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Grasping Objects with Holes: A Topological Approach

Florian T. Pokorny, Johannes A. Stork and Danica Kragic

Abstract— This work proposes a topologically inspired ap-
proach for generating robot grasps on objects with ‘holes’.
Starting from a noisy point-cloud, we generate a simplicial
representation of an object of interest and use a recently devel-
oped method for approximating shortest homology generators
to identify graspable loops. To control the movement of the
robot hand, a topologically motivated coordinate system is used
in order to wrap the hand around such loops. Finally, another
concept from topology – namely the Gauss linking integral
– is adapted to serve as evidence for secure caging grasps
after a grasp has been executed. We evaluate our approach
in simulation on a Barrett hand using several target objects
of different sizes and shapes and present an initial experiment
with real sensor data.

I. INTRODUCTION

A robot operating in a domestic environment often needs
to identify suitable grasping configurations for objects with
‘holes’, such as cupboard door-handles, rubbish and grocery
bags, cups etc. In this paper, we focus on the generation of
grasp hypotheses for such objects – that is, in the language
of algebraic topology, any object in R3 whose first homology
group is non-trivial.

A popular approach [3] towards robotic grasping of a rigid
object is based on the concept of force-closure. There, one
needs to identify grasp configurations by considering both
the forces exerted by the robot hand and the friction of
the surfaces in contact. In this context, friction is usually
approximated using the Coulomb friction model. The force
analysis is then based on the exact determination of contact
points and normals and relies on a reliable estimate of
friction coefficients. A drawback of this approach to grasp
selection is its imperative requirement of detailed knowledge
of the grasped object’s local geometry.

This paper explores an approach that is applicable to ob-
jects with holes, described in terms of algebraic topology by
a non-trivial first homology group [7], [8]. Our approach can
be seen as a method for synthesizing caging grasps on such
objects – that is, grasps which restrict the object’s movement
to a small bounded set rather than fixating it completely. Such
grasps are particularly appealing in many situations [9] since
they allow to manipulate and move an object even without a
force-closed configuration and without detailed estimates of
friction coefficients and normal directions. We shall in fact
only require a potentially noisy point-cloud representation
of the object. Our methodology is in some sense dual to the
classical local point-contact analysis because it uses global
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Fig. 1. Many every-day objects have holes. Grasping them with high Gauss
linking between the robot hand and an interior loop cages the object and
secures the grip. A surface X ⊂ R3 of genus two with four closed curves
(dashed) generating H1(X) is displayed in top right. The figure on the
bottom right shows a shopping bag with a two dimensional first homology
group.

properties arising from topology in order to both identify
suitable graspable regions and to guide the hand towards the
final grasp configuration. In summary, the contributions of
our work are:

a) An application – to our knowledge for the first time in a
robotics context – of topological techniques developed
in [8] in order to identify graspable regions of an object
with ‘holes’

b) The development of a new set of ‘topology coordinates’
(an approach similar to [34]) which is inspired by the
concept of winding numbers and which enables motion
planning and control in coordinates that describe the
interaction between the object and the robot hand

c) An application of Gauss linking integrals to measure
the linking between the robot fingers and an object

d) An evaluation of our approach on various objects and
using a simulated Barrett hand.

The paper is organized as follows: in Sec. II, we briefly
review related work and describe how a basis of the first
homology group relates to loops on an object with holes.
Furthermore, we discuss winding numbers and Gauss Link-
ing integrals. Sec. III is dedicated to the topological represen-
tations of the grasped object and the robot hand and covers
the theory of the motion generation procedure. We apply our
method in Sec. IV and report on results.

II. BACKGROUND AND RELATED WORK

The problem of object grasping has been addressed fre-
quently in the robotics community, resulting in a multitude



of approaches. The survey [3] reviews the theoretical foun-
dations of analytic approaches to grasping, while a recent
survey [29] provides also an analysis of empirical and data-
driven methodologies. The grasping process depends on
many factors, e.g., the physical properties of the object,
its functionality, the scene context, the embodiment of the
robot and the available sensory information. To cope with
the underlying complexity of the problem, many approaches
thus apply some form heuristic directly in the state space
[29], [32], [26], [18], [6], [11], [20], [13], [14], [23].

