
Crash Course in
Speech Signal Processing and Recognition

Giampiero Salvi

KTH CSC TMH giampi@kth.se

UTL IST ISR gsalvi@isr.ist.utl.pt

Vislab, Mar. 2007

http://creativecommons.org/licenses/by-sa/2.0/
http://www.kth.se
http://www.csc.kth.se
http://www.speech.kth.se
mailto:giampi@kth.se
http://www.utl.pt
http://www.ist.utl.pt
http://www.isr.ist.utl.pt
mailto:gsalvi@isr.ist.utl.pt


Outline

Models of Speech Production
Vowel-like sounds
Source/Filter Model, General Case

Acoustic Features
Linear Prediction Analysis (LPA)
Mel Frequency Cepstral Coe�cients (MFCC)
Features and Time Evolution

Hidden Markov Models (HMMs) and Automatic Speech
Recognition (ASR)

De�nition
Three problems
Warnings

CONTACT Challenges

http://creativecommons.org/licenses/by-sa/2.0/


Outline

Models of Speech Production
Vowel-like sounds
Source/Filter Model, General Case

Acoustic Features
Linear Prediction Analysis (LPA)
Mel Frequency Cepstral Coe�cients (MFCC)
Features and Time Evolution

Hidden Markov Models (HMMs) and Automatic Speech
Recognition (ASR)

De�nition
Three problems
Warnings

CONTACT Challenges

http://creativecommons.org/licenses/by-sa/2.0/


Physiology
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Glottal Flow
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Radiation form the Lips/Nose
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Problem of radiation at the lips plus
di�raction about the head too com-
plicated.
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Approx. with a piston in a rigid
sphere: solved but not in closed form
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2nd approx: piston in an in�nite wall

R(z) ≈ 1− αz−1
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Tube Model of the Vocal Tract
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Tube Model (cntd.)

k k+1

I assume planar wave propagation and lossless tubes

I solve pressure p(x , t) and velocity u(x , t) in each tube
according to wave equation

I impose continuity of pressure and velocity at the junctions

⇒ all-pole transfer function (N = number of tubes)

V (z) =
Az−N/2

1−
∑N

k=1 akz
−k
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Source/Filter Model: vowel-like sounds
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F0 and Formants

I Varying F0 (vocal fold oscillation rate)
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Source/Filter Model, General Case
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Source/Filter Model, General Case

Fricatives (e.g. /Ê/) or Plosive (e.g. /k/)
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Source/Filter Model, General Case
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Source/Filter Model, General Case
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Complete Source/Filter Model
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Linear Prediction Coe�cients (LPC)

I assume all-pole model:

H(z) =
S(z)

Ug (z)
= AG (z)V (z)R(z) ,

A

1−
∑p

k=1 akz
−k

I the output signal s[n] can be expressed as the sum of the
input ug [n] and a number of previous samples aks[n − k]:

s[n] =

p∑
k=1

aks[n − k] + Aug [n]

I given a linear predictor αk of ak , minimise the error:

e[n] = s[n]− s̃[n] = s[n]−
p∑

k=1

αks[n − k]

http://creativecommons.org/licenses/by-sa/2.0/


Linear Prediction Coe�cients (LPC)

I assume all-pole model:

H(z) =
S(z)

Ug (z)
= AG (z)V (z)R(z) ,

A

1−
∑p

k=1 akz
−k

I the output signal s[n] can be expressed as the sum of the
input ug [n] and a number of previous samples aks[n − k]:

s[n] =

p∑
k=1

aks[n − k] + Aug [n]

I given a linear predictor αk of ak , minimise the error:

e[n] = s[n]− s̃[n] = s[n]−
p∑

k=1

αks[n − k]

http://creativecommons.org/licenses/by-sa/2.0/


Linear Prediction Coe�cients (LPC)

I assume all-pole model:

H(z) =
S(z)

Ug (z)
= AG (z)V (z)R(z) ,

A

1−
∑p

k=1 akz
−k

I the output signal s[n] can be expressed as the sum of the
input ug [n] and a number of previous samples aks[n − k]:

s[n] =

p∑
k=1

aks[n − k] + Aug [n]

I given a linear predictor αk of ak , minimise the error:

e[n] = s[n]− s̃[n] = s[n]−
p∑

k=1

αks[n − k]

http://creativecommons.org/licenses/by-sa/2.0/


Mel Frequency Cepstral Coe�cients
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MFCC (cntd.)

Rationale
I signals combined in a convolutive way: a[n] ∗ b[n] ∗ c[n]

I in the spectral domain: A(z)B(z)C (z)

I taking the log: log(A(z)) + log(B(z)) + log(C (z))

I to analise the di�erent contribution perfor Fourier transform
(DCT if not interested in phase information).

Advantages
I fairly uncorrelated coe�cients (simpler statistical models)

I do not assume all-pole model
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Segment-Based Processing
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Landmark-Based Processing
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Frame-Based Processing
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Hidden Markov Models

An HMM is de�ned by:
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a set of N reachable states S = {s1, s2, ..., sN}
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Hidden Markov Models

An HMM is de�ned by:
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a state transition probability distribution A = {aij} where

aij = Prob{xt+1 = sj |xt = si}
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Hidden Markov Models

An HMM is de�ned by:
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the probability distribution of an observation ot ∈ RM given the
state sj ,

bj(ot) = P(ot |xt = sj)
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Hidden Markov Models

An HMM is de�ned by:
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the initial state distribution π = {πi} where

πi = Prob{x1 = si},∀i ∈ [1,N]
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Hidden Markov Models

An HMM is de�ned by:
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λ = {S , RM , π,A,B}
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Example 1: Isolated Word Recognition

I each phoneme is modelled by a three-state left-to-right HMM:

N

I each word is modelled as a sequence of phonemes:

N Å L #

noll

I there are two words in the vocabulary: �noll� (zero) and �ett�
(one).
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Example 1: Isolated Word Recognition (cntd.)

Problem: given an observation sequence O = {o1, . . . , oT},
containing just one word, decide if the spoken work
was �noll� or �ett�.

Solution: compute the likelihood of the observation sequence
O = {o1, . . . , oT} given the model: P(O|λi ) for each
model (word) and select argmaxi P(O|λi ).

Problem: Summing the log likelihood over the possible paths is
not feasible.

Solution: Forward-Backward algorithm

αt(i) = Prob(o1, o2, ..., ot , xt = si |λ)

βt(i) = Prob(ot+1, ot+2, ..., oT |xt = si ;λ)
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Example 2: Continuous Speech Recognition

Problem: given an observation sequence O = {o1, . . . , oT},
containing a sequence of �noll� or �ett�, reconstruct
the sequence.

Solution (1): build an HMM describing the possible sequence of
words:

Solution (2): �nd the best path in the full model, given O

Implementation: Viterbi algorithm
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Example 3: Training

Problem: given an observation sequence O = {o1, . . . , oT},
containing a known sequence of �noll� or �ett�, �nd
the best values of λi = {πi ,Ai ,Bi}.

Note: the association between HMM states and time steps
is not known

Solution: Baum-Welsh Algorithm (instance of the Expectation
Maximisation algorithm).
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Warnings

I phones are not stationary sounds

I phones are strongly a�ected by context

I di�erence between phonemes (lexicon) and phones (sounds)

I assimilation, co-articulation, reduction...

I spontaneous speech (!)
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CONTACT Challenges

I the phonemes (speech categories) are not known in advance

I the words are not given

I infer phonemes and words from experience
(unsupervised/reinforcement learning)

I build associations between sounds (words) and images
(objects) by interacting with the environment.

I . . . more next time!
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