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A Topology-based Object Representation for
Clasping, Latching and Hooking

Johannes A. Stork

Abstract— We present a loop-based topological object rep-
resentation for objects with holes. The representation is used
to model object parts suitable for grasping, e.g. handles, and
it incorporates local volume information about these. Further-
more, we present a grasp synthesis framework that utilizes this
representation for synthesizing caging grasps that are robust
under measurement noise. The approach is complementary to
a local contact-based force-closure analysis as it depends on
global topological features of the object.

We perform an extensive evaluation with four robotic hands
on synthetic data. Additionally, we provide real world experi-
ments using a Kinect sensor on two robotic platforms: a Schunk
dexterous hand attached to a Kuka robot arm as well as a Nao
humanoid robot. In the case of the Nao platform, we provide
initial experiments showing that our approach can be used to
plan whole arm hooking as well as caging grasps involving only
one hand.

I. INTRODUCTION

Local contact-based methods for grasp stability assessment
are a well-established area in robotics. Classical, physics-
based frameworks such as the grasp quality measures of
[1] determine if a grasp can withstand external forces of a
known magnitude. Such force-closure based grasp synthesis
approaches commonly assume that the manipulator and the
grasped object are rigid and have known geometry and
friction properties.

In addition to solely fixing an object in the hand, humans
employ a vastly richer repertoire of grasps affording both
in-hand manipulation and additional skills such as dragging,
toting, pulling and hauling of soft and rigid objects. These
activities are important in many situations and may require
large forces which the robot might not be able to exert using
point-contact based grasps. A mobile robot may also want
to latch onto objects and fixed structures in the same way
as humans do: consider for example clasping holding-bars
in buses or subways, grabbing handrails, pushing a baby
stroller, or using a pair of scissors.

While actions such as holding and lifting do depend on
stability in terms of constraining forces and contacts, the
classical methods of assessment and planning of this form of
stability require detailed surface models. For the generation
of stable grasps on complex objects with many contact
points, no suitable analytical methods are currently available.
Most common methods employ some form of sampling [2]—
[4], various heuristics [5]-[7] or are based on previously
learned probabilistic models of grasping poses for a specific
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Fig. 1.
a chain forming grasp and a whole arm hooking grasp.

Two example grasps are displayed: a Nao grasping a basket using

class of objects [8], [9]. Furthermore, sparse or noisy data
often prohibit a sufficiently good object reconstruction such
as volumetric representations [10], [11] derived from a wa-
tertight surface reconstruction [12], or a sufficiently accurate
normal direction estimate for force-closure analysis.

While force and contact stability could additionally be
incorporated, it is not a priori required within our framework.
In fact, a complete fixation of the object may even be
counterproductive, e.g. in the case of using a pair of scissors.
We believe that, if robots are to eventually reach the dexterity
of an acrobat catching a rope in mid-flight or swinging with
its hands hooked securely around a ring, methods based on
global rather than local object properties can provide an
alternative approach to grasp synthesis. The chain forming
grasps presented in this paper exploit a global object property
— namely a basis of the first homology group formed by
shortest closed loops on the object [13], [14]. As in [14], we
consider these as a basis for interlinking an object and robot
hand or arm for the purpose of grasp synthesis.

The main contributions of this work are:

a) We propose a new object representation for generating
hypotheses of chain forming grasps from point cloud
data. The method is capable of dealing with unknown
and potentially deformable objects using global topo-
logical features of the object’s surface geometry.

b) We evaluate our method on the Schunk, Armar III,
DLR 1 and iCub hands with synthetic data, showing
that our approach can be used for a wide range of hand
kinematics.

c¢) We provide real-word experiments with a Nao hu-
manoid robot and a KUKA/Schunk setup, and with
noisy partial view Kinect data for several rigid and soft
objects.
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Fig. 2. System overview: Point cloud data PP and its refined Delaunay triangulation /C,; are shown in a) and b). A shortest loop and its center is depicted
in blue. Selected loop points and loop tangents are marked, and associated slices of PP are indicated in red in c). Convex volumes and centers of the slice’s
adjacent connected component are shown in d). Volume centers and approach vectors of selected grasp frames after filtering are indicated in e) and f).