By analysing a large set of human grasps, the authors of
[30] determined that the first two principal components of
the joint-space data were able to account for more than 80%
of the variance of the grasps in their data-set. This notion of
postural synergies has motivated many novel approaches [2],
[12], [28]. While the use of synergies reduces the dimensions
needed to represent the state of the robot hand, other authors
have attempted to reduce the number of features needed for
grasp analysis of the grasped object. Here, recent approaches
have been based on approximating the object by matching
shapes [19], [24] and finding a topological skeleton [27].
None of these methods however explicitly considers objects
with holes as studied in our approach. In addition, most
of the above work concentrates either on representing the
hand’s pose or the objects’ features. In contrast to that, our
approach attempts to build a non-linear low dimensional
representation which is based on concepts from topology and
which includes information about the object being grasped,
the grasp position and the state of the robot hand. Instead
of working with the force-closure condition which depends
on the local geometry of an object and which is commonly
used in grasp generation [3], [31], we shall consider a type of
caging grasp motivated by the global topology of an object.
Caging grasps have recently received renewed attention [9]
for the execution of manipulation tasks and can sometimes
allow for a less rigid approach to manipulation.

The philosophy of our approach is close to the work
of [16] which investigated a state space representation for
animated human characters based on the amount of linking
between the character’s limbs. There, a topological concept
which applies in a strict sense only to closed curves was
adapted to define a derived quantity called the writhe matrix
to describe the characters’ interaction. Unlike in our paper,
the characters’ motions are then prescribed by a series of key-
frames given in the characters’ original state space. We shall
describe the target configuration by soft constraints and apply
inverse kinematics to generate the hand’s motion. In another
related work [34], writhe matrices have been used to carry
out motion planning and, in particular, it was shown that such
matrices can be used to control the amount of wrapping of a
multi-joint robot arm around a piecewise linear curve in the
environment. While our approach is different from the above,
we will also draw inspiration from algebraic topology.

A. Homology and loops

Algebraic topology [15] aims to classify topological
spaces such as smooth manifolds up to certain continuous

deformations such as homotopies. One of its main tools
is the computation of homology which associates to every
closed manifold a sequence of homology groups. In its
simplest form, these homology groups Hi(X) of a manifold
X , with i ∈ {0, 1, . . . ,dim(X)}, are vector spaces. The
dimension of a homology group Hi(X) can be considered
as roughly representing the number of i-dimensional ‘holes’
in the manifold X . The case where X is a subset of R3

is of particular interest to us. In the special case where
X is a smooth closed and connected surface, we have
dim(H0(X)) = dim(H2(X)) = 1 and dim(H1(X)) = 2g,
where g ∈ N0 denotes the genus of the surface.

