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Abstract— Robot navigation in human spaces today largely
relies on the construction of precise geometric maps and a
global motion plan. In this work, we navigate with only local
sensing by using available signage — as designed for humans —
in human-made environments such as airports. We propose a
formalization of “signage” and define 4 levels of signage that we
call complete, fully-specified, consistent and valid. The signage
formalization can be used on many space skeletonizations,
but we specifically provide an approach for navigation on the
medial axis. We prove that we can achieve global completeness
guarantees without requiring a global map to plan. We validate
with two sets of experiments: (1) with real-world airports and
their real signs and (2) real New York City neighborhoods. In
(1) we show we can use real-world airport signage to improve on
a simple random-walk approach, and we explore augmenting
signage to further explore signs’ impact on trajectory length.
In (2), we navigate in varied sized subsets of New York City to
show that, since we only use local sensing, our approach scales
linearly with trajectory length rather than freespace area.

I. INTRODUCTION

Human-made environments give just enough hints for
people to reliably navigate them without ever glancing at
a map. Large numbers of visitors navigate places such as
airports, malls, and stadiums every day. Oftentimes, the only
information these people have to navigate are signs with
high level directions, scattered throughout the environment.
Robots may serve a variety of roles in these spaces: as
guides, as teammates, as assistants, etc. For robots to nat-
urally interact with humans it is helpful to understand the
spatial cues that humans use. Signs are placed intentionally,
and from them, humans can piece together a plan to their
destination as they go, with minimal instruction. Building
planners have purposely provided directions to pedestrians
by means of signage, but may not have provided detailed
metric maps to perform traditional path planning. Building
planners and human navigators have an implicit contract on
how to interpret these signs as a complete set of directions.
Signage is well understood to be a rich source of semantic
information for humans [1]; robots should be able to tap into
this same source to understand the context of their space.

In this work, we hypothesize that, when sufficient signage
is available in environments such as airports, a robot does not
need to perform global mapping and can plan solely using
available signage and local sensing. We test this hypothesis
by creating a formalization of these signs and proposing an
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Fig. 1: Examples of real signage in an airport
algorithm for navigation that only requires local sensing and
does not involve any global motion planning.

Robots that have actually been deployed in real world
spaces are often unable to use natural signs [2]; they in-
stead typically perform traditional path planning on a pre-
generated, user-provided or robot-generated, precise metric
map [3].

The amount of environment-specific engineering neces-
sary to deploy robots — in particular, low-cost sensing
robots — in dynamic human environments adds barriers to
widespread adoption. Signage already provides information
that deployed robots typically entirely ignore. Robots could
use the directions intended for human users to reduce the
amount of customization for each individual space. Airports,
malls, and stadiums are transitory spaces, constantly evolving
to account for emergencies and necessary adjustments. A
building manager should be able to put up a temporary
detour sign and assume that robots in the building will use
it correctly.

In this paper we first propose one possible formalization of
signage. We then define four properties of signage placement
to quantify the quality of a given signage. We provide an
algorithm that automatically checks the signage level of an
environment and also present an algorithm that “interprets”
signs on the fly to navigate a robot to its goal based only
on local sensing and without global map construction. We
then experimentally evaluate the impact of signage level on
trajectory length.

II. RELATED WORK

Humans can use both metric and topological spatial rea-
soning and trade between them seamlessly. When trying to
walk near the edge of a cliff, a human will likely focus
on metric precision, while, when providing directions to a



pizza delivery-person over the phone, a person can provide
sparse, topological instructions. Work in neurology shows
that different parts of brain fire when planning and navigating
topological aspects of the environment versus metric aspects
[4, 5]. Being able to strike a balance between different kinds
of planning for navigation allows humans to be resilient and
adapt to different environments. Modern robot systems, on
the other hand, are engineered to rely heavily on metric
maps and precise sensing [6]. Semantic instructions and
contextual clues need to be converted into those metrically
precise terms, often resulting in an complex conversion of
representations that may lose information or generate extra-
neous noise and misleading representations [7, 8]. Similarly,
in cases where the conversion is possible, such as for self-
driving vehicles that use signs, this process often relies on
the structured rules of the road to constrain the action space
[9].

