
2E1395 - Pattern Recognition
Solutions to Introduction to Pattern Recognition, Chapter 1:

Matched Filters

Preface

This document1 is a solution manual for selected exercises from “Introduction to Pattern Recog-
nition” by Arne Leijon. The notation followed in the text book will be fully respected here. A
short review of the issue discussed in the corresponding chapter of the text book is given here
as a reference. For a complete proof of these results and for the problem text refer to the text
book.

Problem definition and optimization

A two-category signal classification system (fig. 1) consists of three parts: a source, a channel,
and a receiver (classifier).

• The source can generate one of two possible discrete-time signals, s0(n) or s1(n), according
to a random selector. The signal s0(n) is selected with probability p0 and s1(n) with
probability p1 = 1− p0.

• The channel introduces some addictive noise W (n) whose stochastic characteristic is known.
Note that this part of the system can be thought of as being part of the source without
any change in the following discussion.

• the receiver consists of a linear filter and a threshold-based classifier.

s(n)
1

s(n)
0 1

0

W(n)

Filter

X(n)
V(n)

CLASSIFIERSOURCE

n=N−1S

Figure 1. A two-category classification system

1This work comes under the terms of the Creative Commons © BY-SA 2.0 license

http://creativecommons.org/licenses/by-sa/2.0/
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Given the source and the channel, we have to find the optimal classifier in terms of minimizing the
probability of classification error. This problem has been solved under a number of assumptions2:

• The shape of s0(n) and s1(n) is known and si(n) = aie(n), i.e. the signals are proportional
to each other.

• The length of si(n) is finite and equal to N , i.e. si(n) = 0 ∀n > N − 1 and n < 0.

• The noise introduced by the channel is a wide-sense stationary process with zero mean:
E[W (n)] = 0.

• The noise introduced by the channel is white: rW (k) = E[W (n + k)W (n)] = 0; k 6= 0 (but
we will see that this assumption is not necessary).

• The time at which the source signal si(n) is generated is known.

• The variance of the noise σ2
W = rW (0) and the probabilities of selecting one of the source

signals p0 and p1 are known.

When the previous conditions are verified, the problem is solved employing a finite impulse
response filter of order N (see fig. 2). The output of this filter X(n) is a linear combination of
N input samples V (n), V (n− 1), ..., V (n−N + 1), with coefficients b(0), b(1), ..., b(N − 1). We
note how, at the time step n = N − 1, all and only the non zero samples of the source signal
si(n) contribute to the output. It is then convenient to consider the output of the classifier only
at this particular time step (the maximum amount of useful information is used). This will also
ensure that, in case si(n) is followed or preceded by another signal, this will not affect results (see
exercise 1.1b). The output X(N−1) of the filter at this particular time step is a random variable
whose probability distribution has to be computed if we want to characterize the performance
of the system. Using vector notation:

e .=


e(0)
e(1)

...
e(N − 1)

 , W .=


W (0)
W (1)

...
W (N − 1)

 , b .=


b(N − 1)
b(N − 2)

...
b(0)


the expected value of X(N − 1), depending on the state of the source is:

µ0 = E[X(N − 1)|s0] = E[bt(a0e + W)] = a0bte

µ1 = E[X(N − 1)|s1] = E[bt(a1e + W)] = a1bte

The variance of X(N − 1) does not depend on the state of the source:

σ2
X =

{
btCb gaussian noise

‖b‖2σ2
W gaussian white-noise

After optimization and normalization (normalized matched filter):

b =
e
‖e‖

2the assumptions mentioned here might seem too restrictive, but they can be satisfied by important classes of
problem. One such example is the RADAR system, in which the echos received are a perturbation of the signal
that had been transmitted and that is known by the receiver
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Figure 2. A finite impulse response linear filter

µ0 = a0‖e‖
µ1 = a1‖e‖

σ2
X =

{ 1
‖e‖2 e

tCe gaussian noise

σ2
W gaussian white-noise

Additional information about the shape of the probability distribution for the noise W (n) is
needed if we want to compute the distribution fX(x). For example in the case of Gaussian white
noise, fX(x) is also Gaussian:

fX|S(x|si) =
1√

2πσX

e
− (x−µi)

2

2σ2
W

Note that this probability distribution depends on the signal the source selects.
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Figure 3. Input signals s0(n), s1(n) and filter coefficients b(n).