A basis for the homology group H1(X) can be given by
a set of equivalence classes of dim(H1(X)) closed curves
lying on X . Two curves γ1, γ2 represent the same equiva-
lence class in H1(X) if γ1 can be continuously deformed
into γ2 by a one-parameter family of closed curves lying
entirely in X [15]. The top right part of Fig.1 gives an
example of a surface of genus 2, so that dim(H1(X)) = 4.
Four closed curves representing basis elements for the first
homology group are displayed as dashed lines. If we imagine
this surface to be a filled solid double-torus rather than a
hollow 2D surface, the corresponding topological space is
in fact homotopy equivalent to the shopping bag displayed
in Fig.1 and has a 2-dimensional first homology group since
the two shortest curves can be contracted inside X to a point
and do hence not represent non-zero elements in H1(X)
anymore. Two generators for H1(X) can then be given by
closed curves traversing the handles of the shopping bag in
Fig.1. This discussion leads us to the notion of handle and
tunnel loops as defined in [7]. Following their notation for a
closed surface X , we denote by the inside, I , the union of X
with the part of R3 which is contained inside X . Conversely,
we denote the outside as O = X ∪ (R3 − I). A closed
loop representing a non-trivial homology class in H1(X) is
called a handle-loop if it is trivial in H1(I) — that is we
can contract the loop to a point inside I — and non-trivial
in H1(O), while a closed loop is called a tunnel loop if it
is trivial in H1(O) but non-trivial in H1(I). In our surface
in the top right of Fig.1, the two longer loops are hence
tunnel-loops, while the two short ones which become trivial
if we think of the shape as being filled out are handle loops.
Tunnel loops hence ‘tunnel’ along a ‘handle’ of the object.
The basic motivation presented in this paper is to apply
grasps wrapping around such loops. Since we will however
be working with noisy point-cloud data in this paper, it will
not always be possible to reconstruct a clean water-tight
mesh of the object of interest, making the determination
of the ‘inside’ and ‘outside’ of an object difficult. Under
these assumptions, we will hence treat all first homology
generators as potentially graspable loops for the generation
of grasp hypotheses in this work.

While methods for computing homology groups for a
topological space X which is represented as a simplicial
complex (such as a mesh) have existed since the invention of
simplicial homology [15], this does not suffice in the context
of grasping since any loop γ : [0, 1] → X representing a



p

(a) w(γ) = 2

p

X0

X 1

X 2

X 3

X 4

X 5

X 6

X 7

X 8

X 9

X 10

X 11

X 12

(b) w(γ) = 2

p

X0

X 1

X 2

X 3

X 4

X 5

(c) w(γ) u 0.79

Fig. 2. The winding number counts the number of full windings
around a reference point in the smooth (a) and piecewise linear (b)
case. In the piecewise linear non-closed case (c), the function is
real-valued.

basis element of H1(X) is equivalent to any other loop γ̂
that can be deformed into γ. We hence propose to use the
recently developed method of [8] to instead identify a basis
of H1(X) consisting of curves with approximately shortest
length in their equivalence class. We shall in particular build
simplicial complex representations from noisy point-clouds
of objects and will then use the software ShortLoop [4] to
identify shortest loops therein.

B. Winding numbers and Gauss linking integrals

Another topological concept that we incorporate in this
work is the winding number. For a smooth closed curve
γ : [0, 1] → R2 not containing the origin, the winding
number w(γ) ∈ Z counts the number of times that γ
wraps around the origin. The function w(γ) is a topological
invariant and does not change if we deform γ continuously
without traversing the origin. If γ(t) = (x(t), y(t)) for
t ∈ [0, 1], an explicit formula [17] for w(γ) is given by

w(γ) =
1

2π

∫ 1

0

ẏ(t)x(t)− ẋ(t)y(t)

x(t)2 + y(t)2
dt. (1)

If γ is a closed piecewise-linear curve which connects the
points X0, X1, . . . , Xn−1, Xn = X0 ∈ R2 by linear line
segments, the winding number can still be computed by
applying the above formula on each linear segment and
summing the result [17]. The integral over each linear
segment can easily be computed, leading to the formula

w(γ) =
1

2π

n−1∑
i=0

{
tan−1

(
〈Xi+1, Xi+1 −Xi〉

Di

)
+ tan−1

(
〈Xi, Xi −Xi+1〉

Di

)}
, (2)

where Di = (Xi)1(Xi+1)2− (Xi)2(Xi+1)1 and 〈, 〉 denotes
the standard inner product. Note that the winding number
changes sign if the orientation of γ is reversed, i.e. for
γ̂(t)

def
= γ(1 − t), we have w(γ̂) = −w(γ). Furthermore,

we can define winding around any fixed point p ∈ R2 by
choosing coordinates such that p corresponds to the origin.
An example of such a curve is depicted in Fig.2(b).

