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Hierarchical Fingertip Space: A Unified Framework

for Grasp Planning and In-Hand Grasp Adaptation
Kaiyu Hang, Miao Li, Johannes A. Stork, Yasemin Bekiroglu, Florian T. Pokorny,

Aude Billard and Danica Kragic

Abstract—We present a unified framework for grasp planning
and in-hand grasp adaptation using visual, tactile and proprio-
ceptive feedback. The main objective of the proposed framework
is to enable fingertip grasping and address problems of changed
weight of the object, slippage and external disturbances. For this
purpose, we introduce Hierarchical Fingertip Space (HFTS) con-
cept as a representation enabling optimization for efficient grasp
synthesis. Grasp synthesis is followed by a grasp adaptation step
that consists of both grasp force adaptation through impedance
control and regrasping/finger gaiting when the former is not
sufficient. Experimental evaluation is conducted on an Allegro
hand mounted on a Kuka LWR arm.

Index Terms—Fingertip grasping, Hierarchical Fingertip
Space, grasp synthesis, grasp adaptation

I. INTRODUCTION

G
RASP planning and in-hand grasp adaptation are two

complex problems that have commonly been studied

separately. Lots of contributions to these problems have been

made during the past two decades considering stability model-

ing and estimation, task based grasping, object representation,

grasping synergies and grasp adaptation [1]–[10].

In this paper, we present a framework for fingertip grasping

considering an integrated approach to grasp planning and in-

hand grasp adaptation. The main objective of the framework

is to address the problem of grasp instability due to problems

such as changed weight of the object, slippage or external

disturbances such as collision. The framework implements

both grasp force adaptation through impedance control and

regrasping/finger gaiting when the former is not sufficient. We

integrate our previous work on Hierarchical Fingertip Space

(HFTS) based grasp synthesis [11] and grasp adaptation [9].

The approach consists of i) a pre-grasping phase executing

grasp synthesis on an efficient representation including both

object and hand properties, ii) grasp execution, and iii) a post-

grasping phase where tactile feedback and experience are used

for in-hand grasp adaptation, see Fig. 1 and Fig. 2.

In the pre-grasping phase, grasp synthesis is formulated

as a combinatorial optimization problem considering grasp

stability, contact locations and finger gaiting in an integrated

manner. In the post-grasping phase, tactile feedback provides

information of the stability of the executed grasp. An offline
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Fig. 1. A visualization of the proposed Hierarchical Fingertip Space concept:
Initial fingertip locations are determined by optimizing grasp stability and
adaptability using a hierarchical discretization of the object surface and an
impedance controller is used to balance grasping forces. If a large disturbance
occurs, the grasp is adapted by fingertip gaiting to maintain grasp stability.
The new fingertip location is computed using an optimization in the HFTS.

learned probabilistic model is used to assess the grasp stability

and initiate an adaptation of grasp forces, followed by finger

gaiting if needed. To the best of our knowledge, this is so far

the only system that accomplishes grasp synthesis, stability

estimation, online replanning and in-hand adaptation in a

unified framework and evaluated on a real physical system.

Compared to the state of the art and our previous work in

[11] and [9], our integrated system:

• closes the loop between grasp planning and control

through stability estimation and finger gaiting;

• introduces a Gaussian Process-based cluster analysis for

the Hierarchical Fingertip Space representation that is

considering surface properties of objects and viable con-

tact locations;

• optimizes grasp adaptability and demonstrates informed

finger gaiting by considering viable hand configurations

and object shape knowledge.

We review the related work in Sec. II and present the

methodology in Sec. III, Sec. IV and Sec. V. We evaluate

in Sec. VI and then conclude in Sec. VII.



2 Preprint Submitted to IEEE TRANSACTIONS ON ROBOTICS

Pre-Grasping Post-Grasping +
Augmented Fingertip

Space
GP Based Clustering for

Hierarchical Fingertip Space

GP Clustering

Hierarchy

Adaptability Prioritized
Reachability Grasp Optimization

Impedance Control
in Virtual Frame

Probabilistic Model for Stability Estimation 
and Grasp Adaptation

Monitor
Stability

Stable
?

Keep
Monitoring

Yes

No

Adapt
Stiffness

?
YesAdapt

StiffnessKeep
Monitoring

No Fingertip Gaiting
in HFTS

Fingertip Gaiting

Keep
Monitoring

Grasping

Fig. 2. Schematic overview of the system: Pre-grasping: After the Hierarchical Fingertip Space is generated, grasps are synthesized by a multi-level refinement
strategy. Grasping: The synthesized hand configuration is used to execute the grasp. Post-grasping: Once tactile feedback is available, grasp stability is monitored
by a learned probabilistic model. If a grasp is estimated as unstable, the stability is maintained through force adaptation or finger gaiting.

II. RELATED WORK

The area of object grasping covers several problems: grasp

stability analysis, data-driven grasp synthesis and planning,

object and task representation, grasp adaptation [6], [10], [12]

etc. Although each of these have been studied extensively dur-

ing the past couple of decades there are rather few systems that

have addressed grasp synthesis and in-hand grasp adaptation

in an integrated manner.

In terms of object representation, there are many examples

of works that rely on encoding shape properties of objects:

Reeb Graph [13], Medial Axis [14], [15], hierarchical box

decomposition [16], super-quadrics [17]–[20]. More recent

work demonstrates topological analysis of shape for grasping

and caging [21], [22]. Our HFTS proposes a hierarchical

method for shape representation that encodes both the global

and local shape of the object.