Robots have been deployed in airports and grocery stores
[3] to explore interaction with humans [10, 11]. In one
such study, Joosse and Evers [11] note that planning ineffi-
ciencies are detrimental for smooth interaction: “re-planning
was perceived as taking quite long, participants’ general
impression was that the robot was less suited for guiding
passengers in a congested area, especially if they were under
time pressure”. Our method plans rapidly with only local
information, reducing long delays from re-planning.

The area of semantic mapping addresses many interest-
ing parts of navigating human-made environments. Methods
from this area jointly estimate hybrid metric, topological,
and semantic representations of an environment and use this
representation to navigate. However, these techniques often
require a hand annotated topological graph representation of
landmarks within a scene [12, 13], and thus do not scale well
for use across a large range of environments. They are also
less applicable to environments that have rapidly changing
configurations or less distinct landmarks [14, 15].

Our work goes a step beyond classical semantic mapping
by honing in specifically on signage and trying to avoid
global map representations entirely. Map-free robotics work
ranges from reactive control [16] (which does not provide
global guarantees about plan completeness) to visual-cue
only navigation [17] (which focuses on identifying the visual
cues to identify goals or waypoints). SLAM methods also
range widely across the spectrum of metric to semantic meth-
ods [18] but cannot make global completeness guarantees for
map-free planning. Our work aims to eschew the global map,
but enable a formalization that can, when sufficient signage
is available, guarantee desirable completeness properties.

III. METHODS

A. Assumptions

We assume an environment E ⊂ R2 modelled as a polygon
with internal polygonal obstacles. A robot’s configuration is
modelled as a point and defined by its position (x, y) ∈ E .
The robot is not provided a map of E but is assumed to have
a sensing radius r that allows it to sense the set E ∩Br(x, y),
where Br(x, y) = {(x′, y′) : (x− x′)2 + (y− y′)2 ≤ r2}. In

this work, we assume noise-free perception and odometry for
simplicity. We assume that r > 2d, where d is the diameter
of the largest ball that can be inscribed at any point in E .
This version of the problem assumes static obstacles1.

Informally, this means that the sensor radius must be larger
than twice the width of the widest open-space. However, the
robot only needs to be able to detect presence of obstacles
and signs, with no further visual details. We believe that
in practice, this sensing radius requirement aligns with the
capabilities of modern cameras and is valid for most of our
considered environments.

B. Choice of Skeletonization: The Medial Axis

Fig. 2: An example of a local medial axis constructed within r.
Bolded curves are generated from within the sensing circle, dotted
lines represent segments from global medial axis.

Our approach relies on a graph-representable skeletoniza-
tion of E ∩ Br(x, y). While multiple such skeletonizations
may be considered in general, we propose an approach based
on the medial axis representation. We show in Lemma III.1
that we can provably reconstruct a local neighborhood of the
global medial axis within r/2 of the robot’s current position
using only local sensing. This insight is adapted from exist-
ing work on digital geometry analysis and processing [19].

Recall that the medial axis of a polygon E is defined as
follows (see [20]): let CORE(E) be the set of maximally
inscribed disks in E . The Medial Axis Γ(E) is then the set
of the centers of all disks in CORE(E) [20]. An example
construction of a medial axis is included in Fig. 2 [21]. The
medial axis is a subset of the Voronoi diagram generated by
the boundary of E [22].

The medial axis G = Γ(E) forms a graph. We denote the
vertices of G by V and edges by E. Each edge connects two
vertices. Vertices fall into three main categories: forks if they
have degree greater than 2, continuation vertices if they have
degree 2, and end points if they have degree 1. Degree zero
occurs only for connected components of E that are disks.

The following result allows the robot to reconstruct a part
of the global medial axis Γ(E) within r/2 of the robot’s
position given only local sensing up to radius r.

Lemma III.1. Let E ⊂ R2 be a polygon and (x, y) ∈ E .
Assume that r > 2d, where d is the diameter of the largest

1Dynamic agents, such as humans, in the scene could be dealt with in an
adapted version of Section III-D



disk that can be inscribed in E . Then

Γ (Br(x, y) ∩ E) ∩ B r
2
(x, y) = Γ(E) ∩ B r

2
(x, y).

