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Abstract This work develops a novel framework which can automatically detect, pa-
rameterize and interpolate periodic motion patterns obtained from a motion capture
sequence. Using our framework, periodic motions such as walking and running gaits
or any motion sequence with periodic structure such as cleaning, dancing etc. can
be detected automatically and without manual marking of the period start and end
points. Our approach constructs an intrinsic parameterization of the motion and is
computationally fast. Using this parameterization, we are able generate prototypical
periodic motions. Additionally, we are able to interpolate between various motions,
yielding a rich class of ‘mixed’ periodic actions. Our approach is based on ideas
from applied algebraic topology. In particular, we apply a novel persistent cohomol-
ogy based method for the first time in a graphics application which enables us to re-
cover circular coordinates of motions. We also develop a suitable notion of homotopy
which can be used to interpolate between periodic motion patterns. Our framework
is directly applicable to the construction of walk cycles for animating character mo-
tions with motion graphs or state machine driven animation engines and processed
our examples in approximately one minute or at a rate of about 10 frames per second.
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1 Introduction

Periodic motion patterns are abundant both in animal and human behaviour. The hu-
man gait in particular is a classical example of a periodic motion which has been
studied intensely in recent decades. Motion capture databases such as [1] provide a
rich source of motion patterns which can be used to animate human characters in
movies and computer games. For example, [2] use this type of data to construct a
controller for a simulated human character, allowing the character to walk based on
recorded motion capture sequences.

Despite the recent availability of motion capture equipment, it remains impossible
to pre-record every variation of a motion for these applications. One approach to
generate new motions is hence to interpolate between recorded movements.

For non-periodic motions, various interpolation schemes have been developed
to adapt the motion to the physical constraints posed by the environment [3], or to
vary the perceived ‘style’ of the motion. In robotics, pre-recorded human motions
have also successfully been used in a ‘learning from demonstration’ setting to trans-
fer motion patterns from a human demonstrator to a robotic platform [4]. Previous
work on periodic motion generates prototypical motions from motion capture data
by determining period start and end frames either manually or by means of a low-
dimensional search procedure. This currently involves a fair amount of parameter
tuning and manual intervention. An example of this approach is the recently released
Mecanim toolbox in Unity 4 [5].

We propose a framework for dealing with periodic motions with enables auto-
matic detection, parameterization and interpolation of periodic motion patterns. Our
contributions1 can be summarized as follows:

a) Detection: Our framework detects periodic motion patterns using persistent coho-
mology. Furthermore, our framework can be applied even when several different
periodic motions are present in the input.

b) Parameterization: We compute a circle-valued coordinate map parameterizing
high dimensional motion data and allowing us to determine an intrinsic descrip-
tion of periodic motions.

c) Interpolation: Our approach is capable of continuously interpolating between var-
ious periodic motions while maintaining periodicity.

d) Computational efficiency: Our approach is computationally efficient since no dif-
ficult optimization procedures are required. This enables us to process motions at
a speed of 11 frames per second on a current laptop.

Our work relies on the efficient computation of persistent cohomology barcodes
and representative cocycles to produce quantifiably reliable periodic features for de-
tection, parameterization, and interpolation. By using a topological approach, we are
able to find natural descriptions of motion sequences while working directly in a
high-dimensional configuration space. This provides several advantages over more
geometric techniques. In particular, we require fewer parameters to achieve similar
results and gain increased robustness towards the choice of metric.

1 Our contributions are also outlined in a video summary, accessible at http://www.youtube.
com/watch?v=NGQ-M2gdibQ.

http://www.youtube.com/watch?v=NGQ-M2gdibQ
http://www.youtube.com/watch?v=NGQ-M2gdibQ
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2 Related Work

Gait analysis and motion generation have received extensive attention in a number
of different fields including graphics, computer vision, robotics and biomedical re-
search. Since the amount of previous work is too large to give a complete account of
here, we shall focus primarily on related work from graphics and, to a lesser extent,
from computer vision and robotics. In this paper, we do not examine the problem of
motion capture – rather, we assume as input articulated skeletal structures with cor-
responding joint angles that may have come from animation, captured video or other
sensing equipment. Previous work on the characterization and generation of gaits fall
into two broad categories: optimization-based and motion graph based – as well as
numerous hybrids.

The optimization-based approaches use variational methods based on physical
constraints to perform space-time optimization [6,7,8,9]. Due to the non-convexity
of the optimization problem, these methods are used mostly in order to generate small
alterations of existing motions. An alternate class of methods is based on motion
graphs [10]. These methods generally assume that a relatively dense sample of exam-
ple motions is available and find paths through these samples to generate new types
of motions [11,12,13]. The problem of a large search space of possible paths remains
and it is again difficult to determine a good path by optimization. Most of the meth-
ods on interpolation concentrate on a blending of given motions [14,15]. This often
results in complex procedures involving time-warping and sequence alignment. More
recently, there has been work towards interpolating and clustering motions based on
more general techniques [16,17].

There has been significant work on characterizing cyclic behaviour in gaits in
the robotics community from the view of control theory. For animation, there has
been less work [18,19]. In particular, [19] applies a conceptually similar approach
to the work presented here using the inherent circular nature of periodic motions for
characterization. However, their method is also fundamentally different since it uses
fitting techniques [20] rather than persistent cohomology.