Classical work formulates contact-level grasp synthesis

as an optimization problem [8], [12], [23]–[27] for which

the objective—grasp stability—is commonly performed using

force analysis in the contact wrench space [28]. The problem

of estimating feasible hand configurations has also been ad-

dressed in this context [2], [29]. To account for uncertainties

in physical properties of objects, grasp friction sensitivity [30]

and independent contact regions [31] have been investigated.

Our approach formulates fingertip grasping as an optimization

problem considering grasp stability, adaptability and hand

reachability to prepare a grasp for future adaptive execution

against physical uncertainties.

Approaches to force based grasp control range from geome-

try based analytic methods [32]–[34] to learning-based frame-

works for force optimization [35], [36]. In-hand manipulation

has been addressed as finger gaiting with a rolling contact

model and quasi-static assumption [37], [38]. Hybrid position

and force control has also been addressed [39]–[42] as well as

impedance control [43]–[46]. Our approach allows for grasp

stabilization through both contact force adaptation and finger

gaiting planned in real-time using tactile feedback and the

proposed Hierarchical Fingertip Space.

In realistic tasks, the ability to retain a stable grasp on an

object is an integral property of robust systems. A grasp orig-

inally estimated as stable may be perturbed while performing

a manipulation with the held object. This is also valid for

cases where some properties of the object change - weight can

change if a glass held by the robot gets filled, environmental

changes can affect friction coefficients, collision may cause

slippage, etc. In addition, many of these properties may not

be exactly known to start with. Thus, in-hand grasp adaptation

may be needed after a grasp has been applied on an object. For

this purpose, relying on visual feedback is not sufficient and

many of the recent approaches facilitate haptic and propriocep-

tive information [7], [47]–[53]. Finger gaiting may be further

required when applying higher grasping force does not suffice

[9], [54]. Our work here builds upon [9], [54] and additionally

allows for replanning during grasp execution.

III. HIERARCHICAL FINGERTIP SPACE AND GRASP

OPTIMIZATION

In the pre-grasping phase, we formulate fingertip grasp

synthesis as an optimization problem considering each object

represented as a point cloud P = {pi ∈ R
3 | i ∈ {1, ..., np}}.

We seek m contact locations, Cg = {c1, ..., cm|ci ∈ P}, on

the object surface and a hand configuration, Jg ∈ R
d where

d are controlled joint angles.

There are two concepts we define: Fingertip Space and Hi-

erarchical Fingertip Space (HFTS). Fingertip Space represents

a finite set of contacts on an object surface that are locally flat

and large enough for a fingertip [11]. We denote the Fingertip

Space as Φ(P) = {φ1, ..., φnf
} ⊂ P and an element of this set

φi is called a Fingertip Unit. Fingertip Space Φ is parametrized

by locations and normals of Fingertip Units. We extract the

Φ(P) from P based on the estimated surface curvature from a

set of points within one fingertip size1 r, around the potential

contact, Nr(pi) ⊂ P . The fingertip space of P is given by

Φ(P) = {φi | K(Nr(φi)) ≤ κ, φi ∈ P} (1)

where K(Nr(pi)) is the local surface curvature estimated from

Nr(pi) and κ ∈ R is the empirically determined curvature

threshold. In the rest of this paper, we write Φ instead of

Φ(P). Fig. 3(left) shows an example of Fingertip Space. To

enable finger gaiting, we want our Fingertip Space to encode

the space around each Fingertip Unit in an efficient manner.

To achieve this, we put a penalty term on admissible regions

1For the SynTouch sensor used in this work, the fingertip size r is 14mm,
http://www.syntouchllc.com/
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Fig. 3. Left: Fingertip Space with attached penalties rendered by jet colormap,
in red are points that have been filtered out by Eq. (1), note that there are
perception noise in planar areas. Middle: GP for the spray model represented
by 20 cluster centers. Right: partitions of fingertip units rendered with different
colors.

using a logistic function. Let c(φi) ∈ P \ Φ be the closest

point to Fingertip Unit φi that has been rejected by Eq. (1),

the penalty wi is computed as:

wi =
1

1 + e−γ‖φi−c(φi)‖
(2)

where γ ∈ R
+ is an elasticity factor, see Fig. 3(left).

A. Multilevel refinement of Fingertip Space

Given the large number of Fingertip Units per object,

formalizing grasp optimization on all combinations of these

is computationally impractical. A more feasible strategy is

to apply Surrogate Models or multilevel refinement [55],

[56], that recursively approximate the original optimization

problem in a hierarchy of simpler, more tractable problems i.e.

surrogate models. We first explain grasp synthesis for a single

fingertip contact optimization (gaiting) and then continue with

optimization for multiple fingertip contacts.

Surrogate approximation of Φ is constructed by recursively

grouping Fingertip Units by cluster analysis using geometric

properties. For the optimization of a single contact in Φ
we construct a hierarchy of surrogate approximations of Φ
(see Fig. 4) as a similarity-based graph GΦ = (EΦ, VΦ),
with the hierarchy levels i ∈ {0, . . . , l − 1} representing

different scales of surrogate approximations. Φ is recursively

partitioned into smaller sets of fingertip units, denoted as

φ̂i,j ⊂ Φ, and is represented as a node φi,j ∈ VΦ in graph

GΦ, where i is the level of φi,j in the hierarchy and j is

the index of the partition in level i. We partition the set

Φ in a top-down manner, with parent φi,j nodes split into

children nodes if |φ̂i,j | > 1. Ultimately, the bottom level

of GΦ consists of nodes representing single fingertip units,

|φ̂0,j | = 1. Experimentally and as shown in Fig. 4, the number

of partitioning centers for the second top level is set to 20 and

in the remaining levels to 4 children similar to [8].