Proof. Let (x′, y′) ∈ Γ (Br(x, y) ∩ E) ∩ B r
2
(x, y) and con-

sider the maximal inscribing disk Bs(x
′, y′) at (x′, y′) in

Br(x, y) ∩ E . This disk is also maximal in E itself because
any disk in E containing it has diameter at most d and must
in fact be contained in Br(x, y) by the triangle inequality.
Conversely, let (x′, y′) ∈ Γ(E) ∩ B r

2
(x, y), and consider the

inscribing disk Bs(x
′, y′) at (x′, y′) and maximal in E . Its

center lies in Br(x, y)∩E and is also maximal in Br(x, y)∩E
since it is maximal in E by assumption.

From this point on we will refer to the r
2 ball in which

the local medial axis aligns with the global medial axis as
the “planning ball”.

C. Signs

Sign Representation: For a given goal point g, each sign
s in the environment consists of two pieces of data: the
position of the sign (x, y) and the symbolic information σ
on the sign. σ is the mapping of the real-life sign’s content
to edge direction assignments on Γ(E). The σ mapping
can vary depending on perception and sensing capabilities;
choosing the right mapping is an independently interesting
research problem that will be addressed in future work. In
our implementation, we represent σ as a list of mappings
from vertices on Γ(E) to their attached edges’ direction
assignments, one mapping for each endpoint of each nearest
edge2 to the sign’s position. In other words, each mapping
in σ provides direction assignments for all edges that have
endpoints at either vertex (v1, v2) of the sign’s nearest edges.

Fig. 3: A sign gives directions to the outgoing edges of the vertices
for all edges nearest to the sign

This means that all edges attached to v1 will have some
direction assignment d which is either: ‘outgoing’, ‘ingoing’,
or ‘NONE’ (and the same for v2).

We assume the robot is able to determine which mappings
belong to which endpoint of a sign’s nearest medial axis
edge and which mappings belong with which edge (if there
is more than one equidistant edge).
Sign Interpretation: Each time a sign is detected, if the
robot is at a point on Γ(E) nearest to the sign, it “interprets”
the sign by acquiring the set-valued interpretation function

2We assume perfect distance measurements. Multiple edges can be
equidistant to a sign.

f : V → P(E × {‘ingoing’, ‘outgoing’, ‘NONE’}) for each
of its current edge’s endpoints.3 Let a robot have a set of
stored interpretation functions I . When the robot arrives at
any fork or endpoint v′, it “evaluates” any of interpretation
functions associated with v′ in I and stores the resulting edge
directions onto the Γ(E) graph. As a result, each evaluation
step results in a medial axis mixed graph: a graph where
some edges are directed and some are not. For an additional
optional optimization, at any continuation vertex there are
two attached edges: e1 and e2, the robot arriving from an
edge e1 can continue on using the same direction onto e2.

We describe the process of interpreting a single sign in
Algorithm 1. We assume that, during initialization, the robot
has moved to a point on the medial axis that lies on an edge
(this is always possible because there’s always a collision
free path to the medial axis). So consider the case where
the robot starts on an edge of the medial axis and there
exists a sign within its planning ball. The robot first moves
as close as it can to the sign without leaving its current
edge (Lemma III.2.i.). At this point, the robot is able to
determine if its current edge is a global closest edge to the
sign (Lemma III.2.iii.). If this is the case, we “interpret”
the sign by acquiring the interpretation functions described
above.

Algorithm 1: Interpreting local signage.
Input: Local sensing sphere (Br), Local Medial Axis
Mixed Graph edge (e), sign (s)

Result: Acquires interpretation functions for sign s
if s ∈ Br/2 then

move(nearestPt(e, s))
if isNearestEdge(e,s) then

G = update(G, s.σ) ;
end

end

Lemma III.2. Let E ⊂ R2 be a polygon and r > 2d, where
d is the diameter of the largest disk that can be inscribed
in E . Let s ∈ B r

2
(x, y) and (x, y) ∈ Γ(E) and let e be an

edge of Γ(E) containing (x, y). The answers to the following
questions can be computed explicitly and solely from the
local medial axis part Γ(E) ∩ B r

2
(x, y):

i) Is (x, y) a nearest neighbor to s on e?
ii) If the nearest neighbor to s on e is not (x, y), can

we determine the direction along e towards the nearest
neighbor?

iii) Is (x, y) a nearest neighbor to s globally on Γ(E)?

