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7.1

From the text book:

〈v,w〉 = vxwx + vywy + vzwz

Where vx is the component of the vector v along the x-axis, and so on for the other terms. If
we consider only two dimensions for simplicity, and we define θv as the angle between the vector
v and the x-axis:

vx = |v| cos θv

vy = |v| sin θv

We have then:

〈v,w〉 = vxwx + vywy

= |v| cos θv|w| cos θw + |v| sin θv|w| sin θw

= |v||w|(cos θv cos θw + sin θv sin θw)
= |v||w| cos(θv − θw) = |v||w| cos θvw

As we wanted to prove.

7.2

From geometry we know that three points in a three dimensional space always lie on a plane.
Since v and w start from the same point (the origin), we can always consider them as lying on
a plane and derive the expression for 〈v,w〉 the same way as in the previous example.
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Figure 1.

7.3

From the text book (Equation 3.1):
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And, imposing ω0 = 2π/T :
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If n is even e−j2kπ = 1, and Cn = 0, ∀n = 2k. If n is odd, e−j2kπ = −1, and Cn = 4

j2nπ =
− 2j

nπ , ∀n = 2k − 1.

7.4

The Fourier coefficients are obtained multiplying the signal y(t) with a sinusoidal function s(t)
at a certain frequency and then integrating over time. If s(t) is a sinus (an odd function), and
the function y(t) is even, then their product g(t) = y(t)s(t) will be odd, that is g(t) = −g(−t).
Since the integral extends over time, to each contributions for t < 0 corresponds its opposite for
t > 0. This means that the integral will be zero, and so the coefficient in the Fourier series.

The same reasoning applies in the case y(t) is odd, and s(t) is a cosine.
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7.5

The function is depicted in Figure 1. Following the same procedure as in Exercise 7.3 we obtain:
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And with ω0 = 2π/T :
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)
Note that in this case the result is dependent on the ratio between α and T . If α = T/2 we
obtain the same result as in 7.4.
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