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Caging Grasps of Rigid and Partially Deformable
3D Objects with Double Fork and Neck Features

Anastasiia Varava, Danica Kragic, and Florian T. Pokorny

Abstract—Caging provides an alternative approach to point-
contact based rigid grasping which relies on reasoning about the
global free configuration space of an object under consideration.
While substantial progress has been made towards the analysis,
verification and synthesis of cages of polygonal objects in the
plane, the use of caging as a tool for manipulating general
complex objects in 3D remains challenging. Furthermore, many
objects are naturally partially deformable, making classical rigid
caging methods inapplicable. In this work, we formally generalize
the caging condition in 3D to caging of objects up to a defined
set of deformations and propose a novel framework for the
synthesis and verification of caging grasps on a specific class
of 3D objects which exhibit geometric features we call double
forks and necks. We consider the synthesis and verification of a
caging grasps on 3D objects by means of one or more caging tools
that can be arranged to form an approximate closed loop around
the identified neck or double fork features of the object. As a
key theoretical tool, we utilize an augmentation of the classical
topological invariant – the linking number, allowing us to prove
sufficient conditions for such cages to exist, even in the case
when the object under consideration is partially deformable. We
present and evaluate an algorithm for synthesizing and verifying
such caging grasps on triangular surface meshes in 3D.

Index Terms—Cage, grasping, shape features

I. INTRODUCTION

To manipulate an object in its environment, a robot requires
the ability to synthesize manipulator configuration that will
enable it to control the pose of an object up to some de-
gree. For a rigid object in particular, one may consider an
immobilizing grasp of an object. However, most analytical
grasp synthesis frameworks [3], [19], require a knowledge
of physical properties such as friction coefficients and center
of mass, while current data-driven learning-based methods
[4] require large corpora of prior training data with similar
sets of objects, physical parameters and robot embodiment
to infer grasps. Furthermore, many objects as depicted in
Fig. 1 naturally allow some degree of deformability, making
well-established frameworks for rigid grasping inapplicable.
Similarly, even when the object under consideration is rigid,
new generations of robots relying on soft hands [6], require
new paradigms for manipulation not based on the rigid object
assumption.

An alternative to grasping, is the notion of a cage, where
the robot generates a joint-configuration which prohibits the
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Fig. 1. Illustration of human manipulations exhibiting two types of cages
of rigid and partialy deformable objects studied and formalized in this work.
The objects in the first row have a neck feature - a thin object ‘neck’ with
thicker ends at both sides. The second row showcases deformable objects that
contain an inscribed double fork, intuitively consisting of a pair of inscribed
curves whose ends are sufficiently spread spacially to prevent the loop formed
by the human hand from moving arbitrarily far away from the object.

object from moving arbitrarily far away, while not necessarily
immobilizing the object completely. Cages can furthermore
serve as a waypoint to a form or force closure grasp [24].
While substantial progress to the synthesis of caging grasps
on polygons in 2D has been made in recent years [20], [23],
[21], the generation of cages in 3D has remained a difficult
challenge, with recent works making progress on specific basic
shape primitives [17], [18]. A reason why the synthesis of
caging grasps on general 3D objects has remained elusive is
that the caging condition requires reasoning about the global
topology of the configuration space of an object, rather than
just a local geometric analysis as in the case of form and force
closure. Additionally, many objects in the environment exhibit
some degree of deformability. Consider the examples in Fig. 1.
Each of these human hand configurations intuitively cages the
object under consideration, because both extremities of the
caged object are larger than the loop formed by the human
hand.

The main goal of this paper is to provide a formal frame-
work allowing us to formalize, algorithmically verify and
synthesize caging configurations similar to the ones displayed
in the figure above. For this purpose, we define the notions of a
‘double fork’ and ‘neck’ in an object and provide an algorithm
to both determine these features and to verify the caging condi-
tion for a given loop representing the manipulator and a mesh
representation of the object. For this purpose we introduce an
approach formalizing when a loop encloses a ‘thin’ part of an
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object. This requires the use of several ideas from topology,
and in particular linking numbers. Our approach allows us
to discuss caging under partial deformations in 3D, thereby
extending the types of objects that can be analyzed from prior
works that required a restricted set of shape primitives [18] or
the existence of holes [22], [29] in an object. The second goal
of the paper is to provide algorithms for shape analysis and
cage verification. Finally, we also provide simple algorithms
generating caging configuration for a PR2 robot, simulated in
OpenRave [9]. However, providing and evaluating a complete
framework for this is beyond the scope of the paper, as the
main purpose of the proposed algorithms is to illustrate how
one can use our theoretical results.

The rest of the paper is organized as follows: in the next
section, we briefly review the history of caging in the robotic
manipulation context. Section III contains a general overview
of our system. Section IV recalls some notions from topology,
used in Section V. Section V covers the theoretical background
of our approach: we define the necessary constructions and
derive the sufficient conditions for the caging tool to bound
the mobility of the object, represented as a graph. In Section
VI, we describe our methodology and discuss practical ways
to extract a graph representation from an object. Finally, we
summarize our results and discuss possible directions of future
work in Section VII.

II. MOTIVATION AND RELATED WORK

Here, we briefly review key aspects of related prior works
on caging in robotics, and the relationship between caging and
grasping research in particular.

A. Caging

Following early work of [2] who considered sufficient
conditions for a sphere to be caged by a net, the notion of
a planar cage was introduced in 1990 by Kuperberg [15] as
a set of n coplanar points lying in the complement to the
interior of a given polygon and preventing it from moving
arbitrarily far from its initial position. In the robotics context,
these points can be considered as fingertip positions of a robot
manipulating an object in the plane. In general, the caging
problem in 2D or 3D consists of determining a configuration
of one or several robotic grippers or caging tools such that an
object of interest cannot escape arbitrarily far, and additional
obstacles in the environment can also be considered in this
approach.

The derivation of necessary and sufficient caging conditions
poses a highly challenging problem due to the complex
geometric structure of the free configuration space of real
world objects. Several works were devoted to the case of 2D
object representations, as even in this simplified case the exact
computation of caging configurations poses a challenging
problem. Early work of [23] proposed an algorithm computing
a set of configurations of a two-fingered hand to cage planar
non-convex objects. Subsequently, [20], [31] addressed closely
related problems and [20] proposed an algorithm reporting
all two-finger caging sets for a given concave polygon. This
result was extended by [31], where an algorithm that returns

all caging placements of a third finger is also described when
a polygonal object and a placement of two other fingers is
provided.

The caging problem becomes even more challenging when
we move to the 3D-objects. The work [21] proposed an algo-
rithm that computes all two-finger caging configurations for
non-convex polytopes, where the fingertips are approximated
by points or spheres. In [24], a notion of a pregrasping
cage is introduced: a caging configuration from which the
object can be grasped without breaking the cage. The fingers
are again approximated as points, and pregrasping cages are
studied via grasping functions: scalar functions defined on
the finger formation that control the process of going from
a cage to a grasp. However, in these works the fingertips are
approximated by points or spheres, and more complex hand
representations are not taken into account. In [17], [18], the
authors proposed intuitively determined conditions for caging
a small collection of parametrically defined simple objects in
3D, such as discs, tori and objects with ‘waists’. In [18],
this approach is generalised to objects for which geometric
sub-structure is pre-determined and stored in a database. For
general 3D objects and manipulators, there currently does not
exist a provably correct practical caging algorithm to the best
of our knowledge.

In this work, we propose sufficient conditions for caging
objects in 3D with particular well-defined shape properties.
A core contribution of our approach is the use of a graph-
based shape representation in conjunction with a technique
for rigorously proving that an object is caged. Our approach
is flexible with respect to the choice of the manipulator type:
it is applicable for a set of fingertips, an entire hand, an arm,
or a system of cooperating mobile robots as long as these
manipulators can form an approximate closed caging loop.

The present work constitutes a further evolution and ex-
tension of a sequence of previous works by our group [22],
[29], [30] which introduced an approach to caging 3D objects
that exhibit holes (non-trivial first homology) with complex
multifingered robotic hands. We previously considered both
control strategies to guide the robot arm/hand towards a caging
configuration and an augmented task-space RRT planner for
planning hand and arm motions to achieve caging configura-
tions. In the current work, we focus in particular on the novel
theoretical aspects of our contribution and the proposed shape
representation.

B. Grasping

The caging problem has been considered as a complement to
the traditional force-closure grasping approach [3], [19] which
is based on the calculation of the forces exerted by the robot
and the friction between the contacting surfaces, and hence
relies on the determination of contact points and normals to the
object surface at these points. Therefore, a detailed knowledge
of the manipulated object’s local geometry and the robot’s pose
is crucial in this context.

An important advantage of caging is that it relies on
global geometric information about the object’s shape and
manipulator’s configuration which may be estimated more
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robustly than local friction coefficients and contact normals.
Furthermore, while in force and form closure grasping, the
manipulator is required to tightly establish contact with the
object, thereby introducing an additional hard constraint, this is
often not necessary when a caging grasp is considered instead.

One of the disadvantages of our approach is that it requires
a three-dimensional model of the object. For instance, in
[26] the authors compute grasping points using raw vision
input in a data-driven manner without requiring a three-
dimensional object model. While data-driven approaches to
grasping provide an exciting avenue of recent research [4][16],
training a data-driven model requires large corpora of training
data, which is especially challenging for objects that exhibit
deformability. Our object-model based approach, while being
applicable only to objects with neck or double fork features,
instead allows us to perform a complete geometric analysis of
previously unseen models with these features, and enables us
to synthesize cages and study their properties formally.

In this paper, we work with deformable objects and, in par-
ticular, generalize the notion of caging to this case. However,
we do not attempt to model the deformability in the sense of
predicting the deformations of the object, like it has been done
in [12]. We do not consider physical properties of objects and
simply allow them to be partially deformable under certain
constraints.

III. OVERVIEW OF OUR APPROACH

Fig. 2. Overview of our approach to caging.