Proof. i) and ii) Any edge e is either linear or a quadratic
Bezier curve by construction of the medial axis, so the
direction of travel towards the nearest neighbor can be
computed explicitly by analyzing gradients of the squared
distance function along e. In particular, testing whether the
distance function to s locally around (x, y) exhibits a local

3Where P(X) for a set X denotes the powerset of X



minimum is sufficient to verify i) since the edge segment is
either linear or quadratic.
iii) Observe that any nearest neighbor on Γ(E) to s has
distance at most d

2 to s by definition of d. If ‖s−(x, y)‖ ≥ d
2 ,

(x, y) is therefore not a nearest neighbor, while if ‖s −
(x, y)‖ ≤ d

2 , we have d
2 ≤

r
4 and B d

2
(s) ⊆ B r

2
(x, y), so the

nearest neighbor still occurs within G′ = Γ(E) ∩ B r
2
(x, y).

Since G′ is a finite structure with simple linear or quadratic
edges, we can compute the nearest neighbors explicitly to
check if (x, y) is among them.

Levels of Signage:
Real life signs are imperfect. There are many airports in

the world where there are few signs, or signs that disagree
with each other. We need a way to identify if a given set
of signs in a space provides a plan to get a robot to its
goal using our approach. We define three different levels of
signage (completeness, consistency, and full-specification) as
a way to formally categorize a set of signs in a space. These
three levels are important for efficiency but are not necessary
for the robot to reach the goal. We also define validity. If
signage is invalid, the robot will not be able to reach its
goal but will be able to identify the signs’ implied directions
on the graph as invalid. Further, the robot can identify the
specific subgraph with invalid direction assignments.

For each of the following definitions, let G ⊂ Rn be
the mixed graph that is output from the medial axis sign
interpretation function f with vertex set V and edge set E.
We assume as input the set of signs S that correspond to the
input goal g. We will continuously refer to the medial axis
structure in this section as G since the actual sign levels of
requirement definitions are dependent only on mixed graph
edge assignments rather than geometric constraints of the
medial axis.

Definition 1 (Consistent Graph Signage). Given a goal point
g ∈ E and a set of sign positions S, for an arbitrary pair of
signs s, s′ ∈ S and their interpretation functions fs and fs′ ,
let ψ = image(fs) and ψ′ = image(fs′). S is consistent
if ∀(e, d) ∈ ψ and ∀(e′, d′) ∈ ψ′, if e = e′ then d = d′ or
d = ‘None’ or d′ = ‘None’. That is, no pair of signs is ever
interpreted to two opposing directions for the same edge in
E. See an example in (a) in Fig. 4.

The three following definitions assume consistent signage.

Definition 2 (Fully-specified Graph Signage). Assume a goal
point g, and a set of signs S and the mixed graph G = (V,E)
generated using the interpretation functions for all s ∈ S.
S is fully-specified if every edge in E is directed. See an
example in (c) in Fig. 4.

Definition 3 (Valid Graph Signage). Assume a goal point
g, and a set of signs S and the mixed graph G = (V,E)
generated using the interpretation functions for all s ∈ S.
Let F be the set of fork vertices s.t. the distance from any
v ∈ F to g is greater than rs

2 and for which v’s associated
edges are directed. S is valid if ∀v ∈ F there exists at least
one outgoing edge and at least one incoming edge. See an

Inconsistent Consistent

???

???

Invalid Valid

Not Fully-Specified Fully-Specified

Incomplete Complete

(a)

(b)

(c)

(d)

Fig. 4: Examples of (a) inconsistent direction assignment compared
to an consistent direction assignment (b) a graph without fully-
specified direction assignments compared to an graph with fully-
specified direction assignments (c) invalid direction assignment
compared to an valid direction assignment. The goal is not within
sensing radius in both cases (d) a graph with incomplete direction
assignment compared to a graph with complete direction assign-
ment. Differences are circled and the goal is illustrated with a red
point
example in (b) in Fig. 4.

