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Abstract—With advancements in ubiquitous networking in-
frastructure and the increasing availability of data centers,
ranging from local edge servers to remote cloud data centers,
integrating robots with edge-cloud computing resources holds
significant potential. However, introducing additional layers of
computing brings significant challenges, particularly in ensuring
adequate resource allocation and efficiently scheduling resources
across a distributed infrastructure to meet the performance
demands of robotics applications.

In this paper, we present tinyKube, a middleware tailored for
dynamic resource management across the cloud-edge platform
for large-scale cloud robotics deployments. tinyKube leverages
the advantage of Kubernetes for resource orchestration and inte-
grates Prometheus for resource monitoring, facilitating seamless
coordination across multiple distributed data centers, enabling
unified monitoring, task scheduling, and resource provisioning
across both edge and cloud infrastructures.

We conduct experiments using a sample robotic manipulation
compute workload requiring both object detection and motion
planning and using the Cloud Robotics testbed CloudGripper
and a real-world cloud-edge computing infrastructure. Our
experimental results indicate that the proposed middleware
is capable of automatically managing task dispatching and
resource allocation in response to varying quality of service
requirements and workload fluctuations from large-scale robotic
systems. tinyKube aims to simplify resource management in the
robotic application development process, accelerating testing and
deployment for large-scale cloud robotics and facilitating more
efficient real-world implementation of robotic applications.

Index Terms—Cloud Robotics, Cloud-Edge Infrastructure, Re-
source Orchestration, Performance Monitoring, Middleware.

I. INTRODUCTION

A. Cloud Robotics - Leveraging Cloud Resources for Ad-
vanced Robotic Systems

In recent years, the utilization of mobile robots has experi-
enced a significant upsurge, representing a critical milestone in
their widespread adoption [1l]. However, many of these robots
still rely predominantly on classical control mechanisms or are
controlled remotely by humans. This limited intelligence is in
part due to the high costs associated with onboard computation
and storage required for state of the art machine learning-
enabled applications, impacting both the affordability of robots
and their mobility and operational capacity due to increased
size and weight requirements.

Advancements in wireless technology and the expanding
availability of data centers — from local edge nodes to re-
mote cloud facilities — have unlocked substantial potential
for integrating robots with edge-cloud computing resources.
This integration brings several key benefits, including but not
limited to [2], [3], [4]: 1) offloading heavy computational tasks
to edge and cloud servers, which increases application perfor-
mance, extends battery life, and allows for more compact and
lightweight robot designs by minimizing additional hardware
requirements; 2) resource elasticity, enabling dynamic adjust-
ment of computing resources based on demand, optimizing
both efficiency and scalability; and 3) controllable privacy
enhancement, which allows for the deployment of application
services while offering flexible control over where and how
sensitive sensor data is transmitted.

In fact, the term ‘Cloud Robotics’ was introduced over a
decade ago [3], [6], embodying the vision of robots harnessing
the power of cloud computing infrastructure. Since then, it has
garnered significant attention: in industry, platforms such as
Amazon RoboMaker [7] and NVIDIA Omniverse [8] provide
environments for simulating and managing robots that operate
in cloud-connected systems, while in academia, projects like
RoboEarth [9], BRASS [10], Dex-Net [11], Rapyuta [12],
and more recently FogROS and FogROS2 [13]], [14], which
facilitate cloud and fog robotics compatible with the Robot
Operating System (ROS), have further advanced the field.
Researchers have explored utilizing cloud resources to improve
robot performance, citing benefits such as reduced SLAM
latency [14]], [15] and faster motion planning [16], [[17] and
privacy-preserving cloud-enabled robotic manipulation meth-
ods have been developed [18]. Simultaneously, early research
on the economic benefits of using cloud resources for robotic
applications [19] suggests the potential to not only reduce sig-
nificant upfront capital expenditure (CapEx), but also to extend
the robot’s service life and optimize resource utilization.

B. Challenges in Resource Management for Large-Scale
Cloud Robotics

The integration of additional computing layers, particu-
larly within large-scale, distributed cloud and edge comput-



ing infrastructures, presents significant challenges for robotic
ecosystems. In cloud computing environments, where re-
sources are virtually unlimited but operate under a pay-as-
you-use model, the traditional robotics approach of utiliz-
ing maximum available computing power to enhance robot
performance becomes both resource-inefficient and cost pro-
hibitive [20], [21]. The critical challenge lies in balancing
performance improvements with the financial costs associated
with leveraging additional computational resources. While ex-
isting research has largely focused on the initial configuration
of cloud resources for robotics deployments [22], [23]], it often
neglects the dynamic nature of cloud and edge environments,
fluctuating workloads, and the mobility of robots [24].