The focus of this work is on the shape representation,
theory and algorithmic synthesis and verification of caging
configurations. Fig. 2 outlines our approach for the two
novel shape representations we propose. The first is based on
‘skeletonization and double forks’ (first row) and the second
on object features we call ‘necks’ (second row). Intuitively,

Fig. 3. Consider two ‘obstacles’, containing points u and v respectively which
are large enough to block the displayed loop from escaping. In this case, the
loop cages the two obstacles connected via p. In this paper, these ‘obstacles’
correspond to wide parts of an object; the presence of such parts makes the
object suitable for caging with our approach.

both of these shape features can be considered as narrow parts
of the object, around which the caging tool is placed.

The third row outlines previous work [22], [29], [30] by
some of the coauthors and collaborators. As input to our
pipeline, we consider a point-cloud or a mesh of an object, see
Fig. 2a,b). In our previous work (third row), we considered
objects that exhibit tunnels/voids as formalized by a non-
trivial first homology group. We previously extracted a shortest
homology basis resulting in a collection of loops that furnished
an object representation suitable for caging. In the case of the
depicted tea cup, this basis consisted of a single tight loop
winding around the handle. Using such loops, control and
motion planning algorithms for caging were developed [22],
[29], [30].

In the present paper, we consider the initial (either point
cloud or mesh) representation of the object. We define and
extract shape features from the object, place the manipulator
around the narrow part, derive sufficient caging conditions,
and prove that the resulting configuration yields a valid cage.
We abstract the caging tool/manipulator by means of a closed
loop l ∈ R3 in the complement of the interior of the object.
We call l the caging loop. Examples of caging loops include
loops formed by two arms with locked hands that are closed
around an object, two touching fingers, etc.

To bound the mobility of the object such as the depicted bear
and bust our caging approach considers placing a loop around
a narrow part of the object as illustrated in Fig. 3. Intuitively,
this representation allows us to work with partially deformable
objects, provided the ‘wide parts’ preserve a lower bound on
their size under deformation. Double forks and necks are two
examples of this geometric structure, proposed in this paper.
While, at first sight, this approach appears to be intuitive and
rather simple, a key difficulty we resolve is to algorithmically
determine these features and to algorithmically verify weather
a caging loop ‘surrounds’ the finite narrow part in a way that
is invariant under a set of continuous deformations of the
object. Section VI reviews the required technical background
on topology that may be skipped by experienced reader.

Section V presents the core formalizations of our approach,
including:

• A generalization of caging for partially deformable ob-
jects (Def. 11);

• Definition of neck and double fork features;
• Formalization of when the manipulator is placed ‘around’

the object;
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• Proof of sufficient conditions for caging objects with
necks and double forks.

Section VI provides algorithms and implementation results.
The contributions of this section are:
• algorithms for detection of double forks and necks in a

mesh, representing the object;
• an algorithm constructing the caging loop candidates

around the computed shape features;
• a simple algorithm computing caging configurations for

a PR2 robot, simulated in OpenRAVE [8];
• an algorithm verifying a given caging configuration,

based on the sufficient conditions derived in Section V.

IV. TOPOLOGICAL BACKGROUND

Here we provide underlying notions from topology required
in Section V. This section can be skipped by a reader familiar
with general and algebraic topology. Further details can be
found in [13].

A. Deformations: homotopy and isotopy

To work with deformable objects, we require a formal
definition of a continuous deformation. Intuitively, a continu-
ous deformation allows stretching and bending, but disallows
actions such as cutting and gluing. In topology, a continuous
deformation between two maps f, g : X → Y can be
formalized by means of the notion of a homotopy. Using the
notation I = [0, 1], we have:

Definition 1. Let X , Y be topological spaces, and let
f, g : X → Y be continuous functions. A continuous
map H : X × I → Y , such that for each x ∈ X :
H(x, 0) = h0(x) = f(x), H(x, 1) = h1(x) = g(x), is called
a homotopy between f and g. Respectively, the functions f
and g are called homotopic if there exists a homotopy between
them.

Fig. 4. Let f : I → X , g : I → X be paths in the space X . Then f
can be deformed to g by means of a homotopy H : I × I → X , where
H(s, t) = ht(s) for each s, t ∈ I .

Here, the parameter t ∈ [0, 1] can be considered as a time
parameter deforming f to g as t varies from 0 to 1. One of the
simplest examples of a homotopy is a homotopy of paths, see
Fig. 4. In our approach, it is convenient to consider the object
as an abstract topological space O, embedded in R3 whose
geometric shape and position are specified by an embedding:

Definition 2. A map f : X → Y between topological spaces
X and Y is called an embedding if f is a homeomorphism 1

between X and its image f(X).

Fig. 5. Two embeddings of the space O into R3

Furthermore, we recall the notion of an isotopy:

Definition 3. A homotopy H between two embeddings f and
g from X to Y is called an isotopy if, for each t ∈ I , the map
ft : X → Y defined by ft(x) = H(x, t) is an embedding.

We consider the deformable object’s shape and position at
a particular time instance to be formalized by a corresponding
embedding ι : O → R3, see Fig 5, and represent object defor-
mations and position changes by means of special homotopies
of its embedding called isotopies:

Given an initial initial shape and position of a deformable
object O0 ⊂ R3, and model deformations and movement of
the object towards a final configuration O1 ⊂ R3, as a corre-
sponding isotopy between the initial embedding ι0 : O → R3,
ι0(O) = O0, and the final embedding, ι1 : O → R3,
ι1(O) = O1.

B. The fundamental group and linking numbers

In order to formally describe when the manipulator is placed
around a narrow part of an object, we build on the notion of
the linking number, an integer quantity that can be computed
for two closed curves in R3. When the linking number of
two curves is non-zero, these curves are linked and can in
particular not be ‘pulled apart’ under continuous deformations
of the curves (see Fig.6). We will extend the notion of linking
numbers to define a linkability condition for neck and double
fork features of an object which themselves do not necessarily
contain closed curves. This will allow us to formally verify
caging configurations.

For this purpose, we recall the notion of the fundamental
group. A loop in a topological space X is given by a curve
f : I → X whose end-points coincide: f(0) = f(1). A loop
that can be continuously contracted to a point is called trivial.
For x0 ∈ X , let L(x0) = {f : I → X : f(0) = x0 = f(1)}
be the set of loops in X with base point x0. We consider
two loops f, g ∈ L(x0) equivalent if there exists a homotopy
between f and g that keeps x0 fixed. The equivalence class
of a loop f ∈ L(x0) is denoted by [f ]. Depending on the
topological properties of the space X , two loops may or may
not be continuously deformable into to each other, see Fig 7.

Definition 4. The fundamental group of X with a base point
x0 consists of the set of the equivalence classes of loops with
base point x0 and is denoted π1(X,x0).

1A homeomorphism is a continuous bijection with a continuous inverse.
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Fig. 6. The linking number lk(α, β) of curves α and β is equal to 1, while
lk(α, γ) = lk(β, γ) = 0. The reason for that is α and β ‘pass through’ each
other, while γ is completely disjoint from both of them.

Fig. 7. The displayed space X (grey region) has a hole, thus the loop γ
cannot be deformed into α, so that [γ] 6= [α], while α and β are homotopy
equivalent, so that [α] = [β]. In this case X is hence not simply connected.

We denote by −f the direction-reversed loop −f(t) =
f(t−1) for t ∈ I and by f ◦g the concatenated loop following
first g at twice the speed and then f at twice the speed. The
fundamental group in fact forms an algebraic group under
concatenation and direction-reversal of loops and allows us to
study properties of a topological space X . When X is path-
connected (i.e., if there is a path joining any two points in X),
the choice of base point is in fact unimportant for our purposes
since the groups π1(X,x) ∼= π1(X,x′) are isomorphic for any
x, x′ ∈ X . In particular, the fundamental group is called trivial
when every loop can be contracted to a point. We define:

Definition 5. A topological space X is called simply-
connected if X is path-connected and has trivial fundamental
group.

Fig. 7 visualizes a space that is not simply connected, while
e.g. X = R3 provides an example of a simply connected space.

We now can provide two equivalent (up to sign) definitions
of the linking number. We refer the reader to [25] for more
details. The first definition is convenient for our theoretical
framework, while the second serves for computational pur-
poses.

Definition 6. Consider two loops α, β in R3 both homeo-
morphic to a circle in R3 and such that α ∩ β = ∅. Then β
represents an element in the fundamental group π1(R3 − α),
which is isomorphic to Z. The loop β is hence mapped to an
integer, called the linking number lk(α, β). In particular, if
lk(α, β) 6= 0, then β is non-trivial in π1(R3 − α).

The above definition is useful for our theoretical framework
in Section V. Namely, we use it to work with the linkability
relation, between the object and the manipulator.

Definition 7. The linking number between two differentiable
loops α, β : S1 → R3 that are each homeomorphic to a
circle in R3 can be computed directly by means of the Gauss
Linking Integral:

lk(α, β) =
1

4π

∮
S1

∮
S1
〈 α(s)− β(t)

‖α(s)− β(t)‖3
, α′(s)× β′(t)〉dsdt.

A discrete version of the above formula, for the case of
piecewise linear loops α, β : S1 → R3 is discussed in [14]
and can be used to efficiently determine the linking number in
the piecewise linear case. Thus, the above definition provides
a practical approach to compute lk(α, β) in Section VI.

V. THEORETICAL CONTRIBUTION

In this section, we first generalize the notion of caging to
the case of deformable objects and show that our definition
is consistent with the classical case for rigid objects. Further,
we formally define double fork and neck features, as well as
classes of object deformations preserving these features. This
allows us to prove sufficient caging conditions for partially de-
formable objects exhibiting the neck and double-fork features.

A. Caging under deformability assumption

We start our formalization with the definition of the object.
If we assume the object to be rigid, it can be defined simply
as a subset of R3. However, as we want to allow object
deformations, we need to distinguish between the concept
of the object and its shape. For this purpose, we represent
the object as an abstract topological space, and introduce the
notion of its shape – the way it is placed into R3 by means
of an embedding:

Definition 8. Let O be a compact topological space. Assume
that it can be embedded into R3: let ι : O → R3 be an
embedding. Then we call O the object, and the image of the
embedding O = ι(O) its shape.