If γ is not closed (so that Xn 6= X0), w(γ) defined by the
above quantity takes values in R and is not a topological
invariant in the strict sense anymore, but still provides a
measure of the winding of γ around the origin. Fig.2(c)
illustrates this concept for a non-closed curve.

For our work, it will be useful to consider w(γ) as a
function of the control points X0 = (x0, y0), . . . Xn =
(xn, yn). Observe that, as can be seen from Equation 1 and
2, w(γ) : R2(n+1) → R is differentiable with respect to the
coordinates of these control points as long as γ does not
contain the origin and the computation of the Jacobian of
this function is elementary.

Given two closed non-intersecting curves γ1, γ2 in R3, an-
other useful invariant is the linking number Lk(γ1, γ2) ∈ Z
which describes how the two curves are linked. If Lk(γ1, γ2)
is non-zero, the two curves cannot be ‘pulled apart’ without
breaking the loops (see [15]). If γ1, γ2 : [0, 1] → R3 are
smooth closed curves, the linking number can be computed
using the Gauss linking integral:

Lk(γ1, γ2) =

1

4π

∫ 1

0

∫ 1

0

〈 γ1(s)− γ2(t)

‖γ1(s)− γ2(t)‖3
, γ′1(s)× γ′2(t)〉dsdt.

Just as in the case of the winding number, the above integral
is well-defined and can be evaluated explicitly also in the
case of two piecewise linear curves [21]. Similarly, we can
define the above integral when γ1, γ2 are not necessarily
closed and use the real-valued result as a measure for the
amount of linking between two curves. This intuition is also
used in [16], [34].

III. SYSTEM DESCRIPTION AND IMPLEMENTATION

We approach the problem of grasping objects with holes
by exploring a departure from common local geometric
representations of the robot’s hand and the grasped object.
In the following section we describe our topological object
representation consisting of closed loops and our hand rep-
resentation.

A. Topological object representation

We assume that the object being grasped is either already
presented as a mesh or observed as a noisy point-cloud
arising e.g. from RGBD-sensors or stereo vision. If point-
cloud data is provided, we generate a Delaunay triangulation
resulting in a tetrahedral mesh of the object’s convex hull.
Our heuristic method then removes all faces that contain
an edge longer than 4cm since such edges connect rather
distant points without additional evidence for data in be-
tween the vertices. The resulting simplicial complex X
serves as input to the ShortLoop software [4], [8] to extract
k = dim(H1(X)) piecewise-linear loops γ̂1, γ̂2, . . . , γ̂k.
The found loops represent generators of the first homology
group and are approximately of shortest length within their
homology class. Since we also know the physical dimensions
of the robot hand, we can further reduce the number of
candidate loops by rejecting loops γ̂i of small length which
are too small for the robot hand to grasp around. This
results in a set S = {γ1, . . . , γm} of piecewise linear curves
representing potentially graspable loops. S is then used as
a reduced topological representation of X . If S is empty,
the data provides no detectable graspable loops and our
algorithm does not apply.



B. Robot hand representation

For a given robot hand with l fingers, we select piecewise
linear control curves, C = {α1, α2, . . . αl}, running from
the fingertips through the joints to the tip of a respective
opposable finger (see Fig. 3). For our algorithm to apply,
it is necessary to be able to to identify at least one pair of
opposable fingers. This is easily done for most current robot
hands such as the case of a parallel gripper or for the Barrett,
Schunk or DLR hand. Fig. 3 displays a possible choice for
two control curves in case of a Barrett hand.

Fig. 3. Barrett hand model used in our experiments with control
curves α1 and α2 indicated by lines. Both αi contain the opposable
finger to the right and span from finger tip to finger tip. The control
points of these curves are given by the traversed joint-frame origins.

C. Topological control and motion planning

Let S and C denote the object and robot hand repre-
sentation as defined above. S is hence a non-empty set of
closed loops and C is a set of piecewise linear finger curves.
We now consider how to generate a transition of the robot
hand starting from an initial pose p0 and yielding a grasp
hypothesis around a loop γ ∈ S.