Consider a fleet of robots operating across various
workspaces (e.g., factories, hospitals, airports) that rely on
compute-intensive services (e.g., object detection, motion
planning) deployed on a distributed platform comprising edge
servers and remote cloud data centers. For optimal resource
utilization, resource allocation to these services should dynam-
ically adjust based on demand — scaling up during periods
of high request volume and scaling down when demand de-
creases. Furthermore, robots in certain sensitive environments,
such as hospitals, may require enhanced privacy measures,
ensuring that data is transmitted only to application services
deployed on servers with high-privacy guarantees.

Current robot applications built with ROS (Robot Operating
System) rely on the ROS Master (in ROS 1) [25] or the
Data Distribution Service (DDS in the latest ROS 2 [26] for
node (i.e., abstractions of computational units) discovery and
managing connections between nodes. However, this architec-
ture presents drawback when distributing ROS-based robotic
application nodes across distributed edge-cloud platforms: 1)
the use of the pub/sub protocol, where publishers (e.g., cam-
era nodes) continuously transmit data without awareness of
whether subscribers (e.g., object detection nodes) are available
to process it, can lead to unnecessary network bandwidth us-
age, increased congestion, and potential failures [23]], [27]; 2)
while DDS provides various Quality of Service (QoS) policies
—such as latency budget (ensuring timely data delivery, e.g., 50
ms), deadline (ensuring the subscriber processes data within a
specific time frame, e.g., 100 ms), reliability (ensuring all data
reaches the subscriber without loss), etc. — it is not inherently
designed to interact with cloud orchestration layers. As a
result, although DDS can raise alerts or flag QoS violations,
it lacks the capability to dynamically provision or scale cloud
resources to meet the specified QoS requirements [28]], [29].

In the context of cloud-native computing (CNCFﬂ the
Kubernetesﬂ platform has gained widespread adoption for
automating the deployment, scaling, and management of con-
tainerized applications. Concurrently, Prometheusﬂ an open-
source monitoring and alerting toolkit, has become the de
facto standard for monitoring cloud-native applications, par-
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ticularly those deployed within Kubernetes clusters. However,
Kubernetes lacks native support for managing multi-cluster
environments, such as those spanning from edge servers to
cloud data centers. To integrate resources across multiple clus-
ters, extensions like KubeFed [30] and OpenShift [31] have
been developed. However, these solutions introduce significant
complexity in setup and configuration, as well as operational
overhead for maintenance, which can slow down testing and
development of cloud robotics applications.

To address these challenges, we propose tinyKube, a middle-
ware that selectively utilizes the neccessary capabilities of
Kubernetes and Prometheus to provide a lightweight yet
comprehensive platform for monitoring, task dispatching, and
resource provisioning across distributed edge and cloud data
centers for large scale cloud robotic deployments. tinyKube
considers not only traditional QoS requirements (such as
response time, latency) but also privacy concerns when making
task dispatching decisions, aiming to simultaneously optimize
QoS adherence and resource utilization. The primary goal is
to provide a toolkit that reduces the complexity of testing and
deploying robotic applications at scale, while also streamlining
the implementation and evaluation of resource provisioning
strategies for these applications.

We evaluate tinyKube using a robotic application developed
for the CloudGripper system [32ﬂ a globally accessible Cloud
Robotics Testbed consisting of 32 small robotic arms and par-
allel jaw grippers. In experiments we test our approach by de-
ploying compute-intensive services, including object detection
and motion planning, on a real cloud-edge infrastructure. The
experimental results indicate that tinyKube dynamically scales
resources across both edge and cloud clusters in response
to varying robot request arrival rates, adhering to the logic
defined in the scaling mechanism. Additionally, it efficiently
balances and dispatches robot requests to ensure compliance
with Quality of Service (QoS) requirements — particularly with
respect to response time and privacy — while minimizing the
rejection rate.