Definition 4 (Complete Graph Signage). Assume a goal
point g, and a set of signs S ⊆ E and the mixed graph
G = (V,E) generated using the interpretation functions for
all s ∈ S. S is complete if from any point p ∈ G, there
exists a path to g that only takes directed edges in g. See an
example in (d) in Fig. 4.

If a set of signs does not meet any of the aforementioned
levels the set can potentially be augmented or modified with
artificial signage.
Generating Artificial Signage:

We provide an naive algorithm to generate artificial sig-
nage that augments an original set of signs to reach a desired
level of signage in Algorithm 2. Let our original set of signs
be S′. We start by creating a fully directed graph G′. We
assign directions to the Γ(E) graph by performing any search
algorithm for a path to the robot’s goal from the vertices of
Γ(E). We assume that Algorithm 1 S′’s generated direction
assignments are consistent with G′’s directions. Then, for
each vertex, we place a sign at the centroid of each of



the vertex’s attached edges. These signs contain only the
respective vertex’s direction information. Since each directed
edge maps to at least one sign in this process, following
Algorithm 1 on the augmented set of signs will output the
same mixed graph as was input to Algorithm 2.

Algorithm 2: Generating Signage
Input: Medial Axis Mixed Graph (G : (V,E)), Original
signs S′

Output: set of signs S
S = {}
for v ∈ V do

for e ∈ v.edges do
s = (pi = e.centroid,

σ= [σv =v.edges.directions,
σotherv = directionless]) ;

S.add(s);
end

end
return S

D. Planning

Any policy that follows the directions returned by Algo-
rithm 1 can use our approach to navigate to its goal. As a
concrete example, we present the following policy:

Let the robot ρ store: (1) a list of seen signs, (2) interpre-
tation functions (3) and direction assignments for edges.

For each timestep, ρ senses, then moves to the nearest
point on the medial axis if it is not already on it. It then
updates its directions, interprets signs. If ρ is positioned at
a vertex, it converts stored sign information corresponding
to its current vertex into directions and picks a new edge to
traverse. The robot prioritizes edges that are labeled with an
outgoing direction. If there are no outgoing edges, the robot
chooses randomly from the remaining undirected edges. The
robot follows its chosen edge until it reaches the next point
where a sign can be evaluated on a vertex. This process
is illustrated in Fig. 5. Since ρ’s movement at timestep t is
restricted to actions that end within its current sensing circle,
ρ’s sensing circle at t will have nonempty overlap with its
sensing circle at time t−1. This property, in conjunction with
odometry, keeps edge directions and geometry consistent
across timesteps.

IV. EVALUATION

We evaluate the following hypotheses each with its own
set of experiments. 4

1) Using our formalization for real-world signage im-
proves navigation trajectory length. Additionally, more
signage (with correct directions) can improve perfor-
mance.

2) Our local-sensing only approach means computation
time and resource usage scale linearly with trajectory
length rather than size of the space.

4The airport maps, real life signage annotations, and code will all be
made available on the github repo.
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Fig. 5: Flow chart of control policy to navigate to the medial axis
and follow along prescribed directions while resolving signs along
the way.

For (1) we use real airport maps and real signs and further
augment with artificial signage to evaluate the impact of
signage levels on trajectories taken. For (2) we examine
navigation time on real world city maps with artificially
generated signage to show that using only local sensing
allows navigation time to scale with trajectory length rather
than the size of the space.

1) Real Airport Maps: We compiled 20 airport maps
available via Google Maps and annotated them with the
actual signs from Google Streetview (with the exceptions of
ITH and ORD, which were hand-gathered and hand-labeled).
The labeling process was done by volunteers who found
signs using Google Streetview and noted the directions they
interpreted from the signs. These steps are further illustrated
in Fig. 8. Real human-made environments like these almost
never have what we define as “complete, fully-specified, and
consistent signage.” With our sign formalization, we wanted
to investigate the impact of density of (correct) signs in a
space to the trajectory the robot would take. Therefore, we
additionally evaluated our technique on the original dataset
as well as an augmented dataset for each signage level.