Given real sensor data, there is noise associated with the

computation of surface normals. To address this, we employ

a Gaussian process based filter with Thin Plate Spline kernel

[57]. Higher sampling frequency for GP centers is used in

areas of higher curvature, see Fig. 3(middle). The distribu-

tion of centers captures the geometric similarities (locations

and normals) and therefore relate to the similarities in the

grasp wrench space [58]. GP partitioning is regulated using

Fingertip hierarchy

Parent nodes

Fig. 4. Surrogate models represented as a graph. Fingertip unit partitions are
represented as nodes in different levels of the hierarchy and the connectivities
in this graph are represented by edges. Extra connectivities defined by Eq. (3)
are exemplified in level l− 3 for φl−3,1, with red edges for 2 hops and blue
edges for 4 hops.

a threshold Tp, so that if |φ̂i,j | ≤ Tp, a node is not further

divided by GP partitioning but it is split up into all its

fingertip units. Nodes consisting of single fingertip units are

copied to the next level as long as some other nodes can be

partitioned. This guarantees a balanced partitioning tree, and

hence a valid surrogate approximation for every level in the

hierarchy. As discrete optimization relies on relevant neighbors

in the solution space, we introduce connectivity by introducing

additional edges between nodes and their siblings into EΦ.

More precisely, the extended edge set consists of parent-child

edges and sibling-edges EΦ = EP
Φ ∪ ES

Φ which are given as:

EP
Φ = {{φi,j , φi−1,k} ∈ VΦ × VΦ | φ̂i−1,k ⊆ φ̂i,j}

ES
Φ = {{φi,j , φi,k} ∈ VΦ × VΦ | hop(φi,j , φi,k) ≤ h} (3)

The function hop(φi,j , φi,k) denotes the hop distance between

φi,j and φi,k along edges in EP
Φ . The hop limit h ∈ N defines

the size of the neighborhood and is set to 4 in our experiments,

resulting in neighborhoods of size e.g., ca 4cm in the second

top level. Using the definitions above, we can now define the

i-th surrogate approximation of the Fingertip Space Φ as:

(GΦ)i = ((VΦ)i, (EΦ)i)

(VΦ)i =
⋃

j

{φi,j}

(EΦ)i = {{φi,j ,φi,k} | {φi,j , φi,k} ∈ EΦ}

(4)

which is a subgraph of GΦ and an approximation at i-th
resolution level.

We define the mean location and orientation of the set of

fingertip units contained in the partition φ̂i,j as p(φ̂i,j) ∈ R
3

and n(φ̂i,j) ∈ R
3, this will be used later for stability analysis.

In terms of Eq. (2), the penalty assigned to a node φi,j is

defined as:

wi,j =
1

|φ̂i,j |

∑

φk∈φ̂i,j

wk (5)

Given the hierarchy GΦ of surrogate approximation models,

we can optimize a fingertip location in a top-down manner.

By optimizing the contact in a coarse to fine fashion, a final

contact will be found in the bottom of the hierarchy. Next, we

will investigate the grasp synthesis with multiple contacts.
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B. Hierarchical Fingertip Space

In the previous section, we introduced the similarity-based

graph GΦ for a single fingertip. For m fingertips, we define the

product graph ΛΦ = (VΛ, EΛ) named Hierarchical Fingertip

Space (HFTS) as in Eq.(6). Thus, nodes in VΛ represent

combinations of m contacts, λi,j = (φi,j1 , ..., φi,jm), and the

graph-distance between nodes in the same level reflects the

similarity of the individual contacts. Formally, the HFTS is

defined as:

ΛΦ = G1
Φ × · · · ×Gm

Φ

VΛ = {λi,j =(φi,j1 , ..., φi,jm) | λi,j ∈ V 1
Φ × . . .× V m

Φ }
(6)

where Gk
Φ = (V k

Φ , Ek
Φ) is the surrogate hierarchy for the k-th

fingertip. The penalty value for a set of contacts is defined as

minimum of all individual contact penalties:

w∗
i,j = min{wi,j1 , . . . , wi,jm} (7)

Optimization on ΛΦ requires definition of neighborhoods

and we define two types of edges for EΛ: 1) Edges between

nodes and their parent, EP
Λ , such that ΛΦ inherits the hierarchy

levels from the individual Gk
Φ, and 2) edges between nodes

of the same level, ES
Λ , for which the individual contacts are

identical or siblings in their graph Gk
Φ, respectively. Formally,

we obtain EΛ = EP
Λ ∪ ES

Λ :

EP
Λ = {{λi,j1 , λi−1,j2} | ∀k : {λ

(k)
i,j1

, λ
(k)
i−1,j2

} ∈ EP
Φ }

ES
Λ = {{λi,j1 , λi,j2} | ∀k : {λ

(k)
i,j1

, λ
(k)
i,j2

} ∈ ES
Φ} (8)

where λ
(k)
i,j ∈ V k

Φ is the k-th item of tuple λi,j . Similarly to

the surrogate models for a single fingertip contact, we define

the i-th surrogate approximation of multiple fingertip grasping

in HFTS as:

(ΛΦ)i = ((VΛ)i, (EΛ)i)

(VΛ)i =
⋃

j

{λi,j}

(EΛ)i = {{λi,j1 ,λi,j2} | {λi,j1 , λi,j2} ∈ EΛ}

(9)

C. Grasp Optimization in HFTS

So far, we described the solution space for grasp synthesis

using nodes λg ∈ ΛΦ from different levels, which are

combinations of contacts on the object surface. However, to

realize the contacts with a robot hand, we additionally need the

joint angles Jg ∈ R
d. A valid grasp solution, g = (λg,Jg),

is a combination of contact positions and joint angles.