In summary, this paper presents the following key contribu-
tions:

« tinyKube — a lightweight middleware designed to auto-
mate task dispatching and resource allocation for large-
scale robotics applications deployed across cloud-edge
computing platforms (Section [II).

o Comprehensive experimental evaluations of tinyKube’s
performance, conducted using a large-scale robotic grip-
per system on a cloud-edge platform, demonstrating its
efficiency in dynamic resource management (Section
and [V).

II. RELATED WORK

Cloud robotics, first introduced over a decade ago, has
rapidly evolved with the advancements in cloud computing and
wireless network technologies [33[], [34]], [35], [36]. Today,
propelled by the fourth industrial revolution (Industry 4.0),
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large-scale robot deployments (also known as fleet robotics or
multi-agent robotic systems) are beginning to find widespread
application across various domains: in smart factories, where
robots and humans collaborate throughout industrial value
chains [37], [38]]; in healthcare systems supporting elderly
care [39]; in agriculture smart farming systems [40]; and
in disaster management, where unmanned search and rescue
operations are conducted in hostile environments [41]. A
common aspect of these deployments is the ability of robots
to offload computational tasks — such as SLAM [14], [15],
motion planning [16], [17], and object recognition [42] —
to the cloud, enabling collaborative efforts to achieve shared
objectives.

To support the offloading of computation-intensive robotic
tasks across edge and cloud infrastructures, several toolkits and
platforms have been proposed. Rapyuta [[12], developed by the
Swiss Federal Institute of Technology Zurich, is one of the first
open-source Platform-as-a-Service (PaaS) frameworks specif-
ically designed to help robotic applications offload heavy,
non-real-time computations to secure and customizable cloud
computing environments. Rapyuta’s core tasks include: 1) the
controller task, which manages the command data structure,
oversees robot connections, handles configuration requests,
and monitors network status; 2) the robot task, responsible
for forwarding configuration requests to the master, converting
data messages, and facilitating communication between robots
and endpoints; and 3) the environment task, which handles
communication with ROS nodes and other endpoints, and
manages the launching and stopping of ROS nodes.

FogROST1 [13] and FogROS?2 [14], developed at UC Berke-
ley, have gained popularity for supporting ROS-based and
ROS2-based applications, respectively. These adaptive cloud
robotics platforms, as described in [14]], are capable of pro-
visioning and launching cloud resources, configuring and se-
curing network communications, installing robot code and de-
pendencies, and initiating robot and cloud robotics operations.
Extensions like FogROS2-config [22]] and FogROS2-LS [23]]
further enhance these capabilities by helping robotics systems
select efficient hardware configurations that balance cost and
latency, and by transitioning to optimal service deployments
that meet latency requirements. Nonetheless, the manual setup
and explicit component placement required by FogROS2,
which focuses on individual robots, limits its scalability for
larger or multi-robot systems [24]].

Researchers from Karlsruhe University of Applied Sciences
introduced KubeROS [43]], an automated platform that lever-
ages Kubernetes as its underlying orchestration framework
for deploying multi-robot applications. KubeROS abstracts
onboard computing devices, edge, and cloud resources into a
unified infrastructure, offering developers a seamless platform
for managing robotic systems. It also features monitoring and
a resource scheduler that supports dynamic rescheduling based
on the system’s real-time state. The KubeROS API Server
further supports REST services to handle and process deploy-
ment requests. One disadvantage of KubeROS is its complex
hardware and network setup, which requires intervention from

a system administrator for management.

In this paper, we introduce tinyKube, a lightweight middle-
ware designed for the seamless integration of distributed
resources across edge-cloud infrastructures to support large-
scale robotics deployments. tinyKube leverages Kubernetes
for orchestration and Prometheus for monitoring, providing
an integrated platform for efficient system monitoring, task
dispatching, and resource allocation. Designed specifically
for the rapid testing and deployment of robotic applications,
tinyKube simplifies network setup and minimizes configura-
tion requirements, thereby lowering the operational overhead
for developers.

III. TINYKUBE DESIGN
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Fig. 1. The tinyKube middleware design.

Figure [I] illustrates the components of the tinyKube middle-
ware and its use case in managing resources across heteroge-
neous, geographically distributed edge servers and cloud data
centers for cloud robotics applications. The middleware design
includes the following key components: Cluster Monitor, Task
Admission and Dispatcher, and Auto Scaler. We assume that
each resource node has Kubernetes and Prometheus deployed
and thus refer to it as a ‘cluster’ (in line with common
Kubernetes terminology, where a cluster represents a set of
nodes managed as a single unit).

