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Classical Grasp Quality Evaluation: New Algorithms and Theory

Florian T. Pokorny and Danica Kragic

Abstract— This paper investigates theoretical properties of a
well-known L1 grasp quality measure Q whose approximation
Q−l is commonly used for the evaluation of grasps and where
the precision of Q−l depends on an approximation of a cone by
a convex polyhedral cone with l edges. We prove the Lipschitz
continuity of Q and provide an explicit Lipschitz bound that can
be used to infer the stability of grasps lying in a neighbourhood
of a known grasp. We think of Q−l as a lower bound estimate
to Q and describe an algorithm for computing an upper
bound Q+. We provide worst-case error bounds relating Q
and Q−l . Furthermore, we develop a novel grasp hypothesis
rejection algorithm which can exclude unstable grasps much
faster than current implementations. Our algorithm is based
on a formulation of the grasp quality evaluation problem as
an optimization problem, and we show how our algorithm
can be used to improve the efficiency of sampling based grasp
hypotheses generation methods.

I. INTRODUCTION

One of the key problems in robotics is the question
of how to generate viable grasps. Many aspects, such as
the kinematics of a robot, collision avoidance, the object
representation, resistance to noise and task constraints for
a particular manipulation problem need to be investigated
to form a useful grasp. This work focusses on grasping at
the contact level which forms the foundation for many state
of the art grasp synthesis algorithms [1], [2], [3]. Grasping
at the contact level is concerned with the generation of
point-contacts on an object of interest such that physical
constraints, formulated in terms of the forces acting on an
object, are satisfied. In their pioneering work two decades
ago, Ferrari and Canny [4] introduced several grasp quality
measures which have found a wide application in robotics
[2] and which have sparked the creation of several closely
related grasp quality measures [3]. We investigate an L1

grasp quality measure Q introduced in [4] which is a function
of the contact points and contact surface normals formed
by the grasp and which, for a particular friction coefficient,
takes positive values if the resulting grasp can withstand
wrenches in an arbitrary direction. Importantly, the magni-
tude of Q furthermore yields a measurement which allows
to rank grasps by their physical stability. In this paper, we
establish some of the basic – as of yet unstudied – properties
of the function Q which can be estimated by a function
Q−l defined in terms of an approximation of the Coulomb
friction cones by regular polyhedral cones with l edges (see
Fig. 1). All major robot grasp simulation environments such
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Fig. 1. Friction cone F (0, 0, 1) in normal direction (0, 0, 1) in a) and
uniform polyhedral cone approximations of that cone with 3, 8, and 20
edges in b)-d). The top row of figures assumes a friction coefficient of
µ = 1 while the bottom row displays the corresponding cones for µ = 1
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as GraspIT [5], OpenGrasp [6] and Simox [7] implement
such an approximation. Based on our theoretical insights,
we devise an algorithm for the rejection of unstable grasp
configurations which we show in experiments to be up to 600
times faster than an implementation based solely on Q−l . Our
contributions can be summarized as follows:
• We rephrase a characterization of Q as a minimization

problem described by [8] and extend their work by
providing a coordinate independent efficient description
of the objective function.

• We suggest and evaluate a new optimization method for
determining an upper bound Q+ for Q.

• We prove results on the continuity properties of Q−l .
• We prove that Q is Lipschitz continuous and provide

an explicit Lipschitz constant.
• We relate the classical approximation Q−l of grasp

quality to Q and provide a worst-case error bound.
• We introduce a very fast algorithm for removing the

majority of unstable grasp hypotheses from a set of
grasps candidates which gives rise to a new efficient
method for finding stable grasps.

Our paper is structured as follows: in Section II, we review
related work and recall the basic definition of Q−l and Q.
In Section III, we begin our investigation of the theoretical
properties of L1 grasp quality and devise a novel efficient
algorithm for the rejection of unstable grasps and for the
estimation of upper bounds. In Section IV, we present an
evaluation of the theory and the algorithms developed in
Section III. Finally, we conclude our work and describe
future work in Section V.



II. BACKGROUND AND RELATED WORK

Consider a grasp configuration g with m contacts
c1, . . . , cm ∈ R3 located on some surface with corresponding
inward pointing unit normal vectors n1, . . . , nm ∈ S2 =
{x ∈ R3 : ‖x‖ = 1} and centre of mass z ∈ R3:

g = (c1, . . . , cm, n1, . . . , nm, z). (1)

For any given inward pointing normal direction n ∈ S2, the
Coulomb friction model with friction coefficient µ > 0 states
that any force f ∈ R3 that can be exerted without slippage at
a point p on a surface and with inward pointing normal n has
to lie in the friction cone F (n) = {f ∈ R3 : ‖f t‖ 6 µf⊥},
where f = f⊥n + f t, f⊥ ∈ R and f t ∈ R3 is a vector
tangent to the object (i.e. satisfying 〈f t, n〉 = 0).