System Outline

Our method starts by building a geometric mesh de-
scription directly from 3D point cloud data and applies
a topology-based algorithm [13] to identify shortest non-
contractible closed loops in the model. Fig. [2] depicts an
example point cloud, a mesh description and a loop on
the left. Subsequently, a hand model and loop tangents
are used to construct approximations of the local geometry
for potentially graspable handle-like object parts. For each
considered loop point, a slice of the point cloud, orthogonal
to the tangent is extracted. The convex hull of the slice’s
connected component that is adjacent to the loop point is
determined as a local volume approximation. Slices and
convex hulls can be seen in Fig. Q:,d).

Finally, these local volume approximations are filtered by
an end effector-determined threshold and grasp parameters
are computed for the remaining volume centers. The last
step is visualized on the right side of Fig. P} There, the
volume centers are depicted as black plus-signs, while the
grasp frames are described by approach vectors.

Although our approach, based on the detection of handle-
like object parts, is limited to objects with holes there
are many natural objects that feature such parts — several
examples will be shown in the experimental evaluation.

In this work, we consider grasping in the broader sense
of holding an object with or without the support of ex-
ternal forces such as gravity. Our system plans general
chain forming grasps that maximize the interlinking between
suitable parts of the object with an end effector. The result-
ing configurations can informally be described as clasping,
latching and hooking grasps. For illustration, Fig. [I] shows
clasping or latching on left and hooking on the right side.
The grasps synthesized in this work establish caging grasps
in a generalized practical sense and not necessarily in the

analytical sense. This means that the escaping probability of
the object is low. For clasping or latching of rigid bodies,
we used a random motion rigid body simulation to test if the
object was caged in this sense. Hooking grasps such as in the
left part of Fig.[T|cage the object only with respect to motions
under task constraints. The basket in Fig. [I] will remain
hooked only under reasonable expected motions and forces
applied e.g. during walking. Note that not all styles of such
caging grasps afford the same activities or provide similar
flexibility. Hooking grasps could be useful in particular when
two humanoid robots carry a basket together, since they
impose fewer constraints on the two robots’ motion than a
tight clasp of the object.

II. MOTIVATION AND RELATED WORK

Point-contact, physics-based methods depending on the
Coulomb friction model such as force-closure are a popular
approach to grasp synthesis as reviewed in [15]. In [2], grasp
hypotheses are generated by approaching an object from
randomized starting directions and closing the robot’s hand
until contact occurs. Optimal or viable grasps are then chosen
based on a grasp quality function [1].

Recent work of [16] examines empirical or data-driven
methods for grasping. As stated in the survey, the grasp-
ing process depends on many factors such as the physical
properties of the object, the embodiment of the robot, avail-
able sensory information and task constraints. Thus, many
approaches apply some form of heuristic directly in the state
space to simplify aspects of the problem [5]-[7], [10], [16],
[17]. Furthermore, a suitable simplification of the robot’s
hand state space representation, such as the notion of postural
synergies discussed in [18], can be used to simplify the
control of the robot’s hand. Recently, several extensions of
these ideas have been actively pursued [19]-[21].



There are also many approaches that perform a decom-
position of objects and generate grasps on individual, de-
composed parts. Examples include unions of parametrized
shape primitives from manual matching [2] and automatic
hierarchical fitting methods [22], [23]. While a superquadric
decomposition tree may provide some flexibility [22], the
high number of parameters may limit the viable complexity
of considered objects. Hence, simple hierarchical box shape-
based models have been used to represent objects from
range data [23]. These methods relate to our approach since
they approximate object volumes. However, they do not
realize nor exploit global structural information such as the
connectivity between parts or topological properties of the
object.

Recently, Morse theory has been applied to determine
topological skeletons such as Reeb graphs for shape de-
composition [24]. This approach results in a decomposition
into parts based on surface properties and relies on surface
curvature to define part boundaries. The concept has been
applied to semantic grasp planning [25], where the topolog-
ical segmentation is annotated by automatic part recognition
and shape retrieval. Based on the same idea, programming
by demonstration for grasping and manipulation has been
proposed [26], [27]. In these approaches, the Reeb graph is
however only used for segmentation and transfer of grasp
affordances by graph matching. The extracted information
about the global object structure and the relation of the parts
is not utilized to plan the grasps. Our method, in contrast,
focuses on global topological information directly.