A. Cluster Monitor — Monitoring Across Multiple Clusters

The Prometheus service in each cluster periodically scrapes
and stores metrics in a local time-series database (TSDB) [44]].
These metrics include system metrics (e.g., CPU, memory,
and filesystem usage), application metrics (e.g., error rates,
throughput), Kubernetes-specific metrics (e.g., pod and node
status), and custom metrics defined by applications.

However, querying individual Prometheus instances via the
API presents several challenges in multi-cluster cloud-edge
environments: 1) lack of scalability, as Prometheus is designed
as a single-node system and cannot query multiple instances
simultaneously; 2) lack of a global view, as Prometheus lacks
native support for aggregating metrics across clusters into a
unified interface; 3) lack of long-term storage, as Prometheus
is optimized for short-term retention, making it difficult to
store data for extended periods without running into disk space



limitations or performance degradation as the data volume
increases.

To address these challenges, we integrated Thanos [45], a
Prometheus federation toolkit, as the core of the middleware’s
cluster monitor component. In essence, Thanos aggregates
metrics from multiple Prometheus instances into a single
queryable interface, providing a global system view and en-
abling seamless, scalable monitoring across clusters without
the need for reconfiguration as new clusters are added.

Figure [2| depicts the integration of Thanos within the cluster
monitor component. In each cluster, the Thanos Sidecar con-
tainer runs within the same pod as the Prometheus instance,
collecting metrics and exposing them to the central Thanos
Querier over the internet using the gRPC (i.e., google Remote
Procedure Call) protocol. When adding a new cluster to the
platform, the Thanos Querier configuration simply needs to be
updated with the Thanos Sidecar endpoint from the new cluster
(i.e., —-—store = <storefapj_>:<grpcfport>), as highlighted
in the red rectangle in Figure

Furthermore, Thanos enables long-term metric storage by
offloading data to cloud-based object storage (e.g., AWS S3,
Google Cloud Storage). These archived historical data are
crucial for evaluating system performance and optimizing
strategies for application deployment and resource allocation.
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Fig. 2. Cluster monitor component.

Finally, the cluster monitor component queries and ag-
gregates metrics across multiple clusters using the HTTP
API exposed by the Thanos Querier, which processes
PromQL (Prometheus Query Language) queries and returns
data in JSON format. The real-time monitoring data is then fed
into the Task Admission and Dispatcher, as well as the Auto
Scaler, guiding the middleware’s decisions on task dispatching
and resource allocation. For example, if the metrics show
that a particular cluster is under heavy load and unable to
meet its service level objectives (such as response time or
throughput), the middleware can automatically scale resources
or redistribute tasks to other clusters, ensuring load balancing
and maintaining quality of the service.

B. Task Admission and Dispatcher

Figure [3] depicts the task admission and dispatcher com-
ponent in detail. Robots from various workplaces submit
task requests by sending metadata to the middleware via the
standard web-based REST API [46] communication protocol.
This metadata specifies the requested application service (e.g.,
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Fig. 3. Task admission and dispatcher component.

motion planning, object detection), defined service level objec-
tives (SLOs) such as response time, privacy preferences (e.g.,
requests favoring local edge processing for enhanced privacy),
and other parameters critical to task dispatching and resource
allocation decisions. The request parser processes each request
to extract SLO information, which is then forwarded to the
estimator and dispatcher for further handling.

We model each cluster member involved in the cloud-edge
platform using an M/M/k/setup queuing system [47], [48]],
where request arrivals follow a Poisson process, service times
are exponentially distributed, and k represents the number
of application instances (i.e., replicas) within the cluster.
By incorporating setup times — the time required to start a
new replica within the cluster — into the total waiting time
estimation, the model supports more proactive scaling to meet
rising demand. This approach closely reflects real cloud system
behavior and is well-suited for robotic applications, where
minimizing processing delay is critical.