In the robotics literature, this constraint is often made
explicit by fixing an arbitrary orthonormal basis of the plane
orthogonal to n, i.e. t1, t2, such that f t = αt1 + βt2 and
F (n) = {f = λn + αt1 + βt2 :

√
α2 + β2 6 µλ}. Here,

we shall avoid this choice t1, t2 and work instead with a
coordinate-independent formulation of the friction cones. We
thus have F (n) = {f ∈ R3 : ‖f − 〈f, n〉n‖ 6 µ〈f, n〉},
where 〈, 〉 denotes the standard inner product and ‖.‖ the
corresponding norm on R3. To every force f at contact c
and for a centre of mass z, we can associate the wrench
wc,z(f) = (f, (c − z) × f) ∈ R6. In [4], the space of all
wrenches (w1, . . . , wm) which can be exerted at (c1, . . . , cm)
using the grasp g and such that

∑m
i=1

∣∣f⊥i ∣∣ 6 1 is considered.
Any allowable such wrench lies in the convex hull W =
Conv({0} ∪ S(g)), where S(g) = {

∑m
i=1 αiwci,z(fi) : fi ∈

D(ni), αi > 0,
∑m
i=1 αi = 1} = Conv({wc1,z(D(n1)) ∪

. . . ∪ wcm,z(D(nm))}), and where

D(n) = {f ∈ R3 : 〈f, n〉 = 1, and ‖f − 〈f, n〉n‖ 6 µ}

denotes the disc obtained by intersecting the cone F (n) with
the plane normal to n and ‘at height one’. Since this disc
is the convex hull of a circle D(n) = Conv(C(n)), where
C(n) = {f ∈ R3 : 〈f, n〉 = 1 and ‖f − 〈f, n〉n‖ = µ}, we
finally have that

S(g) = Conv(wc1,z(C(n1)) ∪ . . . ∪ wcm,z(C(nm))).

Exact L1 grasp quality: Q

Let S be a bounded convex set and denote by d(0, S) the
signed distance from the origin to S, so that −d(0, S) is the
radius of the largest ball around the origin which still fits
inside S if such a ball exists and it is the negative of the
radius of the largest ball entirely outside IntS(g) otherwise.
The support function hS(z) = sups∈S〈s, z〉 is a convex
function and −d(0, S) can be expressed as (c.f. [8] up a
change in sign and notation):

−d(0, S) = min
‖z‖=1

hS(z). (2)

Up to a change in sign, the work [8] defines the quality of
a grasp by considering q(g) = −d(0, S(g)). The function
q can take negative values and Q(g) = max(0, q(g)) =
−d(0,Conv({0} ∪ S(g)) is positive (indicating a stable

grasp) precisely if arbitrary small wrenches of maximal norm
Q(g) can be resisted by the grasp. The main downside of the
above approach is that there currently exists no analytic way
of determining Q(g). The earlier work of [4] studied Q using
a different method by introducing an approximation by a
function Q−l which we shall discuss next. An alternative ap-
proach of [8] showed that a numerical optimization of Eq. 2
with a standard out-of-the-box matlab optimization function
can also be used to determine q(g) approximately, while [9]
approximate q(g) by iteratively growing a polyhedral convex
hull approximation to S(g).

Approximate L1 grasp quality: Q−l

Ferrari and Canny [4] defined an algorithm that provides
an approximation to Q. All popular grasp simulation
environments such as GraspIt [5], Simox [7] and OpenGrasp
[6] implement a version of this algorithm. To approximate
D(n), one proceeds by using l > 3 edges f1, . . . , fl ∈ C(n)
such that D(n) ≈ Conv({f1, . . . , fl}); see Fig. 1 for an
illustration. If we space these edges uniformly, so that
fj = n + µ(cos( 2πjl )t1 + sin( 2πjl )t2), we obtain a regular
approximation Dl(n) = Conv({fj : j = 1, . . . , l}) of the
disc D(n), so that D(n) ≈ Dl(n) and an approximation
Fl(n) = Conv({0} ∪Dl(n)) of the truncated friction cone,
so that Fl(n) ≈ Conv({0} ∪D(n)) as displayed in Fig. 1.
Note that this definition of fj depends on a choice of
orthonormal basis t1, t2 for the tangent space orthogonal
to the line spanned by n. Using the above approximation,
one then computes an approximation of S(g) by S−l (g) =
Conv ({wij = wci,z(fij) : i ∈ {1, . . . ,m}, j ∈ {1, . . . , l}}),
where fij for j = 1, . . . , l are equally spaced edges on
C(ni). A quality measure Q−l is then defined as the distance
from the origin to the closest facet of S−l (g) if the origin is
contained in the interior. If this is not the case, we define
the quality to be equal to zero. In order to compute Q−l (g),
all major state of the art implementations then use the
Quickhull library [10] which converts the description of the
convex hull S−l (g) into its dual form as an intersection of
affine half-spaces, where λj ∈ R, vj ∈ R6, ‖vj‖ = 1:

S−l (g) =

N⋂
j=1

{x ∈ R6 : 〈x, vj〉 6 λj}, (3)

and which can then be used for computing grasp quality
since Q−l (g) = max(0,minj λj). Recent work that uses Q−l
includes [2], where a sampling based strategy towards the
determination of a stable grasp is presented. The work of
[11] uses the approximation Q−l together with a gradient
based approach to find such grasps, while [8] investigates
q instead. Recent examples of the usage and development
of grasp quality measures includes the work of [12] and
[13] where kinematic constraints are also incorporated. More
classically, the work of [14] defines a quality measure
that relies on a polyhedral cone approximation, but which
decouples moments from forces.



III. THEORETICAL CONTRIBUTIONS

In this section, we investigate some of the basic but
previously unstudied properties of the grasp quality measures
Q−l and Q.