The medial axis representation, a volume-based object rep-
resentation describing maximal inscribing spheres was intro-
duced for the purpose of grasping in [10]. The representation
consists of a union of sphere centers which captures the
object’s geometric connectivity and allows to exploit local
symmetry properties. Based on a tree structure derived from
the medial axis, a set of heuristics is applied to generate vi-
able grasps. The approach has been extended to a grid-based
volumetric representation that examines symmetry properties
of the grid-local neighborhood [11]. This method is similar to
ours since it is volumetric and it directly considers structural
information. However, the approach suffers from inherent
instability under noise [28]. The underlying computational
method for extracting the approximated medial axis [12] is
based on the reconstruction of a watertight surface of the
whole object. This depends heavily on a dense, full-view
point cloud and is thus sensitive to noise. In contrast, we
will show that our method extracts useful global structural
object information even when the data is sparse, noisy or
obtained from a partial view.

In contrast to force-closed grasps, caging grasps only
bound an object’s mobility to prevent it from escaping arbi-
trarily far from the manipulator. A caging grasp provides a
way to control an object without immobilizing it completely.
Early research on caging has focused on a theoretical analysis
and on efficient algorithms for simple hand mechanisms
with few degrees of freedoms [29], [30] and considered
mostly planar objects. Object concavity has been exploited

for caging with finger position maximally far away from
the object [31]. Later, the study of three-dimensional caging
by multi-fingered hands led to the definition of sufficient
conditions and resulted in a cage planning system [32].
Caging configurations have been considered in relation to
grasping as a waypoint or initial point to immobilizing grasps
[33] and as a method to deal with uncertainty in grasping
[34]. Applications in manipulation planning have been found,
where rigidity constraints between an object and the robot
can be neglected in planning when the object is caged [35].

To the best of our knowledge, caging research so far has
only considered rigid objects. In this work, we particularly
focus on chain forming grasps which attempt to interlink the
object with the manipulator and result in a caging config-
uration if the object is rigid. However, in the experimental
evaluation, we will also show that our approach can be used
for caging soft or flexible objects with holes.

In summary, our approach prevents objects from escap-
ing without necessarily creating immobilizing grasps. In
particular, we exploit an object representation based on
global structure information which allows us to apply simple
enveloping grasp policies to grasp rigid and flexible objects.

III. METHODOLOGY

In this section, we provide details on the detection of
closed loops, the employed end effector models, the object
representation and elaborate on our grasping strategy.

A. Detection of Loops

A key concept used in this paper are closed loops on a
closed surface S C R? which are non-trivial as elements
of the first homology group H;(S). When computed over
a finite field, H;(S) is a vector space whose elements
correspond to equivalence classes of closed curves and
where two loops are considered equivalent if they form a
boundary of a part (a 2-cycle) of S. The first homology
group is used in Algebraic Topology [36] and stays invariant
under continuous deformations of S called homotopies. We
are in particular interested in a basis of H;(S) consisting
of curves which are of shortest length and use them as
features for grasp synthesis as in [14]. Since we reconstruct
our surface representation from point-cloud data, we will
work with a simplicial complex approximation K; of S
for which the notion of H;(K;) is also well-defined. We
employ the software ShortLoop [37] to determine a basis of
approximately shortest curves of H; (}Cz). An example of the
aforementioned shortest loop basis is displayed in Fig. [2b.

For a watertight perfect mesh model, loops in H;(S) can
be further classified as tunnel-loops and handle-loops [38],
with tunnel loops running around holes in an object. Tunnel
loops traverse handle-like parts of an object and are hence
most relevant for grasping. We however work with a rough
simplicial complex reconstruction obtained from point-cloud
data where this distinction is often impossible to make.
Non-graspable elements of H;(/C;z) will hence at first be
included in our analysis and are only eliminated during a
later collision detection phase.