1) Grasp Stability: During the pre-grasping phase, when

we synthesize a grasp, only visual information of object is

available and we need to evaluate or predict grasp stability

without feedback. This can be done using contact based force

closure analysis [12], [28]: Given a grasp solution g, the grasp

quality measure Q(λg) ∈ R is the minimum offset between

the origin of the wrench space and the convex hull spanned

by friction cones of contacts parametrized by positions and

normals [23]. The value is positive when the grasp is force

closed and larger for more stable grasps.

2) Grasp Reachability: Not all combinations of contacts

λg can be realized by a given robotic hand and we can

classify contacts into reachable or unreachable using a function

R∗ : VΛ → {0, 1} so that the optimization can be constrained

to reachable grasps with R∗(λg) = 0. Since a robotic hand

can have many degrees of freedom and complicated coupled

kinematics, and we seek a computation time on the scale of

milliseconds during grasp optimization, it can be too costly

to analytically compute R∗(λg) in each optimization step.

For this, various forms of constraints have been formulated

[59], [60]. To achieve required speed and precision, we lin-

early relax it as a measure of dissimilarity between λg and

the closest known reachable contacts λ∗
g of grasp solution

g∗ = (λg∗ ,Jg∗). The reachability measure of m contacts λg

is then reformulated as a residual R(λg) ∈ R
+:

R(λg) =
∥∥C(λg)− C(λg∗)

∥∥ (10)

where C(·) ∈ R
6×(m−2) is an affine invariant encoding of m

contacts in terms of its contact locations and normals [11].

To generate a collection of viable grasps, we randomly

sample hand configurations and save the encoded contacts and

corresponding hand configuration Jg into a k-d tree like data

structure T offline with the query time O(n log n). Using T ,

we can compute the residual by lookup and find the hand

configuration for realizing the contacts if the residual was

small.

T : λg 7→ (Jg∗ , R(λg)) (11)

3) Grasp Adaptability: We use grasp adaptability to enable

finger gaiting already in the grasp synthesis stage. By decom-

posing the hand Jacobian and calculating the manipulability

[61] of a hand configuration in the tangential plane of contacts,

we measure the adaptability of a grasp, denoted as A(Jg) ∈
R

+. Concretely, given the Jacobian Jf (Jg) ∈ R
3×n and the

normal nf ∈ R
3 of fingertip f , the Jacobian can be rotated

by Rf ∈ R
3×3 such that the last row of Ĵf (Jg) = RfJf (Jg)

corresponds to the movement of fingertip in the direction of

nf . The first two rows of Ĵf , denoted by J̃f (Jg) ∈ R
2×n,

are then the projection of Jf in the tangential plane of the

fingertip normal.

A(Jg) =
∑

f

√
detJ̃f (Jg)J̃f

T
(Jg) (12)

Note that we can assume that the fingertip normal (on the

robot hand) and the fingertip unit normal will be similar when

the grasp is realized if R(λg) is small. An example of grasp

adaptability measure is shown in Fig. 5. Since this measure

is hand configuration based, it is affine invariant, and hence

grasp pose independent.

In order to capture grasp stability, reachability and adapt-

ability in the grasp optimization, the optimization objective is

defined as follows:

Priority 1: Maximize θ(g) (13)

Priority 2: Maximize A(Jg) (14)

with

θ(g) = Q(λg)− αR(λg), α ∈ R
+ (15)
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Fig. 5. Grasp Adaptability for fingertip 1. Adaptability is computed for
fingertip positions sampled in joint space. The colored volume shows fingertip
positions and their adaptability values.

where α is a weighing factor to account for the hand size. To

optimize the second objective, we use a sorted lookup table

for R(λg) which returns the most adaptable joint configuration

in the area of the best grasp according to A(λg) [62], [63]

when querying reachability residuals (line 7 and 10 in Alg. 1).

As we can see in Fig. 6, for the same contact locations,

there can be multiple hand configurations for realizing it,

however, our prioritized lookup table will always return the

hand configuration with the best adaptability.

Fig. 6. Grasps with same contacts and different adaptabilities: the left grasp
has the highest adaptability.

Having defined the objective function, we can now proceed

to grasp optimization. Using a surrogate-based optimization

metaheuristic, we need to find solutions on each of the surro-

gate approximations and extend them to the next model. For

optimization in each model, we adopt stochastic hill climbing

which can escape from local optima by means of randomness.

Switching between two solutions g and g′ is determined by

the probabilistic function in Eq. (16):

Pr(g, g′) =

(
1 + exp

wgθ(g)− wg′θ(g′)

ζ

)−1

(16)

where wg is the penalty assigned to a tuple of contacts defined

by Eq. (7). The randomness in the optimization is determined

by ζ, it makes the optimization more random when a large

value is chosen, while it behaves more like pure hill climbing

if a small value is applied. The grasp optimization algorithm

is shown in Alg. 1.

For realizing the grasp, we can transform the hand base

to the pose where the fingertips meet the contact locations.