Computational complexity and error estimates
Let us begin our discussion of Q−l and Q by having a look

at the time-complexity for computing Q−l in practice. As can
be seen in Fig. 2(a), the time required to compute Q−l scales
rather unfavourably as the number l of edges per friction-
cone is increased. Since sampling based grasp hypothesis
generation methods such as [2] typically require thousands
of evaluations of Q−l , a low number of edges between 6 and 8
is often chosen in real-world applications. Our first task shall
be to describe worst-case error bounds for the approximation
of Q by Q−l .
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(a) Mean computation time in seconds for Q−l for 10000 uniformly sampled
grasps with three contact points c1, c2, c3 such that ‖ci‖ 6 2, for
uniformly sampled corresponding normals ni in the sphere S2 and for
friction coefficient µ = 1. The centre of mass z was set to 0 for each
grasp. The mean is obtained from 10 runs of the experiment.
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(b) Maximal approximation error bound Err(r, l) (vertical axis) for approx-
imating each friction cone using various numbers of uniformly spaced
edges (horizontal axis), for friction coefficient µ = 1 and for r = 2.

Fig. 2.

Let us first state a rather simple fact:

Lemma 3.1. For any grasp g, we have 0 6 Q−l (g) 6 Q(g).
Furthermore, ‖Q(g)−Q−l (g)‖ → 0 as l→∞ when Q−l (g)
is computed using a uniform approximation of the friction
cones with l edges.

Proof. Note that Q(g) (Q−l (g) respectively) is equal to the
radius of the largest ball centred at the origin and inside
S(g) (S−l (g) respectively) if such a ball exists and zero
otherwise. Furthermore, S−l (g) ⊂ S(g) for all l ∈ N which
implies the first statement. Finally, the convex hull S−l (g)
clearly converges to S(g) as l→∞, since the friction cone

approximations Fl converge to F as the number l of edges
is increased. This yields the second statement.

Note that, since Q(g) = max(0, q(g)), the above lemma
tells us also that q(g) can be approximated by Q−l (g) for
sufficiently large l if q(g) > 0. The function q does however
contain additional information when it is negative. Note
here that some implementations define Q−l (g) = minj λj ,
using the affine half-plane description of S−l (g). In this
case, negative values of Q−l can be attained. When the grasp
quality is defined in this way and when it is negative, Q−l (g)
is the signed distance to the closest hyperplane {x ∈ R6 :
〈x, vj〉 6 λj} among the hyperplanes describing S−l (g)
which is not necessarily a good approximation to q(g) for
small l. We have the following result:

Lemma 3.2. Suppose Q−l (g) is computed using l uniformly
spaced edges to approximate the friction cones, and suppose
that the friction coefficient is given by µ > 0. Define

Err(r, l)
def
= max

g:‖ci−z‖6r, ∀i=1,...,m

∣∣Q−l (g)−Q(g)
∣∣ ,

where r > 0 and g denotes a grasp with m contact points
ci, normals ni ∈ S2 and with centre of mass z as in Eq. 1.
Then Err(r, l) 6 µ(1 + r)(1− cos(πl )).

Proof. Note that µ(1−cos(πl )) is the maximal distance from
any point on the disc D(n) to the approximation Dl(n) for
arbitrary n ∈ S2. Given wrenches w = (f, (c− z)× f) and
w′ = (f ′, (c− z)× f ′) with ‖f − f ′‖ 6 ε, we observe that

‖w − w′‖ 6 ‖f − f ′‖+ ‖c− z‖‖f − f ′‖
6 ε(1 + ‖c− z‖).

To prove the result, we only need to consider g for which
q(g) > 0 since otherwise both Q−l (g) and Q(g) =
max(0, q(g)) are zero. Suppose there exists g such that
‖ci − z‖ 6 r and

∣∣Q(g)−Q−l (g)
∣∣ = q(g) − Q−l (g) =

λ > µ(1 + r)(1 − cos(πl )). Consider z∗ ∈ R6, ‖z∗‖ = 1
such that −d(0, S−l (g)) = hS−l (g)(z

∗). Then, by definition,
Q−l (g) = max(0, hS−l (g)(z

∗)) and hence S−l (g) ⊆ {x ∈

R6 : 〈x, z∗〉 6 hS−l (g)(z
∗)} ⊆ H

def
= {x ∈ R6 : 〈x, z∗〉 6

Q−l (g)}. Consider p = q(g)z∗. We have ‖p‖ = q(g),
so p ∈ S(g), and furthermore, since d(p,H) = λ, we
have d(p, S−l (g)) > λ. Now p can be expressed as p =∑m
j=1 αj(fj , (cj−z)×fj), for some fj ∈ D(nj) and αj > 0,∑
j αj = 1. Let f̂j be the closest point to fj in Dl(nj) and

define p̂ =
∑m
j=1 αj(f̂j , (cj − z)× f̂j). Clearly, p̂ ∈ S−l (g),

but

‖p− p̂‖ 6
∑
j

αj

(
‖f̂j − fj‖+ ‖f̂j − fj‖‖cj − z‖

)
6 µ(1 + r)(1− cos(

π

l
)) < λ.

Hence, we have arrived at a contradiction.

Figure 2(b), displays the convergence of these errors. For
l = 20, we obtain a maximal error of 0.037 for r = 2. Note
that, while the computational complexity blows up quickly
as l→∞, the error bound converges rather slowly to zero.