We denote by T, the average setup time for an appli-
cation instance, A denotes the request arrival rate, p is the
service rate (number of requests handled by the instance per
time unit), L, denotes the average number of requests in the
queue, and k is the number of active application instances.
The effective service rate, accounting for the setup time, is
given by:

7
eff = ——— 1
Heft 1 + Tsetup/\ ( )
The queue waiting time for a request is then calculated as:
L
W, = ! 2)

AL = Apters/k)
Finally, the total time from when the request arrives until it is
fully serviced and completed is calculated as:

W =W, + 1 3)

Hef f
Requests are admitted and dispatched to the cluster to
ensure that W remains within an acceptable range, meeting the
response time requirements specified in the request’s Service
Level Objective (SLO) for both privacy-sensitive requests



(which are prioritized for edge processing), and normal re-
quests.

Once the decision is made, the middleware communi-
cates the endpoint information of the assigned cluster (i.e.,
<cluster_exposed_IP>:<port>/<service>) to the robot via
a REST API POST request. The robot then connects to
the designated cluster and transfers the necessary data (e.g.,
camera frames for object recognition) to execute the requested
application service.

C. Auto Scaler

The Auto Scaler component utilizes real-time metrics from
the cluster monitoring system, including resource utilization
(CPU, memory), cluster queue lengths, and the Service Level
Objectives (SLOs) of incoming requests. Based on this, the
Auto Scaler dynamically adjusts resource allocation across
clusters within the cloud-edge infrastructure, with the aim of
optimizing application performance and resource efficiency.

Through the Kubernetes API, the Kubernetes Horizontal
Pod Autoscaler (HPA) can be configured to define a scaling
strategy. However, HPA operates on a fixed polling interval,
potentially introducing delays in scaling responses as it checks
metrics only at specific intervals (e.g., every 15 seconds).
To address this, our middleware incorporates the Kubernetes
Event-Driven Autoscaler (KEDAﬂ which responds immedi-
ately when a metric threshold is crossed, enabling more re-
sponsive scaling — particularly critical for robotic applications
that require rapid adjustments.

apiVersion: keda.sh/vlalphal
kind: ScaledObject
spec:
scaleTargetRef:
name: placeholder-deployment
minReplicaCount: 1
maxReplicaCount: 10
cooldownPeriod: 300
triggers:
- type: prometheus
metadata:
serverAddress: "http://thanos-querier:9090"
metricName: placeholder-metric
threshold: placeholder-threshold
query: "sum(rate(placeholder-metric[1lm]))"

Listing 1. KEDA ScaledObject YAML Configuration.

Listing [T] provides a customizable template for configuring
a KEDA ScaledObject serving as a flexible placeholder that
enables “robotic service providers” to define scaling policies
aligned with their specific objectives and operational require-
ments.

IV. EXPERIMENT SETTING

In this section, we present the experimental setup used
to evaluate the efficiency of the proposed middleware in
managing task dispatching and resource allocation across the
cloud-edge infrastructure. First, we describe the cloud robotics
testbed utilized in our experiments where compute-intensive
services are offloaded to cloud-edge resources to assist a
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robotic gripper in picking up and moving objects to a des-
ignated position. We then introduce the configurations of both
the edge and cloud clusters within the experimental platform.
This is followed by the experimental scenarios, where we
vary the number of robots and request rates. Since these
experiments focus on the computational scaling of the pipeline,
robots are not physically moved during these experiments, but
real-world pre-recorded sensor data from the real system is
used as input to the algorithms, allowing us to scale the number
of robots in experiments beyond the number of physically
available robots on the platform. Finally, we outline the metrics
used to evaluate the results.

A. The CloudGripper System

a). View from the robot's top camera. b). View from the robot's bottom camera.

Fig. 4. (a) Top camera view and (b) bottom camera view of the robot. The
object detector is trained using the frames captured by the bottom camera.
The green line indicating the robot’s path to pick and drop the object.

We use the CloudGripper testbe(ﬂ [32]], currently compris-
ing 32 remotely accessible small robot arm workcells located
at KTH Royal Institute of Technology, Sweden. We designed
sample algorithms to test real-world compute loads for this
system where the robotic arms are tasked with identifying
and picking up objects of interest and transporting them from
their current position to a predefined target position in the
robot’s workspace. To facilitate this process, we implemented
an application service that integrates a computer vision model
for object detection and a motion planning system to compute
suitable collision-free paths for object delivery. A benefit
of this pipeline is that it provides a real use case in the
sense that it can be executed in real-time on the robots,
resulting in the physical task execution and motion of the
robotic system but it also allows us to separately focus on
studying the computational scaling of our proposed approach
by using offline collected input data from the system (i.e.
camera images) which we are most interested in investigating
in this work. Since the time required for physical motion
of the robot is not our primary interest in this study, our
experiments employs this offline approach in the following
experiments (i.e. robots do not execute the computed motions
physically, but real-world camera images are used to evaluate
the computational workloads for this sample task).