Mathematically, the above definition allows degenerate
cases when the object has no thickness. For example, a curve
in R3 satisfies the above definition of the shape. To be realistic,
we avoid these cases by adding an assumption about the shape
of the object:

Assumption 1. Assume that for any shape O of the object
O there exists a non-empty open set U ⊂ R3, such that O =
cl(U).

In the above cl(U) denotes the closure of U . We distinguish
between a situation when the manipulator is in contact with
the object, but does not penetrate the object itself, and when
the manipulator penetrates the object.

Definition 9. Let O ⊂ R3 be the shape of the object O. A
point x ∈ (O − int(O)) is said to be in contact with the
object, while a point x ∈ int(O) is said to penetrate the
object.
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Now we can define the notion of caging. Let us start with
the classical assumption that the object is rigid. In this case, the
object can escape only by means of rigid body motions. The
following definition formalizes caging under this assumption.

Definition 10. Consider an object of the shape O and let
M ⊂ R3 be a set. We define the free configuration space of O
with respect to M to be the set of rigid transformations not
causing penetrations with the object:

CO = {g ∈ SE(3) : M ∩ g.int(O) = ∅}.

If the identity element e ∈ CO corresponding to an
initial configuration of O relative to M lies in a bounded
path-component of CO, we say that the set M cages the
object O. Here g.x ∈ R3 denotes the result of applying the
rigid transformation g ∈ SE(3) to x ∈ R3, and similarly
g.int(O) = {g.x ∈ R3 : x ∈ int(O)}.

Note that with the above notion of caging, we allow contacts
between M and O but disallow penetrations. Note further that
M can be an arbitrary set, such as a discrete number of points,
a curve, etc.

We want to generalize the notion of caging by allowing the
object to be deformable. In this case, the object can escape
from the manipulator not only by rigid body motions, but
also by changing its shape. Thus, an escaping path can be
represented by an isotopy, as defined in Section IV. Since we
assume that the caging tool is rigid, we can without loss of
generality center our coordinate system at the manipulator and
assume that its position is fixed.

Definition 11. Consider an object O with shape O given by
the embedding i : O → O and let M ⊂ R3 be a set. We say
that an isotopy H : O × I → R3 with H(x, 0) = i(x) for
all x ∈ O is a non-penetrating isotopy of the object with
respect to M if int(H(O, t)) ∩ M = ∅ for all t ∈ I . Let
D be a subset containing all the non-penetrating isotopies of
O ⊂ R3. D specifies a set of allowable deformations. Assume
that M is fixed in space. We say that M cages O under D-
deformations if any non-penetrating isotopy H ∈ D satisfies
dist(M,H(O, t)) ≤ C for all t ∈ I and for some fixed C ≥ 0.

By the distance between M and H(O, t) in the above
definition we mean the infimum of the distances between any
two of their respective points,

dist(M,H(O, t)) = inf
x∈M,y∈H(O,t)

‖x− y‖

Remark 1. Observe that the previous notion of caging under
rigid transformations in Def. 10 corresponds to a particular
class of isotopies induced by rigid transformations. See Lemma
1 in the Appendix for the detailed explanation.

B. Double fork and neck features

Let us now consider our first shape feature, which we refer
to as a double fork.

We consider a graph embedded into the object we want to
cage. Such a graph G can be obtained using a skeletonization
technique. We in particular rely on the technique proposed in
[7] where a skeleton of the object is obtained by retracting its

medial axis to a graph. This skeleton yields a geometric graph
G = (V,E) that lies in the object and a function, reflecting the
distance from each point on the graph to the object’s surface
is also provided. Note though that our approach is general and
does not depend on a particular skeletonization technique. We
introduce the following definition, see Fig. 8.

Fig. 8. Different examples of double forks. The set of central vertices can
be either finite or infinite.

Definition 12. Let u, u′, v, v′ ∈ R3 and let p : I → R3 and
p′ : I → R3 be two embeddings, such that p is a path in
R3 from u to v, while p′ is a path in R3 from u′ to v′. If
dist(p, {u′, v′}) > d, dist(p′, {u, v}) > d and p ∩ p′ 6= ∅ we
say that p, p′ form a double fork with diameter d. The set of
vertices C = {v ∈ V : v ∈ p∩ p′} is called the set of central
vertices.

Since, according to Assumption 1, our object always has
some thickness, it is convenient to consider the double fork
together with some neighbourhood:

Definition 13. Given a double fork consisting of p, p′ : I →
R3 and with parameter d and ε > 0, we define a double fork
of a thickness ε as DFε = DFε(p(I), p′(I)) = {x ∈ R3 :
dist(x, p(I)) ≤ ε or dist(x, p′(I)) ≤ ε}.

Let us now consider objects with another geometric feature
which we refer to as a neck.

Fig. 9. A neck Nε,d(f(I)) and a caging loop l

Intuitively, a neck of the object is a constriction which is
situated between two wider parts. We use this feature to extract
a simplified geometrical representation of the object, which
can be considered as its ‘core’. Formally, we define this as
follows:
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Definition 14. Let f : I → R3 be an embedding. For ε > 0
and d > ε, we define a neck Nε,d(f(I)) of diameter d and
thickness ε as follows: Nε,d(f(I)) = {x ∈ R3 : ‖x−f(s)‖ ≤
ε for some s ∈ I or ‖x− f(0)‖ ≤ d or ‖x− f(1)‖ ≤ d}.

Intuitively, we can imagine two spheres (note that, in degen-
erate cases, they can intersect) of radius d, inscribed into the
object O (see Fig.9) and connected by an ε-neighbourhood of
the defining curve f . The term ‘neck’ is inspired by ‘choking
loops’ proposed in [11].

One can notice that in fact, any object with a neck contains a
double fork as well. Indeed, assume we have a neck consisting
of two spheres and a path between them, and let u and u′

be diametrically opposed on one sphere, and v and v′ be
diametrically opposed on the other sphere. Let p connect u
and v, p′ connect u′ and v′. Now each vertex is located at
a distance to the other path of at least the smaller sphere’s
radius. However, note that the diameter of the corresponding
double fork is half the diameter of the initial neck. Since the
diameter of the feature will be directly related to the cagability
of the object, we consider a neck as a separate shape feature
here.

C. The linkability relation

We now define the ‘linkability’ relation between the caging
loop and a curve inside the object. We address this by
introducing a superset of the loop which distinguishes curves
that go through the loop from those that go around the loop.
Algorithmically, we then compute linkability with the help of
the linking number, recalled in Section IV.

Let a loop l be located in R3. We want to split all the
possible curves in R3 into two classes: those which ‘pass
through l’, and those which do not. Given a query qurve
f , we approach this problem by first constructing a special
curve g with the same end-points as f that avoids a superset
S(l) of the loop l entirely - we call this curve an S(l)-
avoiding augmentation. We then show how an investigation of
homotopy classes then leads to a classification of ‘linkability’
generalizing the classical linking number concept in topology.
To reach a formally correct derivation, we will require that
R3 − S(l) is simply connected. This is the case in particular,
when S(l) is given by the convex hull of l.

Definition 15. Consider a path f : I → Wfree = R3 −
l, f(0) = u, f(1) = v and where l denotes a loop in R3

homeomorphic to a circle. Let S(l) denote a subset of R3

containing l such that R3−S(l) is simply-connected. The path
f is called linkable to l via a S(l)-avoiding augmentation
if there exists another path g : I → Wfree from u to v such
that g ∩ S(l) = ∅ and the loop f ◦ −g is not null-homotopic
in Wfree.

Note that any path which is linkable to l via a S(l)-avoiding
augmentation intuitively ‘passes through l’. However, S(l) can
be constructed in different ways, and for each particular S(l)
a set of all paths linkable to l is a subset of all paths passing
through l.

Let us now consider a curve passing through the loop l.
In order for it to escape from l via a continuous deformation,

either of its endpoints must ‘go through’ the loop at least once.
However, the process of ‘going through’ the loop for a point
also must be adequately formalized. The following proposition
makes this precise:

Proposition 1. Let l ⊂ R3 be a loop homeomorphic to a
circle. Consider a path f : I → Wfree = R3 − l, f(0) = u,
f(1) = v, linkable to l via a S(l)-avoiding augmentation.
Assume f can be continuously deformed to a path f ′ : I →
Wfree, such that f ′ ∩ S(l) = ∅, by a homotopy F : I × I →
Wfree, F (s, 0) = f(s), F (s, 1) = f ′(s). Then ∃t ∈ I such
that F (0, t) ∈ S(l) or F (1, t) ∈ S(l).

Fig. 10. A homotopy between the paths f and f ′

Proof. Assume the contrary that for all t ∈ I , F (0, t) /∈ S(l)
and F (1, t) /∈ S(l). Let us denote ft(s) = F (s, t), so that
f0 = f and f1 = f ′. Similarly, let us = F (s, 0), vs = F (s, 1)
for all s ∈ I . Finally, let uiuj (vivj) denote the corresponding
path from ui to uj (from vi to vj) in F (0, .) (respectively, in
F (1, .)), where i, j ∈ I, i 6= j.

Let g = u0u1 ◦ f1 ◦ v1v0, see Fig. 10. Consider a family
of paths φt : I →Wfree defined as φt = u0u(1−t) ◦ f(1−t) ◦
v(1−t)v0, t ∈ I . This defines a path homotopy deforming φ0 =
u0u1 ◦ f1 ◦ v1v0 = g to φ1 = f0. So, g ' f0. Recall that
f1 ∩ S(l) = ∅. Moreover, by our assumption, for all t ∈ I :
ut /∈ S(l), vt /∈ S(l). So, g does not intersect with S(l). Recall
now that f0 is linkable to l. So, there exists a path g′ ⊂ Wfree

from u0 to v0 such that g′ ∩ S(l) = ∅ and the loop f ◦ −g′
is not null-homotopic. Finally, note that g ' g′, since both of
them can be considered as a paths in R3 − S(l). Therefore,
f ◦ −g ' f ◦ −g′. This leads us to contradiction.