Any γ ∈ S traverses an ordered set of points
X0, X1, . . . , Xs = X0 ∈ R3 by linear line segments. While
we could choose to wrap the robot hand around any point
on these segments, we decide to concentrate on the mid
points Mi = 1

2 (Xi+1 − Xi) in this work. We form an
orthonormal basis (Ti, Vi1, Vi2) to provide a target-centred
coordinate system. The unit tangent vector of the segment,
Ti, is given by Ti = Xi+1−Xi

‖Xi+1−Xi‖ . We denote by Vi1 the
unit vector orthogonal to Ti and pointing towards the loop’s
centre L = 1

s

∑s
i=1Xi. The vector Vi2 is then defined by a

cross product: Vi2 = Ti × Vi1. Finally, we let Πi denote the
plane through Mi with normal direction Ti. We denote the
orthogonal projection that maps R3 onto the plane Πi by πi.
Fig. 4 elucidates the definitions.

For a fixed loop γ ∈ S and segment index i ∈
{0, 1, . . . , s− 1} we can now define a constraint optimiza-
tion problem. For all control curves α ∈ C:

a) Maximize the winding of the projection πi(α) around
the point Mi and approach the object along the direction
Vi1

b) Minimize the distance between the robot hand and the
plane Πi

c) Avoid collisions with the object being grasped.
In combination with the starting pose heuristic, described

in section IV, these constraints define a transition that is
initially similar to the notion of approach vectors [10].
The robot hand will have to approach the point Mi to
increase winding numbers. However, the constraints enforce

Fig. 4. The loop γ is grasped around its i-th segment’s midpoint Mi.
The control curve α2 is projected orthogonally onto the plane Πi

which is spanned by the vectors Vi1 and Vi2. For the construction
of the orthonormal basis (Ti, Vi,1, Vi,2) from the normal Ti and the
loop’s centre L, see section III-C.

the adaptation of the finger configuration and the hand’s pose
to the target object’s local shape around the loop.

Since this work focuses on introducing new topological
representations for grasping, we will describe here only a
rather simple approach towards attaining the above goals
using inverse kinematics and a task space mapping. We
consider a given robot hand with u ∈ N degrees of freedom
and define the state space P = R3×SO(3)×Ru, where the
space R3 represents the position of the robot hand’s base,
SO(3) its orientation and Ru the hand’s degrees of freedom
(such as joint angles). Let us fix a γ ∈ S and a particular
segment index i and let C = {α1, . . . , αl}. We consider a
task space mapping, Γ: P → Rl+3 that maps poses p ∈ P
from the robot’s state space into a topologically inspired
coordinate system and where

Γ(p) = (w1(p), w2(p), . . . , wl(p), d(p), c(p), r(p))T . (3)

Here, wj(p) denotes the winding number of the projected
curve πi(αj) ⊂ Πi around the point Mi ∈ Πi. Furthermore,
we augment the winding information with the function
d : P → R, denoting the mean distance between the vertices
traversed by any of the control curves α ∈ C and their
own image under πi. We model the collision constraint by
applying a collision potential c : P → R that is defined to be
zero if the robot is at a distance of more than 1cm from the
object and which, starting at 0, then smoothly increases as
the distance to an obstacle approaches zero. Finally, we add
a function, r : P → R, which measures the distance between
the projection of the palm’s centre onto Πi and the line
through Mi and Vi1. Minimizing d now yields collision-free
configurations while minimizing c lets the hand approach the
plane Πi. Finally, a minimization of r yields an approach
such that the hand is oriented towards the focus point Mi.