Algorithm 1 Surrogate-Based Optimization in HFTS

Input: stopCondition , ΛΦ, maxIter

Output: grasp g = (λg ,Jg)
1: for i = l − 1 to 0 do

2: if i = l − 1 then ⊲ Initialization
3: λg ← random from (ΛΦ)i
4: else ⊲ Extend to Lower Surrogate
5: λg ← random child of λg

6: end if

7: (Jg , R(λg))← T (λg)
8: for 1 to maxIter do ⊲ Optimize Surrogate
9: λg′ ← random neighbor of λg ∈ (ΛΦ)i

10: (Jg′ , R(λg′ ))← T (λg′ )
11: if Pr(g, g′) ≥ rand(0, 1) then

12: g ← g′

13: end if

14: if stopCondition(g) then ⊲ Good Solution
15: break

16: end if

17: end for
18: end for

In cases when the final reachability residual R(λg) 6= 0, a

local optimization of joint configuration by linear interpolation

[64] is required to realize desired contacts. To avoid too small

and time consuming incremental improvements at each level,

we utilize a stopCondition. It can be set to false if we want

to explore the space until convergence or we control the

number of iterations by setting a threshold for the optimization

function in Eq. (15).

IV. GRASP ADAPTATION

A synthesized grasp is executed using a simple position

control [9]. When contacts are made, tactile readings are

available and an impedance controller [3] is used to regulate

grasp stiffness. The controller is formulated in a virtual frame

(VF) defined in terms of fingertip locations as

Ro = [vx,vy,vz] ∈ SO(3)

vx =
p3 − p1

‖p3 − p1‖

vz =
(p2 − p1)× vx

‖(p2 − p1)× vx‖

vy = vz × vx

(17)

where p1,p2 and p3 ∈ R
3 are locations of the fingertips, see

Fig. 7.

Fig. 7. Left: Virtual frame Ro, vx, vy and vz defined by fingertip locations.
Right: Virtual springs used by the impedance controller. A virtual spring (red)
is superimposed on the impedance controller (between fingertip and the new
location p̂) when a fingertip gaiting is requested.

A grasp in the VF is denoted ĝ = (K,L, S) where K =
(Kx,Ky,Kz) ∈ R

3 is grasp stiffness and L = (L1, L2, L3) ∈
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R
3 is grasp rest length, i.e. the distance between each fingertip

and the center of VF. S = (S1, S2, S3) ∈ R
57 represents the

tactile readings, in our case from SynTouch sensors.

Grasp stability is monitored using a probabilistic represen-

tation relying on a Gaussian Mixture Model Θ that is trained

offline, see Fig. 8. As described in detail in our previous work

[9], Θ is trained over K,L, S parameters for a variety of

objects. Given Θ, grasp stability is estimated by

p(ĝ|Θ) =

ng∑

i=1

πiN (ĝ|µi,Σi) (18)

where ng is the number of Gaussian components, each of

which has a prior πi. N (ĝ|µi,Σi) is the Gaussian distribution

with mean µi and covariance Σi.

Learned Model

Centers of Gaussians

Grasps before Stiffness Adaptation

Grasps After Stiffness Adaptation

Grasps Require Finger Gaiting

Nearest Gaussian Center

Fig. 8. GMM model Θ for grasp stability estimation and decision making
for grasp adaptation. The gray ellipsoids depict the Gaussian components of
Θ, dots and circles show grasps, represented by K,L, S in different stages,
and the red lines illustrate how grasps are switched between different stages
by grasp stiffness adaptation and fingertip gaiting.

A grasp ĝ is considered unstable if the log likelihood of

Eq. (18) is smaller than a predefined threshold, which is set

to −100 as in our previous work [9]. If a grasp ĝ is unstable,

we compute its Mahalanobis distance to each component in Θ
and denote the minimum distance as md. If md is within two

standard deviations, we apply force adaptation by changing

stiffness K to the value obtained by computing the maximum

expectation of K conditioned on grasp rest length L and tactile

readings S. The details of this process have been described in

detail in our previous work [9]. Otherwise, a finger gaiting

strategy is initiated as explained in detail in next section.

V. REGRASPING BY FINGER GAITING

Stiffness adaptation is not enough in cases when there is

an upper bound on the force exerted by the hand. Thus, to

stabilize a grasp, the system initiates finger gaiting. Finger

gaiting is defined as an optimization problem based on the

current rest length L represented in VF:

θ∗(λg) =‖L− L∗‖+ βR(λg) (19)

where R(λg) is the reachability defined in Eq. (10), β ∈ R
+

is a weighing factor to account for the hand size and L∗ is the

desired rest length obtained from the closest Gaussian center

ĝ∗ = (K∗, L∗, S∗) in terms of md. The reasoning above is to

find the closest stable and reachable grasp to the current one,

taking into account the current tactile readings.

Fig. 9. Breadth-first search in HFTS for fingertip gaiting optimization. The
green path shows how the search fringe evolves, and the red edges show the
pruned path due to the 2 criteria defined in Alg. 2.

For the robot hand we use in this work, we can only re-

locate fingertip F1 or F2, as shown in Fig. 7, since relocating

the thumb F3 leaves the grasp without contacts on opposite

sides of the object. Our strategy of choosing between F1 and

F2 is straightforward: we compute the optimization for F1
and F2 in parallel for choosing objective value from Eq. (19).

Our optimization procedure employs breadth-first search in ΛΦ

starting from the initial contact. The search is terminated in

each branch when the reachability measure grows beyond a

predefined threshold ǫR. Since we move only one finger, we

need an additional rule:

Prune(λg, λg′ , fo) =

{
True, ∃i : i 6= fo ∧ λ

(i)
g 6= λ

(i)
g′

False, otherwise.