A topological analysis has been applied to gaits before, in [21] and [22]. The
work [21] applies a topological signature based on a persistence diagram to the prob-
lem of identifying a person using gait data. While we also use the persistence diagram
in our work, the approach we develop is fundamentally different since it extracts more
detailed information: we use a topological parameterization of the motion, rather than
an abstract signature such as the persistence diagram. In the latter work, persistent ho-
mology was used to separate gaits into steps, i.e. periods of time between which the
feet establish contact with the ground. Persistent homology was used to search for
stable choices of thresholds for certain constraints. We use a similar step, however,
we obtain a more complete parameterization of the gaits (as well as being agnostic to
the particular sensors used for capturing the gaits).
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Fig. 1 The left figure displays the skele-
ton used in our experiments. The mid-
dle and right figure show PCA projec-
tions for the motions 69:01: WALK FOR-
WARD (middle) and for 143:05: HOP-
PING (right). While the walking motion
appears close to periodic in the PCA pro-
jection, the hopping motion represents a
more challenging real world example.

3 Background

3.1 Representing periodic motion

Fundamentally, a motion of an object can be thought of as a trajectory in the object’s
configuration space. For humanoid figures, we model the configuration space C as
in [1] by a ‘root joint’ which is placed at the hip in the skeleton – with translations
along x, y, and z and Euler angle rotations around x, y and z; together with 56
additional joint angles of the various attached joints. Throughout the paper, we use
the skeleton in Figure 1. Motions are then given as a sequence of points in C, forming
a piecewise linear curve. Even relatively simple motions can form very geometrically
complex curves γ : [0, 1] → C in this space. Periodic motions, including the special
case of an idealized perfectly periodic gait, determine a closed curve through the
configuration space which – from a topological point of view – can be considered as
a circle if it does not self-intersect. This is formalized in a result in [23] which implies
that any periodic motion is a closed simple curve – i.e. without self-intersections
and topologically a circle – if it is embedded in sufficiently high dimensions. In the
remainder of this paper, we will refer to motions by their designation in the CMU-
MOCAP database [1], a pair of numbers denoting (Actor:Motion).

3.2 Topological and geometrical background

At the heart of our method are techniques from applied topology and in particular
persistent cohomology. In this section, we review the relevant definitions and con-
cepts. Wherever possible, we will point readers to additional references with a more
thorough discussion of the background material. The classical algebraic topology ref-
erence [24] goes into detail about cohomology and [25] is an excellent reference for
applied topology and persistence. Let K be a simplicial complex – a collection of
simplices such that for each simplex σ ∈ K, all the faces of σ are also in K and the
intersection of any two simplices is either empty or a common face. A filtration is a
sequence of increasing subcomplexes of K. Readers familiar with persistent homol-
ogy will recognize this as the primary object of study. Persistence theory tells us that
the p-th homology of a filtration has a decomposition into a p-th barcode or equiva-
lently a p-th persistence diagram. For each p, we have a collection of bars (xi, yi),
which intuitively represent the birth and death times of homological features. This
has been widely used in applications and has been the object of independent study.
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Rather that persistent homology, we use the dual construction - persistent coho-
mology. Before giving the formal definition, we note that the p-th persistent coho-
mology also studies a filtration of spaces and produces a p-th barcode/persistence
diagram. In fact, in the case of simplicial complexes, it will produce an identical
barcode.

Here, we highlight the main differences between homology and cohomology. Re-
call that, to compute homology, we study the boundary operator, ∂k. For a simplex
σ = [v0, . . . , vk] with vertices v0, . . . , vk, the boundary operator defined by

∂k(σ) =

k∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vk],

where v̂i indicates that vi is omitted. We consider the coefficient field Z/p for some
prime p. The boundary operator is then extended to a linear map ∂k : Ck → Ck−1

between the Z/p-vector spaces Ck and Ck−1 of formal linear combinations of k-
simplices and k−1-simplices in the simplicial complexK respectively. The definition
of k-dimensional homology is then given by Hk = Ker ∂k/ Img ∂k+1. Cohomology
is defined analogously, but rather than using the boundary operator, it applies the dual
coboundary operator δk.

The coboundary operator δk : Hom(Ck,Z/p) → Hom(Ck+1,Z/p) is abstractly
defined by δk(φ)(c) = φ(∂k+1(c)), for φ ∈ Hom(Ck,Z/p) and c ∈ Ck+1, and
where Hom(Ck,Z/p) denotes the dual vector space of Z/p-linear maps from Ck to
Z/p. However, identifying Hom(Ck,Z/p) and Ck, we can think of δk as mapping a
k-simplex to a linear combination of its cofaces. So just as the boundary of an edge is
a linear combination of the two end vertices, its coboundary is a linear combination
of incident triangles. Likewise, the coboundary of a vertex is a linear combination of
all its incident edges. Over field coefficients, the coboundary operator can then be de-
fined as the transpose of the boundary operator: δk = ∂Tk+1. Persistent cohomology is
defined analogously to persistent homology, but in terms of the coboundary operator
– the definition of k-dimensional cohomology is Hk = Ker δk/ Img δk−1.