The computer vision model is trained using Efficient-
Det [49] to recognize objects of interest and obstacles from
the input frames provided by the robot’s bottom camera, while
the motion planning service utilizes the Rapidly-exploring
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Random Tree (RRT) algorithm [50]] to compute a collision-
free path for object delivery. Due to the limited computational
capabilities onboard the robot arm, the application service
is offloaded to more powerful computational resources from
the cloud-edge infrastructure. To enable this, we created a
Docker image of the application service and hosted it in
a Docker repositoryﬂ allowing the cluster to instantiate the
application on demand by launching a new instance from this
image. During each live task execution, the robot arm transmits
a frame captured by its bottom camera to the service for
processing. Figure ] shows the top and bottom camera views
of the robot during the grasping process. In the offline setting
we use to study the compute-load scaling, the camera image
is instead pre-recorded and loaded locally from disk.

B. Cloud-edge platform

We configured a cloud-edge platform consisting of a lo-
cal edge server and a remote cloud server. Both servers
are equipped with the Kubernetes platform for orchestrating
containerized applications and Prometheus for monitoring and
metrics collection, forming what we refer to as clusters.

The edge cluster consists of 32 Raspberry Pi 4B units,
each powered by a Quadcore Cortex-A72 processor running
at 1.8 GHz [32]. The cluster is hosted at KTH and integrated
with the CloudGripper system. The average setup time for
an application instance (i.e., a container), from scheduling to
being ready for use on this cluster (which uses the ARM64
architecture), is measured as Tsetyp = 1.8 seconds.

The remote cloud cluster utilizes resource capacity from
the Ericsson Cloucﬂ includes 19 CPU cores and 36 GB
of memory, which are dedicated specifically to the research
projec The average setup time for an application instance,
from scheduling to being ready for use on this cluster (which
uses the AMDG64 architecture), is measured as Tiseryp = 4.7
seconds.

Additionally, we assume that the edge cluster provides
higher privacy guarantees (i.e., 1), as it is on the same network
as the robot arms, while the remote cloud cluster offers lower
privacy guarantees (i.e., 0). To register these clusters within
the integrated platform, the process simply involves declaring
each cluster’s endpoint, as shown in Listing [2]

clusters:
edge_clusters:
— name: "edge"
endpoint: "http://localhost:8080/detect"
max_capacity: 17 # Max number of pods
privacy_level: 1 # High privacy guarantee

cloud_clusters:

"cloud"
endpoint: "http://xxX.xXX.XXX.XxX:yyyyy/detect"
max_capacity: 19
privacy_level: 0

— name:

# Low privacy guarantee

Listing 2. Cluster declaration.

8https://hub.docker.com/
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Since the robots and the edge server are on the same
network, the network delay between them is negligible. The
external network connection from KTH has a bandwidth of
10 Gbps and an estimated round-trip time of 15.5 ms to the
Ericsson cloud.

We conducted a benchmarking analysis of the application
service deployed on both the edge cluster and the remote cloud
cluster to profile its response time for a single request. Based
on the 90th percentile of the measured response times [51], we
set the Quality of Service (QoS) thresholds: 0.35 seconds for
requests processed by the edge deployment and 0.50 seconds
for those handled by the remote cloud. Table [I| summarizes the
capacity of the two clusters.

TABLE I
CONFIGURATION OF THE TWO CLUSTERS.
Capacity . Response Time | T_setup
Cluster #max pods Privacy ) (s)
Edge 17 1 0.35 1.8
Cloud 19 0 0.5 4.7

C. Design of a Straightforward Auto-Scaler

For experimental purposes, we developed a straightforward
auto-scaling strategy to manage resource provisioning across
the cloud-edge platform in response to workload variations.
The resource scaling strategy operates as follows:

We have set the threshold for average CPU utilization across
the application instances at 80%. When the average CPU
usage exceeds this threshold, the system triggers a scale-up
operation. The configuration allows for quick scaling, which
increases the number of application instances by up to 100% of
the current number of instances within a 30-second window.
Furthermore, a stabilization window of 60 seconds ensures
that the system waits for sustained CPU load increases before
adding more replicas, thus avoiding rapid fluctuations caused
by temporary spikes.