(20)

where fo is the fingertip to be relocated, λg is the node

that represents the current grasp contacts, and λg′ is the

new solution. Since the search fringe can go upwards in the

hierarchy graph ΛΦ, this rule asserts that only a single fingertip

is moved while the remaining two are kept fixed. The main

idea is sketched in Fig. 9 and the procedure summarized in

Alg. 2. Note that it includes the penalty factor from Eq. (7).

Algorithm 2 Fingertip Gaiting by Optimization in ΛΦ

Input: ΛΦ, λg , ǫR, fo
Output: p̂ ⊲ New Location
1: Ro = R(λg)
2: λ∗ ← λg

3: Queue.push(neighbors of λg)
4: while Queue is not empty do

5: λg′ ← Queue.pop()
6: if R(λg′ ) > Ro + ǫR or Prune(λg , λg′ , fo) then

7: continue ⊲ Pruning
8: end if

9: if 1
wg′

θ∗(λg′ ) < 1
wλ∗

θ∗(λ∗) then

10: λ∗ ← λg′

11: end if

12: Queue.push(neighbors of λg′ ) ⊲ Breadth-First
13: end while

14: p̂← λ∗(fo) ⊲ New Location for fo

A. Fingertip Gaiting in Practice

When grasp stability changes rapidly, the system would

need to switch between impedance and position control fre-

quently. To avoid this, we stay in impedance control mode dur-

ing finger gaiting by sliding the finger to the desired position.

To allow this, we formulate fingertip gaiting using impedance

controller defined in VF. A virtual spring with stiffness k is
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defined to connect the current location of the moved fingertip

and p̂, which is equivalent to a fingertip impedance controller

superimposed on the original grasp controller. An example of

fingertip F1 gaiting is depicted as in Fig. 7.

The stiffness k of the virtual spring is determined by the

distance dp̂ ∈ R between the fingertip’s current location p̂ and

an empirical parameter Γ ∈ R as: k = dp̂Γ. In this way, the

fingertip will be slided towards p̂ while keeping the contact

on the object. Since p̂ is computed in the HFTS, we ensure

that the desired position is on the object surface. If a new

goal position is requested during finger gaiting, the system

will either continue to the new position if the same fingertip

is concerned or stop the current gaiting and initiate gaiting

with another fingertip. Another example situation is depicted in

Fig. 10 where fingertip F2 stopped moving before the desired

position is reached, since the grasp was estimated as stable on

the way.

Fig. 10. The rivella bottle is grasped by the Allegro hand and a human is
applying random perturbations on top of it. The red and green points are
showing the new locations for fingertip F1 and F2 computed by Alg. 2 with
virtual springs in the virtual frame.

VI. EXPERIMENTAL EVALUATION

We perform experimental evaluation with an Allegro hand

mounted on a Kuka LWR arm. The hand is equipped with

SynTouch2 tactile sensors on three fingertips. The systems

performance is evaluated using six objects shown in Fig. 12,

which are tracked using the OptiTrack3 real-time motion

tracking system. The evaluation presented below demonstrates

the performance of the grasp synthesis system alone as well

as the integrated system for grasp adaptation.

A. Grasp Synthesis

Grasp synthesis is performed on a point cloud representation

of objects generated offline. We also generated a reachability

table with 106 hand configurations using rejection sampling:

grasps are first uniformly sampled in the hand joint space

and those with adaptabilities larger than 0.02 are kept. The

motivation for choosing the adaptabilities larger than 0.02
is shown in Fig. 11 (upper), showing the distribution of the

adaptability.

Alg. 1 generates both contact locations and hand configura-

tions. Simple position based control is used to execute a grasp

[9]. A few examples are shown in Fig. 12 and Fig. 13.

For evaluating the performance of the grasp planner, we

repeat the grasp optimization according to Alg. 1 for each

test object. In order to keep an equal number of iterations

2http://www.syntouchllc.com/
3http://www.naturalpoint.com/optitrack/
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Fig. 11. Upper: Grasp adaptability distribution of 106 hand configurations
in the reachability lookup table. Lower: Average grasp adaptabilities for the
100 grasps generated in the evaluations for all objects.

Fig. 12. Six example objects used in the evaluation: there is both variation
in global geometry as well as local surface properties.

Fig. 13. Example grasps generated by Alg. 1 with stopCondition(g) that,
as soon as the grasp is stable and the reachability residual is smaller than
0.006, we stop optimizing on the current level of ΛΦ and continue on the
next level.

for each repetition of the algorithm, we set maxIter = 100
and stopCondition(g) = false. For each object, we run

the algorithm with random initialization until we achieve

100 stable and collision free grasps. Evaluation results are

summarized into a table shown in Fig. 14.

First, Fig. 14 shows that the number of levels of the graph

GΦ are between 4 and 5 when Tp = 10, or between 3 and

4 when Tp = 40. This indicates that our system produces

similar depth of the HFTS independent of the shape of the

object. However, the shape of the object affects the number of
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Object(#Units) Tp #Levels #Nodes Time(s) SR(%) θ(×10−2)
bottle1(2736) 6 5672 1.81 96.15 5.23
bottle2(3102) 6 6321 1.77 93.46 4.74

jug(2671) 10 5 3227 1.64 89.29 4.96
rivella(2273) 6 5124 1.54 98.03 3.29
milk(2696) 5 3204 0.96 97.09 4.05
spray(3207) 6 6926 2.04 94.34 3.71

bottle1(2736) 3 2839 0.45 94.34 5.01
bottle2(3102) 3 3203 0.64 94.34 4.56

jug(2671) 40 4 3002 0.81 87.72 4.99
rivella(2273) 3 2399 0.44 99.01 3.17
milk(2696) 4 2912 0.73 96.15 4.12
spray(3207) 3 3310 0.62 92.59 3.62

Fig. 14. Evaluation of Alg. 1: #Units: number of fingertip units in Φ(P),
#Levels: number of levels in graph GΦ (including the top level with only
one node), #Nodes: number of nodes in graph GΦ, Time(s): average time in
seconds for one run of the algorithm, SR: success rate of synthesizing a stable
grasp. θ: optimized objective value defined in Eq. (15). The evaluations were
implemented in Python on a machine with Ubuntu 12.04 running on Intel
Core i7-2820QM 2.30GHz processors.

nodes at each level, given that some branches are terminated

for objects of simpler geometry, such as the milk package.