Exercise 1.1

This is a standard problem of two-category classifier solved in the text book. The source signals
are:

s0(n) =


a 0 ≤ n ≤ 9
−a 10 ≤ n ≤ 14
0 otherwise

s1(n) = −s0(n)

a) Following the notation in the text book (chapter 1), we can write

s0(n) = a0e(n) = −e(n) (a0 = −1)
s1(n) = a1e(n) = e(n) (a1 = 1)

where e(n) is the sequence defined by3:

e(n) =


−a 0 ≤ n ≤ 9
a 10 ≤ n ≤ 14
0 otherwise

According to the book, the normalized matched filter coefficients are defined as:

b(n) =
e(N − 1− n)
‖e(n)‖

=


1/
√

15 0 ≤ n ≤ 4
−1/

√
15 5 ≤ n ≤ 14

0 otherwise
3Note that the choice for a0 and a1 is totally arbitrary: we might as well have set a0 = −a, a1 = a and

e(n) = ±1.
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Figure 4. Input Vi(n) and output X(n) signals to the matched filter.

The plots of s0(n), s1(n) and b(n) are in fig 3 for a = 1.

b)We know that the noise is not present in this case (σW = 0). The input to the filter will thus
be:

V1(n) = s1(n) + s0(n−N)

V2(n) = s1(n) + s1(n−N)

The output is the convolution of the input with the impulse response of the filter (as for any
linear system):

X1(n) = V1(n) ? b(n) =
+∞∑

k=−∞
V1(k)b(n− k)

X2(n) = V2(n) ? b(n) =
+∞∑

k=−∞
V2(k)b(n− k)

The solution to these sums is depicted in fig 4 for a = 1, where the black dots indicate the input
Vi(n) to the filter and the circles its output Xi(n). It’s worth noticing the values of the output
X(n) at the time steps N − 1 = 14 and 2N − 1 = 29:

X1(14) = 3.87 =
√

15 = a1‖e‖ = µ1

X1(29) = −3.87 = −
√

15 = a0‖e‖ = µ0

5 (15)

2E1395 - Pattern Recognition • Höstterminen 2000
Giampiero Salvi (giampi@kth.se)



−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

fX|S(x|so)

Figure 5.

X2(14) = 3.87 =
√

15 = a1‖e‖ = µ1

X2(29) = 3.87 =
√

15 = a1‖e‖ = µ1

showing that X(mN − 1) is not influenced by other samples than the ones in the signal we want
to classify.

c) We now consider the case of noisy channel. W (n) has Gaussian distribution and any two sam-
ples W (n) and W (m), n 6= m are uncorrelated (white noise). Since X(n) is a linear combination
of samples from W (n), its distribution is also Gaussian, with mean µi = ai‖e‖ and variance
σX = σW (see text book). The probability of the joint event that s0(n) was generated and the
classifier decides “1” (D = 1), can be written as:

PDS(1 ∩ s0) = PS(s0)PD|S(1|s0) = PS(s0)PX|S(X(N−1) > 0 |s0)

because the classifier decides 1 if the output of the filter exceeds the threshold 0. This can be
written, according to the properties of the probability distributions (see also fig. 5), as:

PDS(1 ∩ s0) = PS(s0)
∫ ∞

0
fX|S(x|s0)dx

= PS(s0)
∫ ∞

0

1√
2πσW

e
− (x−µ0)2

2σ2
W dx (1)

As well known, this integral is not solvable analitically, and can be solved by defining (and
tabling) a function called error function. The different definitions of the solving function are
reported in table 1. In any case the procedure is to find the proper substitution that simplifies
the integral we want to solve into one of those forms, and then to look up the values on a table
or compute them with a calculator.
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name definition solution method
error function erf(x) = 2√

π

∫ x
0 e−t2dt matlab: erf

complementary error function erfc(x) = 2√
π

∫∞
x e−t2dt matlab: erfc

distribution function Φ(x) = 1√
2π

∫ x
−∞ e−

t2

2 dt BETA, pag. 405

Table 1.