Let us now discuss how to algorithmically check whether a
given path p from u to v is linkable to the loop l with respect
to some S(l). First of all, we have to properly construct S(l).
For our implementation, we choose S(l) = Conv(l), where
Conv(l) denotes the convex hull of l. Note that R3 − S(l) is
simply-connected since S(l) can be contracted to a point in
R3 and hence π1(R3 − S(l)) ' π1(R3 − {0}) = {0}.

To determine if a path f from u to v such that u, v /∈ S(l) =
Conv(l) is linkable via a Conv(l) avoiding augmentation, we
will algorithmically determine an arbitrary path paux from u to
v in the complement of Conv(l). The relation of being linkable
does not depend on the particular choice of paux ∈ R3−S(l),
since R3 − S(l) is simply-connected and therefore for any
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other path p′aux ∈ R3−S(l) with the same endpoints the loop
p ◦ −paux can be continuously deformed to p ◦ −p′aux.

Finally, we have to check whether the resulting loop p ◦
−paux is non-trivial in R3 − l for which we will utilize the
linking number lk(l, p ◦ −paux).

D. Sufficient caging conditions for objects with double forks
and necks

Now we can prove sufficient caging conditions for objects
with double fork and neck features. Since we want our objects
to be partially deformable – i.e., to preserve shape features
under deformations – we start with defining the classes of
allowed deformations.

In the definition of a double fork of the thickness ε, we
consider two paths p, p′ as a subset of the object DFε. Since in
our context this structure is crucial for an object to be suitable
for caging, we consider it as a ‘skeleton’ of the object in
the sense that its deformations induce the deformations of the
entire object. To formalize this, we introduce the following
definition.

Definition 16. Let O be an object of a shape O, where ι :
O → R3, ι(O) = O is the corresponding embedding, and
ι−1 : O → O is its inverse. Let DF = DFε(p(I), p′(I)) ⊂ O
be double fork of diameter d and thickness ε. Consider an
isotopy H : O × I → R3, such that H(x, 0) = ι(x). If for
each t ∈ I a pair of paths H(ι−1(p(I)), t), H(ι−1(p′(I)), t)
yields a double fork of a diameter d, then H is called a double
fork preserving deformation of the object with respect to DF .

Now we can prove caging conditions for objects with double
forks:

Theorem 1. Let O be an object of a shape O ⊂ R3,ι(O) = O
be the corresponding embedding, and ι−1 : O → O is its
inverse. Let l be a loop in R3, representing the manipulator.
Let S(l) be a subset of R3 containing l such that R3 − S(l)
is simply-connected. Let p, p′ : I → O be two embeddings,
linkable to l via S(l)-avoiding augmentations and suppose
that p, p′ form a double fork with parameter d > 0. Let ε > 0
and assume DF = DFε(p(I), p′(I)) to be a subset of O.
Finally, assume O ∩ l = ∅.

Consider the deformation class FP of the object O, such
that any deformation H in FP is non-penetrating with respect
to l and double fork preserving with respect to DF .

If diam(S(l)) < d, then l cages the object O under FP-
deformations.

Proof. Suppose on the contrary that for any C ≥ 0 there exists
an isotopy H in class FP taking the object O at distance
greater than C away from l. Let C = 2 · diam(S(l)). Then,
the images H(ι−1(p(I)), 1) ⊂ R3 and H(ι−1(p′(I)), 1) ⊂
R3 of p and p′ are separated from l at a distance greater
than diam(S(l)). Therefore, the paths H(ι−1(p(I)), 1) and
H(ι−1(p′(I)), 1) do not intersect S(l) and therefore are not
linkable to l via S(l)-avoiding augmentation. Hence, by Propo-
sition 1 there exists a first time t at which one of the end-points
of the deforming p, p′ is in S(l). Without loss of generality,
assume x = H(ι−1(p(0)), t) ∈ S(l). Since the deformed p′(I)

Fig. 11. The escaping process at time t. The boundary of O is depicted with
dashed curve. The image of p is depicted in blue, while the caging loop is in
red.

is at that point either still linkable to l, and therefore intersects
S(l), or an endpoint of p′(I) lies also in S(l), we have two
points in S(l), whose distance from each other is at least
d > diam(S(l)), which is a contradiction, see Fig.11.

Let us now consider objects with necks. Although any neck
contains a double fork of a smaller diameter, and thus can be
considered as a special case of the latter feature, our caging
conditions for double forks are more strict than the ones for
necks, and thus we formulate them as a separate theorem.

Similarly to the case of a double fork, we consider f(s)
as a ‘skeleton’ of the object, and we hence assume that its
deformations induce the corresponding deformations of the
entire object.

Definition 17. Let O be an object of shape O ⊂ R3, where
ι : O → R3, ι(O) = O is the corresponding embedding, and
ι−1 : O → O is its inverse. Let a neck N = Nε,d(f(I)), for f :
I → O be contained in O. Consider an isotopy H : O× I →
R3, H(x, 0) = ι(x). H is a neck preserving deformation
with respect to N , if for each t ∈ I the image H(ι−1(f(I)), t)
forms a neck with parameters ε, d, which is a subset of the
corresponding image of O:

Nε,d(H(ι−1(f(I)), t)) ⊂ H(O, t).

Theorem 2. Let O be an object of the shape O ⊂ R3, ι(O) =
O be the corresponding embedding, and ι−1 : O → O be its
inverse. Let the neck N = Nε,d(f(I)) be its subset, where
f : I → R3 is an embedding, and ε > 0, d > 0 are real
constants. Assume that O ∩ l = ∅. Let f be linkable to l via
an S(l)-avoiding augmentation. Consider a deformation class
NP of the object O, such that each deformation H in NP
is non-penetrating with respect to l and neck preserving with
respect to N . Then, the object O is caged by l under NP-
deformations if diam(S(l)) < d.

Proof. Suppose the result does not hold. Then for any real
C ≥ 0 the deformation class NP contains a non-penetrating
isotopy HC : O × I → R3 between of O and H(O, 1) such
that dist(l,H(O, 1)) > C. Let C = 2 · diam(S(l)) < d, and
consider an isotopy H ∈ B leading the object at a distance
C away from the manipulator l. Since H(ι−1(f(I)), 1) ⊂
H(O, 1), we have dist(l,H(ι−1(f(I), 1)) > diam(S(l)).
Therefore, H(ι−1(f(I)), 1) does not intersect S(l) and hence
is not linkable to l via S(l)-avoiding augmentation. Then, by
Proposition 1, there exists t ∈ I such that H(ι−1(f(0)), t) ∈
S(l) or H(ι−1(f(1)), t) ∈ S(l). Assume, by reversing the
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orientation of f if necessary, that H(ι−1(f(0)), t) ∈ S(l).
Then dist(H(ι−1(f(0)), t), l) ≤ diam(S(l)). But, since the
homotopy is non-penetrating, we have dist(H(O, t), l) > d,
and hence d < diam(S(l)) which leads to a contradiction.

E. Approximate caging loops

In practice, we may be interested in caging objects by two
or more caging tools such as fingers, arms or mobile robots
placed at a small distance from each other such that these
caging tools almost form a closed loop. Consider, for example
the case of the PR2 gripper in Fig.12. While the fingers cannot
close completely, we can still utilize such configurations as
long as the distance between the fingertips is small enough.
We now formalize this using the notion of an ε-augmented
caging loop.

Fig. 12. A PR2 gripper caging a scoop by an approximate caging loop

Definition 18. Let Γ = (γ1, γ2, ..., γn), γi : I → R3, be
a tuple of piecewise linear curves contained in the caging
manipulator and let and let A = (a1, a2, ..., an), be a tuple
of linear line segments such that ai connects ai(0) ∈ R3

to ai(1) ∈ R3 and maxi‖ai(0) − ai(1)‖ = ε. Suppose
furthermore that γi(1) = ai(0) and γi+1(0) = ai(1) for
i ∈ {1, . . . , n − 1} and γ1(0) = an(1), so that the loop
l̃ε(Γ, A) = γ1, a1, γ2, . . . , an forms a closed loop. Suppose
further that l̃ε(Γ, A) is homotopy equivalent to a circle. Then
we call l̃ε = l̃ε(Γ, A) an ε augmented caging loop.

Fig. 13. A ε-augmented caging loop.

Deformations such as squeezing might change the thickness
of the object, which is also important for caging by several
tools. When we have an ε-augmented caging loop, we impose
an additional important restriction on the class of allowed
deformations of our objects. Namely, we consider objects

that can change their thickness only up to some threshold.
Intuitively, we can imagine this as a dense ‘core’ inside the
object, which preserves its thickness while we squeeze the
object.

Definition 19. Let O be an object of the shape O ⊂ R3,
and let p : I → O an embedded curve in O. Assume that
{x ∈ R3 : dist(x, p(I)) ≤ ε} ⊂ O for some ε ≥ 0. Then a
deformation H : O × I → R3 of the object is ε−thickness
preserving with respect to p, if for any t ∈ I we have

{x ∈ R3 : dist(x,H(ι−1(p(I)), t)) ≤ ε} ⊂ H(O, t).

We now can formulate a corollary of Proposition 1:

Corollary 1 (of Proposition 1). Let l̃ε′ = l̃ε(Γ, A) be an
ε′-augmented caging loop, consisting of the set of segments
Γ, representing the caging tools, and a set A of virtual
segments, connecting their endpoints. Let O ⊂ R3 be an
object, and let p : I → O an embedding into O, such that
{x ∈ R3 : dist(x, p(I)) ≤ ε} ⊂ O, where ε > ε′. Assume
that p is linkable to l̃ε′ via S(l̃ε′)-avoiding augmentation, and
O does not collide with the set of caging tools: O ∩ Γ = ∅.
Consider a deformation class T P of the object O, consisting
of ε−thickness preserving deformations with respect to p,
non-penetrating with respect to Γ. Then for any isotopy
H ∈ T P , such that H(ι−1(p(I)), 1) ∩ S(l̃ε′) = ∅, there
exists t ∈ I for which either H(ι−1(p(0)), t) ∈ S(l̃ε′) or
H(ι−1(p(1)), t) ∈ S(l̃ε′).