We now recall some topological constructions which we require before explaining
why we work with cohomology rather than homology for our application. Our input
is a motion which is represented as a trajectory in a configuration space. In practice,
the motion is described by a sequence of poses where each pose corresponds to a
point in the configuration space, which leads to a piecewise linear (PL) curve. To
construct a simplicial complex, we compute the Vietoris-Rips filtration on the set of
points, i.e. input poses.

Given a set of points and a metric, the Vietoris-Rips complex with filtration pa-
rameter α constructs the graph which connects points (x, y) with an edge if and only
if d(x, y) ≤ α. Higher dimensional simplices are inserted for all cliques in the graph
(e.g. triangles for all 3-cliques, tetrahedra for all 4-cliques, etc.). This filtration is
obtained by increasing α from 0 to +∞, although in practice we do not construct
the full filtration. This construction comes with provable approximation guarantees
relating it to the topological space defined by the union of balls of radius α around
the data-points and is relatively straightforward to compute even in high dimensional
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spaces (such as in the case of human motion capture data). There are a number of po-
tential choices for metrics. We primarily use the Euclidean metric between points or a
modified Euclidean metric where points in adjacent time steps are first connected (i.e.
adjacent points are effectively at distance 0). This modified metric then incorporates
the temporal information in the sampled motion.

Details on the algorithm for persistent cohomology and the construction we use
can be found in [26]. Even though the resulting barcodes are equal, homology and
cohomology have fundamentally different representatives – homology is represented
by structures inside the shape we measure, while cohomology is represented by maps
from the shape we measure. These maps are of fundamental importance since they
will be thought of as coordinate functions in our application. Finally, this requires
that the choice of coefficient field is different from Z/2. For this application, we use
Z/p for some small prime p > 11.

4 Processing Pipeline

We process motions using the pipeline outlined in Figure 2. The input to our ap-
proach is given by a sequence of points describing a piecewise linear (PL) motion
trajectory in C and our approach can be split into three main stages: preprocessing,
parameterization and output.

To illustrate examples, we use a 2-dimensional principal component analysis
(PCA) as in Figure 1. This is for visualization and illustration purposes only: un-
less explicitly stated otherwise, we carry out all computation in a high-dimensional
space with 62 dimensions2.

4.1 Preprocessing

A typical motion, for example a walk, will have a spiral-like trajectory. Most of the
coordinates will be almost periodic, reflecting the periodic nature of the walk, while
the translation coordinates describing the absolute hip position destroy this period-
icity. One approach would be to remove the translation component, collapsing the
spiral onto a circle. Here, we will instead replace the position and orientation coordi-
nates with first order differences (approximating the time derivative) allowing us to
more closely preserve the periodic structure in our experiments.

4.2 Parameterization

The pipeline is based on the cohomology tools developed by [26]. For a set of vec-
tors X ⊂ C describing measurement points representing a piecewise linear close to
periodic trajectory, we can compute a coordinatization map X → S1, assigning to
each data-point in X a coordinate on the circle S1. The right choice of embedding
of the motion data points X (for example using a delay embedding) will give mostly

2 Recall that our human motion input data lies in a 62 dimensional configuration space C.
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Fig. 2 We display our topological processing pipeline for periodic motions: The input motion capture data
(a) with a near-periodic trajectory (b) in a high-dimensional configuration space is visualized (in 2D) in
the first two steps. We then construct a Vietoris-Rips filtration (c) and compute its persistent cohomology
(d). We then produce circle-valued coordinate functions (e) and use these functions for several applications
including describing the motion itself (f) and its periodicity, as well as to automatically align motions for
blending or interpolation (g).

periodic motions the topological type of a circle [23]. A coordinatization map from
the cohomology computation above will then capture the geometry and topology of
the resulting trajectory.

Given an input motion, we treat the segment start and end-points of the piecewise-
linear trajectory as a point cloud X and discard the temporal trajectory information.
Next, we compute the Vietoris-Rips complex filtration Kα = Vα(X) up to a max-
imal threshold and determine the first barcode, corresponding to the first persistent
(co-)homology groups as in [26]. Each bar corresponds to a coclass representing a
possible choice of circle-valued coordinate induced by the data as well as an associ-
ated filtration interval. As in persistent homology, the larger bars correspond to more
prominent features which are stable under noise.

If we expect to see only one periodic motion, we identify only the most persis-
tent coclass. Likewise, if we expect to see k motions, we would choose the k most
persistent coclasses in the barcode. We found that, for our motion capture data, the
motions were furthermore well-sampled enough so that adjacent points in the time
series/trajectory were also always connected in the Vietoris-Rips filtration at the fil-
tration values we determined by investigating the barcode in the above manner.

In practice, we often see a gap between the persistent classes corresponding to
periodic motions and other classes. Currently, we choose the number of classes we
select manually, however, we believe that ultimately this could be chosen automati-
cally.

For simplicity, we assume here that there exists a single periodic motion in each
input trajectory. Once the desired coclass is determined, a sufficiently large filtration
parameter is chosen such that the coclass has been born but has not died yet. We find
that better results are obtained with with relatively high filtration values within this
range.