End effector height [m]  radius [m] % [m] @ [m]
Schunk SDH 0.120 0.050 0.060  0.1562
Armar IIT 0.090 0.035 0.045  0.1140
DLR 1 0.130 0.060 0.065  0.1697
iCub 0.085 0.025 0.425  0.0986

Fig. 3. Pre-shapes with GCP frames (top) and grasps on maximal volume
cylinder (middle), see Section [II-B} The arrows show ¢ (white) and A
(yellow). Table below: End effector description parameters.

B. End Effector Related Parameters

We define two parameters for a robot hand which define
the shape of the maximal cylinder that the end effector can
secure by closing the fingers from a parallel pre-shape as
seen in Fig. [3| The height of the cylinder, A, describes the
grasp width, ¢ describes the maximal extent of the cylinder.
Parameter A is used to build an object model that consists
of hand-sized volumes while ¢ serves as a bound in grasp
parameter generation to reject overly large volumes.

For an end effector, we define a grasp center point frame
(GCP frame) that defines the center of the cylinder relative
to the robot hand. All end effectors used in this work can
be described by a set of individual fingers and a static palm.
Our approach requires that at least one of these fingers can
oppose the remaining fingers to form a parallel pre-shape.

The DLR Hand (12 DOF) is a four-fingered articulated
robotic hand that is 50% larger than the average human
hand. The hand of the child-sized iCub humanoid robot has
20 DOF. The five-fingered IAI-HAND-12 (10 DOF) for the
ARMAR III platform is a symmetric three-jaw grasper. The
Schunk SDH (7 DOF) is a 3-fingered fully actuated industrial
robot gripper. We disabled the coupled rotation of two of the
Schunk hand’s fingers, resulting in a 6 DOF manipulator.

C. Object Representation

A loop, as defined in Sec. represents a topological
and geometric attribute of an object. Therefore, we model
objects with holes as a set of convex local-volume approx-
imations of their approximated shortest loops. Considering
chain forming grasps — created by closing the end effector
around a segment of an extracted loop — we are interested
in the local shape of the enveloped loop section. We infer
this information from unordered full-view 3D point cloud
data. The individual steps of the model building process are
exemplified in Fig. Zh—e).

Assuming that the point cloud P C R? is sampled from
a closed surface, we start by refining the Delaunay complex
of P and denote the result IC;j. The refinement consists of
removing all edges with length d or larger and eliminating
all tetrahedra and faces involving those edges. Hence, the
value of d limits the distance of two points up to which they

are still joined in Ky by some edge, face or tetrahedron.
We assume that P is dense enough so that the triangulation
results in a descriptive model of the observed object. The
exact value of d can be chosen in an informed way by
considering additional constraints, e.g. using a persistent
homology analysis of P in the form of barcodes [39]. In the
experiments however, we select the value manually based on
point cloud density and hand extent.

We apply a polynomial time algorithm [37] on the finite
simplical complex /C; that results in a set, £, of cycles
of linear line segments, approximating a basis of shortest
loops for H;(Kg). In [14], we give further details of the
process and its parameters. Considering a loop [ € L, we
approximate the loop-tangent, T’p, of a point P on [.

Next, we construct an orthogonal plane, Op, containing
P with normal direction T’p. Given a point P on a loop, we
describe the object’s local shape by a convex volume, Vp. To
this end, we consider an undirected graph, G p, derived from
the simplical complex /4. The graph arises from the edges of
K4, defined on the points of P that are within distance % to
the plane Op (Fig. |Z|:). Finally, Vp is defined as the convex
hull of the connected component closest to P (Fig. 2[).

In the process described above, every point on an ap-
proximated shortest loop can be annotated with a hand-size
related convex approximation of the loop-local volume. The
extracted set of loops, loop points, and volumes forms our
object representation.

D. Grasping Process

We parametrize a grasp by prescribing the end effector’s
GCP frame and consider the Z-axis as the approach direc-
tion. Given an end effector’s GCP and a convex local-volume
approximation Vp at a loop [ € L, as defined above, we move
the GCP frame into the volume’s center. Since the center of
Vp already defines the position, only the frames orientation
is left to choose. The loop center point, M;, is given as the
center of gravity of the points in P, supporting the linear
line segments of [.