Conversely, if the CPU utilization falls below the threshold,
the resource scaler reduces the number of replicas to optimize
resource usage. The scale-down policy permits a reduction in
the number of resources by up to 50% of the current replicas in
a 60-second period. To avoid overreacting to transient drops
in demand, a stabilization window of 5 minutes is applied,
ensuring that the reduction of replicas occurs only when there
is a consistent decline in CPU usage, thus promoting system
stability.

In the experiment, each application instance is a single
container with specified resource allocations: a minimum of
500m CPU (0.5 cores) and 512Mi (~537 MB) of memory.

At the beginning of the experiment, we initialized both
clusters with 5 replicas each.

D. Scenarios

We designed scenarios in which task requests are randomly
generated. Each request sent to the middleware includes two
key parameters: a privacy level (1 or 0) and an expected
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response time between 0.35 and 0.5 seconds, guiding task
scheduling and dispatching decisions on where to process
the request within the cloud-edge platform. Specifically, the
number of simulated concurrent robot instances is randomly
selected between 5 and 50. The experiment evaluates how
the middleware enhances system performance, focusing on
the response time of backend tasks deployed on cloud-edge
resources under varying workloads. A pre-recorded dataset
of camera images from the CloudGripper system is utilized
as input for this experiment without physical motion of the
resulting computed motion patterns of the robot arms, allowing
us to scale the number of simulated robot instances beyond the
available 32 physical robot arms in the CloudGripper system.
The experiment includes dynamic resource provisioning and
request dispatching with privacy considerations. To stress test
the system, we scale up to 50 concurrent simulated robots
and utilize a program that emulates real-time requests, while
request arrival rates range from 20 to 100 requests per second.
For each scenario, the total number of requests is capped at
5,000. Once this limit is reached, the system transitions to a
new scenario with a new combination of concurrent robots and
request arrival rate.

E. Evaluation metrics

We present the following metrics to evaluate the results:

o The average response time of accepted requests: This
metric is based on the response time collected for each
request. It allows us to evaluate whether the accepted
requests, once dispatched for processing in the cloud-edge
platform, violate the Quality of Service (QoS) thresholds
in terms of response time.

o The resource allocation behavior throughout the experi-
ment, which involves varying numbers of robots, request
arrival rates, and random request patterns: This metric
helps us evaluate how the system responds in terms of
scaling resources within the cloud-edge platform, consid-
ering the fluctuations in workloads.

o The task dispatching outcomes: This metric evaluates
how the middleware dispatches requests while respect-
ing their QoS requirements for both privacy level and
response time. It includes measuring the percentage of
requests accepted and where they are processed, as well
as the percentage of requests rejected when the system
cannot meet their requirements.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We conducted experiments and collected results to analyze
how robot requests are dispatched across the cloud-edge
infrastructure and to examine the system’s behavior in terms of
resource allocation, following the logic of the designed auto-
scaler. The results presented below were collected over a 2-
hour experimental window.

A. The resource allocation behavior throughout the experi-
ment

Figure [5] shows the average CPU utilization (blue line) and
the total number of active replicas (red line) in the cloud

cluster at each time slot throughout the experiment. Similarly,
Figure [6] presents these metrics for the edge cluster over the
same time period.
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Fig. 5. Number of replicas and average CPU utilization (percentage) on the
Cloud cluster throughout the experiment.
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Fig. 6. Number of replicas and average CPU utilization (percentage) on the
Edge cluster throughout the experiment.

Initially, the total number of replicas in each cluster was set
to 5. As the request arrival rate and the number of concurrent
robots increased, the higher influx of requests led to a rise
in CPU utilization across the active replicas. Once utilization
exceeded the predefined threshold, the auto-scaler triggered a
scaling action, adding more instances to the clusters.

Gradually, as resource utilization stabilized, the system
began to trigger a scaling-down action, in accordance with
the auto-scaler strategy outlined earlier. Both graphs also
demonstrate faster scale-up behavior compared to scale-down,
which aligns with the 30-second window for scaling up and
the 60-second window for scaling down as specified in the
settings of the auto scaler.