Continuity
While one might think that the approximation S−l (g) of

S(g) which determines Q−l varies continuously with respect
to the parameter g, we will now show that this is in fact not
the case. Recall that S−l (g) is a convex hull determined by
approximating the truncated friction cones Conv({0}∪C(n))
using C(n) ≈ Conv({f1(n), . . . , fl(n)}). We now show that
there cannot exist any continuous map n 7→ fj(n) assigning
normal directions n ∈ S2 to edges fj(n) of the truncated
friction-cone Conv({0} ∪ C(n)):

Theorem 3.3. There does not exist any continuous edge-
assignment f : S2 → R3 such that f(n) ∈ C(n) for all
n ∈ S2, and where f is defined on the whole sphere of unit
normal directions S2.

Proof. Suppose there was such an assignment. The vectors
v(n) = f(n) − n are non-zero and lie in the tangent plane
TnS2 of the sphere S2 at n and hence form a non-vanishing
continuous vector-field on S2. However, since the Euler-
characteristic χ(S2) = 2, any continuous vector field on S2
must have at least one zero. This result is also known as the
‘hairy ball theorem’. This results in a contradiction.

The above result implies in particular that there is no
continuous way of approximating S(g) (that is continuous
as a map g 7→ S(g)) using a polyhedral approximation of
the truncated cones Conv({0}∪C(ni)). While the maximal
‘jumps’ in the approximation clearly tend to zero as the
number of edges of the polyhedral approximation of friction
cones is increased, such an approximation scheme might
cause problems when methods depending on continuity, such
as gradient based methods, are to be used for grasp synthesis.

Let us now study the discontinuity of this map in the
case of a particularly nice assignment of cones to normal-
directions. We define the standard approximate disk with
friction coefficient µ, with l defining edges, and with in-
ward pointing normal direction (0, 0, 1) by Dl(0, 0, 1) =
Conv

({(
µ cos

(
2πj
l

)
, µ sin

(
2πj
l

)
, 1
)
: j ∈ {1, . . . , l}

})
, so

that Fl(0, 0, 1) = Conv({0} ∪ Dl(0, 0, 1)). See Fig. 1 for
a visualization. In order to define a cone for a new normal
direction n, we rotate Dl(0, 0, 1) about the axis (0, 0, 1)×n
by an angle of arccos(〈(0, 0, 1), n〉). An explicit formula for
this process can be given elegantly in screw coordinates by
Dl(n) = R(n)Dl(0, 0, 1), where

R(n) = exp

(
arccos(〈(0, 0, 1), n〉)ξ (0,0,1)×n

‖(0,0,1)×n‖

)
,

the exponential denotes the matrix exponential, and

ξ(x,y,z) =

 0 −z y
z 0 −x
−y x 0

 .

Note that, for ‖(0, 0, 1) × n‖ 6= 0, the above map is
continuous and well-defined. So the only potential problem
occurs at the poles (0, 0, 1) and (0, 0,−1). As n→ (0, 0, 1),

arccos(〈(0, 0, 1), n〉)
‖(0, 0, 1)× n‖

=
arccos(〈(0, 0, 1), n〉)

|sin(arccos(〈(0, 0, 1), n〉))|
→ 1,

so that the argument of the exponential tends to zero and
is continuous, resulting in the identity matrix after expo-
nentiation. The argument of the exponential is however
not continuous as n → (0, 0,−1) which can be seen by
considering a normal on a small circle around the south-
pole: let n = (sin ε cos θ, sin ε sin θ,− cos ε). Then we can
compute that, for small ε > 0, R(n) = e(π−ε)ξ(− sin θ,cos θ,0) .
Since this formula still depends on θ as ε→ 0, we see that
there is no unique limit as ε → 0 which illuminates the
discontinuity predicted by the theorem above. We shall use
one of the possible limits,

eπξ(−1,0,0) =

 1 0 0
0 −1 0
0 0 −1

 (using θ =
π

2
),

as the definition of R(0, 0,−1). Recall also that, by Ro-
driguez’ formula, a rotation about a unit vector v by an
angle θ is given by eθξv = I + ξv sin θ + ξ2v(1 − cos θ),
for v ∈ R3 such that ‖v‖ = 1. This formula can then be
used to efficiently evaluate R(n) for all n ∈ S2 without the
south-pole, where we define R(n) as discussed above. To
summarize, we have found that

Lemma 3.4. The above assignment of uniform polyhedral
cones with l edges given by n 7→ Fl(n) is a continuous
map on the punctured sphere S2+ = S2−{(0, 0,−1)}. When
considered as a map on the whole sphere S2, the map has a
discontinuity at (0, 0,−1).

In Fig. 3, we exemplify how the above results leads to a
discontinuity of the function g 7→ Q3(g). Consider fixed
contact points c1 = (0,− sin( 2π3 − 0.6), cos( 2π3 − 0.6)),
c2 = (0,− sin( 4π3 − 0.6), cos( 4π3 − 0.6)) and a variable
contact c3(ε, θ) = (− sin(ε) cos(θ),− sin(ε) sin(θ), cos(ε)).
We chose corresponding normals given by nj = −cj to form
a grasp g(ε, θ). Fig. 3 displays the quality Q3(g(ε, θ)), for
θ = − 3π

4 ,
π
2 ,

3π
4 depicted in red, black (dashed) and blue

respectively and for ε ∈ [−0.01, 0.01] (horizontal axis). At
ε = 0, c3(0, θ) = (0, 0, 1) for all approach directions θ, but
we can observe that Q3(g(ε, θ)) has a limit depending on
the approach angle θ as ε→ 0.
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Fig. 3. Illustration of the discontinuity of Q3(g(ε, θ)) for three contacts
on a sphere and where we continuously vary one contact c3(ε, θ) near the
north-pole for three different approach directions θ ∈ {− 3π

4
, π
2

3π
4
}. At

ε = 0, c3(0, θ) = (0, 0, 1) for all θ ∈ [0, 2π).