To compute a parameterization of the circle in the form of circular coordinates
φ : X → S1, we must choose a persistent cohomology class [z], represented by a 1-
cocycle z, and a scale parameter α such that the coclass is not trivial inH1(Kα). The
coclass is then lifted to R coefficients [26] and any other representative of the same
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coclass is then some z+δw for w : X→ R. As explained by [26], minimizing the L2

norm of the representative produces a smoothest possible coclass and simultaneously
the coordinate function as w (mod 1.0). The optimization problem is given as

argmin
w

‖z + δw‖2.

The result of this computation is a coordinate value in the interval [0, 1) for each
point in the dataset X. The spacing of these coordinate values, however, is induced
by the geometry of the point cloud, not the original frame rate of the input time
series. It is worth noting the structure of the coordinate value histogram, as we show
in Figure 3: the circular coordinate picks out a geometric description of the closed
curve – but a bipedal gait does not flow with even speed throughout: the pose is
largely unchanged for parts of the step, and changes rapidly for other parts of the
motion. This is reflected in the bimodal distribution of the period – resting on the left
foot and resting on the right foot correspond to one peak each, while the transition
between the rest states is more hurried, and corresponds to the two valleys.

4.3 High-quality coordinate

For motion samples that contain a single period, our work with cohomology and
circle-valued coordinates has demonstrated that the best results in terms of a smooth
and even coordinatization are achieved when the topological type measured by the
persistence diagrams is that of a circle. This has two concrete consequences. On the
one hand, the computational parameter for the persistent cohomology computation
has to be chosen large enough to find a circle-type signature: one single connected
component (as measured by 0-persistence) and one single tunnel/loop (as measured
by 1-persistence). On the other hand, the embedding of the input data we work with
must actually display this sort of signature. In particular, the trajectory should not
have self-intersections (returning to a previous pose before a full period is done), and
each repetition of the motion should be close to the previous repetition (for instance
moving the head from one side to another will decrease or destroy the quality of the
topological signal).

For cases when several periodic motions are detected in the same motion sam-
ple, we found that the best coordinates were obtained near the end of their respective
lifetimes; a high filtration appeared to improve the coordinate quality, and the persis-
tence lifetime of a coordinate helped to judge its quality. With this map in hand we
showcase the following applications:

1. Construction of a “typical” parametrized periodic motion from the input data.
2. Interpolation and transitioning between periodic motions.
3. Determination of different types of periodic sub-behaviour from an input motion.

4.4 Producing a typical trajectory

We now describe how to generate typical trajectories from the circular parametriza-
tion φ of the point cloud X describing the motion data. For the example we introduced
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in Figure 1, the corresponding coordinate φ is described by the color mapping in Fig-
ure 3. To produce a typical periodic trajectory, we proceed as follows:
1. Since the circular coordinates of the points for each frame of a motion are not

necessarily uniformly distributed, we build an approximation of the circular co-
ordinate density using a Gaussian Mixture Model and sample N new points from
the reconstructed density. By increasing N , the resolution of the synthesized mo-
tion can be increased as desired. An example of such a probability distribution
and its fit is provided in Figure 3.

2. For each sampled circular coordinate θ ∈ S1 in order, determine the k points
x1, . . . , xk ∈ C whose circular coordinates φ(x1), . . . , φ(xk) ∈ S1 form k-
nearest neighbours of θ. The parameter k should be higher than the number of
periods in the dataset, but not high enough that the points xi stretch out too much
along the trajectory. In Figure 4, we illustrate how picking the 10 nearest neigh-
bours of a sampled coordinate value provided a small cluster of points in C.

3. For the points x1, . . . , xk ∈ C, we compute the centroid c ∈ C This centroid then
yields the next point in the periodic trajectory. In Figure 4, we illustrate this step
and depict the resulting centroid curve acquired by applying this approach for 500
sampled θ values.
The centroid here can be replaced by other means of averaging points – Gaussian

weighting produces similar results. We estimate the probability distribution on the
circle by using Gaussian mixture models, but other methods can also be considered.
Finally, the curve described by the computed centroids is resampled to correspond to
the frame rate of the original data before the results are saved for further use.

The process is somewhat sensitive to the quality of the coordinate function used.
Looking at Figure 1, we observe that the dataset in the middle is reasonably simple
to handle – the several repetitions of the motion are close enough so that the topolog-
ical analysis picks out a thick tube from the time series. The right hand plot however
indicates a potential problem: averaging points across the two separated parts of tra-
jectories like these tended to produce jittery output. Taking k nearest neighbours of
a coordinate value produces points on both curve parts, and the two curves pull the
constructed averaged periodic trajectory back and forth.

4.5 Interpolation

To interpolate between a set of input motions X1, . . . ,Xn, which are approximately
periodic, we first extract a typical continuous parametrization for each of them us-
ing the procedure just outlined. This results in piecewise linear periodic trajecto-
ries xi : S1 → C with coordinates on the circle S1 given by [0, 1), and for each
i ∈ {1, . . . , n}. We furthermore assume that each xi has been resampled and dis-
cretized using the same number of piecewise linear segments. To interpolate be-
tween the input motions, we consider convex combinations. That is, given weights
wi ∈ R≥0 such that

∑n
i=1 wi = 1, we define the interpolated periodic motion

y : S1 → C by

y(θ) =

n∑
i=1

wixi(θ).
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Fig. 3 The left figure dis-
plays a circular coordinate
for the motion 143:28. On
the right, we show a Gaus-
sian mixture model fitted to
three copies of the coordinate
values on [−1, 0], [0, 1] and
[1, 2]. The distribution is un-
even, reflecting the fast and
slow segments of the motion.