The Jacobian JΓ for Γ can now be computed, where the
derivatives of the functions wi can be computed directly
from Equation 2 or by numerical approximation. We shall
then apply a simple Jacobian transpose based controller to
approach a task-space goal state g ∈ Rl+3. I.e., given a pose
pt ∈ P , we iterate by updating the state by

pt+1 = pt + α(JΓ(pt))
T (g − Γ(pt)) (4)



for some small fixed α > 0. In our experiments, we shall
define the goal state by setting the last three coordinates to
zero and by setting the goal winding numbers of the first l
coordinates as the current winding plus a fixed positive offset
δ > 0.

Procedure 1 The generation of grasp hypotheses is based
on a mesh generated from point-cloud data. All object loops
are extracted and a priori incompatible loops are rejected.
Segments of remaining loops are subject to a grasp approach
and a heuristic is used to identify an initial pose p0. The
Jacobian transpose controller terminates upon unsubstantial
improvement. The symbols below are defined in section III.
Input: Object point data D, robot hand representation C.
Output: Set of grasp hypotheses G.
G← ∅
S ← ShortLoop (D) . See section III-A
S ← Remove-Incompatible-Loops(S)
for all γ ∈ S do

for all segments (Xi, Xi+1) ⊂ γ do
p0 ← Starting-Pose-Heuristic(Xi, Xi+1)

. See section IV
if p0 6= ∅ then

Γ← Task-Space-Mapping(C,Πi, πi)
. See section III-C

G = G∪Jacobian-Transpose-Control(Γ, p0)
. See sections III-C, IV

end if
end for

end for

In summary, the complete grasp generation procedure
hence consists of the following steps: first, all object loops
are extracted. Loops whose length is larger than a threshold
are then considered segment-wise, and for each segment,
a heuristic initial pose of the robot hand is generated, as
explained in section IV. Finally, the task-space mapping
function Γ, together with the regarded segment and the initial
pose, instantiate a constraint optimization problem that is
solved via the Jacobian transpose controller described in
Eq. (4). See Procedure 1 for a pseudo-code description.

IV. EXPERIMENTAL EVALUATION

We now describe our experimental setup and results. First,
we provide details on how a set of piecewise-linear loops,
S = {γ1, γ2, . . . , γm} is generated for our test objects, then
we comment on the robot representation. Next, we explain
our heuristic selection of initial poses and give details on
which loops and initial poses are rejected a priori. Finally, we
present results on the generated grasp hypotheses on objects
of different sizes and shapes, as well as on real sensor data.

We will consider the objects displayed in Fig. 5 for
our experiments. We generated these point-clouds from an
underlying mesh which we obtained from [1]. Next, we
sampled a maximum of 2100 uniform points from each mesh
and added zero mean Gaussian noise with standard deviation
0.3cm. While the ShortLoop software [4] can construct

simplical complexes from point-cloud data, we decided to
provide it directly with a simplical complex to speed up
the computation. To create such a complex from the point-
cloud data, we generate a filtered Delaunay triangulation by
rejecting faces that contain edges of length larger than 4cm
as previously described. As can be seen in the bottom row of
Fig. 5 this results in a realistic reconstruction of our objects.
Finally, we determine an approximately shortest homology
basis of the first homology group using the ShortLoop
software. For the given objects, the mesh creation and loop
detection took no more than 10s per object on a current Intel
i7 CPU laptop. We use the libORS [33] robot simulator to
simulate a four degree of freedom Barrett hand as depicted
in Fig. 3. The two control curves α1 and α2 connect the
finger tips of the two rotatable fingers (on the left in Fig. 3)
to the finger tip of the non-rotatable ‘thumb’ of this robot
hand. The curves run from tip to tip traversing joint positions.
To define the collision potential, we use the distance to the
original object mesh.

Since we do not address planning in this work, we employ
a simple heuristic for setting the initial pose p0 ∈ P of
the robot hand: for each loop γ and each linear segment
(Xi, Xi+1) on γ, we position the robot hand 50cm away
from the point Mi along the half-line through Mi defined
by the vector −Vi1. The hand is then oriented towards Mi

and the fingers are positioned along the plane Πi such that
the initial pose yields a positive winding number for the two
control curves.