In this manual we will always use the definition from BETA4. In particular, operating the
substitution t = x−µ0

σW
in eq. 1 we obtain:

PDS(1 ∩ s0) = PS(s0)
[
1− Φ

(
− µ0

σW

)]
Substituting PS(s0) = 1/2, σW = 2 and a = 1 (µ0 = −

√
15), we obtain the numerical value:

PDS(1 ∩ s0) ≈ 0.0132.

Exercise 1.2

In this exercise we see that even if we don’t know exactly the shape of the source signals si(n),
but provided that we know their energy, we can still deduct some information about the system
performance. We know that s1(n) = −s0(n), that s0(n) = s1(n) = 0 ∀n < 0 and n > N − 1,
and that the energy is fixes:

E =
N−1∑
n=0

s0(n) =
N−1∑
n=0

s1(n)

We also know that the additive zero-mean white Gaussian noise, disturbing the signal, has
standard deviation σW .

a) From the normalized matched-filter optimization we know that

µ0 = a0‖e‖ = −
√

E

µ1 = a1‖e‖ =
√

E

NOTE that E = a2
i ‖e‖2

b) As in exercise 1.1c, the probability of the combined event that s1 was actually generated and
the classifier decides “0” is given by:

PDS(0 ∩ s1) = PS(s1) PD|S(0|s1)

where PS(s1) is the probability that the source generates s1, and PD|S(0|s1) is the probability
that the classifier decides “0” when the input is s1. The source generates s0(n) and s1(n) with the
same probability PS(s1) = PS(s0) = 1

2 . Moreover PD|S(0|s1) is the probability that the output
variable X assumes values lower than the threshold, when the input is s1. We know that, under
the last condition, and for a normalized matched filter, the variable X has a Gaussian distribution

4Beta, mathematics handbook, Studentlitteratur

7 (15)

2E1395 - Pattern Recognition • Höstterminen 2000
Giampiero Salvi (giampi@kth.se)



−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

fX|S(x|si)P(S=si)

Figure 6.

with mean µ1 (see point a) and variance σX = σW . We can hence compute PD|S(0|s1) integrating
the p.d.f. of X between −∞ and 0 (the threshold value):

PDS(0 ∩ s1) = PS(s1)
∫ 0

−∞

1√
2π σW

e
− (x−µ1)2

2σ2
W dx

= PS(s1)Φ
(
− µ1

σW

)
= PS(s1)

[
1− Φ

(
µ1

σW

)]
= PS(s1)

[
1− Φ

(√
E

σW

)]
c) There is an error either because s0(n) was selected AND the classifier outputs “1” or because
s1(n) was selected AND the classifier outputs “0”. Being the two events disjoint, the total error
probability can be written as

PE = PS(s0) PD|S(1|s0) + PS(s1) PD|S(0|s1)

Since the problem is fully symmetric (see fig 6)

PD|S(1|s0) = PD|S(0|s1)

and
PE = 2PS(s1) PD|S(0|s1)

that was computed in point b (beside the factor 2).
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Figure 7.

Exercise 1.3

In this exercise the symmetry of exercise 1.2 is removed: the source generates the signal s0(n)
with probability p0 and the signal s1(n) with probability p1 = 1 − p0 6= p0. As a consequence
the threshold value that leads to the minimum decision error is not 0 as in the previous case.
Let’s call the threshold value xt. We have to express the decision error probability as a function
of xt. Remember that fX|S(x|si) does not depend on the value of pi = PS(si) because it is the
distribution of X given that the signal transmitted is known. We know that the total probability
of error can be written as:

PE = PS(s0) PD|S(1|s0) + PS(s1) PD|S(0|s1)
= p0 PX|S(x > xt|s0) + (1− p0) PX|S(x < xt|s1)

= p0

∫ +∞

xt

fX|S(x|s0)dx + (1− p0)
∫ xt

−∞
fX|S(x|s1)dx

=
∫ +∞

xt

p0

σW

√
2π

e
− (x−µ0)2

2σ2
w dx +

∫ xt

−∞

1− p0

σW

√
2π

e
− (x−µ1)2

2σ2
w dx

The two integrand functions are depicted in fig. 7, where the sum of the two areas corresponds
to the value of PE . Note how, in this case, the symmetry of fig. 6 is lost. Note also that,
after integration, PE will be a function of the variable xt and that PE(xt) can be optimized (i.e.
minimized) imposing

dPE(xt)
dxt

= 0

To compute this derivative we refer to the general property of continuous functions:

if F (α) =
∫ α

−∞
f(x)dx ⇒ dF (α)

dα
= f(α)