We note that this may generate impossible motions with self-intersecting skeleta. In
the examples we used, this did not occur, but it could in more complicated motions
such as dancing. Self-intersections could however be detected using forward kinemat-
ics. In future work, we will investigate how to locally modify the resulting trajectories
into feasible non-intersecting motions.

Note that the interpolation scheme can be applied regardless of the number of in-
put motions. Furthermore, to generate a transition between two motions, we vary the
weighting parameter from 0 to 1, generating a homotopy between the two topological
circles parametrizing each of the motions. At the end of this process, our approach
hence produce as output a number of loopable parametrized motions from the input
data which can be interpolated to obtain novel periodic behaviours.

4.6 Picking out different motions.

When computing the barcode for the first persistent cohomology groups, zero or more
large bars may exist. We distinguish two cases: when a single interval of dominant
length exists and when there are several such long intervals at a given filtration range.

In the simple case, when there is a clear single periodic motion in the data, we
can expect to see barcode diagrams like in Figure 4 with a single long bar. For this
case, the methods described above worked well in our experimental evaluation and
we were able to extract topological information from the motion capture data and
generate typical periodic trajectories. Most of the motion sequences we have analyzed
in Figure 7 are of this type. For some complex motions in [1], the raw motion capture
file however contains more than one motion type in sequence.

These complex motion sequences can be recognized by the behaviour of the bar-
code: a sequence of disjoint periodic motions in a single motion capture tended to
produce a barcode as in Figure 8 or as in Figure 9, where there are several long in-
tervals in the barcode. Each of these intervals corresponds to a different circle-valued
coordinate: a different way to map the entire sequence to a circle, emphasizing some
part of the motion sequence. As can be seen in Figure 8, the coordinates in a sequence
of periodic motions create signatures that can be used to identify sufficiently similar
repetitions of a motion. By restricting the analysis to the excitation regions – con-
nected parts of the timeseries exhibiting most variation in circular coordinate – we
are able to extract a periodic portion of the motion for further analysis.
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Fig. 4 The top left figure displays the first barcode diagram illustrating available circle-valued coordinate
candidates for the motion 143:28. For any parameter value over 20 and up to the maximal parameter of 50,
a single bar remains. In the top right figure, we consider the 62 dimensional coordinates for the 10 points
nearest in circular coordinate to θ = 0.1214 ∈ [0, 1). We display the means of these 10 points in red and
also show upper/lower quartiles (blue box) as well as the full range of the coordinates (as black bars). The
bottom left plot displays the neighbours in the θ domain on the circle, while the middle plot shows a PCA
projection of the data points with the nearest points (black) and the centroid (red). The bottom right figure
displays the PCA projection of the extracted typical trajectory as a solid line.

5 Implementation

In this section, we describe additional details of the implementation of our approach.

5.1 PCA Projections

A problem that can make the recovery of a clear topological signal challenging in a
high dimensional space such as the 62 dimensional human pose configuration space
is the presence of many changes in individual joint angles between periods and trajec-
tory parts. The actor may for example have straightened her spine while walking, or
turned her head somewhat. In these cases, the topological signal might appear clearer
when the dimensionality of the data is first reduced using a PCA projection. In the
high-dimensional space, on the other hand, the filtration parameter required to merge
all the individual periodic trajectory parts may be too large and destroy the periodic
structure.

Consider, for instance, the motion 142:15, whose 2 dimensional PCA projection
is depicted in Figure 5. The motion has four iterations of the same pattern, but one of
the four is different in some aspects, producing the curve that, in the full-dimensional
configuration space, is highly separated from the remaining iterations (see the lower
left part of the leftmost picture in Figure 5). When extracting a prototypical periodic
trajectory from this data, the separated curve parts pull the solution trajectory towards
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Fig. 5 We display a projection of Motion 142:15. The quality of the circular coordinate for this point-
cloud was improved by a 3D PCA projection before the typical periodic trajectory was extracted. One
iteration of the trajectory is situated somewhat apart from the others and gives rise to a separate coclass up
to high values of the filtration parameter. Projecting the point-cloud to 3 dimensions reduces the distances
between data points and improves the topological signal. The middle figure displays the resulting circular
coordinate values of a 2D projection of the data in color, while the figure on the right shows a projection
of the resulting constructed periodic motion as a solid line.

this outlier. The separated curve segment furthermore produces a coordinate function
of its own and decreases the quality of the other topological coordinate. By projecting
the trajectory data instead onto 3 dimensions using PCA coordinates, the distance
between this stray curve and the rest of the data decreases. It is then possible to
produce the topological coordinate we can see (in color) in the 2D projection in the
middle plot and the resulting typical trajectory whose 2D projection is shown in the
right plot.