Proof. By Proposition 1 we know that the statement holds for
the deformation class T P ′ ⊂ T P consisting of ε−thickness
preserving deformations with respect to p, non-penetrating
with respect to l̃ε′ . Suppose that the statements does not
hold for T P . Let H ∈ T P − T P ′ be such an isotopy.
Since H ∈ T P but H /∈ T P ′, there exists a moment
of time t ∈ I , such that the image H(ι−1(p(I)), t) passes
through at least one of the virtual segments in A. Suppose
that y ∈ H(ι−1(p(I)), t) ∩ A. On the one hand, note that
dist(y,Γ) ≤ ε′, since the length of the longest segment in A
is ε′. Hence, {x ∈ R3 : dist(x, y) ≤ ε′} ∩ Γ 6= ∅. On the
other hand, H is ε−thickness preserving with respect to p,
y ∈ H(ι−1(p(I)), t), and therefore {x ∈ R3 : dist(x, y) ≤
ε} ⊂ H(O, t). Recall that ε > ε′, and hence {x ∈ R3 :
dist(x, y) ≤ ε′} ⊂ {x ∈ R3 : dist(x, y) ≤ ε} ⊂ H(O, t). So,
H(O, t) ∩ Γ 6= ∅, which yields a contradiction.

Corollary 1 implies the sufficient conditions for caging
objects with double forks and necks features by several caging
tools.

Proposition 2. Let O ⊂ R3 be an object under consideration,
and let l̃ε′ be an ε′−augmented caging loop, representing the
set of manipulators. Let p, p′ : I → O be two embeddings,
linkable to l̃ε′ via S(l̃ε′)-avoiding augmentations and suppose
that p, p′ form a double fork with parameter d > 0. Let ε > ε′

and assume DF = DFε(p(I), p′(I)) to be a subset of O.
Finally, assume O ∩ Γ = ∅.

Consider the deformation class FPaug of the object O,
such that any deformation H in FPaug is non-penetrating
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with respect to Γ, double fork preserving with respect to DF ,
and ε−thickness preserving with respect to both of p and p′.

If diam(S(l̃ε′)) < d then l̃ε′ cages the object O under
FPaug-deformations.

Proof. Suppose on the contrary that for any C ≥ 0 there exists
an isotopy H in class FPaug taking the object O at distance
greater than C away from l̃ε′ . Let C = 2 ·diam(S(l̃ε′)). Then,
the images H(ι−1(p(I)), 1) ⊂ R3 and H(ι−1(p′(I)), 1) ⊂ R3

of p and p′ are separated from l̃ε′ at a distance greater
than diam(S(l̃ε′)). Therefore, the paths H(ι−1(p(I)), 1) and
H(ι−1(p′(I)), 1) do not intersect S(l̃ε′) and therefore are
not linkable to l̃ε′ via S(l̃ε′)-avoiding augmentation. From
Corollary 1 we know that there exists a first time t at which
one of the endpoints of the deforming p, p′ is in S(l̃ε′). Further
reasoning precisely as in Theorem 1, we obtain the result.

Let us now consider the objects with neck feature. Note that
we do not have to impose any additional restrictions on the
deformation classNP from Theorem 2, since any deformation
which is neck preserving with respect to some Nε,d(f(I)) is
obviously ε-thickness preserving with respect to f . Therefore,
the statement of Theorem 1 holds for any ε′-augmented caging
loop, provided ε′ < ε, where ε is the second neck’s parameter.

VI. ALGORITHMIC IMPLEMENTATION

In this section, we provide algorithms for computing and
verifying caging configurations. Our approach analyses the
shape of the object and extracts double forks and necks
contained in it. Since a neck feature can be considered as
a special but important case of a double fork, which provides
us more freedom in the choice of a manipulator, we start the
shape analysis of the object with searching for necks in it. If no
necks are detected, we search for double forks. We furthermore
generate caging loops using the extracted information and
present applications with a PR2 robot. Finally, we run our
verification algorithm on the synthesized configurations to
prove that the resulting configurations are valid cages.

In this section, we assume that the object’s shape is repre-
sented as a mesh O. The difference between the object O and
its shape O is important for theoretical reasoning, as it allows
us to consider deformations of the object. However, we do not
model deformations from the algorithmic point of view: we
start with the initial shape of the object and analyse its features,
assuming they are preserved by the possible deformations.
Hence, in this section we do not distinguish between the object
and its shape. Mathematically, this means that O = O ⊂ R3

throughout this section.

A. ‘Neck’ recognition

Let us discuss the computation of neck features. A general
approach to determine necks has been introduced in [11] based
on the concept of persistent homology (see [10]). Here, we
describe a simplified approach that is applicable in our setting.
Let O be a tetrahedral mesh, representing the object. If we are
given a surface triangle mesh, it can be tetrahedralized at a
preprocessing stage, for example with the help of Tetgen([28]).
We start with an empty set and then incrementally add vertices

from O based on their distance to the surface ∂O of the object.
We also add edges, triangles and tetrahedra as soon as all
of their vertices are added. Let ds : O → R be a function
reflecting the distance to ∂O: ds(x) = dist(x, ∂O). At each
step i of the Alg. 1, we consider a superlevel O+

ai
= {x ∈ O :

ds(x) ≥ ai}, where the parameter ai is increased at each step:
maxx∈O ds(x) = a0 > a1 > a2.. > an = 0. As a result, we
obtain a nested family of superlevel sets, called a filtration:

O+
a0
⊂ O+

a1
⊂ O+

a2
⊂ .. ⊂ O+

an
= O.

Fig. 14. Superlevels of the function reflecting the distance to the boundary

In this process, the number of connected component in the
filtration changes: new components appear, while the others
merge. In particular, we are interested in those points, after
the addition of which different connected components in the
filtration O+

ai
merge. Let us illustrate the example in Fig. 14,

where we depict two different superlevel sets, corresponding
to filtration values ai > aj . The superlevel set O+

ai
consists of

two disjoint components and is depicted in blue. It is a subset
of O+

aj
, which is connected and depicted in yellow on the

right side of the figure. A path f depicted in black connects
the disjoint components of O+

ai
through O+

aj
. Note that the

distance from f to the boundary of the object is not less than
aj , and the distance from its endpoints to the boundary is
greater or equal than ai. Therefore, we can conclude that the
shape under consideration contains a neck Naj ,ai

(f).
Let us now consider our technique in detail. Alg.1 computes

necks with parameter d, given a tetrahedral mesh O and a
parameter d. A mesh O consists of four sets: V , E, F and T ,
representing vertices, edges, faces and tetrahedra respectively.
The subset ∂O ⊂ O contains those vertices which are located
at the boundary of the object. For each vertex, edge, face and
tetrahedron we store a binary flag which has value ‘True’ if the
object is located at the boundary ∂O, and ‘False’ otherwise.
We represent a neck as a path f inside the object O such
that its endpoints are located at a distance d (or greater) from
the boundary ∂O of the object, while the distance from it
to the path f itself is not less than ε. We therefore store a
path as a list of edges from O as well as the parameters d
and ε for each neck. At each step, we decrease a and add
to the filtration O+

a points from O located at a distance not
less than a to the surface ∂O. Once both of the endpoints
of an edge are in the filtration, we add this edge to the
filtration as well. Analogously, we add faces (tetrahedra) once
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all of their edges (faces) are in the filtration. We do this by
means of function Update-Filtration. Once all vertices, edges,
triangles and tetrahedra are added, we compute the connected
components of the resulting mesh. At each moment of time,
each connected component has its unique ID number. For each
vertex, we store the ID number of the connected component
containing it in the array ConComp. ID of a connected
component is an integer number. When we add a new point
v to the filtration, we consider all the vertices adjacent to it
in O. If none of them is in the filtration, then v forms a new
connected component in O+

a . We let ConComp[v] be equal
to the minimal integer number which has not yet been used to
denote any connected component. Otherwise, we add v to an
already existing connected component by letting ConComp[v]
to be equal to the ID of the corresponding component. If in
the filtration there are more than one connected component
containing vertices adjacent to v in O, then this means
that adding v results in the merging of these components.
Assume that C1, C2, .., Cm are the connected components in
the filtration containing at least one vertex, adjacent to v in O.
Then, once we add v, we modify ConComp so that all the
vertices from C1, C2, .., Cm and v have the same value in it.
For this purpose, we select the component with the minimal
ID number among the components C1, C2, .., Cm, and assign
ConComp[u] to be equal to it for all the vertices u from
C1 ∪C2 ∪ .. ∪Cm ∪ {v}. This mechanism is implemented in
the function Merge-Comp.

Suppose C1, C2 ⊂ O+
a are two connected components,

merged into one after the addition of a point v together with
the corresponding edges, faces and tetrahedra to the filtration.
Let x1 = arg maxx∈C1

ds(x), x2 = argmaxx∈C2
ds(x). We

can determine a path f connecting x1 and x2 in O+
a . This

path is computed by Find-Path, resulting in a neck, whose
first parameter is equal to min{dist(x1, ∂O),dist(x2, ∂O)}.
The values of their second parameter, reflecting the thickness
of the object, may vary and are not computed at this stage.
Instead, we compute them further if necessary.

B. ‘Double fork’ recognition

We start by generating a skeleton G = (V,E) of an object
using the algorithm of [7]. This algorithm generates a skeleton
as a subset of the medial axis. More precisely, the authors
consider balls of maximal radius defined by the medial axis.
These balls touch the object’s surface and the authors define
the medial geodesic function (MGF) to be the length of the
shortest surface path connecting these points. The skeleton is
then defined as the singular set of MGF. Unlike the medial
axis, which might be a two-dimensional surface, this skeleton
is always one-dimensional and represented as a graph. The
MGF values are provided for each edge of the skeleton graph
as a part of the output of their software and provide size
information about the object.