If the line between the hand position and Mi intersects
the filtered Delaunay mesh at a position further than 30cm
away from Mi, we assume that the approach direction is
rendered unusable by an obstacle and dismiss the particular
initial configuration. This occurs for example when the robot
attempts to grasp the blue loop of the chair in Fig. 5 from
above. Fig. 8 depicts accepted starting positions.

Let us now come to the definition of the task goal state
g ∈ Rl+3. The last three coordinates of g are set to zero,
representing the distance to Πi, collision, and approach con-
straints. For the remaining l winding number constraints, we
wish to maximize each winding number. Since the maximal
obtainable winding numbers between the control curves and
the target loop are however unknown, we follow the method
in [5] and select as the target for the state pt at iteration t the
current task winding numbers plus a fixed increase. Eq. (4)
now becomes pt+1 = pt + α(JΓ(pt))

T (gt − Γ(pt)) with

gt =(w1(pt), w2(pt), . . . , wl(pt), d(pt), c(pt), r(pt))
T (5)

+ (δ, δ, . . . , δ, 0, 0, 0)T

for δ = 0.8. The magnitude of change is then clamped in
each update step. We stop the Jacobian transpose control
procedure if the increase in the winding numbers is insignif-
icant for a period of 200 control iterations. Finally, we tighten
the grasp by an auto-grasp procedure [25]. The robot hand
is moved forward along its principal direction until contact
occurs. The fingers are then closed one-by-one until they
have contact with the object or the hand itself.



Fig. 5. Point-cloud data for our test objects is displayed in the top row. A resulting filtered Delaunay triangulation and detected loops are
displayed in the bottom row. The point clouds were sampled from meshes and zero-mean Gaussian noise with standard deviation 0.3cm
was added to simulate real point-cloud sensor data. The units in all plots are metres.

Fig. 6. Grasp hypothesis generation on an object in different sizes shows that our approach reliably produces similar hypotheses. The
object scale varies in steps of 20% from 40% to 140%. All accepted initial poses are positioned similarly across sizes (top). Considering
the resulting grasp hypotheses (bottom) such that at least one control curve has a Gauss linking higher than 0.75 with the loop, we observe
that some grasp regions are shared amongst the different object sizes (bottom). For the smallest size, near-horizontal grasps are missing
since our final auto-close procedure results in a collision between the fingers and the cup’s body before being able to fully close around
the cup’s handle. For the largest size, the handle is so big and the hand cannot wrap around it completely.

To test the variance in placement and quality of the
generated grasp hypotheses with the scale of an object,
we first considered the cup displayed in Fig.6. The cup
is scaled from 40% to 140% in steps of 20% each and
approximately 1000 points are sampled on the cup’s surface
without additional noise. Only a single loop describing the
cup’s handle is detected in the refined Delaunay triangulation
for all sizes. The number of generated initial poses varies
from 11 in the 60%-case to 15 in the 100% and 140%-
cases. Between 6 and 8 initial poses are rejected because
of obstruction by the cups body, see Fig. 7 (top). For all
sizes, the initial poses are positioned on the handle side of
the cup in a similar manner and allow for a direct approach
as depicted in Fig. 6 (top). The most common place of the
grasp hypotheses with high Gauss linking (0.75 or higher)
is the middle of the handle-part and is shared amongst the
different sizes. The relation between the fixed size of the
robot hand and the varying size of the object is reflected

as a trend in the distribution of the resulting Gauss linking.
Fig. 7 (bottom) shows the maximal Gauss linking of the two
control curves in the final pose. In case of the largest cup,
the handle-part is enlarged to an extend that the robot hand
can barely encompass it completely. While only one grasp
hypothesis with Gauss linking larger than 1.0 is produced,
this does however not necessarily imply that most of the
other grasp hypotheses do not cage the object. In case of the
smallest cup, the robot hand is not able to fit the two fingers
through the loop completely and therefore is prevented from
obtaining a high linking number with the loop. The generated
grasp hypotheses with Gauss linking higher than 0.75 are
shown in Fig. 6 (bottom).