Regarding the success rate (SR), it shows the number of runs

needed to generate 100 stable and collision free grasps on each

object. We can see that SR lies at approximately 90%. Fig. 11

shows average adaptabilities for the 100 stable grasps for each

object. Average adaptability values, computed by Eq. (12), are

large showing that our methodology considers the adaptability

effectively.

B. Grasp Adaptation

Once a grasp is executed and contacts established, the

system will enter the post-grasping phase and start monitoring

the stability based on tactile feedback. Now, the impedance

controller is used to control the grasp using GMM based model

Θ. Our tactile based grasp stability estimator is trained in the

same way as in [9]. The log likelihood threshold for Eq. (18) is

set to −100 for stable grasps as we found empirically that the

object drops at a value below −130. For the force control of

the hand, we set the initial grasp stiffness K = (12, 2, 2) and

use it for the execution of all grasps, as described in Sec. IV.

For the evaluation, we run two sets of experiments: 1) We

continuously increase the objects’ weight by filling them

to evaluate the maximum weight each grasp can withstand,

and 2) we shake the grasped objects by linearly increasing

acceleration in different directions to evaluate the maximum

acceleration each grasp can withstand. For comparison, we

conduct the same experiments without any grasp adaptation

and on the system proposed in [9] which does not consider

object shape information when relocating fingertips.

1) Testing maximum weight: For each object, we execute

the best out of 100 grasps generated in Sec. VI-A and align

the object with vertical axis as shown in Fig. 18. We then

gradually fill object with black pepper beans and record the

maximum weight the grasp can withstand. The maximum

weight is reached when the stability estimator predicts unstable

grasp for more than 2 seconds or if the object drops. We repeat

this test for each grasp 5 times and summarize the results in

Fig. 15. For comparison, we perform the same tests for the

system proposed in [9] and a system without adaptation.

Object Weight Without With [9] Improved

bottle1 34 55.1 ± 7.11 153.1 ± 12.31 165.3 ± 13.27
bottle2 39 62.8 ± 6.63 102.3 ± 13.38 121.3 ± 9.91

jug 112 125.3 ± 14.90 147.4 ± 9.62 162.1 ± 13.12
rivella 24 36.0 ± 6.96 76.5 ± 9.4 92.7 ± 7.45
milk 34 63.5 ± 8.20 151.8 ± 7.24 157.4 ± 8.35
spray 63 75.7 ± 7.21 102.2 ± 6.02 121.6 ± 7.15

Fig. 15. The comparison of the supported object weights(Unit:gram). without:
without grasp adaptation; with [9]: with grasp adaptation in [9]; improved:
the new adaptation approach in this paper.

Naturally, the system without any adaptation performs the

worst and the integrated system outperforms the system from

[9]. This is since our system: i) takes into account grasp

reachability during the exploration, and ii) the new location

is computed in the HFTS, thus ensuring it is valid, avoiding

problems shown in Fig. 16, and iii) considers two fingers for

gaiting, resulting in increased flexibility.

Fig. 16. The risk of moving a fingertip to an non-existing position present
in [9] is addressed by using our HFTS representation. The red point shows
the fingertip position before gaiting.

A quantitative evaluation of the proposed system and the

system in [9] has been conducted with respect to optimization

residual. We first execute the grasp in simulation and then

trigger the fingertip gaiting by sending desired rest lengths

randomly sampled around the current values within a ball of

radius 20mm. The result is shown in Fig. 17. Due to the object

shape constraint, the systems cannot provide zero residuals.

Our system performs much better for non-planar objects given

that HFTS representation considers shape in an effective way.
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Fig. 17. The results of fingertip gaiting optimization residual. 105 desired
rest lengths are randomly sampled around the current rest length within a ball
of radius 20mm.

An example of the supported weight test for the rivella

bottle is shown in Fig. 18. In the beginning when the object

is not too heavy, the likelihood p(ĝ|Θ) is larger than −100
and the grasp stiffness K is constant. As the weight increases,

grasp becomes unstable and stiffness adaptation is initiated.

Stiffness changes rapidly when the weight increases, and when

the force adaptation is not able to handle the current weight, a

finger gaiting is triggered and fingertip F2 is relocated. After

finger gaiting, grasp stiffness is decreased since the new grasp
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requires less force to be stable. As the weight increases again,

the whole process is repeated, resulting in F1 finger gaiting.

0 1 2 3 4

15

20

Time (seconds)

‖
K

‖

Force Adaptation

F2 Gaiting F1 Gaiting

0 1 2 3 4

−150

−100

−50

Time (seconds)

p
(ĝ

|Θ
)

Fig. 18. A record of supported weight test of a grasp on rivella bottle. Upper:
The norm of grasp stiffness and fingertip gaiting. Lower: Likelihood for grasp
stability estimation defined in Eq. (18).