We denote the MGF value by geod(e) for e ∈ E.
We also extend this function to vertices: geod(v) =
mini∈{1,..,n} geod(ei), where {e1, .., en} ⊂ E is the set of
edges incident to v ∈ V . In our current implementation, we
assume the skeleton graph G to be a tree. In the future, we

Algorithm 1: Compute-Necks(mesh O, mesh ∂O, float d)
input : a tetrahedral mesh O = (V,E, F, T );
a surface mesh representing the boundary of the object ∂O;
neck parameter d
output: a set of necks with parameter d

nextID ← 0
Nd ← ∅
foreach v ∈ O do

D[v]← Compute-Dist-To-Surface(v, O)
end
V ← Sort-Vertices-by-Distance(V , D)
a =← Max-Element(D)
while a > 0 do

NewV ert← Vertices-at-Distance(V , d, D)
O+

a ← Update-Filtration(O, O+
a , NewV ert)

foreach v ∈ NewV ert do
ConComp[v]←∞
size← 0
f ← ∅
foreach u ∈ Adjacent(v) do

if u ∈ O+
a and ConComp[u] 6= ConComp[v] then

if ConComp[v] 6=∞ then
uCentre← ConComCentre(V , ConComp,
u)
vCentre← ConComCentre(V , ConComp,
v)
size← Max(size, Min(D[uCentre],
D[vCentre]))
Merge-Comp(u, v, ConComp)
if size ≥ d and f = ∅ then

f ← Find-Path(O+
a , uCentre, vCentre)

end
end
else

ConComp[v]← ConComp[u]
end

end
end
if ConComp[v] =∞ then

ConComp[v]← nextID
nextID ← nextID + 1

end
if size ≥ d then
Nd = Nd ∪ f

end
end
a← Next-Distance-To-Surface(O, O+

a , D, a)
end
return Nd

plan to consider more general skeletons as well, for example,
by working with spanning trees.

Our goal is to find double forks in the skeleton graph.
We are interested in double forks with a parameter greater
than or equal to some predefined threshold d. We stop the
algorithm once a double fork with a required parameter is
found. Otherwise, the algorithm terminates after considering
all the promising sets of vertices of the graph.

All the graphs in this section are assumed to be undirected.
For convenience, we introduce a special notation for paths in
graphs. Let p : u → v denote a path between the vertices u
and v in a graph. We will also use the notation (u, v) for an
edge between vertices u and v.

Definition 20. Consider a skeleton as a graph G = (V,E).
Let Gd

v ⊂ G be the subgraph, defined by Gd
v = ({u ∈ V :

dist(u, v) ≥ d}, {e ∈ E : dist(e, v) ≥ d}) for some v ∈ V
and d > 0. Then the subgraph Gd

v is called d-separated from
v.
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In the above definition, dist(., .) denotes the Euclidean
distance in R3. Intuitively, Gd

v is just a subgraph of G separated
from v by a distance not less than d. Note that Gd

v is likely
do consist of several connected components.

Recall the definition of a double fork. It imposes two
conditions on the distances between the parts of the double
fork: dist(p, {u′, v′}) > d and dist(p′, {u, v}) > d. These
conditions can be rewritten as p ⊂ Gd

u′∩Gd
v′ and p′ ⊂ Gd

u∩Gd
v .

Consequently, the pairs {u, v} and {u′, v′} are also separated
from each other:

u, v ∈ Gd
u′ ∩Gd

v′ , u′, v′ ∈ Gd
u ∩Gd

v.

Moreover, any double fork is obviously connected due to
condition p∩p′ 6= ∅. From this we conclude that the centre C
of a double fork must lie at a distance not less than d from all
the vertices u, v, u′, v′, and therefore we have the following
condition:

C ⊂ Gd
u ∩Gd

v ∩Gd
u′ ∩Gd

v′ 6= ∅

These observations give us a way to compute double forks
in G, see Alg. 2.

Let d be a threshold determining the minimal acceptable
parameter of a double fork. As a preprocessing stage, we
compute a real valued symmetric |V | × |V | matrix D, con-
taining pairwise distances between vertices in G: Dvi,vj =
dist(vi, vj) for each pair (vi, vj) ∈ V × V . For this purpose
we use the function Distance.

The key idea of this algorithm is to find a set of vertices
{u, v, u′, v′} satisfying all the conditions to form a double
fork. In the first step of our algorithm, we are searching for
vertices that might be located at the centre of some double
fork. We enumerate all the vertices in the graph and consider
those which potentially could be located at a centre of a double
fork. In order to speed up the computations, we consider only
those vertices which are located at a distance not greater than
0.2RG, where RG = dist(x,M) and M is the centre of
mass of the set V ⊂ R3. This selection is performed by the
function Vert-at-Dist, and the centre of mass is the output of
the corresponding function Centre-of-Mass. Then, for each
selected vertex a we enumerate all the vertices in the graph at
a distance not less than d to a, and consider them as candidates
for the first vertex of the double fork – u. At this step, we build
a path pu : a → u in G. The function Find-Path is used for
this purpose. After that, for each pair (a, u), we enumerate all
the vertices at a distance greater or equal than d to pu and
consider them as promising candidates for u′. We search for
a path pu′ : a → u′ in Gd

u. If there is no such a path, we
consider the next candidate for u′. Once pu′ is found, having
a triple (a, u, u′), we enumerate all the vertices in G which
are located at a distance greater or equal than d to pu′ , and
consider them as candidates for being v. We search for a path
pv : a→ v in Gd

u′ . Finally, having {a, u, u′, v} we enumerate
the vertices separated from pu and pv at least at a distance
d and choose v′ among them. Now u, v, u′, v′ together with
p = pu ∪ pv and p′ = pu′ ∪ pv′ form a double fork.

Let us now discuss in detail how the above used functions
are implemented.

Algorithm 2: Compute-Double-Fork(mesh O, graph G =
(V,E), float d)

input : a mesh O, representing the object;
a skeleton G = (V,E);
the lowest acceptable double fork parameter d

output: a fork of parameter d

foreach u ∈ V do
foreach v ∈ V do

Du,v ← Distance(u, v)
end

end
M ← Centre-of-Mass(G)
R← 0
foreach v ∈ V do

if Dv,M > R then
R← Dv,M

end
end
foreach a ∈ V do

if dist (a,M) ≤ 0.2R then
UC ← Vert-at-Dist(V , {a}, d)
foreach u ∈ UC do

pu ← Construct-Path(G, a, u)
if pu = ∅ then

continue
end
U ′C ← Vert-at-Dist(V , pu, d)
foreach u′ ∈ U ′C do

pu′ ← Construct-Path(G, a, u′)
if pu′ = ∅ then

continue
end
V C ← Vert-at-Dist(V , pu′ , d)
foreach v ∈ V C do

pv ← Construct-Path(G, a, v)
if pv = ∅ then

continue
end
V ′C ← Vert-at-Dist(V , pu ∪ pv , d)
foreach v′ ∈ V ′C do

pv′ ← Construct-Path(G, a, v′)
if pv′ = ∅ then

continue
end
p = pu ∪ pv
p′ = pu′ ∪ pv′

return {u, v, u′, v′}, p ∪ p′
end

end
end

end
end

end
return ∅

• Centre-of-Mass(Graph G)
Given a geometric graph G = (V,E), this function
computes a centre of mass of V ⊂ R3.

• Vert-at-Dist(Set S, Set D, Float d)
This function returns a subset S′ of the set S ⊂ R3, such
that each point from S′ lies at a distance greater than
or equal to the parameter d ∈ R to any point of the set
D ⊂ R3.

• Find-Path(Graph G, Vertex u, Vertex v)
The goal of this function is to find a path between the
vertices u and v in the undirected graph G. For this
purpose, we run Breadth-first search in G starting at u,
and then recover the path p : u → v once v is reached.
If we cannot reach v from u, the function returns empty
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path.

C. Caging loop synthesis

Let us now describe an approach towards constructing
caging loops. We assume that we have already analysed the
shape of the object O, and have found either a neck formed
by a path p, or a double fork formed by a pair of paths (p, p′).

In our algorithm, we consider the edges contained in the
object’s surface ∂O as a graph G. The output of the algorithm
is given by a piecewise linear loop l in this graph. In order
to construct a loop, we need a starting point M inside O.
Intuitively, M is the point around which we construct a loop,
and it is located at the centre of a narrow part of the object.
Our algorithm aims to construct a short loop as follows.

Formally, assume we have an object with a double fork
(p, p′). Let M ∈ p ∩ p′ be a point, such that M =
arg minx∈p∩p′(geod(x)). In the case of a neck, let M =
arg minx∈p(ds(x)). In order to unify our notation for both
cases Algorithms 3, 4, 5, 7 accept as input both p and p′,
however, we set p′ = ∅ in case of a neck features.

We start by selecting a vertex v0 =
arg minv∈∂O dist(v,M). We will explore the vertices
of ∂O in the increasing order of their geodesic distance to v0.
Here we approximate the geodesic distance by considering
the shortest edge paths, determined by means of the Dijkstra’s
algorithm, as explained below. Let the set V ertices contain
the vertices from ∂O. We gradually add explored vertices
from V ertices to the set Marked. So, at the initial stage
Marked = ∅. We will also need a graph Gmarked consisting
of the vertices from the set Marked, and the edges from
∂O such that both their endpoints are in Marked. Initially,
Gmarked is empty.

For each vertex v in G, we need their distance to the initial
point v0. By distance here we mean an approximation of the
geodesic distance – the geometric length of the minimal edge
path from v0 to v. In addition, for each vertex v we will store
its immediate ancestor in the shortest path from v0 to v. For ex-
ample, assume that we have a path path = {v0, v1, ..., vn, v}.
The length of this path is the sum of the geometric length of
its edges, and the immediate ancestor of v in this path is vn.
This information will be stored in the arrays Distance and
Ancestor, where Ancestor[v] denotes the immediate ancestor
of the vertex v in the shortest path from v0, and Distance[v]
is the length of this path. We run Dijkstra’s algorithm in G
starting from the point v0, in order to compute the arrays
Distance and Ancestor.