For each of these maps we compare against a simple
baseline that does not use signage. This baseline performs
a random walk along the medial axis graph. We then create
two sets of signage with the original signage plus augmented
signage. One set of augmented signage is “complete”, and
we take a random subset of this signage such that the
directions are “consistent” but not “complete.” We compare
the performance of the random walk baseline to a robot
using our algorithm on real signs, the consistent signs, and
the complete signs. We also compare our performance to
the optimal trajectory length given a complete global map;
this serves as an upper bound for performance. The point
of doing this comparison is to show the benefit that more
correct signs provides for trajectory length and evaluate our
algorithm with respect to the upper bound in performance.
We initialize our robot with a random starting location and
starting direction for each trial. The results for all twenty
real-life airport maps are shown in Table 1. The airports are



Airport Code No Signs Real Consistent Complete Shortest Path Length
ATH 1087.24 620.04 584.01 398.7 303.85
CBR 1295.22 832.02 821.79 520 479.11
CGH 2840.49 700.66 601.18 606.73 412.53
DUB 5071.79 703.94 644.96 619.39 564.47
EIN 518.66 487.2 466.2 457.25 379.01
ISL 2873.03 1920.4 982.01 735.3 602.7
ITH 385.13 134.88 139.14 141.52 125.17
KMQ 2976.66 1427.49 1300.58 1042.85 926.58
LCY 2834.55 2404.98 1038.46 739.17 529.01
LYS 1041.72 730.44 400.06 402.92 386.91
MDE 2691.83 2144.06 2171.27 1005.68 835
MPL 800.1 699.97 610.09 402.37 384.41
ORD 972.63 707.71 573.03 426.08 377.47
PMI 810.01 582.61 500.27 396.85 350
PMO 502.03 490.28 489.33 368.59 341.02
SDJ 831.41 793.62 701.14 695 636.91
TAK 968.79 621.41 600.02 518.31 459.34
TFS 759.29 529.2 316 288.57 245.47
TKS 586.74 414.82 219.17 236.46 183.01
TSA 1102.42 792.82 710.02 692.81 587.63

Fig. 6: 20 airports’ average trajectory length across 50 runs for each of 4 signage levels: (1) no signs (equivalent to a random walk), (2)
real signage, (3) augmented consistent signage, and (4) augmented complete signage. For comparison, the graph includes triangle points
on the rightmost side: the upper bound for robot performance (shortest path length along the medial axis graph).

(DUB) (PMO)

(ADL) (ATH)

Fig. 7: Dublin (DUB), Palermo (PMO), Adelaide (ADL), and
Athens (ATH) Airports from our real airport dataset pictured with
their medial axis.

listed in order of increasing average branch factor of the
medial axis graph.

In Fig. 9 we show how each step of artificial sign
augmentation adds to the mixed graph Γ(E) for Komatsu
airport (seen in Table I’s KMQ row). In Table I, one can
see that the performance between “real” and “consistent”
signage is not that different. This lack of change is because
the consistent signage generated for this instance does not
have any directions for the small corridor at the top of the
airport (the magnified portion in subfigure c) and the robot
is still performing a pure random walk on that subgraph.

2) City maps: We also demonstrate how our technique
scales (since we use only local sensing rather than needing
to process the entire global map) using real city maps with
artificially generated signage. Each map receives signage
that is valid, complete, fully-specified, and consistent. We
initialize our robot with a random starting location and
starting direction for each trial.

The city maps we use for these trials are OpenStreetMap
data gathered from New York City. City blocks generally lie
on a fixed grid; this provides a consistent measure of scale.

Fig. 8: This figure illustrates an example from the labeling process
done to collect real life signs from Komatsu airport (KMQ) the
steps are as follows: (1) locate the sign on the map and note its
location (2) interpret the content of the sign’s directions (3) convert
the sign’s content to edge assignments on the medial axis (according
to the sign representation described in Section III-C).

A sample from each size are in Fig. 10 and results are in the
accompanying table.

Observations about signage: The results from experiment
1 (Fig. 6) show that the interpretation of consistent, sufficient,
and complete signage as a proxy for a map and global
trajectory plan generates robot trajectory lengths close to
the shortest path in each space. Further, we show that
sufficiency, completeness, and consistency each improve the
robot’s ability to use signage to navigate to its goal. However,
even incomplete, inconsistent, and not fully-specified signage
is better than no signage at all.