Beginning with the approximated tangent of the loop
point, Tp, and using the vector Z = M; — P, we construct
an orthonormal coordinate frame located at the center of Vp
that is identified with the GCP frame. We reject all sampled
points, P on [ that result in a maximal extension of Vp larger
than the end effector’s volume measure threshold . If the
robotic hand is not symmetric, we additionally include grasp
parameters rotated around the frame’s Z-axis by 180 degrees
for each accepted volume.

IV. EXPERIMENTAL EVALUATION

We first evaluate the performance of the proposed method
on synthetic data using four robotic hands. After that, we
present results from a real setup using Kinect data, a 6 DOF
Kuka arm with a Schunk SDH and a Nao humanoid robot.

A. Experiments on Synthetic Data

We first demonstrate our approach on five real-sized
objects by executing a simple grasp policy. From 3D polygon



mesh models [40], [41] we sample 4000 points on the visible
outside surfaces by moving a virtual camera around the
object. Thus, the average distance to the closest neighbor
point is about 0.03 m. This point density is acceptable since
we are interested in particularly exposed object features and
since the rough object geometry is sufficient for our method.
When refining the simplical complex K, as described in
Sec. we choose the maximal edge length, d, as 0.06 m.
Noise, randomness in sampling and object concavity can lead
to detection of small and negligible loops in ;. We reject
small loops where the maximal distance between any two
loop vertices is below 0.09 m.

When evaluating the method in simulation, we apply a
straightforward grasping policy as proposed in [3], [42]. As
in other recent work such as [11], we initialize the end
effector in parallel pre-shape and align its GCP frame with
the grasp frame (GF) derived from the object model. Next,
the end effector is moved backwards along the frame’s Z-
axis until no collision occurs. The resulting end effector pose
and joint angles define the grasp. If the backwards movement
does not remove all collisions within 0.08 m, we consider
the grasp to be obstructed.

If a grasp is not obstructed, its reliability is tested by
simulating pushing, turning and pulling interactions. While
keeping the object fixed, we perform 10 separate sequences
of 100 interleaved random rotations and translations of the
end effector. Each random motion is executed until it leads
to separation of the end effector and object or until contact is
achieved. A grasp is considered failed if the end effector and
object are separated at least once. We have found that the
results do not change significantly for sequences with more
than 60 motions.

To describe the quantitative results, we employ the termi-
nology of a classification experiment in the following. In
our approach, we denote non-separated i.e. secure grasps
as true positives, and obstructed or failed grasps as false
positives. Fig. f] shows for each pair of end effector and
object, the true positive rate (red), and the rates of failed
(black), and obstructed (blue) grasps each. The rejection
rate of the filtering step (yellow) describes how much of
the handle-parts cannot be grasped by the particular end
effector. The true positive rate ranges from 72.93% in the
case of the DLR 1 hand with the Bag object (Fig. [5]2b) to
100% in the cases of Armar III and DLR 1 hands with the
Purse, Schunk SDH with the Travel Bag and all cases of
the iCub hand. The overall precision is 94.91%. The largest
false positive rates are caused by the two large hands, DLR 1
and Schunk SDH. On the Bag object, the separability is
predominant (Fig. [5]2b and Fig. [5]3b), while on the Chair
object, most false positives are obstructions and are therefore
caused by the simple grasp policy.

A qualitative analysis is conducted by inspecting Fig. [3]
where we show the locations of successful, failed and ob-
structed grasps on the objects, next to robot poses of success-
fully executed grasps. The marker colors correspond to the
colors in Fig. ] It can be observed that the accepted grasp
frames describe parts that are well suited for enveloping

grasps. Frames inside a large volume are rejected. For the
Purse object, it is clearly visible how our approach respects
the robot hand size by only selecting grasp frames on the top
part of the handle for large hands, while the smaller hands
still grasp from the side. This property can also be observed
on the Lawn Mower, where the small hands cannot envelope
the control lever box and therefore grasp frames are only
generated for the large hands. For the Bag, the failed grasps
are located on a narrow part of the belt which prevents the
large fingers from closing properly.