For convenience, we sort the vertices in V ertices in an
increasing order of their distance from v0 by running Sort-
Vertices-by-Distance. We explore the vertices from V ertices
in this order, and add them to the set Marked. When two
adjacent vertices are added to Marked, we add the edge
between them to Gmarked. In this process, the graph Gmarked

grows on the surface of the object, and tends to cover the entire
surface ∂O (i.e., to become equal to G).

Although in our algorithm we consider only a 1-skeleton
of ∂O and therefore do not work with its faces, in Fig. 15
we visualize in purple the faces whose edges and vertices are

in Gmarked. Intuitively, the process of adding vertices and
edges to Gmarked resembles a gradual growth of a surface
patch on the mesh, see Fig. 15. Since the object is bounded,
the boundary vertices of this ‘patch’ are becoming closer and
closer to each other, and at some moment merge. In Fig. 15, we
illustrate this merging for the neck of the bear mesh. When this
merging occurs, the resulting closed edge path forms a short
loop around the narrow part of the object which we return as
a caging loop candidate in Alg.3.

Algorithm 3: Caging-Loop-Generation(mesh O, path p,
path p′)

input : a mesh O, representing the object ;
two paths p and p′ inside O, representing the double fork or neck
output: a caging loop l

if p′ = ∅ then
// If p′ = ∅, then we deal with a neck formed by p
M ← argminx∈p(ds(x))

end
else

// If p′ 6= ∅, then we deal with a double fork formed by (p, p′)
M ← argminx∈p∩p′ (geod(x))

end
Vertices ← {v : v ∈ ∂O}
Marked ← ∅
v0 ← argminv∈∂O(dist(v,M))
G← G(V = Vertices, E = {e = (v1, v2) : v1, v2 ∈ V, e ∈ ∂O})
Gmarked ← G(V = ∅, E = ∅)
Distance, Ancestor ← Dijkstra(G, v0)
Sort-Vertices-by-Distance(Vertices, Distance)
while Vertices 6= Marked do

v = Vertices.next()
foreach u ∈ Adjacent(v) do

if u ∈ Marked then
path ← Find-Path(Gmarked, u, Ancestor[v])
if Length(path) > deg(v)− 1 then

l← (v, u)∪path ∪(Ancestor[v], v)
if Verify-Caging-Loop(O, p, p′, l) then

return l
end

end
end

end
Marked.push(v)
Add-Vertex-To-Graph(Gmarked, (v))
foreach u ∈ Adjacent(v) do

if u ∈ Marked then
Add-Edge-To-Graph(Gmarked, (v, u))

end
end

end
return ∅

Fig. 15. Illustration of Alg.3. Currently explored vertices and edges are
depicted in black; faces whose edges and vertices are black, are depicted
in purple and a resulting caging loop is shown in red.
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At each step, we consider a vertex v ∈ V ertices. We search
for its immediate neighbours in G, and consider those of them
which are already in Marked. Let u ∈ Marked be one of
these neighbours. First of all, we check whether we can obtain
a caging loop already at this step. In order to do this, we
search for the edge-wise shortest path in Gmarked between u
and Ancestor[v], see Fig. 15 for the intuition. We search for
this path by running Find-Path, which is the implementation
of the breadth-first path search between two points in a given
graph. If the length of this path is long enough (longer than
deg(v) − 1 edges, where deg(v) is the degree of the current
vertex v), then we suppose that this path together with the
edges (Ancestor[v], v) and (v, u) forms a loop. The reason
why we want the path to be longer than deg(v)−1 is that we
need to eliminate a priori degenerate loops consisting only of
the neighbours of the vertex v. We then run our verification
algorithm in order to check whether this loop is a valid cage. If
not, we continue the process. Namely, we mark v and append
all the edges connecting it to vertices from Marked.

• Compute-Dist-To-Surface(Vertex v, Mesh O) In this
function, we enumerate all the faces in the boundary ∂O
of O, and compute the distance between each face and
the vertex v. The distance to the surface ∂O is given by
the minimum of these distances.

• Sort-Vertices-by-Distance(Vertices V , Array D) This
function returns an array containing vertices in a decreas-
ing order of their distances to the surface.

• Vertices-at-Distance(Vertices V , Float d, Array D)
This functions selects vertices from V located at a
distance d to the boundary ∂O. The distances are stored
in the array D.

• Update-Filtration(Mesh O, Mesh O+
a , Array

NewV ert) This functions adds the vertices from
the array NewV ert to the filtration O+

a . It also adds the
corresponding edges, faces and tetrahedra from O: each
of them is added once all its vertices are in O+

a .
• ConComCentre(Vertices V , Array ConComp, Integer
u) Given an ID number ConComp[u] of a connected
component, this function returns a point belonging to it,
such that its distance to the boundary is the largest in this
component.

• Find-Path(Mesh O+
a , Integer uCentre, Integer

vCentre) This function computes a path between
uCentre and vCentre in O+

a using depth-first search.
• Next-Distance-To-Surface(Mesh O, Mesh O+

a , Array
D, Float a) This function returns distance to the object’s
boundary from the closest vertex in O−O+

a . If O = O+
a ,

it returns zero.

We have implemented the algorithms for double forks and
necks detection in Python, see Fig. 16 for the examples. We
utilized Python MayaVi module for the visualization of our
meshes. The meshes are taken from [1], [5] and [27]. The
computation time for the given objects on an Intel i7 CPU
laptop is presented in tables under the figure. In the case
of the screen and the table, we did not find any appropriate
neck features. Instead, for these objects we managed to find
double forks. The drawback of the skeletonization technique

we currently use [7] is that it requires meshes of a rather high
resolution. For this reason, we consider the screen and the
table models in a higher resolution when computing double
forks. In contrast, for the neck detection algorithm we use
simplified meshes with the lower number of vertices, which
speeds up the computation. Both necks and double forks
detection algorithms require some preprocessing: in the case of
necks we tetrahedralize the mesh, while in the case of double
forks we extract a skeleton from the object. In both cases, we
rely on already existing software: [28] for tetrahedralization
and [7] for skeleton extraction. Both of these techniques are
rather efficient, but potentially can be replaced by alternatives.

D. Synthesis of caging configurations for PR2
Since the purpose of this work is to introduce a new

representation of objects, suitable for caging, we do not focus
on motion planning and control here, however we now dis-
cuss two simple approaches to compute caging configurations
which we evaluate with a simulated PR2 robot. Consider a
PR2 manipulator, and let the vectors Vd and Vh indicated in
Fig. 17 define its orientation.

Our first approach is described in Alg. 4. Here, a precom-
puted approximate caging loop is fit to the PR2 manipulator(s)
as follows: Let la denote the approximate caging loop, con-
sisting of vertices {v1, v2, .., vn = v1} ⊂ R3 and the edges
between them, such that each vertex has exactly two adjacent
vertices. As a preparatory step, we ensure that the loop is
constructed in such a way that any triple {vi−1, vi, vi+1} ⊂ la
does not consist of three collinear points - this can be achieved
for example by means of an infinitesimal perturbation of the
vertices.

First, we compute a point C, which is a centre of mass of
all the vertices in the loop. Then we enumerate the vertices
in la, and for each v ∈ la, we take its immediate neighbours,
vi and vj . The triple {vi, v, vj} defines a plane πv . Consider
a projection πv(C) of C onto πv , and let V1 = πv(C) − v.
Let V2 ⊥ V1 be another vector in πv , see Fig. 18. We place
the manipulator at a distance from the loop and in such a
way that Vd is collinear to V1, and Vh is collinear to V2. We
then linearly approach the object by moving the robot hand
direction V1 towards the object.

Once collision occurs, we close the fingers until collision
and extract a new caging loop lh from the resulting hand con-
figuration, and run our verification algorithm. This approach
focuses on narrow parts corresponding to our initial caging
loop candidate la. Note that due to collisions the hand might
however not be able to reach a final caging configuration for
any of these approach directions along the loop - in future we
plan to focus on motion planning algorithms for this purpose.

A second simple caging synthesis algorithm is described in
Alg. 5. Here, we do not compute an initial caging loop la but
instead, we compute a simple graph Gc, suitable for caging,
and attempt to close the PR2’s fingers around it. In the case
of neck, we let Gc = p, where p is the path forming the neck
while in the case of a fork formed by the paths p and p′, we
let Gc = p ∩ p′.

For any e ∈ Gc, we perform the procedure described in
Alg. 6. Let M be a centre of mass of the segment e. Consider
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Fig. 16. In the first row, the original meshes are presented. In the second row, shape features are extracted. The first three columns depict objects for which
we extracted neck features, while the last two columns show objects with double fork features. We show corresponding filtrations for the first three columns in
the second row. The connected components depicted in blue merge to the larger components depicted in yellow. The paths, connecting the blue components,
are depicted in black. In the last two columns the objects are depicted together with the double forks in the second column. The third row displays resulting
caging loops.

model number of vert. in the tetr. mesh number of vert. on the surface necks detection loop(s) construction
bust 12862 7047 1524 ms 1203 ms
queen 5990 3589 682 ms 297 ms
bear 12939 7106 2472 ms 1458 ms
table 1661 1464 1901 ms –
screen 21917 11109 5317 ms –

model number of vert. in the skeleton number of vert. in the mesh double forks detection loop(s) construction
table 1148 10650 1776 ms 748 ms
screen 1584 16218 3799 ms 613 ms

Fig. 17. The vectors Vd and Vh define the direction of the hand. The
curve α together with its augmentation a forms an augmented caging loop,
representing the manipulator.