Properties of q and Q

In [8], q is characterized (up to changes in notation) as:

q(g) = min
u∈R6:‖u‖=1

hS(g)(u)

= min
u∈R6:‖u‖=1

max
i=1,...,m

hWi(g)(u),

where S(g) = Conv(∪mi=1Wi(g)), Wi(g) = wci,z(C(ni)) ⊂
R6, and hWi(g)(u) = supw∈Wi(g)〈u,w〉 is the support func-
tion for the convex set Wi(g). By picking an orthonormal
basis t1, t2 of the tangent space at each contact, the authors
then simplified the above by determining an explicit formula
for hWi(g)(u). We will now provide a basis independent
formula for hWi(g)(u).

Let us observe that wc,z is a linear map and that
〈wc,z(x), u〉 = 〈x,wtc,z(u)〉, where for u = (a, b) ∈ R3 ×
R3 = R6, we have the adjoint wtc,z(a, b) = a+ b× (c− z).
Hence, hWi(g)(u) = supx∈C(ni)〈x,w

t
ci,z(u)〉. This problem

can however be solved without a choice of coordinate frame:

Lemma 3.5. For w ∈ R3, we have, for n ∈ S2 and for
friction coefficient µ > 0,

sup
x∈C(n)

〈x,w〉 = 〈n,w〉+ µ‖n× w‖.

Hence, for u = (a, b) ∈ R3 × R3 = R6, we have

hWi(g)(a, b) = 〈ni, a+b×(ci−z)〉+µ‖ni×(a+b×(ci−z))‖.

Proof. We can verify directly that the formula for
hWi(g)(x) = −qWi(g)(−x) found on p.6, [8] yields the
above result for an arbitrary choice of orthonormal basis
{e1, e2, e3} such that e1 = n.

Theorem 3.6. We have

q(g) = min
u∈R6,‖u‖=1

hS(g)(u) = min
u∈R6,‖u‖=1

max
i=1,...,m

hWi(g)(u),

where hS(g) is convex on R6. Observe that q is invariant
under fixed translation of the grasp centre and contact
positions. Furthermore, let B(r) = {x ∈ R3 : ‖x‖ 6 r}.
Then q is Lipschitz continuous on grasps with m contact
points lying in the set X = {(c1, . . . , cm, n1, . . . , nm, z) :
(ci − z) ∈ B(r), ni ∈ S2} with a Lipschitz constant given
by L = (1 + µ)(1 + r) and where we choose the distance
measure

d(g, g′) =
∑
i

‖(ci − z)− (c′i − z′)‖+
∑
i

‖ni − n′i‖

for grasps g = (c1, . . . , cm, n1, . . . , nm, z) and g =
(c′1, . . . , c

′
m, n

′
1, . . . , n

′
m, z

′) ∈ X . We hence have

|q(g)− q(g′)| 6 Ld(g, g′) for all g, g′ ∈ X.

Since Q(g) = max(0, q(g)), Q is also Lipschitz continuous
with the same constant L on X .

Proof. hS(g) is a support function of a convex set and hence
convex. To prove the statement about Lipschitz continuity,
consider the function li,a,b(g) = hWi(g)(a, b). We have,
for ‖(a, b)‖ 6 1, that |li,a,b(g)− li,a,b(g′)| is bounded

above by |〈ni, a+ b× (ci − z)〉 − 〈n′i, a+ b× (c′i − z′)〉|+
µ|‖ni × (a+ b× (ci − z)‖ − ‖n′i × (a+ b× (c′i − z′)‖|. A
simple calculation involving the facts that ‖a‖ 6 1, ‖b‖ 6
1, ‖ci − z‖ 6 r, |v × w| 6 ‖v‖‖w‖ and |〈v, w〉| 6
‖v‖‖w‖ yields that the first summand above is bounded
by ‖ni − n′i‖(1 + ‖ci − z‖) + ‖(ci − z) − (c′i − z′)‖ 6
(1 + r)d(g, g′), while the second summand is bounded by
µ(‖ni−n′i‖(1+r)+‖(ci−z)−(c′i−z′)‖) 6 µ(1+r)d(g, g′).
Hence, |li,a,b(g)− li,a,b(g′)| 6 (1 + µ)(1 + r)d(g, g′) and
li,a,b is Lipschitz continuous with constant L for fixed i, a, b.
It follows now that maxi li,a,b(g) is Lipschitz continuous and

q(g) = min
(a,b)∈R6,‖u‖=1

max
i=1,...,m

li,a,b(g)

is also Lipschitz with the same constant. This is true because,
in general, ϕ(x) = infα∈A fα(x) and ϕ(x) = supα∈A fα(x)
are Lipschitz with constant L if all fα are Lipschitz with
constant L and ϕ is bounded. To see this, observe that
fα(x) 6 fα(y) + Ld(x, y) for all α. Then supα∈A fα(x) 6
supα∈A fα(y) + Ld(x, y). Swapping the roles of x, y then
yields the result in the sup case. The inf case is similar. The
last claim regarding Q also follows from the above.