Since the PCA projection is linear and therefore continuous, nearby points re-
main close in the projection. The projection may however map distant points close
to each other. Some care must hence be taken to ensure that self-intersections are
not introduced, which in practice meant not to reduce the dimension too much. The
2-dimensional illustration in Figure 5, for instance, has several self-intersections of
the trajectory, but a projection to 3 dimensions turned out to be sufficient to maintain
the circular structure of this trajectory. Projecting to a very low dimensional space
may however result in the underlying curve having a small topological feature size.
Therefore, care has to be taken when adjusting the PCA dimension.

5.2 Extracting and parameterizing periodic trajectories

Since the parameterization of our topological circular coordinates is not directly re-
lated to the speed of the motion, a direct parameterization in terms of these would
introduce an arbitrary time-warp and lead to an unnatural looking motion. Instead,
we consider the density of the circular coordinate values of the motion capture tra-
jectory and sample new coordinate points from this density. To use a simple and
standard Gaussian mixture density estimation, we replicate three copies of the co-
ordinate values – the two extra copies are translated by ±1, producing a density as
depicted in Figure 3. Fitting a density estimator to these three periods, we arrive at
a density whose middle part is close to periodic. The sampling only uses the central
region [0, 1) to produce points. We sample at a much higher rate than the original
input motion and downsample at the end to maintain the speed of the motion. More
sophisticated periodic density estimations could have been employed, but we found
that the Gaussian mixture estimation approach provided results of sufficient quality.
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Fig. 6 We display motion 143:28. On the left, we show the 62 original and induced coordinates for 3
periods. On the right, we display the jerk of the induced and original coordinates for 1 period.

Once the circular coordinate samples S ⊂ [0, 1) are produced, we assign a pose
to each sample θ ∈ S by finding find the k points in the original input with the closest
circular coordinate value and take the centroid c of these poses. The centroid pose c is
then assigned to the coordinate value θ. In the top right part of Figure 4, we consider
an example of k-nearest neighbours for a given circular coordinate value. We see
that the neighbours have tightly distributed coordinate values in each dimension. For
coordinates that take on values in [0, 360] (degrees), very few have a total spread of
more than 5 degrees.

6 Experimental evaluation

We tested our proposed method on motion captures from [1]. We selected 24 motion
capture sequences from the database and applied our entire processing pipeline. Our
selections, computational settings, and results are shown in Figure 7. For 8 of the
motions, results were improved by using PCA projections. Our experiments used
Dionysus from [27] for the cohomology computations and SciPy [28] for pre- and
post-processing.

6.1 Parameter estimation evaluation

Even though our approach does not include many parameters, there are still some
choices to be made: the filtration parameter for the Vietoris-Rips complex, methods
for probability density estimations, etc. which we shall discuss now. For the sam-
ple selections, we picked 2–5 repetitions of a motion, and 90–900 frames, with most
motions spanning 200–500 frames. We used an initial Vietoris-Rips filtration param-
eter of 50.00, increasing or lowering it as indicated by the persistence diagram. For
example, if multiple connected components persisted, the Vietoris-Rips filtration pa-
rameter had to be increased – see HOPPING (143:05) in Figure 7. Alternatively, if the
most persistent cohomology class died before 50, a smaller value was chosen - e.g.
WALK (142:15) in Figure 7. A complete list of our choices can be found in Figure 7.

To estimate the probability density of coordinate values on the circle, we used
a Gaussian mixture model from scikit-learn [29], with 30 components running 100
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Capture file Capture frames PCA Cohomology Post
Motion type ID Start Stop dim’s ε born ε end # simplices Total (s) proc. (s) fps
playground 01 : 09 0 4238 – 8.98 50.00 1 946 901 64.21 – –
swordplay 02 : 07 0 2247 – 23.04 50.00 8 285 462 108.86 – –

dance steps 05 : 13 0 1091 – 40.92 50.00 446 979 7.04 – –
punching 13 : 29 0 1200 – 19.36 30.00 817 463 11.04 – –

walk forward 69 : 01 200 450 – 9.95 50.00 290 566 7.07 18.71 9.70
walk sideways 69 : 42 100 250 – 16.77 28.00 30 292 0.53 12.09 11.89

careful run 77 : 10 225 325 – 37.34 59.90 6 485 0.11 12.07 8.21
regular walk 104 : 19 225 550 – 8.18 50.00 326 580 7.09 18.90 12.50

breast stroke swim 125 : 01 1300 1900 – 14.78 100.00 1 606 061 43.77 50.84 6.34
butterfly stroke swim 125 : 05 1500 2200 – 45.67 72.00 1 180 629 30.61 44.70 9.29

arrogant walk 142 : 04 250 650 3 8.06 40.00 374 216 2.96 24.14 14.76
depressed walk 142 : 05 300 1000 3 1.58 24.00 2 693 262 27.01 75.42 6.83
aggressive walk 142 : 06 300 600 3 8.32 40.00 121 898 1.21 18.49 15.23

walk with hand-rail 142 : 07 450 1000 2 1.22 14.00 2 153 124 21.60 61.84 6.59
walk 142 : 08 300 600 – 15.80 50.00 183 922 3.76 15.87 15.28

military walk 142 : 11 300 800 – 9.60 39.00 193 445 4.51 14.83 25.85
limping walk 142 : 12 310 710 2 3.12 30.00 995 299 8.43 36.68 8.87