Let us now consider the five objects from Fig. 5 for grasp
hypothesis generation and let us investigate how the shape
of these objects influences our approach. Note that we do
only encounter tunnel loops in our computations, since - for
our examples - our filtered Delaunay triangulation (e.g. for



Fig. 8. Generated initial positions for different objects (top), all resulting final grasp configurations (middle) and final grasp configuration
with Gauss linking 0.75 or larger (bottom).

the chair model) produces a ‘filled’ solid complex which
contains solid tetrahedra modelling the interior of the object.
The number of detected loops is 7, 2, 2, 1 and again 1
for the chair, scissors, double torus (d.torus), toy and cup,
respectively. The initial poses are displayed in Fig. 8 (top).
The number of generated initial poses varies with the number
of loops and is 165, 15, 15, 38 and 16 for the objects in the
above order. Many initial poses are rejected for the chair
since the hand’s path is obstructed by the chair’s geometry.
Considering the distribution of the maximal Gauss linking,
we can see that all objects but the toy allow for a large

40% 60% 80% 100% 120% 140%
0

5

10

15

Cup scale

N
um

be
r 

of
 p

os
es

 

 

Accepted Generated

0

0.5

1

1.5

2

40% 60% 80% 100% 120% 140%
Cup scale

G
au

ss
 li

nk
in

g

Fig. 7. While the ratio of generated initial poses to rejected initial poses
is stable in for different sizes of the cup object (top), the distribution of the
Gauss linking in the resulting grasp hypotheses varies (bottom). The trend
shows that the 60%-scaled cup fits the robot hand best. The edges of the
box-plot show the 25th and 75th percentiles.

share of the grasp hypotheses to assume a Gauss linking
higher then 1.0. The complicated local geometry of the toy
is reflected in its Gauss linking distribution as can be seen
in Fig. 9 (bottom). In the chair experiment, the robot hand
cannot always reach the target loop segment and gets stuck
at other parts of the object.
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Fig. 9. Results for the grasping experiment with five different objects.
The number of generated initial poses is the highest for the chair since it
has 7 loops (top). All objects allow for grasps with high Gauss linking, but
the complicated shape of the toy is clearly reflected in the distribution. The
edges of the box-plot show the 25th and 75th percentiles (bottom).

Let us now consider an initial experiment with real data.
We consider segmented partial view point-cloud data from
[22]. An image of an object is shown in Fig. 10 together
with an associated point-cloud comprising 3213 data points.
We generated a filtered Delaunay mesh and computed the
shown loop and the resulting grasp hypotheses (see Fig. 10).



Fig. 10. Coffee mug (top left) and corresponding point-cloud (top
right), extracted loops and filtered Delaunay mesh from real sensor
(bottom left) as well as nine resulting grasp hypotheses with Gauss
linking larger equal to 1.0 are shown (bottom right).

To execute our grasp hypothesis generation approach in
simulation, we compute the collision potential from the
filtered Delaunay mesh and scale the mesh by a factor of
2.5 beforehand. This results in 13 grasps 9 of which have a
Gauss linking of at least 1.0 with the handle loop.

V. CONCLUSION

In this paper, we have developed a grasp state represen-
tation and control method for grasping objects with ‘holes’,
drawing inspiration from several topological concepts such
as homology groups, winding numbers and Gauss linking
integrals. We have applied our representation to successfully
generate grasps on objects of different sizes and shapes in
simulation. Fig. 10 presents an initial experiment using data
generated with a real sensor, but a more thorough analysis
with more object categories, view angles and with different
noise levels will need to be performed. In the future, we also
intend to demonstrate our approach on a real robot system
and would like to incorporate a planning framework such as
rapidly exploring random trees.
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