Signage is more important in spaces like the Dublin airport
(DUB) where one crucially placed sign allows the robot to



(a)

(b)

(c)

Fig. 9: Komatsu Airport (KMQ) with directions, depicted by arrows
in their sign level’s respective color, assigned to their Γ(E) accord-
ing to (a) real signage (green circles) (b) real signage augmented
to consistent signage (orange diamonds) (c) consistent signage
augmented to complete signage (fuschia squares). The goal, a food
court, is depicted with a yellow star, the translucent purple circle
around the goal represents the locations where the robot can sense
the goal. In our simulations the robot is randomly dropped in the
freespace and must use signs to find its way to the goal. Signs are
not required to provide directions for all adjacent edges.

escape the trap of a narrow passageway. Signage is less
important in airports with a wide, open rectangular shape
(e.g. Palermo Airport (PMO)), since the ratio of the size of
the space to the subset of the space from which the robot
can see the goal is much lower: it’s easy to see where you’re
going from any point.

The use of the medial axis as the skeletonization of choice
also has its weaknesses. For example, in Fig. 7, the general
shapes of the Athens (ATH) and Adelaide (ADL) airports are
similar, but because of the gate ramps included in the ATH,
the number of edges in the medial axis graph is significantly
higher. The number of signs necessary to satisfy complete
signage is higher in ATH than in ADL. One could bypass
this issue by pruning the medial axis.

We cannot make conclusions about how signage is actually
used universally from our dataset of twenty airports. How-
ever, anecdotally, winding airports with long hallways and
narrow passageways seem more reliant on signage to guide
pedestrians to their destinations. This observation matches
our intuition and supports the belief that the amount of
signage in real world airports is proportional to the difficulty
of navigating their spaces.

The results from experiment 2 (Fig. 10) show that, by
using exclusively local sensing, we can remove the require-
ment for a global metrically precise map and still plan and
navigate effectively through the space. With our technique,
computational overhead scales linearly as a function of
trajectory length rather than the total size of the space.

5 x 2.5 10 x 5 20 x 10

12.5 3.299
50 6.279

200 13.32

Average Trajectory LengthCompute Time (sec)Linear fit
0 N/A 0

5.59 3.299 3
11.18 6.279 6
22.36 13.32 12

30 N/A 16

Fig. 10: Compute time of different sized snippets of New York City.
Each map size has 10 different snippets of the city. The graph plots
the average across trials for three different map sizes (5x2.5, 10x5,
and 20x10). Each block is approximately 3 times wider than it is
long.

V. DISCUSSION

A. Future Work and Limitations

Currently, our technique requires a strong assumption
about the robot’s sensing radius relative to the widest corridor
in the environment. To relax this assumption, we could
consider any subset of the space wider than the robot’s actual
sensing radius as “open space” and define a different policy
for robot behavior in these subsets.

We also need to consider translating realistic sensor input
to a representation that aligns with our sensing ball model.
To do this, we must first sense obstacles in a scene and
determine whether or not they should be omitted when
computing the medial axis. Second, we must address the
homography estimation problem of converting arrows on a
sign seen at an angle into an executable heading angle for
the robot. Third, we must address sign detection and sign
text and symbol classification.

The medial axis can be used for more efficient and inter-
esting control policies than our presented proof-of-concept
policy. The medial axis is a subset of the constrained segment
Voronoi graph, which can form the cell decomposition for a
sequential control approach [23].

Separately, interpreting signs is valuable for applications
beyond robotics. For example, our approach could be used
on a smartphone as a navigational aid for humans.

B. Conclusion

In this work we present an approach for robots to navigate
human spaces by using locally-sensed signs. For suitable
signage and sensing radii, our approach provides global plan



completeness guarantees with only local sensing, bringing
robot navigation closer to its human counterpart.5 Robots
should not need extra infrastructure to operate in human
spaces. In this work we take a step in this direction; the end
goal of this line of research is to deploy robots in unmodified
airports, malls, and stadiums among real human pedestrians.
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