J0 J1 J2 J3 J4 J5 J6
−30◦ 30◦ 2◦ −60◦ −20◦ 0◦ −60◦

Init. K = (Kx,Ky ,Kz) Horizontal Acc. Vertical Acc.

(12, 2, 2) 2m/s2 – 8m/s2 2m/s2 – 8m/s2

Fig. 19. The setup of grasp shaking test, in which the arm shakes each grasp
in horizontal and vertical directions. J0 to J6 are the joint values for the
initial pose of shaking test. When shaking horizontally, the shaking direction
is fixed to be perpendicular to the palm.

2) Shaking Test: External disturbances, such as collision,

may occur once a grasp has been executed. To evaluate

the proposed system, we designed a shaking test. We first

execute the best out of the 100 generated grasps for each

object according to Eq. (15), and then rotate the arm to

the configuration shown in Fig. 19. Thereafter, we start to

shake the arm in either vertical or horizontal directions while

linearly increasing the acceleration from 2m/s2 to 8m/s2.

The shaking magnitude is limited to 10cm in either directions,

which means that the hand is accelerating in the first 5cm and

decelerating in the second 5cm. After every period of shaking,

we increase the acceleration by 1m/s2 and therefore have 14
shakes for every test.

Similarly to the supported weight test, we evaluate each

grasp by measuring the maximum acceleration it can with-

stand. The criterion is similar: the maximum acceleration is

recorded when the grasp is predicted as unstable for more than

2 seconds or if the object drops. The shaking test is conducted

in both directions separately and on each object by filling it

with 10g, 20g, 30g, 40g and 50g black pepper beans. Each test

is repeated 5 times. For comparison, we also conduct the same

test for a system without adaptation and the system proposed

in [9].

Experimental results are summarized in Fig. 20. If the

maximum acceleration rate is 8m/s2, it means that the grasp

has been kept stable during the test. On the other hand, if the

maximum acceleration rate is 2m/s2, it means that the grasp

could not withstand any shaking. We can see that our system

outperforms both the system without the adaptation and the

system proposed in [9]. The strength of our approach is that we

ensure that the finger gaiting has resulted in an actual contact

with the object which is not the case in [9]. In addition, the

flexibility of gaiting two fingers provides additional strength.

Additional quantitative results are shown in Fig. 21. We can

see that the average computing time of Alg. 2 is between 20ms
and 40ms. The average number of explored nodes shows that

the pruning is efficient since less than 5% of all nodes in GΦ

are considered. Note that the computation time and number

of explored nodes are heavily dependent on the connectivity

of graph GΦ: less nodes in the graph does not mean less

computing time. Therefore, the connectivity in GΦ indirectly

measures how complex an object is in the context of this

system.

VII. CONCLUSION

We have presented a unified framework for grasp plan-

ning and in-hand grasp adaptation using visual, tactile and

proprioceptive feedback. The proposed Hierarchical Fingertip

Space defines a hierarchy of surrogate solution spaces of

fingertip grasping enabling both planning and adaptation. By

augmenting the fingertip space in terms of local geometry and

spatial relations, as well as optimizing hand configurations

with respect to grasp adaptability, we demonstrated efficient

planning and adaptation. Moreover, the probabilistic model

for grasp stability estimation and adaptation has shown its

feasibility in closing the loop between grasp replanning and

control. We have evaluated the performance of the proposed

system quantitatively and shown that the proposed system sig-

nificantly improves the robustness of grasp execution. It also

outperforms our previous work reported in [9]. To the best of

our knowledge, this is so far the only system that accomplishes

grasp synthesis, stability estimation, online replanning and in-

hand adaptation in a unified framework, as well as evaluating

this on a real physical system.

However, as a basic drawback of most learning based

approaches, our probabilistic model is experience based, and

hence relying on the training data, i.e. limited number of

objects and examples to generalize from. As a potential future

work, we plan to design an active learning strategy to update

this model iteratively using new experiences over time, so as
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Fig. 20. Results of shaking tests on grasps shown in Fig. 12. In the legend, H and V refer to horizontal shaking test and vertical shaking test respectively.
A,B and C refer to 3 grasp strategies: grasp without adaptation, grasp adaptation in [9] and the grasp adaptation proposed in this paper.

Object Avg. Duration(ms) Avg. Improvement Avg. Comp. Time(ms) Avg. Err.(m) Avg. # Nodes # Gaiting

bottle1 261.2 66.21 30.7 0.0074 279.2 6
bottle2 320.1 75.17 32.1 0.0062 221.5 4

jug 414.4 70.72 19.4 0.0042 140.4 5
rivella 447.9 52.39 38.6 0.0045 194.1 12
milk 392.6 47.11 24.9 0.0057 137.6 9
spray 502.7 57.26 29.2 0.0068 197.6 7

Fig. 21. Results for the horizontal shaking tests when the objects are filled with 20g of pepper beans (from left to right): average duration for one time of
fingertip gaiting; Average stability likelihood improvement after fingertip gaiting; Average computation time of Alg. 2 for each computation; Average errors
between achieved rest lengths and the rest lengths computed by Alg. 2; Average number of nodes explored in Alg. 2; Number of fingertip gaiting required
during a shaking test with 14 shakes. The evaluations were implemented in C++ and run on a machine with Ubuntu 12.04 running on Intel Core i7-2820QM
2.30GHz processors.

to evolve the model in a long term to generalize it to a broader

set of objects, without retraining the models from scratch.
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