walk 142 : 15 300 1200 3 2.11 20.00 4 212 216 44.06 122.37 5.41
jogging 143 : 01 0 96 – 24.83 50.00 3 334 0.07 11.41 8.36
hopping 143 : 05 100 240 – 58.38 105.00 32 014 0.53 11.83 11.33

stepping over 143 : 15 450 587 – 34.51 85.00 27 740 0.49 11.94 11.02
stepping over 143 : 16 52 186 – 52.07 110.00 35 962 0.78 12.09 10.41

stairs 143 : 17 394 603 – 34.06 50.00 25 471 0.43 12.29 24.37
sitting, standing 143 : 18 28 763 – 16.28 50.00 1 810 614 51.99 61.73 6.46

punching 143 : 23 100 500 4 2.66 30.00 844 627 12.72 – –
using a broom 143 : 28 40 441 – 7.02 50.00 188 371 1.58 20.35 18.29

walk 143 : 32 30 270 – 14.06 50.00 128 308 2.41 14.10 14.54
sideway walk 143 : 40 1 425 – 16.31 40.00 548 524 13.48 25.30 10.93

sideway hopping 143 : 41 80 380 2 3.06 20.00 473 866 3.81 25.59 10.20

Fig. 7 We display the chosen motion capture examples with computation times (in seconds). Each motion
has a description and a CMU dataset id (Actor:Motion); frames which were used; PCA dimension (if
used); Vietoris-Rips parameter of relevant coclass birth; maximal Vietoris-Rips parameter used; complex
size; total cohomology computation time and finally total post-processing time.
The motions 1:9, 2:7, 5:13, 13:29 and 143:23 were computed to illustrate the use of circular coordinates
as detection tools. Thus, the post-processing pipeline was not applied on these motions, and we report no
timings for these.

expectation maximization iterations and using a minimum covariance of 10−5. For
the centroid curve construction, we computed the 10 nearest neighbours of each of
500 sampled coordinate values. We computed centroids as coordinate-wise arithmetic
means.

6.2 Running time

The timings were performed on a MacBook Air with a 2GHz Intel Core i7 processor
and 8GB RAM. As can be seen in Figure 7, the entire pipeline runs within a few
minutes – from 11.48 seconds for motion 143:01 ranging up to 166.63 seconds for
motion 142:15. We account for the time spent in two different categories: speeding
up the computation of cohomology is an active research field, and while we use state
of the art software for this, there are approaches that speed up the computation which
we have not used: witness complexes [30] and, for the PCA projected coordinates,
alpha complexes [31,32].

As for the post-processing, which in many cases far outweighs the cohomology
computation in computational effort, we note that we have written our entire code-
base in Python using SciPy. Our source-code has not been optimized beyond some
attempts to use the SciPy support for vectorized arithmetic. A re-implementation of
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the post-processing steps with attention paid to optimization and speed would cer-
tainly improve the running times.

As implemented, the pipeline however runs swiftly enough that it can be used
directly with motion capture data – although not quite in real time.

6.3 Evaluating the results

To evaluate our results, we animated the motions using a humanoid skeleton, the
mocapPlayer [33] for quick evaluations, and Maya [34] with a motion capture rigging
as described by [1].

In addition, we inspected PCA scatter plots, plots of the extracted centroid curve
and plots of coordinate values and computed jerk (

...
x) to judge the smoothness of

the motions. We computed an estimate of the jerk using a 4th order forward finite
difference coefficient formula for third derivatives as given by [35].

The resulting coordinates for motion 143:28, are shown in Figure 6. We would
like to point out that, while the linearly interpolated reconstructed coordinates are
more jittery, most of the visible trends follow the periodic motion in the same speed as
the original coordinates. In Figure 6, we also compare the jerk (

...
x , the time derivative

of the acceleration) of the two motions, and we note that the magnitude of the jerk in
our generated periodic trajectory is similar to the magnitude of the jerk in the original
data.

For comparison, we also implemented the techniques from [19] which produced
similar results only when applied to pre-cut periodic segments. This is unsurpris-
ing as the key difference between our work and [19] is how the parameterization is
found. The technique used in [19] for parameterization has some significant draw-
backs. First, the motion segment must be periodic and this period must be known. In
the experiments, we found that an incorrect period length, or data which contained
non-periodic parts produced poor results with the approach of [19]. To determine a
periodic motion for use with the methods of [19], manual cutting is hence required.
For example, in many of the motions, the actor begins by standing for several sec-
onds before starting to walk. Furthermore, using several periods of a motion as input
to [19] also produced poor results in our tests.

One interesting advantage of the techniques used in [19] is a consequence of only
using one example period from the motion capture to perform the interpolation. If
there are large variations between the periods of the gaits, this prevents interpolations
from producing unnatural poses. We expect that an incorporation of the techniques
from [19] and other work in this area could further improve results. In particular,
better interpolation and a reduction of foot skate would likely result in more natural
motions. However, our approach does currently already produce comparable results
with fewer parameters and is more robust to the choice of values for these parameters.