However, most of the time at least one of the two rotated
copies of a grasp frame does not lead to a failed grasp.
The structure of the Chair results in obstruction of the
large hands at the backrest since our approach does not
consider the rest of the object when judging a loop-local
volume approximation. Obstruction also occurs in corners
since, there, the loop tangent used to define the grasp frame
orientation is not completely aligned with the object shape
and leads to a non-perpendicular placement by the grasp
policy. Both the Purse and the Travel Bag object show
that our approach can place large hands on relatively small
handle-parts. One loop was detected on the Purse, Bag and
Wheel Bag, two on the Lawn Mower and seven on the Chair
object.

B. Experiments on Real Robot Platforms

In the following experiments, we relax the assumption
of the full-view point cloud and rely on subsampled noisy
Kinect data to show the applicability of our approach in real-
world scenarios. In the first experiment with a Kuka arm and
a Schunk SDH hand, the sensor is calibrated relative to the
robot frame while in the experiment with a Nao humanoid,
the robot is placed on a visual marker in the scene after the
scene has been analyzed, inducing additional uncertainty in
the robot’s pose.

1) Nao Humanoid Robot: The experiments using a Nao
robot consider two different ways of picking up a small
basket: grasping the basket at the handle with chain forming
grasps and hooking the handle employing one whole arm. For
robots with limited workspace — such as a Nao — reachability
and kinematic feasibility become important issues in a non-
mobile setting. Therefore, the computed grasping frames
need to be carefully selected. Here, we simplify the problem
by applying a simple distance-based scoring function that
selects the frame closest to the torso. Fig [6] shows the course
of one grasping and one hooking experiment at different time
instants from left to right.

In the grasping experiment, an iterative inverse kinematic
solver is used and initialized at a starting position suitable for
the selected target frame. As a sample application of chain
forming grasps, the robot later rises up, turns its arm and
lets the handle slide through the hand to establish the proper
object configuration for carrying. In case of the hooking
experiment, the robot executes a five-waypoint-based motion
template parametrized by the selected target frame to pick
up and lift the basket in one action. For these experiments
the Kinect sensor was placed at a distance of about 2 m.
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Quantitative results of the synthetic experiment: The bar plots show the true positive rate of the applied heuristic, i.e. secure grasps, as the top

bar (red). The false positives are divided into failed grasps (black), and obstructed grasps (blue). The bottom bar shows the rejection rate of the heuristic
function (yellow). The colors are chosen according to the markers in Fig. El The absolute numbers for frue positives, false positives, and rejected grasp

frames (Tp., Fp. and Rj.) are given next to each plot.

2) Kuka Arm & Schunk SDH: In contrast to the syn-
thetic data experiments, we employ an approach vector based
grasp policy. We first move the Schunk SDH in pre-shape
to a pose 0.2 m in front of the grasp frame. Then we move
the end effector forward and finally close the fingers until a
closed chain is formed. The experiment consists of executing
this grasp policy on several grasp frames at representative
locations for three different objects with subsequent lifting.
Fig. [7] shows the robot grasping a children’s chair, a basket
and a real-sized backpack. The images indicate that our
approach results in secure chain forming grasps and the
supplementary video confirms that each object, including the
soft deformable backpack, can successfully be grasped.

Fig. 7. Kinect data is used for the execution of grasp policies for several
generated grasp hypotheses. Details of the execution can be seen in the
supplementary video.

V. CONCLUSION

We have presented work on generating grasps that enable
clasping, latching and hooking of everyday objects that
exhibit handle-like parts. The proposed method is topology-
based and results in an object representation suitable for
objects with holes. The representation is used to identify
object parts suitable for grasping and incorporates local
volume information about these. A whole grasp synthesis
framework that utilizes such loops has been presented and
evaluated on two real robot platforms.

The approach is complementary to a local contact-based
force-closure analysis as it depends on global topological
features of an object. We have shown that our grasp synthesis
framework leads to caging grasps that are robust under real
world measurement noise. As demonstrated, the approach
is also applicable to soft and flexible objects. We have
performed an extensive evaluation with four robotic hands
in simulation as well as using a real setup with a Kinect
sensor, a Schunk dexterous hand and a Nao humanoid robot.

Our current work is exploring the use of different hand
pre-shapes for grasping and the use of an improved grasp
policy featuring eigengrasps and motion planning. We are
also interested in coupling this work with semantic infor-
mation that constrains the set of viable grasps based on the
robot’s intended task, as demonstrated in our previous work
in [44], [45].
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