−1

0

1

Fig. 4. Illustration of the usage of a Lipschitz constant L for a function
q : R → R which we might not be able to evaluate, but for which we
have computable bounds q−(x) 6 q(x) 6 q+(x). The Lipschitz condition
|q(x)− q(x′)| 6 L |x− x′| forces the graph of q to the left and right of
the depicted blue and red cones. Regions for which q < 0 (red bar), or for
which q > 0 (blue bar), can be deduced from points where q+(x) < 0
(red point) and q−(x) > 0 (blue point) respectively.

Note that q(g) is now described by a minimization of
a convex function hS(g) over the non-convex sphere S5 =
{u ∈ R6 : ‖u‖ = 1}. Furthermore, our Lipschitz constant
L allows us to infer a whole stable (unstable) region around
any point for which q > 0 (q < 0). While we cannot easily
visualize the concept of Lipschitz continuity in 6 dimensions,
the reader unfamiliar with Lipschitz continuity is referred to
Fig. 4 which provides an example of Lipschitz bounds in one
dimension. Given our Lipschitz constant L, we can globally
bound possible values of q using |q(g)− q(g′)| 6 Ld(g, g′).
This inequality forces the graph of q to lie inside certain
regions around any known value q(g) as depicted in Fig. 4.
In particular, if we have a lower-bound estimate to q(g) at
a grasp g, the Lipschitz bound implies that q(g′) is globally
lower-bounded by the inequality as indicated in the figure.
From a single grasp with q(g) > 0 (q(g) < 0), we can
hence infer the existence of a whole region around g where
q > 0 (q < 0 respectively). As illustrated in Fig.4, Lipschitz



bounds can hence be used to improve the efficiency of
sampling based grasp synthesis approaches, e.g. by quickly
determining stable and unstable parameter regions.

Detecting unstable grasps quickly

Note that, since q is given as a minimization problem, any
u ∈ R6 such that ‖u‖ = 1 yields an upper bound q+u (g) =
maxi=1,...,m hWi(g)(u) which can be computed quickly for
fixed u. Observe furthermore that we have the following:

Lemma 3.7. q(g) > 0 if and only if 0 =
minu∈R6:‖u‖61 hS(g)(u).

Proof. If 0 = minu∈R6:‖u‖61 hS(g)(u), then q(g) > 0 by
definition. Suppose q(g) > 0. Note that hS(g)(0) = 0 and
any x ∈ R6 such that ‖x‖ 6 1 is of the form tw for some
t ∈ [0, 1], w ∈ S5. Now we have hS(g)(tw) = thS(g)(w) >
0, and the result follows.

The lemma above is very handy since the minimization of
a convex function over the bounded convex set {x ∈ R6 :
‖x‖ 6 1} is a standard problem. In particular, we can search
for minima of hS(g) using the subgradient method [15] and
stop once we find u ∈ R6 such that hS(g)(u) < 0 since then
q(g) 6 hS(g)(

u
‖u‖ ) < 0, and we can conclude that the grasp

g is unstable.
It is clear from the definition that hS(g) is not smooth

everywhere. However, due to its explicit description as a
convex enveloping function, we can attempt to apply the
projected subgradient approach to find a minimizer.

Let us first recall that for any convex function f : Rn → R,
a subgradient at x ∈ Rn is a vector s ∈ Rn such that f(y) >
f(x)+〈s, y−x〉 for all y ∈ Rn. The set of all subgradients at
x is denoted by ∂f(x). If f is differentiable at x, ∂f(x) =
{∇f(x)}. Importantly, if f(x) = max(f1(x), . . . , fm(x)),
∂f(x) is given by the convex hull of

⋃
i:fi(x)=f(x)

∂fi(x).
The subgradient method [15] for minimizing a function f ,

updates xk to xk+1 = xk−αksk, where sk is any subgradient
of f at xk and αk > 0 is small. To solve minx∈C f(x) for
a convex set C, this step is replaced with xk+1 = P (xk −
αksk), where P (x) is the projection of x onto C. To apply
this method, we now simply need to compute subgradients.
Observe that, if ‖ni × (a + b × (ci − z))‖ > 0, hWi(g) is
smooth with ∂hWi(g)(a, b) = {∇hWi(g)(a, b)}, and where
the partial derivatives are given by

∂hWi(g)
∂aj

(a, b) = (ni)j +

µ
〈ni×ej ,ni×(a+b×(ci−z))〉
‖ni×(a+b×(ci−z))〉‖ and

∂hWi(g)
∂bj

(a, b) = ((ci − z) ×
n)j+µ

〈ni×(ej×(ci−z),ni×(a+b×(ci−z))〉
‖ni×(a+b×(ci−z))〉‖ . If ‖n×(a+b×(ci−

z))‖ = 0, it can be easily seen that hWi(g) has a subgradient
given by s = (ni, (ci − z)× ni).