6.4 Multiple motions

We consider the example of different punching motions of 143:23 from [1] in Fig-
ure 8. Using a subsequence consisting of 400 frames and computing circular coordi-
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nates of those (using a Euclidean metric where each dimension was normalized by
variance), we find 5 highly persistent classes – though the sequence only contains 3
different types of punches. The indicated red coordinate excitations correspond to an
uppercut punch with the right hand, while the other two excitations correspond to a
left uppercut and a jab. The various circular coordinate excitations can differentiate
between the two types of left punches also – even though this relationship is not a
straightforward correspondence.

Another example is produced by concatenating several motions into a single mo-
tion file. We combined motions 104:19 (REGULAR WALK), 143:01 (JOGGING) and
143:05 (HOPPING) into a combined sequence and computed coordinates for the entire
sequence. In Figure 9, we can see the resulting coordinates at two different scales. We
found that the lower scale captured the slower walking and running motions well, but
missed the faster jumping motion at the end, while the larger scale missed the slow
motions and detects the fast motion instead.

More examples from the database [1] have been included. In Figure 10, we see
a sequence of playground activities. The initial walking motion, and one sequence
where the actor dangles his feet off a ledge, are detected by spikes in the computed
coordinates. In Figure 11, a sequence of sword slashes have been recorded. At the
scale used, we pick out coordinates for a subsequence of mid-height slashing motions.
Finally, in Figure 12, we see a recording of a ballet dancer moving through a few steps
and two pirouettes. The chosen filtration parameter picks out the preparatory posture
adjustment and the first pirouette.

In our experiments, all motions have been analyzed using the full dimensional hu-
man skeleton configuration space. By weighting the components, or even excluding
some dimensions, results could potentially be improved further.

7 Discussion and Future Work

This paper introduced a new framework for extracting a periodic motion parametriza-
tions from real world motion capture data, resulting in closed curves in a high-
dimensional configuration space which describe a periodic motion in a format that
can be used for procedural animation. By using topological information at its core,
our method can be applied in high-dimensional spaces and executes the complete
processing pipeline in a matter of a few minutes. The result is a natural and intrinsic
parameterization of motions.

We have presented several applications using our approach: identifying periodic
motions, generating typical periodic motion cycles and automatic alignment and in-
terpolation between motions. The parameterization identifies periodic parts of the
motion and gives us a natural way to find a typical periodic motion parametrization
as well as the ability to estimate the period. With access to the found intrinsic param-
eterization, aligning motions then becomes a 1 dimensional search problem.

In this paper we have concentrated on our general approach and the information
we can extract with it. We believe this raises a number of interesting questions:

Motion synthesis: Our approach to synthesizing typical motions once a topo-
logical circular parametrization is found is currently somewhat simple. It is orthog-
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Fig. 8 We consider a sequence of punches producing several periodic motions. In the barcode (using
Euclidean distance normalized by variance), we see 5 persistent cohomology classes (highlighted in the
diagram) for 3 punches. The right uppercut is assigned 1 coordinate, while the left uppercuts and jab are
assigned the remaining 4. However, the signatures of the jab and uppercut are significantly different.

onal to most of the existing work in animating gaits. Visually, the results could be
further improved by using optimization-based post-processing taking physical con-
straints into account. This is especially the case for walking motions, where rather
than integrating the differences, we could detect contact points with the ground to
modify the resulting motion accordingly [36]. We currently do not take into account
possible forbidden configurations, such as arms passing through each other. This is
however a well studied problem in robotics and it may be possible to locally modify
the trajectory to a physically realizable path while respecting the overall topological
structures.

Boosting the Topological Signal: We experimented with primarily Euclidean
metrics (normalized and un-normalized). There are numerous other metrics includ-
ing weighting joint angles by the mass or inertia of the elements that the joint is driv-
ing [37]. As well as different metrics, complexes other than the Vietoris-Rips may
also provide a finer distinction between motions. This could especially improve the
performance for the case of multiple motions. Multiple coordinates corresponding to
one motion indicate that we have chosen the coclass poorly, i.e. it might be possible
to determine a better coordinate by considering linear combinations of coclasses. An-
other approach we would like to consider in future work is to learn a distance metric
based on labelled input examples.

Classifying Motions: Persistence barcodes have been used successfully as shape
signatures for clustering and shape comparison. We believe that our approach could
also provide an interesting signature for comparing and clustering databases of mo-
tions. From the multiple motion experiments, we see that similar motions (e.g. run-
ning and walking) occur at the same filtration scale, or have similar coordinates (left
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Fig. 9 We consider three concatenated motions: a walk, a run and hopping. The barcode detects the mo-
tions at different scales. Two of the motions are detected at filtration value ε1 = 42.6 (top figure) and one
at ε2 = 100 (middle figure). The hop and run are described by two coordinates each. The relevant classes
are highlighted in the first barcode diagram in the bottom figure.

versus right punch). We could therefore consider defining metrics between motions
by examining how these coordinates change over time.

In summary, we have presented a periodic motion processing pipeline based on
novel topological techniques for motion synthesis and classification that can be di-
rectly applied in high-dimensional configuration spaces. Our method has few param-
eters and does not rely on heavily preprocessing input, such as manually picking
precise start and end frames. Our approach can detect and parametrize typical peri-
odic motions, and it can extract periodic motion segments from real world motion
sequences with minimal user intervention.
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