9 (15)

2E1395 - Pattern Recognition • Höstterminen 2000
Giampiero Salvi (giampi@kth.se)



then
dPE(xt)

dxt
= − p0

σW

√
2π

e
− (xt−µ0)2

2σ2
W +

1− p0

σW

√
2π

e
− (xt−µ1)2

2σ2
W

where the minus sign in the first term comes from inverting the limits in the integral. Simplifying:

p0e
− (xt−µ0)2

2σ2
W = (1− p0)e

− (xt−µ1)2

2σ2
W

p0

1− p0
e

(xt−µ1)2−(xt−µ0)2

2σ2
W = 1

(xt − µ1)2 − (xt − µ0)2 = 2σ2
W ln

1− p0

p0

2xtµ0 − 2xtµ1 = 2σ2
W ln

1− p0

p0

and finally, since µ1 = −µ0 =
√

E,

xt =
σ2

2
√

E
ln

p0

1− p0

Comments:

• the optimal value for xt is the point in which the two curves in fig 7 intersect. This result
could be predicted looking at the figure and noticing that for any other choice of xt the
area that represents PE increases

• when p0 = p1 = 1/2 the formula gives xt = 0 as the symmetry of the problem suggests

Exercise 1.4
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W(n)

1
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Filter
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n=N−1

A/D

sf=
N
T

SOURCE

S

V(n)

Figure 8.

This exercise is designed to point out how the performance of the system varies when we
change the number of samples that influence the decision. We have two continuous signals

s0(t) =
{

a 0 ≤ t < T
0 otherwise

s1(t) = −s0(t)

but we take only N samples out of them (A/D converter with sampling rate fs = N/T , see
fig. 8). Note that, after the A/D converter, the problem is exactly the same as in the previous
examples. We can then write:

µ0 = −
√

E = −a
√

N
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µ1 =
√

E = a
√

N

σX = σW

and for the probability of error:

PE = PS(s0)
∫ +∞

0
fX|S(x|s0)dx + PS(s1)

∫ 0

−∞
fX|S(x|s1)dx

=
1
2

∫ +∞

0

1
σX

√
2π

e
− (x−µ0)2

2σ2
X dx +

1
2

∫ 0

−∞

1
σX

√
2π

e
− (x−µ1)2

2σ2
X dx

=
1
2

[
1− 1√

2π

∫ − µ0
σX

−∞
e−

t2

2 dt +
1√
2π

∫ − µ1
σX

−∞
e−

t2

2 dt

]

=
1
2

[
1− Φ

(
− µ0

σX

)
+ Φ

(
− µ1

σX

)]
=

1
2

[
1− Φ

(
a
√

N

σW

)
+ Φ

(
−a
√

N

σW

)]

= 1− Φ

(
a
√

N

σW

)
substituting the values (a = 1, σW = 10 and N = 400), we obtain PE ' 0.0228.

b) If we consider PE as a function of N , we can easily prove that PE(N) goes to zero for N
approaching infinity, see also fig. 9. This would suggest that increasing the sampling frequency
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Figure 9. Probability of error in function of the number of samples N

is a good method for improving the system performance. In reality there are some limitations
to this:
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• there are physical and technological problems in creating a sampler and A/D converter at
high frequencies: we have to expect that the higher the frequency is, the higher the noise
introduced by the A/D converter (σW ) would be. At a certain point the contribution of√

N in the formula would be lower than the contribution of σW and PE would start rising
again.

• the formula for PE was found under the assumption that the noise sample are uncorrelated.
This is always true for an ideal white noise, but in reality the white noise is only an
approximation, and when the samples start to be very near to one another (high sampling
frequencies), the correlation can be grater that zero. This means that σX is not equal to
σW any longer (σX is the one affecting the value on PE). Since σX is always grater than
σW (for a proof look at the derivation of σX in the text book), we expect that PE will be
negatively affected by this problem.