We thus propose Algorithm 1 to determine quickly if
a grasp is unstable. The method Subgradient(hS(g), u)
denotes any subgradient of hS(g) at u ∈ B(1) = {x ∈ R6 :
‖x‖ 6 1}. The algorithm starts at u = 0 and applies a
projected subgradient algorithm for hS(g) on B(1) to find
a minimum. It follows from the proof of Lemma 3.7 that
q(g) < 0 if this minimum is negative, and this fact is used in
the algorithm. Subgradient(hS(g), u) returns a subgradient

Algorithm 1 Returns ”unstable” if a grasp can be determined
to satisfy q(g) < 0 and ”undetermined” otherwise.
Require: N ∈ N, grasp g
i← 0, u← 0 ∈ R6, q ←∞
while q > 0 and i < N do

q = min(q, hS(g)(u))
s← Subgradient(hS(g), u)
u← u− 1

1+i
s
‖s‖

if ‖u‖ > 1 then
u← u

‖u‖
end if
i← i+ 1

end while
return ”unstable” if q < 0, else return ”undetermined”

Algorithm 2 Determine an upper bound q+(g) > q(g).
Require: M,N ∈ N, grasp g
q+ ←∞
for r ∈ {1, 2, . . . ,M} do

u← RandomSample(S5)
for i ∈ {1, 2, . . . , N} do

q+ = min(q+, hS(g)(u))
s← Subgradient(hS(g), u)
u← u− 1

4
√
i
s
‖s‖

u← u
‖u‖

end for
end for
return q+

of the function hWi(g) for the first i ∈ {1, . . . ,m} such
that hS(g)(u) = hWi(g)(u). At points where hWi(g) is
differentiable, the gradient is returned, otherwise, we return
(ni, (ci − z) × ni) as discussed above. The decay rate 1

1+i
and normalization by ‖s‖ was chosen empirically based on
satisfactory performance in our experiments (see Section IV).

Determining the upper bounds q+, Q+

We propose Alg. 2 to determine an upper-bound for
q(g). Here, RandomSample(S5) returns a uniform random
sample on the sphere S5 ⊂ R6. We chose a decay factor
given by an inverse square root term in order to slowly
decrease the step-size of the subgradient descent method. We
define Q+(g) = max(0, q+(g)). If one is only interested in
the computation of Q+(g) rather than q+(g), Alg. 2 could
in future be optimized by terminating as soon as q+(g) 6 0.
Note that we now have Q−l (g) 6 Q(g) 6 Q+(g).

IV. EXPERIMENTS

Lower and upper bounds
Let us now experimentally study the convergence prop-

erties of Q−l and Q+. We generated a set U of 100000
random grasps with three contacts by sampling uniformly
from the set D(2) = B(2)3×(S2)3×{0}, so that an element
g = (c1, c2, c3, n1, n2, n3, 0) ∈ D(2) determines a grasp
with three contact points ci ∈ B(2) = {x ∈ R3 : ‖x‖ 6 2},



corresponding normals ni ∈ S2, and with centre of mass
at the origin. We computed the value of Q−l on these
grasp sets for l ∈ {3, 4, . . . , 20} edges. Given our error
estimate, the maximal error for l = 40 edges is at most
Err(2, 40) = 0.0092 and we used Q−40 ≈ Q to calculate
an ‘approximate ground truth’ for the data set. We used
the errors d−(g) = Q−l (g) − Q−40(g) to benchmark the
convergence towards Q(g) = max(0, q(g)) as the number
of edges is increased. To evaluate Algorithm 2, we used
M ∈ {5, 10, 20, 30, 40, 50} random samples and N = 1000
iterations and recorded timings and the differences d+(g) =
Q+(g)−Q−40(g). We then split U into 10 equally sized sets
and studied the variation in mean errors in Fig. 5, while
Fig. 6 displays the worst-case performance on the whole
set U . We observe that both Q−l and Q+ converge quickly
towards Q. While our implementation of Algorithm 2 is
currently not parallelized, it can be easily parallelized in
future due to its simplicity. Quickhull’s [10] algorithm which
is used to compute Q−l (g) = max(0,minj λj) (see Eq. 3)
is quite complicated in comparison and currently not thread-
safe. For our algorithm, we determined a good decay rate of
1

4
√
i

empirically, but alternative rates and an implementation
using line-search could potentially boost performance further.
In applications where a precise value of q needs to be ap-
proximated, our results show that our algorithm can quickly
provide an upper-bound, so that Q−l (g) 6 Q(g) 6 Q+(g)
enabling us to make precise statements about the unknown
quantity Q(g).
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Fig. 5. Mean errors relating Q+ and Q− to Q−40 and computation time
per 10000 grasp quality evaluations are shown. The red curve displays the
mean and standard deviation (indicated by bars below the curve) for the
errors d−(g) = Q−l (g) − Q−40(g), for l = 3, 4, . . . , 20 increasing from
left to right, while the blue curve displays the mean and standard deviation
(indicated by bars above the curve) for the errors d+(g) = Q+(g)−Q−40(g)
when using Alg. 2 with M ∈ {5, 10, 20, 30, 40, 50} increasing from left
to right and for N = 1000 iterations.