Fig. 18. The approximate caging loop la and the vectors V1 and V2.
The former is pointing towards the centre of the loop, while the latter is
perpendicular to it.

the plane µ orthogonal to e and passing through M . We sample
a random vector V1 in µ with respect to uniform distribution,
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Algorithm 4: Loop-Based-Caging-Generation(mesh O,
path p, path p′, loop la)

input : a triangle mesh O, representing the object;
two paths p and p′ in O, representing the double fork or neck;
an approximate caging loop la ⊂ ∂O
output: a caging configuration cf
C ← Centre-Of-Mass(la)
foreach v ∈ la do

vi, vj ← Adjacent-Vertices(v, la)
πv ← Plane(v, vi, vj )
πv(C)← Project-Onto-Plane(πv , C)
V1 ← (πv(C)− v)
V2 ← Compute-Orthogonal-Vector(πv , V1, v)
EEF-position← Collision-Free-EEF-Position (V1, V2, O)
c0 ← Solve-IK(EEF-position)
cf ← Move-Until-Collision(c0, V1, O)
cf ← Close-Gripper-Until-Collision()
l← Extract-Caging-Loop(cf )
if Verify-Caging-Loop(O, p, p′, l) then

return cf
end

end
return ∅

Algorithm 5: Region-Based-Caging-Generation(mesh O,
path p, path p′)

input : a triangle mesh O, representing the object ;
two paths p and p′ in O, representing the double fork or neck
output: a caging configuration cf
Gc ← ∅ // Gc is a 1D cageable subset of O
if p′ = ∅ then

// If p′ = ∅, then we deal with a neck formed by p
Gc ← p

end
else

// If p′ 6= ∅, then we deal with a double fork formed by (p, p′)
Gc ← p ∩ p′

end
foreach e ∈ p ∪ p′ do

w1, w2 ← Incident(e)
if (w1 ∈ p ∩ p′ and w2 /∈ p ∩ p′) or (w1 /∈ p ∩ p′ and
w2 ∈ p ∩ p′) then

Gc ← Gc ∪ {e}
end

end
foreach e ∈ Gc do

cf ← Cage-Around-Edge(O, p, p′, e)
if cf 6= ∅ then

return cf
end

end
return ∅

and compute another vector V2 in µ, orthogonal to V1. Then,
we place the robot’s hand into a collision free configuration
such that Vd is collinear to V1, Vh is collinear to V2, and the
end effector is located at a small distance from M . We then
move the hand towards M until collision and close the fingers.
Finally, we extract the caging loop representation from the
manipulator’s configuration, and run our verification algorithm
in order to check whether our configuration is a cage. If the
verification fails, we sample another random vector V1 and
repeat the procedure. If we are not able to construct a caging
configuration for the edge e after repeating this procedure 50
times, we consider the next edge from Gc.

If the object is big enough, we can also use two hands of the
PR2 as caging tools. In this case, each of the hands approaches

Algorithm 6: Cage-Around-Edge(mesh O, path p, path p′,
edge e)

input : a triangle mesh O, representing the object ;
two paths p and p′ in O, representing the double fork or neck ;
an edge e, around which the object should be caged
output: a caging configuration cf
M ← Middle-of-Segment(e)
i← 0
while i < 50 do

i← i+ 1
V1 ← Generate-Random-Orthogonal-Vector(~e, M )
V2 ← ~e× V1
EEF-position← Collision-Free-EEF-Position (V1, V2, O)
c0 ← Solve-IK(EEF-position)
cf ← Move-Until-Collision(c0, V1, O)
cf ← Close-Gripper-Until-Collision()
l← Extract-Caging-Loop(cf )
if Verify-Caging-Loop(O, p, p′, l) then

return cf
end

end
return ∅

the object, as described above. The only restriction we impose
is that the angle between the vectors, defining the direction

of each hand, must be between
3π

4
and π. This is to ensure

that the hands are placed roughly in opposition to each other.
Since now we are dealing with two independent manipulators,
a single augmented caging loop runs through both hands, as
described in the previous section. We extract the caging loop
representation and run the verification algorithm.

We have implemented our cage generation algorithms using
OpenRave. They are simple, as in this paper we only want to
illustrate how one can cage an object given its shape features
and precomputed examples of caging loops. Here we provide
some illustrations of the successful output, Fig. 19. A study on
how to choose a caging generation algorithm (the loop-based
or the region-based) and how many grippers to use for each
particular object is beyond the scope of this paper. We plan
to get back to this problem and incorporate it with motion
planning in the near future. When the position of the robot
base and the object are chosen properly, and objects features
are computed, it takes 10-15 seconds at the average to compute
and verify a caging configuration. In the case of a bear mesh
we have generated the cage based on a previously computed
approximate caging loop (see Fig. 16). For the shown monitor
mesh, this approach however failed due to collisions of the
robot hand as the upper part of the monitor prevents the
robot hand from approaching it. Our second approach however
returns a cage utilizing both of the PR2’s hands. In the case
of a wine glass, we computed a neck and both of our caging
methods described above succeeded. The figure displays the
caging configuration of the PR2 hand computed with the latter
algorithm based on Gc.

E. Verification of a given caging configuration

Let us now discuss how to verify whether a configuration
constructed by our algorithm is a valid cage. Theorems 1, 2
provide us with a constructive way to perform such a verifi-
cation. Indeed, assume that we are given an object O ⊂ R3,
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Fig. 19. In the first case, the caging configuration was generated based on the loop around the neck of the bear. At the second figure, the cage was generated
based on a neck representation of the object (second approach). In the third case, we did not manage to fit the precomputed approximate caging loop due to
the obstacle presence. The caging configuration was generated based on the double fork representation (second approach).

Algorithm 7: Verify-Caging-Loop(mesh O, path p, path
p′, loop l)

input : a tetrahedral mesh O, representing the object;
paths p, p′ ∈ R3;
a loop l, representing a rigid manipulator

output: ‘l is a valid cage’ – True or Undecided

ε← Get-Loop-Augmentation(l)
Conv ← Convex-Hull(l)
paug ← Construct-Augmentation(p, Conv)
if no augmentation found then

return Undecided
end
if p′ = ∅ then

// If p′ = ∅, then we deal with a neck formed by p
if ε ≤ minx∈p(ds(x)) then

if lk(p, paug) 6= 0 then
return True

end
else

return Undecided
end

end
else

return Undecided
end

end
else

// If p′ 6= ∅, then we deal with a double fork formed by (p, p′)
p′aug ← Construct-Augmentation(p′, Conv)
if no augmentation found then

return Undecided
end
if ε ≤ minx∈(p∪p′)(ds(x)) then

if lk(p, paug) 6= 0 and lk(p′, p′aug) 6= 0 then
return True

end
else

return Undecided
end

end
else

return Undecided
end

end

and a piecewise-linear closed curve l, representing the caging
tool. Our goal is to check whether l bounds the mobility of
O.

As input to our verification algorithm, we consider l,
together with some paths p, p′ ⊂ O (allowing one of them

to be empty in case of a neck feature). Alg.7 then determines
if p is linkable to l via an S(l)−avoiding augmentation, where
we consider S(l) = Conv(l) To do so, we compute S(l)
and an augmentation paug (and similarly p′aug , in the case
of a double fork), connecting the endpoints of p (and p′)
through the complement of S(l) by means of Construct-
Augmentation(Path f , Set Conv(l)). We then compute the
linking number lk(p, paug) and test if ε ≤ minx∈p(ds(x))
(neck case) or ε ≤ minx∈(p∪p′)(ds(x)) (double fork case) to
apply Theorems 2 and 1 respectively.

In detail, Construct-Augmentation(Path f , Set Conv(l))
constructs a path f ′, connecting the endpoints u, v of f via
the complement of Conv(l) and returns failure if u or v
lies in Conv(l). We linearly rescale Conv(l) by a factor of
2 and call the resulting set M , so that Conv(l) is strictly
contained in M . We then determine closest vertices u′ =
arg minx∈∂M (dist(x, u)) and v′ = arg minx∈∂M (dist(x, v))
and return an edge path p from u′ to v′ through the edges
of ∂M using breadth-first search on the graph of edges
of ∂M . The function then returns the concatenated path
f ′ = (u, u′) ∪ p ∪ (v′, v).

VII. CONCLUSIONS AND FUTURE WORK

We proposed a methodology for the synthesis and provably
correct verification of caging grasps on a class of 3D objects
that exhibit geometric features which we call necks and double
forks. We utilized the classical notion of the linking number
from algebraic topology as the basis for proving the sufficient
conditions for caging grasps and have proposed algorithms to
compute necks, double forks as well as resulting caging loops
and caging configurations for a PR2 manipulator. In future
work, we are planning to integrate motion planning and to
provide an extensive experimental evaluation of the technique
on natural objects and different caging tools. Apart from this,
we plan to try different skeletonization techniques to extract
double forks. In particular, we want to try approaches allowing
to extract a skeleton from an imperfect point cloud. We are
also planning to investigate further classes of features suitable
for caging 3D objects.
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APPENDIX

Here we present the proof of the supporting claim used in
Section V.

Lemma 1. Caging under rigid transformations (Def. 10)
is an example of caging under D-deformations (Def. 11),
where D-deformations is a class of isotopies representing rigid
transformations.

Proof. Any path g : I → SE(3) such that g(t).int(O) ∩
M = ∅ for all t ∈ I starting at the identity element e = g(0)
corresponds exactly to an isotopy H : O × I → R3 defined
by H(x, t) = g(t).x and preserving distances between points:
‖x− x′‖ = ‖H(x, t)−H(x′, t)‖ for all x, x′ ∈ O and t ∈ I .
Furthermore, H(x, 0) = e.x = x = ι(x) for all x ∈ O.
Let us denote the class of isotopies generated by such paths
g : I → SE(3) by D. Since SE(3) = R3×SO(3), and SO(3)
is compact, the identity element e ∈ CO = {g ∈ SE(3) :
M ∩g(int(O)) = ∅} lies in a bounded path-component of CO

if and only if the distance between the initial and any other
reachable position of the object is bounded: dist(O, g(t).O) ≤
C for all t ∈ I , g : I → SE(3) and for some fixed C ≥ 0.
Since M does not change its position in the space, the latter
implies that for any reachable position of the object its distance
to M is bounded as well: dist(M, g(t).O) ≤ C ′ for all t ∈ I
and for some real constant C ′ ≥ 0.

The latter implies that for any D-isotopy H and for each
t ∈ I we have

inf
x1∈M,x2∈H(O,t)

‖x1 − x2‖ ≤ C ′

for some real constant C ′ ≥ 0.
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