable materials or granular
media—where system dynamics may exhibit temporal depen-
dencies. In the quasi-static demonstrations considered here,
the Markov assumption holds reasonably well, but it may not
generalize to more dynamic manipulation tasks.

A further limitation of the current method is the absence
of 3D shape information. Future work could enhance spatial
perception by stereo-matching the top and base cameras of
the CloudGripper platform, incorporating foundation models
such as Depth Anything or FoundationStereo for depth es-
timation [44]–[46]. This would enable the development of
a 3D state estimator capable of capturing non-planar object
configurations, facilitating downstream tasks such as knot
tying or winding around a winch.

VI. CONCLUSION

This work introduced GraphDLO, a graph-based learning
framework for predicting the future trajectories of a DLO
given its current state, where it was grasped, and a grip-
per trajectory. By using this Markov assumption, GraphDLO
simplifies the prediction problem while maintaining accu-
racy in quasi-static manipulation. The GraphDLO model was
trained using over 300 hours of diverse prehensile and non-
prehensile planar interactions collected autonomously with the
CloudGripper platform, featuring three ropes with varying
physical properties. Current limitations highlight opportunities
for future work, including explicit modeling of workspace con-
straints, investigating the limits of the Markov assumption in
more dynamic settings, and incorporating 3D shape estimation
through stereo depth models. These directions will move us
closer to generalizable, structured robot learning for real-world
deformable object manipulation tasks such as knot tying, cable
routing, and textile handling.
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