Fast unstable grasp rejection
We generated a set U ′ of approximately unstable grasps

with three contacts by sampling uniformy in D(2) = B(2)3×
(S2)3 × {0} until we obtained a set of 100000 sample
grasps g = (c1, c2, c3, n1, n2, n3, 0) ∈ D(2) with contacts
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Fig. 6. Worst-case errors for our data-set of 100000 random grasps for
Q+ and Q− are shown against mean computation time per 10000 grasp
quality evaluations for 10 repetitions of our experiment with 10000 random
grasps each. The red curve displays the errors ming∈U Q

−
l (g)−Q−40(g),

for l = 3, 4, . . . , 20 increasing from left to right, while the blue curve
displays the errors maxg∈U (Q

+(g) − Q−40(g)) using Alg. 2, for M ∈
{5, 10, 20, 30, 40, 50} increasing from left to right and for N = 1000
iterations.

ci, normals ni and centre of mass at the origin, and which
satisfied Q−20 = 0, i.e. they were unstable with respect to the
quality measure Q−20. We now partition U ′ into ten equally
sized subsets U ′1, . . . , U

′
10 and tested the performance of our

unstable grasp determination Algorithm 1 on these subsets.
As can be seen in Fig. 7, our algorithm can quickly identify
the majority of unstable grasps in U ′, with 97% of all grasps
in U ′i correctly classified after 0.086 seconds on average.
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Fig. 7. The percentage of correctly recognized unstable grasps and
the average computation time together with the standard deviation for
10 repetitions of the experiment are displayed. Data-points are ordered
according to the number of maximal iterationsN = 50, 100, 150, . . . , 1000
increasing in increments of 50 from left to right. Note that the average
computation time for evaluating Q8 on 10000 unstable grasps is about 12s,
while our algorithm can correctly rule out 97% of those grasps as unstable
in about 0.086 seconds, resulting in an approximate 140-fold improvement
in performance. If the same calculation was carried out using Q20, our
algorithm results in an approximate 2224-fold performance gain.

Finally, we tested our unstable grasp rejection algorithm as
follows: we consider the same set of 100000 random grasps
considered in Fig. 2(a). This time, we first, run Algorithm
1 with N = 400 maximal iterations. We then evaluate Q−l
only on those grasps which our algorithm does not classify
as unstable. This results in an algorithm that is between
49% and 503% faster than using Q−l by itself, as can be
seen in Fig. 8 and 9. Our grasp quality evaluation algorithm
is approximately 5 times faster than a simple evaluation



of Ql for l > 8 while yielding exactly the same quality
values on stable grasps. Next, we considered the same set
of grasps, but reduced the friction coefficient to µ = 0.2
(e.g. polythene plastic against steel). While we obtained
approximately 17.8% stable grasps under Q−20 for µ = 1
(e.g. copper against copper), we now only obtain 0.09%
stable grasps with respect to Q−20 and on our random grasp
set U . As can be seen by the blue crosses, the computation
of Q−l , takes even slightly longer for µ = 0.2, while our
algorithm with a first pass of Alg.1 now performs very well
as indicated by the blue circles. Our algorithm computes Q3

in 0.037s, Q8 in 0.056s and Q20 in 0.397s per batch of
10000 grasps. This amounts to an improvement of a factor
of 15 (vs Q−3 ), 241 (vs. Q−8 ) and 600 (vs. Q−20) as indicated
by Fig. 10. Our algorithm could hence be used to speed up
grasp synthesis algorithms, and it could in particular enable
such algorithms to quickly find grasps on objects with low
friction coefficients for which sampling based methods were
up to now unsuitable.
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Fig. 8. Computation time when using a first pass of Alg. 1 with N = 400
(red circles) as compared a direct evaluation of Q−l (red crosses) on our
randomly sampled grasps as in Fig. 2(a) and for a friction coefficient of
µ = 1. The blue circles and crosses depict the analogous plot for µ = 0.2.
We observe a substantial speedup when using our algorithm, especially for
a lower friction coefficient of µ = 0.2.
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Fig. 9. Relative speedup improvement (vertical axis) multiple when using a
first pass of Alg. 1 before evaluating Q−l rather than evaluating Q−l by itself
for friction coefficient µ = 1. The horizontal axis displays the l parameter
for the computation of Q−l . The graph was obtained by evaluating grasp
quality on a set of 100000 uniform grasp samples as in Fig. 2(a).

V. CONCLUSION

In this paper, we have extended the theoretical foundation
for the study of a popular L1 grasp quality measure which
is based on an approximation of a friction cone by a convex
polyhedral cone. Several related grasp quality measures that
have been proposed in the literature [4], [14] are also
dependent on such an approximation. While we have chosen
to concentrate on the L1 grasp quality measure introduced by
[4], it is clear that our algorithm can be adapted to any grasp
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Fig. 10. Relative speedup improvement (vertical axis) multiple when using
a first pass of Alg. 1 before evaluating Q−l rather than evaluating Q−l by
itself for friction coefficient µ = 0.2. The horizontal axis displays the l
parameter for the computation of Q−l . The graph was obtained by evaluating
grasp quality on a set of 100000 uniform grasp samples as in Fig. 2(a).

quality measure that needs to compute largest inscribing balls
for a convex hull of wrenches such as the L∞ metric of [4].
Furthermore, the algorithm can easily be adapted to scaled
wrench metrics of the form ‖(f, p)‖ =

√
‖f‖2 + λ‖p‖2, for

λ > 0 and wrenches (f, p) ∈ R3×R3 = R6. We have shown
that our algorithms can dramatically improve the efficiency
of grasp quality evaluation. This improvement is particularly
evident in the case of low friction coefficients which poses
a challenge to existing approaches. We are currently work-
ing on an optimized implementation of our approach and
are in particular investigating a further optimization of the
subgradient methods used in Algorithm 1 and 2.
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