Finally note that (fig. 9), for N = 0 the system takes a blind decision that, in the case of
p0 = p1 = 1/2, leads to a probability of error equal to one half (random chance).

Exercise 1.5

In this exercise the problem pointed out in ex. 1.4b is discussed thoroughly. In this case the
noise is inserted before sampling (continuous Gaussian noise), and the assumption of ideal white
noise is removed. The signal is the same as in ex. 1.4:
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Figure 10. Power spectrum of the noise N(t) for different values of f0

s0(t) =
{

a 0 ≤ t < T
0 otherwise

s1(t) = −s0(t)
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Figure 11. Autocorrelation function of the noise N(t) for different values of f0

but the noise has power density spectrum:

SN (f) =
N0/2

1 + (f/f0)2

Looking at fig. 10 it can be seen that SN (f) is not flat (constant) in frequency. Its deviation from
being “white” is controlled by the parameter f0: the larger f0 the larger the frequency interval
in which SN (f) can considered to be almost white.

a) As we know from signal theory, the autocorrelation function of a wide-sense stationary process
is the inverse Fourier transform of the power spectrum:

RN (τ) = F−1 {SN (f)} =
∫ ∞

−∞
SN (f)ej2πfτdf =

πf0N0

2
e−2πf0|τ |

This function is depicted in fig. 11 for different values of f0. We can see that if f0 increases,
RN (τ) tends to a Dirac impulse (as for the white noise).

b) before sampling RN (τ) = E[N(t + τ)N(t)]. After sampling

RW (k) = E[W (n + k)W (n)] = E[N(nTs + kTs)N(nTs)] (2)

= RN (kTs) =
πf0N0

2
e−2πf0|kTs| (3)

= σ2
W e−2πf0/fs|k| (4)

where the variance (RW (0)) for each sample is σ2
W = πf0N0

2 . If fs � f0 all the terms for k 6= 0
are almost zero if compared to the maximum (at k = 0). The autocorrelation function is hence
a good approximation of the Dirac function (white noise).
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c) If we consider M samples (where M = Tfs) of the input signal, their joint distribution is
gaussian, with covariance matrix

C =
{

cij = σ2
W e−2π

f0T
M

|i−j|
}

We write again the formula we obtained in exercise 1.4c without the substitution of σX with σW :

PE = 1− Φ

(
a
√

M

σX

)

To find σX we note that X is a sum of gaussian variables with covariance matrix C. Using
matrix notation:

X(M − 1) = bTV

The variace is then:
σ2

X = bTCb

Since we are using a normalized matched filter: b(i) = 1/
√

M . and the previous formula becomes:

σ2
X =

1
M

M∑
i

M∑
j

c(i, j)

=
1
M

σ2
W

M∑
i

M∑
j

e−2π
f0T
M

|i−j| (5)

From this expression we can already say that for M that tends to infinity the exponential terms
in the sums tend to 1 and σX ∝

√
M . This term will compete with the one in the total error

function leading to some asymptotic value that depends on the parameter f0. Expression 5 can
be further simplified if we note that the elements on every diagonal of the covariance matrix have
constant value, then:

σ2
X =

1
M

σ2
W

M + 2
M−1∑
j=1

(M − j)e−2π
f0T
M

j

 (6)

Note how the first term in parentesis corresponds to the white-noise case, and leads to σ2
X = σ2

W

while the second term is a correction that takes into account the non-zero correlation. Solving
the sum in 6 we can write PE as a function of M . This function is decreasing in M , but for M
that goes to infinity tends to a value 6= 0 and that depends on the parameter f0. This means
that in the beginning increasing the sampling frequency (number of samples) we add useful
information to the classification problem. When the correlation between each sample starts to
increase (due to the high sampling frequency), the new samples don’t add any new information
to the classifier. The total probability of error versus number of samples is plotted in fugure 12
for σW = 10, a = 1, T = 10ms and for different values of f0. Compare also with the similar plot
in fig 9: you can see that for f0 = 50kHz the noise is a good approximation of white-noise, for
this problem.
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Figure 12. Total probability of error as a function of the number of samples (sampling frequency)
for different values of the parameter f0
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