Furthermore, as observed in two Figure [5] and [6] the edge
cluster appears to be more active than the cloud cluster. This
can be attributed to two factors: first, task dispatching always
directs privacy-sensitive requests to the edge cluster, as it
ensures compliance with privacy requirements. Second, the
task dispatching mechanism prioritizes available resources in
the edge cluster to process other normal requests, aiming to
minimize response time.



B. The response time of accepted requests

We examine the response time for robot requests that have
been accepted and ditpached by the middleware for processing.
These requests are accepted only if the middleware identi-
fies an application instance capable of meeting the required
response time or privacy constraints; otherwise, the system
rejects them.
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Fig. 7. Distribution of response times for accepted requests. Yellow: requests
dispatched to the edge cluster; Blue: requests dispatched to the cloud cluster.
The overlaid boxplot illustrates the quartiles, median, and interquartile range.

Figure [/| indicates that for requests routed to the Edge
cluster, the middleware consistently maintains response times
below the maximum threshold of 0.35 seconds. Similarly, for
requests processed by the Cloud cluster, the average response
time remains within the defined threshold of 0.5 seconds.

C. The task dispatching outcomes

We tracked the robot requests to analyze the percentage
of requests being scheduled and where they were served —
whether on edge or cloud servers. Figure [§] presents a bar
chart that segments the total requests into three categories:
those served on the Cloud, served on the Edge, and those that
failed to be scheduled. As observed, the scheduler prioritizes
routing requests with privacy requirements to the edge cluster,
as it meets the defined privacy criteria, resulting in 84% of
such requests being served on the Edge cluster. However, due
to the strict requirement to serve on the Edge and the limited
resources available at the edge server, approximately 16% of
privacy-constrained requests failed to be scheduled.

In contrast, for normal requests, the absence of location con-
straints results in a higher success rate compared to privacy-
constrained requests. Specifically, 98% of normal requests
were successfully scheduled, with 7% served on the Edge and
91% served on the Cloud.

In the experiment, the reactive auto-scaling strategy based
solely on CPU utilization led to some rejected requests when
resources were insufficient at the time of arrival to meet
their SLOs. Using the tinyKube middleware, robotic service
providers can test deployments and adjust resource provision-
ing strategies to reduce early failures or rejections resulting
from limited resource capacity.
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Fig. 8. Dispatching results for two types of robot requests: Privacy requests
(with privacy guarantee) and Normal requests (without privacy guarantee).

VI. CONCLUSION AND FUTURE WORK

With advancements in ubiquitous networking infrastructure
and cloud computing, the realization of cloud robotics has be-
come feasible, allowing robots to offload heavy computations
to nearby edge nodes or remote cloud servers. However, to
fully maximize these benefits, significant challenges remain
in ensuring adequate resource allocation and in efficiently
scheduling tasks across the distributed platform to meet the
performance demands of robotics applications while optimiz-
ing resource utilization.

In this paper, we present tinyKube, a lightweight middle-
ware tailored for the seamless orchestration of resources within
distributed cloud-edge infrastructures for large-scale cloud
robotics deployments. By leveraging the resource orchestration
capabilities of the Kubernetes ecosystem and the Prometheus
monitoring system, the middleware provides a comprehensive
toolset for continuous system monitoring, request dispatching,
and auto-scaling of resources across the cloud-edge platform
to meet the demands of robotic applications.

The core contribution of tinyKube is its ability to simplify
cloud-native computing and offer an easy-to-use tool for
robotic application developers, accelerating the testing and
deployment of large-scale robotics. Additionally, it provides a
flexible template for quickly evaluating the effectiveness of al-
gorithms and methodologies for managing resource allocation
across cloud-edge infrastructures. Experimental evaluations of
the middleware using the CloudGripper cloud robotics testbed
— where computation-intensive components were deployed
across a cloud-edge infrastructure — indicate that tinyKube ef-
fectively auto-scales resources according to defined strategies.

Currently, the middleware prototype is based on a central-
ized architecture. In the future, we plan to evolve beyond this
single-entry model by exploring decentralized or distributed
architectures to enhance scalability and fault tolerance. Fur-
thermore, we aim to integrate the middleware into a larger
ROS-based application deployment platform (e.g., FogROS2)
for comprehensive evaluation through more diverse real-world
scenarios.
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